Approximate Cluster-Based Sparse Document Retrieval
with Segmented Maximum Term Weights

Anonymous ACL submission

Abstract

This paper revisits cluster-based sparse retrieval
that partitions the inverted index and skips the
index partially at cluster and document levels
during inference. It proposes an approximate
search scheme called ASC with two parame-
ters to control pruning and provide a proba-
bilistic guarantee on rank-safeness competitive-
ness. ASC uses cluster-level maximum weight
segmentation to improve accuracy of bound
estimation and threshold-based pruning. The
experiments with MS MARCO and BEIR show
that ASC delivers strong relevance with a low
latency on a single-threaded CPU.

1 Introduction

There are two main categories of approaches for
top-k text document retrieval. One is dense re-
trieval with dual encoders (e.g. (Karpukhin et al.,
2020; Ren et al., 2021; Xiao et al., 2022; Wang
et al., 2023)), relying on GPUs for fast compu-
tation. Approximation techniques for dense re-
trieval have been developed with a visible relevance
drop (Johnson et al., 2019; Malkov and Yashunin,
2020; Kulkarni et al., 2023; Zhang et al., 2023).
Another category is lexical sparse retrieval mod-
els, such as BM25, which take advantage of fast
inverted index implementations on CPUs. The re-
cent popularity of this method can be attributed
to advances in learned sparse representations that
derive token weights from a BERT-based neural
model (Dai and Callan, 2020; Mallia et al., 2021a;
Lin and Ma, 2021; Gao et al., 2021; Formal et al.,
2021; Shen et al., 2023). Well-trained models
from these two categories can achieve similar rele-
vance numbers on the standard MS MARCO pas-
sage ranking task. However, for zero-shot out-of-
domain search with BEIR datasets, learned sparse
retrieval exhibits stronger relevance than BERT-
based dense models. Additionally, while GPUs
are readily available, they are expensive and more

energy-intensive than CPUs. For example, AWS
EC2 charges one to two orders of magnitude more
for an advanced GPU instance than a CPU instance
with similar memory capacity. GPUs are eco-
nomically and environmentally less appealing for
first-stage retrieval of a large-scale search engine
which runs index partitions on a massive number
of machines. Thus this paper studies online infer-
ence efficiency optimization for sparse retrieval on
CPUs. Another motivation for this work is that
fusion of sparse and dense retrieval (Li et al., 2022;
Zhang et al., 2023) improves relevance, which calls
for faster but effective sparse retrieval.

A traditional speed optimization for sparse
retrieval is dynamic rank-safe index pruning,
such as MaxScore (Turtle and Flood, 1995),
WAND (Broder et al., 2003), BlockMax WAND
(BMW) (Ding and Suel, 2011), and live block
filtering (Dimopoulos et al., 2013; Mallia et al.,
2021b) which accurately skips the evaluation of
low-scoring documents that are unable to appear in
the final top-k results. Early work on rank-unsafe
pruning includes threshold over-estimation (Mac-
donald et al., 2012; Tonellotto et al., 2013; Crane
et al., 2017) and early termination (Lin and Trot-
man, 2015). Anytime Ranking (Mackenzie et al.,
2021), following the previous cluster-based re-
trieval studies, organizes posting lists as clusters
with cluster-level pruning after dynamic cluster
ordering, in addition to early termination optimiza-
tion. The above rank-unsafe methods can be fast
at the cost of a visible relevance drop, and there are
no formal guarantees on their relevance safeness.

This paper revisits dynamic index pruning in
both safe and unsafe settings for cluster-based re-
trieval. The contributions of this paper is an approx-
imate search scheme called ASC with two parame-
ters that control pruning with a probabilistic guar-
antee on rank-safeness competitiveness. ASC uses
cluster-level maximum weight segmentation to im-
prove accuracy of bound estimation and threshold-



based pruning. This paper treats early termination
as orthogonal optimization and will show ASC’s
compatibility.

Our evaluation shows that ASC delivers strong
relevance in running SPLADE (Formal et al., 2021,
2022) and LexMAE (Shen et al., 2023), taking
only tens of milliseconds on a single-threaded low-
end CPU for MS MARCO passages with up-to
0.425 MRR @10 and 0.988 Recall@1K. It achieves
about 0.5 nDCG@10 for BEIR datasets on average.
The achieved relevance is much stronger than other
approximation baselines while its CPU latency is
reasonably fast for interactive query processing.

2 Background and Related Work

Problem definition. Sparse document retrieval
identifies top-k ranked candidates that match a
query. Each document in a data collection is mod-
eled as a sparse vector with many zero entries.
These candidates are ranked using a simple additive
formula, and the rank score of each document d is
defined as: RankScore(d) = ;.o w4, Where
@ is the set of search terms in the given query,
wy 4 18 a weight contribution of term ¢ in document
d, possibly scaled by a corresponding query term
weight. Term weights can be based on a lexical
model such as BM25 (Jones et al., 2000) or are
learned from a neural model. Terms are tokens in
these neural models. For a sparse representation, a
retrieval algorithm uses an inverted index with a set
of terms, and a document posting list for each term.
A posting record in this list contains a document
ID and its weight for the corresponding term.

Threshold-based skipping. During sparse
retrieval, a pruning strategy computes the up-
per bound rank score of a candidate docu-
ment d, referred to as Bound(d), satisfying
RankScore(d) < Bound(d). If Bound(d) < 0,
where 0 is the rank score threshold to be in the top-
k list, this document can be safely skipped. WAND
uses the maximum term weight of documents in
a posting list for their score upper bound, while
BMW and its variants (e.g. VBMW (Mallia et al.,
2017)) use block-based maximum weights. MaxS-
core uses a similar skipping strategy with term
partitioning. Live block filtering clusters document
IDs within a range and estimates a range-based
maximum score for pruning. A retrieval method is
called rank-safe if it guarantees that the top-%k docu-
ments returned are the & highest scoring documents.
All of the above algorithms are rank-safe.

Threshold over-estimation is a “rank-unsafe”
skipping strategy that deliberately over-estimates
the current top-k threshold by a factor (Macdonald
et al., 2012; Tonellotto et al., 2013; Crane et al.,
2017). There is no formal analysis of the above
rank-safeness approximation, whereas our work
generalizes and improves threshold over-estimation
for better rank-safeness control in cluster-based re-
trieval with a formal guarantee.

Cluster-based retrieval. A cluster skipping
inverted index (Can et al., 2004; Hafizoglu et al.,
2017) arranges each posting list as “clusters” for
selective retrieval. Anytime Ranking (Mackenzie
et al., 2021) searches top clusters under a time
budget. Without early termination, Anytime Rank-
ing is rank-safe and conceptually the same as live
block filtering with an optimization that cluster
visitation is ordered dynamically. Our work fol-
lows and extends the above work while increasing
index-skipping opportunities through cluster-level
maximum weight segmentation and a probabilistic
rank-safeness assurance with a small impact to rele-
vance. ASC improves cluster-level threshold-based
pruning without considering early termination.

Efficiency optimization for learned sparse
retrieval. There are orthogonal techniques to
speedup learned sparse retrieval. BM25-guided
pruning skips documents during learned index
traversal (Mallia et al., 2022; Qiao et al., 2023b).
Static index pruning (Qiao et al., 2023a; Lassance
et al., 2023) removes low-scoring term weights
during index generation. An efficient version of
SPLADE (Lassance and Clinchant, 2022) uses L1
regularization for query vectors, dual document
and query encoders, and language model middle
training. Term impact decomposition (Mackenzie
et al., 2022a) partitions each posting list into two
groups with high and low impact weights. Our
work is complementary to the above techniques.

3 Cluster-based Retrieval with
Approximation and Segmentation

The overall online inference flow of the proposed
scheme during retrieval is shown in Figure 1. Ini-
tially, sparse clusters are sorted in a non-increasing
order of their estimated cluster upper bounds. Then,
search traverses the sorted clusters one-by-one to
conduct approximate retrieval with two-level prun-
ing with segmented term maximum weight.

We follow the notation in (Mackenzie et al.,
2021). A document collection is divided into m
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Figure 1: Flow of ASC: approximate retrieval with
segmented cluster-level maximum term weights

clusters {C1,---,C),}. Each posting list of an
inverted index is structured using these clusters.
Given query @, the BoundSum formula below
estimates the maximum rank score of a document
in a cluster. Anytime Ranking visits clusters in a
non-increasing order of BoundSum values.

BoundSum(C;) = E MAX W, g. (1
cC;
teQ

The visitation to cluster C; can be pruned if
BoundSum(C;) < 6, where 6 is the current top-
k threshold. If this cluster is not pruned, then
document-level index traversal and skipping can
be conducted within each cluster following a stan-
dard retrieval algorithm. Any document within
such a cluster may be skipped for evaluation if
Bound(d) < 6 where Bound(d) is computed on
the fly based on an underlying retrieval algorithm
such as MaxScore and VBMW.

Design considerations. The cluster-level bound
sum estimation in Formula (1) can be loose, espe-
cially when a cluster contains diverse document
vectors, and this reduces the effectiveness of prun-
ing. As an illustration, Figure 2 shows the aver-
age actual and estimated bound ratio using For-

mula (1) for MS MARCO passage clusters, which

.1 m  MaXd;ec; RankScore(d;) .
is 2> BoundSum(Cy) , where m is the

number of clusters. This ratio with value 1 means
the bound estimation is accurate, and a small ratio
value towards O means a loose estimation. This
average ratio becomes bigger with a smaller error
when m increases with a smaller average cluster
size. This figure also plots the improved cluster
upper bound computed in ASC described below.
Limited threshold over-estimation can be helpful
to deal with a loose bound estimation. Specifically,
over-estimation of the top & threshold is applied by
a factor of ;4 where 0 < p < 1, and the above prun-
ing condition is modified as BoundSum/(C;) < %
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Figure 2: The average ratio of the actual and estimated
cluster bounds with Formula (1) on MS MARCO

and Bound(d) < %. The introduction of thresh-
old over-estimation with p allows the skipping of
more low-scoring documents when the bound es-
timation is too loose. However, thresholding is
applied uniformly to all cases and can incorrectly
prune many desired relevant documents when the
bound estimation is already tight in some clusters.

To improve the tightness of cluster-level bound
estimation using Formula (1), one can decrease the
size of each cluster. However, there is a significant
overhead when increasing the number of clusters.
One reason is that for each cluster, one needs to
extract the maximum weights of query terms and
estimate the cluster bound, which can become ex-
pensive for a large number of query terms. Another
reason is that MaxScore identifies a list of essential
query terms which are different from one cluster
to another. Traversing more clusters yields more
overhead for essential term derivation, in addition
to the cluster bound computation.

3.1 ASC: (u,n)-approximate retrieval with
segmented cluster information

The proposed ASC method stands for (u,n)-
Approximate retrieval with Segmented Cluster-
level maximum term weights. ASC segments clus-
ter term maximum weights to improve the tightness
of cluster bound estimation and guide cluster-level
pruning. It employs two parameters, p and 7, satis-
fying 0 < p < n < 1, to detect the cluster bound
estimation tightness and improve pruning safeness.
Details of our algorithm are described below.
Extension to the cluster-based skipping in-
dex. Each cluster C; is subdivided into n segments
{Si1,--+,Sin} through random uniform partition-
ing during offline processing. The index for each
cluster has an extra data structure which stores the
maximum weight contribution of each term from
each segment within this cluster. During retrieval,
the maximum and average segment bounds of each



cluster C; are computed as shown below:

MaxSBound(C;) = %1x B; ;, )

1=

1
AvgSBound(C;) = - Z B; ;, (3)

Jj=1
and B; j; = Z éggx_ Wi g
teQ "’

Two-level pruning conditions. Let 6 be the current
top-k threshold of retrieval in handling query Q).

* Cluster-level: Any cluster C; is pruned when

0
MaxSBound(C;) < — 4)

W
and g
AvgSBound(C;) < —. )
n
* Document-level: If a cluster is not pruned, then
when visiting such a cluster with a MaxScore
or another retrieval algorithm, a document d is

pruned if Bound(d) < %.

Figure 3(a) illustrates a cluster skipping index of
four clusters for handling query terms ¢1, t9, and
t3. This index is extended to include two maxi-
mum term weight segments per cluster for ASC
and these weights are marked in a different color
for different segments. Document term weights in
posting records are not shown. Assume that the
current top-k threshold 0 is 9, Figure 3(b) lists the
cluster-level pruning decision by Anytime Rank-
ing without and with threshold overestimation and
by ASC. The derived bound information used for
making pruning decisions is also illustrated.

Extra online space cost for segmented max-
imum weights. The extra space cost in ASC is
to maintain non-zero maximum term weights for
multiple segments at each cluster in a sparse for-
mat. For example, Figure 3 shows four non-zero
maximum segment term weights at Cluster 1 are
accessed for the given query. To save space, we use
the quantized value. Our evaluation uses 1 byte for
each weight, which is sufficiently accurate to guide
pruning. For MS MARCO passages in our eval-
uation, the default configuration has 4096 clusters
and 8 segments per cluster. This results in about
550MB extra space. With that, the total cluster-
based inverted SPLADE index size increases from
about 5.6GB for MaxScore without clustering to

Clustered posting lists bectb

1 EIf 4|5ilb|12|15 2'0|25 2'7|32|4'0
1
(é‘:nrsy 5 2526 | 31]42]
n [9 [12]15]17 22]24 28] 29]35] 36] a1
Cluster 1 Cluster 2 Cluster 3 Cluster 4
ey | H
e, | [

(a) Cluster skipping index with 2 weight segments per cluster

0=9 Custer 1 | Cluster 2 | Cluster 3 | Cluster 4
BoundSum 33 9.8 13.7 16.3
Anytime Pruned Kept Kept Kept
Anytime-;=0.9 Pruned Pruned Kept Kept
MaxSBound 3.1 9.6 9.7 13.6
AvgSBound 3.0 9.2 7.6 12.4
ASC ;=0.9, n=1 Pruned Kept Pruned Kept

(b) Decisions of dynamic cluster-level pruning during retrieval

Figure 3: A cluster pruning example

6.2GB for ASC. This 9% space overhead is still ac-
ceptable in practice. The extra space overhead for
Anytime Ranking is smaller because only cluster-
level maximum term weights are needed.

3.2 Formal Properties

We call an algorithm (p, n)-approximate if it is
p-approximate, and it satisfies that the expected av-
erage rank score of any top &’ results produced by
this algorithm, where k&’ < k, is competitive to that
of rank-safe retrieval within a factor of . When
choosing n = 1, we call a (i, n)-approximate re-
trieval algorithm to be probabilistically safe. ASC
satisfies the above condition and Theorem 4 gives
more details. The default setting of ASCusesn = 1
in Section 4. The theorems on properties of ASC
are listed below and Appendix A lists the proofs.
We show that Theorem 3 is also true for Anytime
Ranking with threshold overestimation and without
early termination and we denote it as Anytime- .

Theorem 1

BoundSum(C;) > MaxzSBound(C;)

> max RankScore(d).
deC;
The above result shows that Formula (2) provides
a tighter upperbound estimation than Formula (1)
as demonstrated by Figure 2.
In ASC, choosing a small y value prunes clusters
more aggressively, and having the extra safeness



condition using the average segment bound with
71 counteracts such pruning decisions. Given the
requirement p < 7, we can choose 7 to be close to
1 or exactly 1 for being safer. When the average
segment bound is close to their maximum bound
in a cluster, this cluster may not be pruned by ASC.
This is characterized by the following property.

Theorem 2 Cluster-level pruning in ASC does not
occur to cluster C; when one of the two following
conditions is true:

* MaxSBound(C;) > %

e MaxSBound(C;) — AvgSBound(C;) <
(l . l) 0.
Booon

From the above theorem, when p is small
and/or the gap between MaxSBound(C;) and
AvgSBound(Cj;) is small, cluster-level pruning
will not occur. This difference of the maximum
and average segment bounds provides an approxi-
mate indication of the bound estimation tightness
with M ax.S Bound, and Figure 4 gives an illustra-
tion as to why this difference is a meaningful indi-
cator approximately. Figure 4 depicts the correla-
tion between the average ratio of AvgSBound(C;)
over MaxSBound(C;) for all clusters, and aver-
age ratio of the exact bound over the estimated
bound MazSBound(C;). The data is collected
from the index of MS MARCO dataset with 4096
clusters and 8 segments per cluster. This figure
shows that when AvgSBound(C;) is closer to
MazS Bound(C;) on average, the gap between ex-
act upper bound and M axSbound value becomes
smaller, which means the bound estimation be-
comes tighter. Table 4 in Section 4 will further cor-
roborate that the above smaller gap yields less clus-
ter skipping opportunities in ASC for safer pruning,
consistent with the result of Theorem 2.
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Figure 4: MS MARCO passage clusters. Correla-
tion between bound estimation tightness and average
AvgSBound(C;)/MaxSBound(C;).

Define Avg(x, A) as the average rank score
of the top-x results by algorithm A. Let integer
k" < k. The theorem below characterizes the ap-
proximate rank-safeness of pruning in ASC and
Anytime- /.

Theorem 3 The average top-k' rank score of
ASC and Anytime-p without imposing a time
budget is the same as any rank-safe re-
trieval algorithm R within a factor of .
Namely Avg(k',ASC) > pAvg(k’',R), and
Avg(K', Anytime-p) > pAvg(k', R).

The theorem below characterizes the extra prob-
abilistic approximate rank-safeness of ASC.

Theorem 4 The average top-k' rank score of ASC
achieves the expected value of any rank-safe re-
trieval algorithm R within a factor of n. Namely
E[Avg(K',ASC)] > nE[Avg(Kk', R)| where E||
denotes the expected value.

The probabilistic rank-safeness approximation
of ASC relies upon a condition where each docu-
ment having an equal chance to be in any segment
within a cluster. That is true because our segmenta-
tion method is random uniform partitioning.

4 Evaluation

Datasets and metrics. We use MS MARCO rank-
ing dataset (Craswell et al., 2020) with 8.8 million
passages in English. We report mean reciprocal
rank (MRR @10) for Dev set which contains 6980
queries, and nDCG@ 10 for TREC deep learning
(DL) 2019 and 2020 sets. We also report recall,
which is the percentage of relevant-labeled results
that appear in the final top-k results. We test two
retrieval depths: £ = 10 and £ = 1000. The sec-
ond collection is BEIR (Thakur et al., 2021) with
13 publicly available English datasets and a total of
24.6 million documents. The size of each dataset
ranges from 3,633 to 5.4M.

Experimental setup. Documents are clustered by
the k-means algorithm after comparing a few alter-
natives with their sparse or dense representations.
Details are in Appendix B. We test ASC on a ver-
sion of SPLADE, uniCOIL (Lin and Ma, 2021;
Gao et al., 2021), and LexMAE. We primarily use
SPLADE to assess ASC since LexMAE, following
dense models such as SimLLM (Xiao et al., 2022)
and RetroMAE (Wang et al., 2023), uses title an-
notation on MS MARCO. This is considered to be
non-standard in (Lassance and Clinchant, 2023).
SPLADE does not use title annotation.



Table 1: A comparison with baselines using SPLADE on MS MARCO passages

MS MARCO Dev DL’ 19 DL’20
Methods C% MRR (Recall) MRT (Py9) | nDCG (Recall) MRT | nDCG (Recall) MRT
Retrieval depth £ = 10. No early termination

Rank-safe

MaxScore - 0.3966 (.6824) 26.4 (116) 0.7398 (.1764) 26.3 0.7340 (.2462) 24.8
- Anytime Ranking | 69.8% | 0.3966 (.6824) 20.7 (89.3) | 0.7398 (.1764) 18.4 0.7340 (.2462) 17.6
- ASC 49.1% | 0.3966 (.6824) 15.2 (62.2) | 0.7398 (.1764) 15.3 0.7340 (.2462) 14.8
1 vs. (u, n)-approximate

- Anytime-1=0.9 62.7% | 038157 (61117) 153 (61.1) | 0.7392 (.1775) 15.9 0.7126 (.2382) 15.2
- ASC-p=0.9 7.99% | 0.3964 (.6813) 11.4 (55.9) | 0.7403 (.1764) 11.6 0.7338 (.2464) 11.5

Retrieval depth £ = 1000. No early termination

Rank-safe

MaxScore - 0.3966 (.9802) 65.8 (209) 0.7398 (.8207) 67.0 0.7340 (.8221) 63.2
- Anytime Ranking | 93.0% | 0.3966 (.9802) 50.1 (158) 0.7398 (.8207) 54.3 0.7340 (.8221) 51.1
- ASC 86.3% | 0.3966 (.9802) 45.8 (148) 0.7398 (.8207) 49.9 0.7340 (.8221) 46.6
1 vs. (u, n)-approximate

- Anytime-p = 0.9 | 91.4% | 0.3966 (.9801) 46.0 (149) 0.7398 (.8205) 45.1 0.7340 (.8206) 42.8
- ASC-u=0.7 1 2L.7% | 0.3966 (.9799) 38.8 (135) 0.7398 (.8188) 40.5 0.7340 (.8218) 37.3
- Anytime-p = 0.7 | 88.9% | 0.3963 (.96967) 37.1 (127) 0.7398 (.7881) 37.9 0.7340 (.7937) 36.7
- ASC-u=0.5 8.10% | 0.3962 (.9739) 21.8 (101) 0.7398 (.7977) 22.8 0.7355 (.7989) 21.7

ASC implementation uses C++, extended from
Anytime Ranking code release based on PISA re-
trieval package (Mallia et al., 2019a). Index is
compressed with SIMD-BP128. The underlying re-
trieval method is MaxScore because it is faster than
VBMW for long queries (Mallia et al., 2019b; Qiao
et al., 2023b) generated by SPLADE and LexMAE.
We applied an efficiency optimization to both ASC
and Anytime Ranking code in extracting cluster-
based term maximum weights when dealing with
a large number of clusters. All timing results are
collected by running as a single thread on a Linux
server with Intel 17-1260P and 64GB memory. Be-
fore timing queries, all compressed posting lists
and metadata for tested queries are pre-loaded into
memory, following the common practice. Our code
will be released after publication.

For all of our experiments on MS MARCO Dev
queries, we perform pairwise t-tests on the rele-
vance between ASC and corresponding baselines.
“1” is tagged when significant drop is observed from
the MaxScore retrieval at 95% confidence level.
Baseline comparison on MS MARCO. Table 1
lists the overall comparison of ASC with two base-
lines using SPLADE sparse passage representa-
tions on MS MARCO Dev and TREC DL’19/20
test sets. Recall@10 and Recall @1000 are reported
for retrieval depth £ = 10 and 1000, respectively.
Retrieval mean response time (MRT) and 99th per-
centile latency (Pyg) in parentheses are reported
in milliseconds. Column marked “C%” is the per-
centage of clusters that are not pruned during re-
trieval. For rank-safe original MaxScore without
clustering, we have incorporated document reorder-

ing (Mackenzie et al., 2021) to optimize its index
based on document similarity, which shortens its
latency by about 10-15%.

Anytime Ranking is configured to use 512 clus-
ters with no early termination. Then we extend it by
adding rank-unsafe overestimation with © = 0.9
or 0.7. These are its best parameter choices for
low latency and competitive relevance and a higher
number clusters increases its latency significantly
without relevance benefit. ASC always has = 1.
Rank-safe ASC uses 512 clusters with 16 segments
and ¢ = 1. Rank-unsafe ASC uses 4096 clusters
and 8 segments with © = 0.9 for k¥ = 10, and
w=0.7or 0.5 for k£ = 1000.

Comparing the three rank-safe versions in Ta-
ble 1, ASC is about 27% faster than Anytime for
k = 10, and 8.6% faster for k = 1000, because seg-
mentation offers a tighter cluster bound as shown
in Theorem 1.

For approximate safe configurations when k =
10, ASC has 3.9% higher MRR @10, 11% higher
recall, and is 25% faster than Anytime with p =
0.9. When £ = 1000, ASC is about 1.2-1.7x faster
than Anytime under similar relevance. Even with
1 being as low as 0.5, ASC offers competitive rele-
vance scores. This demonstrates the importance of
Theorem 4. For this reason, ASC is configured to
be probabilistically safe with 7 = 1 while choos-
ing w value modestly below 1 for efficiency. There
is a small relevance degradation compared to the
original retrieval, but ASC performs competitively
while it is up-to 3.0x faster than the original MaxS-
core without using clusters.

ASC can skip more than 90% of 4098 clusters,



but its latency does not decrease proportionally
compared to the 512-cluster setting. This is be-
cause increased overhead for dealing with a large
number of clusters reduces ASC’s benefit.

Table 2: Other learned sparse retrieval models

for Anytime Ranking without early termination.
LexMAE has slightly lower average nDCG@ 10
0.495, and is omitted due to the page limit.

ASC offers nDCG@10 similar as MaxScore
while being 1.54x faster for £ = 10 and 3.12x
faster for £ = 1000. Comparing with Anytime,

uniCOIL LexMAE ASCis 7.7% faster and has 2.2% higher nDCG@10
Methods _ MRR(Re) T | MRR(Re) T on average for k = 10, and it is 1.59x faster while
Retrieval depth & = 10. No early termination . S L.
Rank-safe maintaining similar relevance scores for £ = 1000.
MaxScore 0.352(.617) 6.0 | 0.425(718) 47
- Anytime 0352(.617) 5.0 | 0425(718) 27 Table 4: K-means segmentation vs. random uniform
- ASC 0.352(.617) 4.1 | 0425(718) 21
H VS (/’L ,n)-approximatelr " n i k=1000 K-means Random
et o e o 2 ™ | k™ 1 | v
- R_e/:;e\;al depth k.* lébO Izlo ear-l term.inati(().n : 0.3,1 0393 (.939T) 1.9 0.396 (972) 207
Rank-safe P - : Y 04,1 0.393 (.942T) 12.6 0.396 (.972) 20.8
- t
MaxScore 0352(958) 19 | 0425(988) 94 0.5, 11 0395(9597) 177 1 0396 (974) 218
- Anytime 0.352(958) 14 | 0.425(988) 67 0.6, 1 0397 (977)  29.0 | 0397(979) 277
-~ ASC 0352 (.958) 13 | 0.425(988) 64 0.7, 1 0.397 (.980) 41.6 0.397 (.980) 38.7
- 1,1 0.397 (.980) 69.1 0.397 (.980) 66.6
1 vs. (14, n)-approximate
- Anytime-u=0.7 | 0.351 (940T) 8.9 | 0.425(978) 46 - S
- ASC-4i=0.5 0351 (946) 6.4 | 0.425(980) 26 gl R T
Random 0.55 0.49
K-means 0.53 0.69

Table 2 applies ASC to uniCOIL and LexMAE
and shows MRR@ 10, Recall@10 or @ 1000 (short-
ened as “Re”), and latency time (shortened as T).
The conclusions are similar as the ones obtained
above for SPLADE.

Table 3: Zero-shot performance with SPLADE on BEIR

MaxScore Anytime-p =0.9 ASC
Dataset nDCG MRT | nDCG MRT | nDCG MRT
Retrieval depth k£ = 10
DBPedia 0.443 81.2 | 0.431 58.1 | 0.442 50.8
FiQA 0.358 3.64 | 0.356 249 | 0.358 2.67
NQ 0.555 449 | 0.545 39.8 | 0.549 25.6
HotpotQA 0.682 323 | 0.674 270 | 0.680 260
NFCorpus 0352 0.17 | 0350 0.15 | 0352 0.17
T-COVID 0.719 520 | 0.673 248 | 0.719 2.64
Touche-2020 | 0.307 473 | 0.281 227 | 0.307 2.00
ArguAna 0.432 9.07 | 0.411 9.17 | 0.432 9.02
C-FEVER 0.243 895 | 0.242 735 | 0.243 738
FEVER 0.786 694 | 0.782 587 | 0.786 557
Quora 0.806 5.16 | 0.795 2.05 | 0.806 1.73
SCIDOCS 0.151 2.53 | 0.150 2.17 | 0.151 2.13
SciFact 0.676 2.54 | 0.673 245 0.676 242
Average 0.501 - | 0.490 1.43x | 0.501 1.54x
Retrieval depth £ = 1000
Average | 0.501 -[ 0498 1.96x | 0499 3.12x

Zero-shot out-of-domain retrieval. Table 3 shows
average nDCG@10 and latency in milliseconds for
13 BEIR datasets. SPLADE training is only based
on MS MARCO passages. For smaller datasets,
the number of clusters is proportionally reduced
so that each cluster contains approximately 2000
documents, which is aligned with 4096 clusters
setup for MS MARCO. The number of segments is
kept 8. ASChasn = 1,and its ux = 0.9 for k = 10
and p = 0.5 for k = 1000. We use p = 0.9

Segmentation choices. ASC uses random even
partitioning to segment term weights of each clus-
ter and satisfy the probabilistic safeness condition
that each document in a cluster has an equal chance
to appear in any segment. Another approach is
to use k-means sub-clustering based on document
similarity. The top portion of Table 4 shows ran-
dom uniform partitioning is more effective than
k-means when running SPLADE on MS MARCO
passages with 4098 clusters and 8 segments per
cluster. Random uniform partitioning offers equal
or better relevance in terms of MRR @10 and Re-
call@1000, especially when p is small. As yu af-
fects cluster-level pruning in ASC, random seg-
mentation results in a better prevention of incorrect
aggressive pruning, although this can result in less
cluster-level pruning and a longer latency. To ex-
plain the above result, the lower portion of Table 4
shows average ratio of actual cluster upper bound
over estimated M axS Bound, and average differ-
ence of MaxSBound and AvgSBound scaled
by the actual bound. Random uniform partitioning
gives slightly better cluster upper bound estimation,
while its average difference of MaxSBound and
AvgS Bound is much smaller than k-means sub-
clustering. Then, when p is small, there are more
un-skipped clusters, following Theorem 2.

The above result also indicates cluster-level prun-
ing in ASC becomes safer due to its adaptiveness
to the gap between the maximum and average



segment bounds, which is consistent with Theo-
rem 2. The advantage of random uniform partition-
ing shown above corroborates with Theorem 4 and
demonstrates the usefulness of possessing proba-
bilistic approximate rank-safeness.

0.981 i .
A /+ ‘3
e 0977 ¥ #clusters * #segments
8 --1024*8
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® 0.973 1024*16
i 7 +2048*8
£ 0.969 #-2048*16
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Latency (ms)

Figure 5: Latency and recall vs. p for ASC (n=1)

Varying p, #clusters, and #segments. Figure 5
examines the relation of Recall@ 1000 of ASC and
its latency when varying p with each curve in a
distinct color representing a setting “m x n” as m
clusters and n segments per cluster. £ = 1000, and
n = 1 for SPLADE on MS MARCO Dev. Each
curve has 5 markers from left to right, denoting
uw=204,0.5,0.6,0.7, and 1, respectively. Having
more clusters leads to better cluster bound estima-
tion, and finer-grained decisions on pruning, but
more cluster oriented overhead that affects latency,
as discussed in Section 3. This figure shows that to
pursue a shorter latency under a better or equal rel-
evance constraint, ASC should choose 512 clusters
for = 1, and 4096 clusters for p < 1.

Table 5: Anytime vs. ASC (n=1) with time budgets

Model Setup MRR (Re) MRT (FPyg)

Retrieval depth &£ = 10. Time budget 10ms

SPLADE Anytime-p =1 | 0.3707 (.632F)  8.34 (10.3)
ASC-p =1 0.395 (.678)  7.31(10.1)
" Anytime-p = 0.9 | 0.3607 (.5757) 770 (10.2) -
ASC-11 = 0.9 0.395 (.678)  6.81(10.0)
LexMAE ASC-z = 0.9 0.421 (710)  8.35(10.3)

Retrieval depth £ = 1000. Time budget 20ms

SPLADE Anytime-p =1 | 0.364T (.865T)  19.1 (20.4)
ASC-p =1 0.394 (.966")  19.9 (20.1)
" Anytime-p = 0.9 | 0.3637 (.864")  19.1(20.3)
ASC-p1 = 0.7 0.395 (.970")  17.0(20.0)
LexMAE ASC-p = 0.7 0.421 (.968")  17.2(20.1)

Compatibility with other efficiency optimiza-
tion techniques. Table 5 lists MRR@10 and Re-
call@1000 of combining ASC with early termina-
tion technique of Anytime Ranking (Mackenzie
et al., 2021) under a time budget on MS MARCO
Dev set for SPLADE mainly. Last row lists ASC
performance with LexMAE for each k value. 512

clusters are configured for Anytime Ranking and
for ASC with p = 1. “4096 clusters*8 segments”
are for ASC with = 0.7. Comparing to Table 1,
there is a small relevance degradation for ASC
with time budgets, but the 99th percentile time is
improved substantially by this combination. Under
the same time budget, this ASC/Anytime combina-
tion has higher MRR @10 and Recall@ 1000 than
Anytime Ranking alone in both retrieval depths.
We also apply ASC to a fast version of SPLADE
with static index pruning called HT3 (Qiao et al.,
2023a). HT3 has 0.3942 MRR@10 on MS
MARCO Dev set with a retrieval latency of 24.7ms
for retrieval depth £ = 1000. ASC configured
with “4096*8” and p = 0.5/ = 1 reduces the
retrieval latency by 3.3x to 7.43ms, while the rele-
vance slightly degrades to 0.3933 MRR@10.

5 Concluding Remarks

This paper has proposed an approximate sparse re-
trieval scheme to skip more clusters while being
probabilistically competitive in safeness.  The
(u, n)-approximation provides more flexible prun-
ing control with a probabilistic guarantee. Our
evaluation shows that ASC can be 25% faster for
k = 10 and 41% faster for k=1000 than Anytime
Ranking using SPLADE and MS MARCO Dev
while ASC offers similar or even higher relevance
scores than Anytime with threshold overestimation.
ASC is up-to 3x faster than the original MaxScore
algorithm.

Instead of the live block filtering code, ASC
implementation was extended from Anytime Rank-
ing’s code because of its features to support dy-
namic cluster ordering and early termination.

ASC is compatible with early termination of
Anytime Ranking and has not been tested with
other such schemes such as JASS (Lin and Trot-
man, 2015) and IOQP (Mackenzie et al., 2022b)
because Anytime Ranking (Mackenzie et al., 2021)
has shown its advantages and competitiveness to
other anytime schemes, and early termination op-
timization is orthogonal. ASC could apply other
early termination methods within each cluster.

Term impact decomposition (Mackenzie et al.,
2022a) is an orthogonal optimization on posting
lists. Our preliminary test shows that it does not
work well with SPLADE as its posting clipping
and list splitting increase original SPLADE latency
from 66ms to 95ms and 110ms, respectively. Thus
our evaluation didn’t include this optimization.



6 Limitations

There is a manageable space overhead for stor-
ing cluster-wise segmented maximum weights. In-
creasing the number of clusters for a given dataset
is useful to reduce ASC latency up to a point, be-
cause more clusters leads to more overhead.

Our evaluation uses MaxScore instead of
VBMW because MaxScore was shown to be faster
for relatively longer queries (Mallia et al., 2019b;
Qiao et al., 2023b), which fits in the case of
SPLADE and LexMAE under the tested retrieval
depths. A previous study (Mallia et al., 2021b)
confirms live block filtering with MaxScore called
Range-MaxScore is a strong choice for such cases.
It can be interesting to examine the use of different
base retriever methods in different settings within
each cluster for ASC in the future.
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A Proofs of Formal Properties

Proof of Theorem 1. Without loss of gener-
ality, assume in Cluster C};, the maximum cluster
bound M azS Bound(C;) is the same as the bound

of Segment S; ;. Then

MaxSBound(C;)

= Bi,j = E max W,d
deS;, ;
teQ :

< max wy,q = BoundSum/(C;).
prer el

For any document d, assume it appears in j-th
segment of C}, then

RankScore(d) =
= Bi,; < MazSBound(C;).

|

Proof of Theorem 2. When a cluster C; is not

pruned by ASC, that is because one of Inequalities

(4) and (5) is false. When Inequality (4) is true but
Inequality (5) is false, we have

0

MaxzSBound(C;) < — and — AvgSBound(C;) < o

Tl

Add these two inequalities together, that proves
this theorem.
|
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Proof of Theorem 3. Let L(z) be the top-£’
list of Algorithm z. To prove Avg(k’,ASC) >
pAvg(K', R), we first remove any document that
appears in both L(ASC) and L(R) in both side of
the above inequality. Then, we only need to show:

RankScore(d)
deL(ASC),d¢L(R)

RankScore(d).
deL(R),d¢L(ASC)

> -

For the right side of above inequality, if the
rank score of every document d in L(R) (but
d ¢ L(ASC)) does not exceed the lowest score
in L(ASC) divided by p, then the above inequality
is true. There are two cases to prove this condition.

e Case 1. If d is not pruned by ASC, then d is
ranked below k’-th position in ASC.

* Case 2. Document d is pruned by ASC when
the top-k threshold is Opgc. The final top-k
threshold when ASC finishes is Oagc. If this
document d is pruned at the cluster level, then
RankScore(d) < maxj_; B;j < ‘91*% <

If it is pruned at the document level,

RankScore(d) <

Oasc

9asc « Yasc « Oasc
noo= = p

In both cases, RankScore(d) does not exceed the

lowest score in L(ASC) divided by p.

Anytime-p with no early termination behaves
in the same way as ASC with y = 7. Thus this
theorem is also true for Anytime- (.

|

Proof of Theorem 4: Define T'op(k’, ASC) as
the score of top k’-th ranked document produced
by ASC. ©asc = Top(k, ASC).

The first part of this proof shows that for any
document d such that d € L(R) and d ¢ L(ASC),
the following inequality is true:

/
E[RankScore(d)] < Top(k:n,ASC).

There are two cases that d ¢ L(ASC):

e Case 1. If d is not pruned by ASC, then
d is ranked below k’-th position in ASC.
RankScore(d) < Top(k', ASC).

* Case 2. If document d is pruned at the document
level by ASC when the top k-th rank score is

Oasc,

Oasc < Top(k, ASC) < Top(k', ASC)

RankScore(d) < <
n

n
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If document d is pruned at the cluster level, notice
that ASC uses random uniform partitioning, and
thus this document has an equal chance being in
any segment within its cluster.

E[RankScore(d)] < Zj=1Bii _ Oasc

n n
< Top(k, ASC) < Top(k/,ASC)-
n

n

The second part of this proof shows the prob-
abilistic rank-safeness approximation inequality
based on the expected average top-k’ rank score.
Notice that list size |L(R)|= |L(ASC)|= ¥/, and
|L(R) — L(S) N L(ASC)|= |L(ASC) — L(R) N
L(ASC)| where minus notation ‘—’ denotes the set
subtraction. Using the result of the first part, the
following inequality sequence is true:

E[ Z RankScore(d)]
deL(R)

=E| RankScore(d)] + E|
de L(R)NL(ASC) deL(R),d¢L(ASC)

RankScore(d)] + E|

deL(R)NL(ASC) deL(R),dg¢L(ASC) n

RankScore(d)] + E|

de L(R)NL(ASC) de L(ASC),d¢L(R) n

1
RankScore(d)]—.
deL(ASC) n

Thus E[Avg(K',ASC)] > nE[Avg(K', R)].
|

B Clustering choices

We assume that a learned sparse representation is
produced from a trained transformer encoder 7.
For example, SPLADE (Formal et al., 2021, 2022)
and LexMAE (Shen et al., 2023) provide a trained
BERT transformer to encode a document and a
query. There are two approaches to represent docu-
ments for clustering:

* K-means clustering of sparse vectors. Encoder
T is applied to each document in a data collec-
tion to produce a sparse weighted vector. Similar
as Anytime Ranking (Mackenzie et al., 2021),
we follow the approach of (Kulkarni and Callan,
2015; Kim et al., 2017) to apply the Lloyd’s k-
means clustering (Lloyd, 1982). Naively apply-
ing the k-means algorithm to the clustering of
learned sparse vectors presents a challenge owing
to their high dimensionality and a large number
of sparse vectors as the dataset size scales. For
example, each sparse SPLADE document vector
is of dimension 30,522 although most elements
are zero. Despite its efficacy and widespread use,

Rankscore(d)] duce a token embedding set {t1, ta, - -

Top(k’, ASC)
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the k-means algorithm is known to deteriorate
when the dimensionality grows. Previous work
on sparse k-means has addressed that with feature
selection and dimension reduction (Zhang et al.,
2020; Dey et al., 2020). These studies explored
dataset sizes much smaller than our context and
with different applications. Thus our retrieval ap-
plication demands new considerations. Another
difficulty is a lack of efficient implementations
for sparse k-means in dealing with large datasets.
We address the above challenge below by tak-
ing advantage of the dense vector representation
produced by the transformer encoder as counter-
parts corresponding to their sparse vectors, with
a much smaller dimensionality.

* K-means clustering of dense vector counter-
parts. Assuming this trained transformer 7T is
BERT, we apply 7' to each document and pro-

-, tr} and
a CLS token vector. Here ¢; is the BERT output

I"embedding of i-th token in this document and L

RankScore(d) 1S the total number of tokens of this document.

Then, we have three ways to produce a dense
vector of each document for clustering.

— The CLS token vector.

— The element-wise maximum pooling of all
output token vectors. The ¢-th entry of this
dense vector is mauxL:1 t;,; where t; ; is the

J
t-th entry of j-th token embedding.

— The element-wise mean pooling of all out-
put token vectors. The i-th entry of this
dense vector is % Zle t;,j where t; ; is the
i-th entry of j-th token embedding.

In addition to the above options, we have com-
pared the use of a dense representation based on
SimLM (Wang et al., 2023), a state-of-the-art
dense retrieval model.

Table 6: K-means clustering of MS MARCO passages
for safe ASC (1 = n = 1) with SPLADE sparse model

w/o segmt. w/ segmt.
Passage representation | MRT %C | MRT %C
Sparse-SPLADE 91.6 67% | 70.3 53%
Dense-SPLADE-CLS 115 80% | 82.7 64%
Dense-SPLADE-Avg 953 T6% | 742 58%
Dense-SPLADE-Max 90.8 68% | 71.8 54%
Dense-SimLM-CLS 105 78% | 78.5 60%

BERT vectors are of dimension 768, and we
leverage the FAISS library (Johnson et al., 2019)



for dense vector clustering with quantization sup-
port, which can compress vectors and further re-
duce the dimensionality.

Table 6 lists the performance of ASC with and
without segmentation in a safe mode (u =n =1)
for SPLADE-based sparse retrieval. It compares
the above five different vector representation op-
tions to apply k-means clustering. There are 4096
clusters and 8 random segments per cluster. MRT
is the mean retrieval time in milliseconds. Col-
umn marked with “%C” shows the percentage of
clusters that are not pruned during ASC retrieval.
For sparse vectors, we leverage FAISS dense k-
means implementation with sampling, which is
still expensive. Table 6 shows that the maximum
pooling of SPLADE-based dense token vectors has
a similar latency as the sparse vector representa-
tion. These two options are better than other three
options. Considering the accuracy and implementa-
tion challenge in clustering high-dimension sparse
vectors, our evaluation chooses max-pooled dense
vectors derived from the corresponding transformer
model.
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