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Abstract

While the emergence of powerful lan-001
guage models along with Chain-of-thought002
prompting has made automation more and003
more omnipresent, it sometimes demon-004
strates its weakness in long-term or multi-005
step logical reasoning. For example, users006
don’t always get desirable answers for007
complex mathematical problems without008
human involvement. Against this back-009
ground, we present the Manual Correc-010
tion System (MCS) — a human-in-the-011
loop system enhanced by Chain-of-Thought012
prompting, which explores how manual cor-013
rection of sub-logics in rationales can im-014
prove LLM’s reasoning performance. Mov-015
ing one step forward, considering a system016
with human-in-the-loop involves more than017
having humans improve performance but018
also controlling the cost. Therefore, we019
post a Cost-utility Analysis Model for020
Human-in-the-Loop systems (CAM-021
LOP) based on classical economics theory022
to analyze, quantify and balance the utility023
and the corresponding cost. We conduct024
experiments of MCS and CAMLOP with025
twelve datasets. A significant advantage026
w.r.t cost and utility proves its superiority027
over strong baselines.028

1 Introduction029

Large language model-based Artificial Intelligence030
systems are augmenting humans in certain roles,031
and soon this trend will expand to the vast majority032
of the workforce. However, while the emergence033
of powerful language models [Sanh et al., 2021,034
Ouyang et al., 2022, Zhang et al., 2022, Shao et al.,035
2023] has made automation omnipresent, it some-036
times demonstrates its weakness in long-term or037
multi-step logical reasoning [Hosseini et al., 2014,038
Kushman et al., 2014, Koncel-Kedziorski et al.,039
2015, Roy and Roth, 2016]. For example, users040
don’t always get desirable answers for a mathemat-041
ical problem without human involvement. To make042
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tangible progress in mitigating these errors is where 043
we need humans, and a system with human-in-the- 044
loop involves more than having humans improve 045
performance but also controlling the cost. Against 046
this background, there comes a timing question: 047
how to get a human-in-the-loop system in the most 048
effective (namely, high-utility) and low-cost way? 049

See Fig. 1 as an example. For humans, solving the 050
whole problem in the leftmost box is often more 051
difficult than solving one of the sub-logics (e.g ., 052
2 ˚ p16 ´ 3q “ 25q. Correction of the erroneous 053
sub-logic (e.g ., 2˚p16´3q “ 25 Ñ 2˚p16´3q “ 26) 054
helps LLM reach a correct final answer. 055

In the last few years, thanks to explorations in 056
Large Language Models (LLMs) and advances in 057
in-context learning (ICL) technologies, giant break- 058
throughs have been obtained. Just by being fed 059
an instruction, models can function very well on 060
that task without manual finetuning [Brown et al., 061
2020a]. This provides a chance for a human to 062
change the predicted results via natural language 063
instructions as a flexible and friendly interface. 064
Furthermore, changing the rationale for chain-of- 065
thought (CoT) prompting [Wei et al., 2022] is even 066
more user-friendly since short and simple sub-logics 067
in the rationale are easy for humans to handle. 068
Whereas manual correction helps, the labor of this 069
additional correction stage brings a direct and in- 070
direct cost (See Sec. 3 for more details). When 071
and how humans intervene will greatly affect the 072
cost and utility. Until recently, few researchers had 073
explored this balance in ICL. 074

We present the Manual Correction System 075
(MCS ; Sec. 2) — a human-in-the-loop system, 076
which explores when and how manual correction of 077
rationales can efficiently improve LLM’s reasoning 078
ability. To our knowledge, MCS is the first human- 079
in-the-loop system leveraging rationales. As shown 080
in Fig. 1, MCS consists of four stages: prompt- 081
ing the LLM with CoT, automatically filtering out 082
the incorrectly predicted samples, human correct- 083
ing their rationales, and prompting the LLM using 084
CoT again to obtain the final answer. Referring 085
to the “when” problem, we consider a diversity- 086
based method to get a cue to indicate when humans 087
should be involved, so as to reduce human labor 088
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Q: Janet’s ducks lay 
16 eggs per day. She 
eats 3 for breakfast. 
She sells the 
remainder for $2 per 
egg. How much does 
she make every day?
A: Let's think step by 
step.

Input

Q: Amy starts with 7 
peanuts. Gerald 
gives Amy 55 more. 
How many peanuts 
does Amy end with?
A: Let's think step by 
step.

Sampling Stage

LLM

Amy starts with 7 
peanuts, so she has 7 + 
55 = 62 peanuts.

Amy now has 7 + 55 = 
62 peanuts in total. 

Amy starts with 7 
peanuts, so there are 7 
+ 55 = 62 peanuts. 

Diversity	
Metrics

Q: Janet’s ducks lay 16 
eggs per day. She eats 
three for breakfast. She 
sells the remainder for 
$2 per egg. How much 
does she make every 
day?
A: She has 16-3=13 
eggs left. So she has 
$2*(16-3)=$26.
The answer is

She has 16-3=13 eggs 
left. So she has $2*(16-
3)=$25.

She has 16-3=13 eggs 
left. So she has 16*2-
3=$13. 

She has 16-3=11 eggs 
left. So she has 16-
3*$2=$10.

Q: Amy starts with 7 
peanuts. Gerald gives 
Amy 55 more. How 
many peanuts does 
Amy end with?
A: Amy starts with 7 
peanuts, so she has 7 + 
55 = 62 peanuts in 
total.
The answer is

LLM

The answer 
is $26.

Correction Stage Answer StageFiltering Stage

Need		
Correction

Don’t	Need		
Correction

The answer 
is 62.

Figure 1: MCS comprises four stages: (1) sampling stage prompting the LLM using CoT prompting and
replacing the greedy decoding by sampling from the LLM’s decoder to generate a set of rationales (i.e.,
the complete logical chain of CoT output); (2) filtering stage filtering out the samples ranked high by
Diversity Entropy; (3) correction stage manually adding, deleting and modifying erroneous sub-logics in
the most likely rationale of the filtered sample, and (4) answer stage prompting the LLM using CoT
prompting again with manually corrected sub-logics and using greedy decoding to obtain the final answer.

as much as possible (See. 2.1). The diversity-based089
method is inspired by the diversity of the ratio-090
nales. We have found that even when the desired091
answer is fixed, introducing the diversity degree of092
the rationales can be highly beneficial; therefore we093
introduce Diversity Metrics, as commonly used in094
Active Learning field [Brinker, 2003, Yang et al.,095
2015, Agarwal et al., 2020], to find data points re-096
quiring manual intervention. Then it comes to the097
“how” problem (See. 2.2). We empirically prove the098
viability of paying attention to sub-logics instead of099
the whole problem. We define three operations (i.e.,100
modifying, adding, and deleting) that a human can101
perform on the sub-logics of rationales for efficiency102
and simplification.103

With the development of Artificial Intelligence104
(AI), some companies have started to explore the105
use of LLMs in practice (e.g ., IBM implementing AI106
processes in HR [BENJ EDWARDS, 2023]). There-107
fore, we propose a Cost-utility Analysis Model for108
Human-in-the-LOoP systems (CAMLOP ; Sec. 3)109
to analyze and balance the cost and utility. CAM-110
LOP describes the cost-utility ratio that is intro-111
duced from the economics theory into the AI field112
to quantify these two factors (i.e., cost and utility)113
and spread the two factors across various aspects114
(e.g ., time and money as cost; accuracy and user115
satisfaction as utility) so that reliable scores of116
various aspects are achieved.117

We instantiate MCS with twelve datasets across118
three classes of tasks — arithmetic, commonsense,119
and symbolic reasoning (Sec. 4). MCS achieves120

new state-of-the-art levels of performance across 121
most of the tasks. To show the applicability in real- 122
world business, we apply CAMLOP to practice by 123
posing an example to illustrate the balance between 124
utility and cost in Sec. 4.5. Notably, a significant 125
advantage w.r.t cost and utility proves our MCS ’s 126
superior over strong baselines. 127

2 Manual Correction System 128

MCS automatically finds the incorrectly predicted 129
samples to indicate when humans should be in- 130
volved (Sec. 2.1) and then provides efficient opera- 131
tions to indicate how to correct rationales (Sec. 2.2). 132
Fig. 1 shows the whole four stages in MCS. The 133
first and final stages are simple prompting. The 134
intermediate filtering stage and correction stage are 135
our focus, as detailed below. 136

2.1 Filtering Stage 137

As shown in Fig. 1, after the first stage, the LLM 138
samples three plausible rationales for a math prob- 139
lem that arrive at different answers. Just like hu- 140
mans, LLMs may make countless and various mis- 141
takes, but there are only a limited number of correct 142
rationales for the right result. If most of the sam- 143
pled rationales cannot make agreements, with a 144
high probability this sample is wrongly predicted. 145
To empirically prove that, we conduct quantitative 146
experiments and discover that incorrectly predicted 147
samples tend to have greater diversity in their final 148
answer when solving difficult reasoning problems. 149
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(Please refer to Appendix A for more details).150
Specifically, the LLM is prompted with a set of151

manually written CoT exemplars following Wei152
et al. [2022] in the first stage. (Please refer to Ap-153
pendix for more details) Then, we sample a set154
of candidate outputs from the LLM’s decoder to155
generate a set of rationales1. Finally, we use the156
diversity degree to identify the most likely incorrect157
sample for humans to involve. Here, we adopt a158
widely-used method to select the samples: Diversity159
Entropy [Brinker, 2003, Yang et al., 2015, Agarwal160
et al., 2020]. A further study about Diversity En-161
tropy in Sec. 4.4 quantitatively demonstrates its162
advantage.163

Formally, given a manually written CoT prompt164
and a sample s, MCS decodes a set of N outputs,165
where each output ri is a sequence of tokens rep-166
resenting the i-th rational, then the rational ri is167
used to obtain the answer ai. As previously demon-168
strated, a greater diversity of the set of answers169
indicates potential incorrect predictions and flags a170
sample for humans to involve. First, we obtain the171
predicted answer ai though argmaxai

P pri,ai | sq.172
For example, in Fig. 1, ri is She has 16 ´ 3 “ 13173
eggs left. So she has 16 ˚ 2´ 3 “ $13., and ai is $13.174
Then we calculate the answer distribution for the175
answer set tai,¨¨¨ ,Nu of s. For each distinct value176
a P tai,¨¨¨ ,Nu, the probability is as follows:177

pa “

ř|N |

i“11pai “ aq

|N |
(1)178

where |N | denotes the number of answers. For179
example, in Fig. 1, there are three answers as well180
as three rationales. We use the answer entropy as181
the Diversity Entropy (DE) score for the sample s:182

DE “
ÿ

aPtaiu

´pa log pa (2)183

The higher the DE score, the more likely it needs184
manual correction. A threshold α is set for DE as185
the hyper-parameter.186

2.2 Correction Stage187

Referring to how humans should involve in the188
loop, the most straight-forward idea is humans han-189
dling the filtered samples while the LLM processes190
the rest samples. However, humans handling the191
sample as a whole problem is still labor-consuming,192
especially for those difficult mathematical problems.193
Due to this, we claim that humans should pay local194

1Most existing sampling algorithms including tem-
perature sampling [Ackley et al., 1985, Ficler and Gold-
berg, 2017], top-k sampling [Fan et al., 2018, Holtzman
et al., 2018, Radford et al., 2019] and nucleus sam-
pling [Holtzman et al., 2019] could be used for sampling
the required rationals. Here we follow Wang et al. [2022]
for a fair comparison. Other sampling methods can also
bring a general benefit.

attention to simple sub-logics in the rationale. Here, 195
a sub-logic is typically a group of words that can 196
stand alone as a complete thought in a complex 197
rationale. We denote a sentence as a sub-logic. 198

To support our claim, there exist some premises. 199
Firstly, an incorrect rationale could output the cor- 200
rect final answer after correcting the erroneous sub- 201
logic in the rationale. To empirically prove that, 202
we conduct quantitative experiments for twelve 203
datasets and discover that in general up to 50% 204
of errors of CoT indeed are caused by incorrect 205
intermediate rationales. After correcting these 50% 206
incorrect rationales, the final answers turn out to 207
be correct. Secondly, correcting sub-logics indeed 208
solves the majority of incorrect rationales. We con- 209
duct the analytical experiment across multiple tasks 210
in Sec. 4.3 and provide the evidence. Thirdly, the 211
questionnaire survey shows that correcting each 212
sub-logic independently is much easier and more 213
user-friendly for humans than checking the entire 214
rationale (Please refer to Appendix B for more 215
details). 216

Specifically, in the correction stage, we ask hu- 217
mans to check the filtered sample and only correct 218
the rationale with the highest probability. During 219
the correction, to simplify, the operations that a 220
human can perform on the sub-logics include “modi- 221
fying”, “adding”, and “deleting”. As shown in Tab. 1, 222
the first cause displays the modifying operation. Af- 223
ter the modifying operation, the corrected sub-logic 224
“3˚100`8˚10`3˚1 “ 383” helps the LLM output 225
the correct answer. 226

3 Cost-utility Analysis Model for 227

Human-in-the-Loop Systems 228

CAMLOP introduces the cost-utility relation that 229
is introduced from the economics theory [Varian, 230
2014] into the AI field to quantify these two fac- 231
tors (i.e., cost and utility). For human-in-the-loop 232
systems like MCS , we divide the goods into two 233
simple categories: human labor and LLM. Com- 234
pany strategic decision-makers always choose the 235
best bundle of goods they can afford/cost. The 236
costs include direct and indirect costs. The direct 237
cost is the money the goods spent while indirect 238
costs mainly include overhead costs from manage- 239
ment and rent. Indirect costs also include intangible 240
costs, such as the impact on customers, employees, 241
or delivery times should be considered. Utilities 242
include boosted accuracy, social prestige, and user 243
satisfaction. For simplicity, we only consider money 244
and time for cost while considering accuracy and 245
user satisfaction for utility in our experiments. 246

We draw Fig. 2 where the horizontal axis x1 and 247
vertical axis x2 are the quantity of human labor and 248
LLMs respectively. First, we introduce notations 249
related to the cost. We define p1 ˚ x1 as the cost 250
spent on human labor and p2 ˚ x2 as the cost spent 251
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Correction Operation: Modifying

Question: Q: I have 3 hundred, 8 tens, and 3 ones.
What number am I? A:
Rationale: I have 3 hundred, 8 tens, and 3 ones.
That means I have «Before Modifying»: 3 ˚ 100 `

8 ˚ 10 ` 3 ˚ 1 “ 303 «After modifying»: 3 ˚ 100 `

8 ˚ 10 ` 3 ˚ 1 “ 383.

Correction Operation: Deleting

Question: Clarence has 5 oranges. He gets 3 more
from Joyce. Later, Clarence buys 9 Skittles at the store.
How many oranges does Clarence have in all? A:
Rationale: Clarence has 5 oranges. He gets 3 more
from Joyce, so now he has 5`3 “ 8 oranges. «Delete»:
Later he buys 9 Skittles at the store, so he has 8´9 “ ´1
oranges.

Correction Operation: Adding

Question: Q: There are 83 trees in a park. 36 of
them are willows and the rest are oaks. How many
more oaks than willows are there in the park? A:
Rationale: There are 83 trees in the park. 36 of
them are willows, and the rest are oaks. This means
there are 83 ´ 36 “ 47 oaks in the park. There are 47
more oaks than willows. «Add»: There are 36 willows
and 47 oaks in the park now, so there are 47 ´ 36 “ 11
more oaks than willows.

Table 1: Examples of manual correction for in-
correct sub-logic. The operations that a human
can perform on the rationales include modifying,
adding, and deleting.

Cobb-Douglas Utility Function

�1

�2

�2
∗

�1
∗

Indifference curves 

Optional 
choice

Figure 2: Illustration of CAMLOP.

on the LLMs. We indicate the bundle by px1, x2q252
(a data point in Fig. 2). The corresponding unit253
price is p1 and p2. The total cost the company254
decision-maker has to spend is denoted as y. There-255
fore, the budget constraint can be represented as256
p1x1 ` p2x2 ď m. The solid straight line is the set257
of data points that cost exactly y: p1x1 `p2x2 “ m.258
To note, the cost contains various aspects as men-259
tioned before. In Fig. 2, for simplicity, we express260
these different aspects as a unified value according261
to a unified standard. Then we introduce utilities 2.262
A utility function upx1, x2q is a way to assign a263
utility value to the bundle px1, x2q. As shown in264
Fig. 2, the set of all data points px1, x2q such that265
upx1, x2q equals a constant is called a level set (solid266
curve). Those data points on higher indifference267

2Most notations are following those from [Varian,
2014]

curves are getting larger utility. We adopted a 268
commonly used utility function— Cobb-Douglas3 269
utility function upx1, x2q “ xc

1x
d
2, where c and d are 270

positive numbers that we need to learn 4. Given 271
a model parameterized by c, d, and a fixed cost y, 272
the model predicts the optimal choice px˚

1 , x
˚
2 q with 273

the highest utility, which is desired by the company 274
strategic decision-makers. Note an important fea- 275
ture of this optimal choice: at this data point the 276
indifference curve is tangent to p1x1 ` p2x2 “ y. 277

To note, we introduce the modeling of CAMLOP 278
in this section. More details about the inference and 279
learning are shown in Appendix C and Appendix 280
D. 281

4 Experiments 282

4.1 Setup 283

Tasks and datasets. For arithmetic reasoning 284
tasks, we conducted a series of experiments on the 285
Math Word Problem Repository [Amini et al., 2019], 286
including AddSub [Hosseini et al., 2014], MultiArith 287
[Roy and Roth, 2016], SingleEq [Koncel-Kedziorski 288
et al., 2015] and SingleOp [Kushman et al., 2014]. 289
We also included ASDiv [Miao et al., 2021], AQUA- 290
RAT [Miao et al., 2021], GSM8K [Cobbe et al., 291
2021], and ASDiV [Patel et al., 2021]. For com- 292
monsense reasoning tasks, we used Commonsen- 293
sQA[Talmor et al., 2018] and StrategyQA[Geva 294
et al., 2021]. For symbolic reasoning tasks, we used 295
Last Letter Concatenation and Coinflip[Wei et al., 296
2022] 297

Baselines. We primarily compare MCS with the 298
following baselines. It is noteworthy that all base- 299
lines use the same LLM as the decoder. All of the 300
annotators are undergraduate students who have 301
basic math knowledge. For a fair comparison, we 302
report the results of Self-consistency, MCS , and 303
MCS + Self-consistency with the same 5 rationales 304
sampled from the decoder. The details of the base- 305
lines are as follows: 306

1. CoT-prompting. Chain-of-thought prompting 307
with greedy decoding [Wei et al., 2022]. 308

2. Self-consistency. Chain-of-thought prompting 309
replacing the greedy decoding strategy used 310
in CoT-prompting. Self-consistency generates 311
a set of rationales by sampling from LLM’s 312
decoder and determines the optimal answer by 313
taking a majority vote [Wang et al., 2022]. 314

3http://www.columbia.edu/~md3405/IM_recap_1_
16.pdf

4Cobb-Douglas indifference curves is what
economists referred as “well-behaved indifference
curves”. Cobb-Douglas utility functions are proved
useful to present algebraic examples of economic field.
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LLM Method AddSub MultiArith SingleEq SingleOp ASDiv AQuA SVAMP GSM8K

GPT3-002

CoT-prompting 82.78 93.00 85.04 94.84 73.19 40.55 68.00 56.48
Self-consistency 90.63 94.17 89.17 95.73 77.72 38.19 75.70 58.85

MCS 92.15 95.50 92.51 96.62 75.52 44.09 74.60 61.56
MCS + Self-con. 97.22 95.50 94.09 98.75 79.63 41.34 80.10 62.92

GPT3-003

CoT-prompting 88.86 94.00 94.49 94.31 79.58 47.24 79.10 59.51
Self-consistency 91.65 97.83 96.26 95.55 84.11 50.39 83.10 63.99

MCS 95.70 97.50 96.65 96.26 82.92 49.21 85.20 62.85
MCS + Self-con. 96.71 99.17 97.64 96.98 86.07 52.36 87.40 67.10

ChatGPT

CoT-prompting 93.41 98.33 97.24 96.09 88.98 60.63 79.10 72.33
Self-consistency 93.41 99.33 97.83 96.62 91.98 63.78 82.70 77.41

MCS 95.95 99.50 97.83 96.62 90.94 61.02 83.00 74.53
MCS + Self-con. 96.20 99.83 98.23 96.98 93.37 64.17 85.50 79.08

Table 2: Arithmetic reasoning accuracy by MCS and MCS + Self-consistency compared to Chain-of-
Thought prompting and Self-consistency for LLM including GPT-3(text-davincci-002), GPT-3(text-
davincci-003) and ChatGPT(gpt-3.5-turbo)

Models and scales. We use GPT-3 [Ouyang315
et al., 2022, Brown et al., 2020b] and ChatGPT as316
the LLM. More details are provided in Appendix317
E. For our methods, we provide the following two318
variants:319

1. MCS . MCS is the result of manual correction320
for the top 40% CoT predictions ranked out321
using DE. A detailed analysis of the threshold322
of Diversity Entropy is shown in Sec. 4.3.323

2. MCS +Self-consistency. MCS + Self-324
consistency is the result of combining marginal-325
izing out the sampled rationales with MCS . In326
practice, we use Self-consistency to get answers327
by majority vote, and then we use MCS to man-328
ually correct incorrect sub-logics of the first329
rationale out of decoded rationales with DE330
calculated based on the decoded rationales.331

Sampling scheme. To sample diverse rationales,332
we followed similar settings to those used in Wang333
et al. [2022] for the open-text generation. We use334
T “ 0.7 without top-k truncation. For a fair com-335
parison, we use the same prompts as in Wei et al.336
[2022]. The threshold of DE is set to be top 40%337

4.2 Main Results338

Arithmetic Reasoning The results are shown in339
Tab. 2. MCS generally improves the arithmetic rea-340
soning performance at a large margin (4.68 points341
on average) compared with CoT. MCS + Self-342
consistency further improves the arithmetic rea-343
soning performance (6.39 points on average). Es-344
pecially for SingleEq and SVAMP, compared with345
CoT, the accuracy increased by 9.05 and 12.10346
points, respectively.347

Commonsense and Symbolic Reasoning348
Tab. 3 shows the results on commonsense and sym-349
bolic reasoning tasks. Similarly, MCS improves350
the performance and MCS + Self-consistency fur-351
ther boosts it. For symbolic reasoning, we adopt352

the out-of-distribution (OOD) setting where the 353
input prompt contains samples of 4-letters and 4- 354
flips [Wang et al., 2022] because this setting is more 355
challenging. We do not adopt the in-distribution 356
setting because GPT-3 can already achieve 100% 357
accuracy with the in-distribution setting as shown 358
in Wei et al. [2022]. Even in difficult OOD setting, 359
the gain of MCS +Self-consistency is significant 360
compared to CoT-prompting and Self-consistency. 361

Model Commonsense Symbolic

CSQA StraQA Letter Coinflip

CoT-prompting 72.32 60.13 49.20 81.40
Self-consistency 76.09 61.40 54.40 93.20

MCS 73.71 60.88 75.40 81.40
MCS + Self-con. 77.07 62.23 78.40 93.20

Table 3: Commonsense and symbolic reasoning
accuracy. For each task, we report the median
scores among 5 runs.

4.3 Analysis of Whether Correcting 362
Sub-logics Solves the Majority of 363
Incorrect Rationales 364

We conduct experiments on twelve datasets to check 365
whether correcting sub-logics solves the majority of 366
incorrect rationales. Each task is represented by a 367
pie chart. For each task, we conduct the error anal- 368
ysis for CoT prompting and analyze the error types 369
of rationales. We divided the error types into four 370
categories: errors that are able to be corrected by 371
the “modifying” operation, the “adding” operation, 372
the “deleting” operation, and the rest of the errors 373
that are unable to be manually corrected. The 374
percentage of each type across datasets is shown in 375
Fig. 3. More details are shown in Appendix B.2. 376

The first three categories constituent the major- 377
ity of incorrect rationales and can be solved by 378
correcting independent sub-logics instead of the 379
whole rationale. More specifically, CoT often makes 380
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Unable to be manually corrected Able to be manually corrected by modifying

Able to be manually corrected by adding Able to be manually corrected by deleting

AddSub MultiArith SingleEq SingleOp ASDIV AQuA

SVAMP GSM8K CSQA StrategyQA Letter (4) Coinflip (4)

Figure 3: Illustration of error analysis of Chain of Thought Prompting across twelve tasks. Each error
type is represented by a color. The share in color indicates the share of the error type.

Figure 4: Results of different thresholds of DE.
It shows the results of MCS with 5%, 10%, 20%,
30%, 40% and 50% DE for AddSub (Left), SingleEq
(Medium) and SingleOp (Right). Results show that
DE-based filtering is an efficient method to rank
the possibility to be incorrect for the output of CoT
predictions, and samples with incorrect output will
be ranked higher than those without.

mistakes when calculating polynomial calculations381
with decimal points, which account for a large part382
of manual correction and can be corrected by the383
“modifying” operation. For the “adding” operation,384
it functions when CoT often fails to convert the385
units, for example, from grams to kilograms. CoT386
often outputs redundant logic, leading to incorrect387
answers, which could be fixed by the “deleting” oper-388
ation. Except for the error mentioned above, errors389
that are unable to be manually corrected include390
misinterpretation of the question, incorrect formula,391
whole incorrect composition of sub-logics and so392
on.393

Validation of Diversity Entropy Additionally,394
we find that the advantage of Self-consistency of-395
ten comes from fixing the errors that are unable396
to be manually corrected. Sampling a large set397
of rationales and taking a majority vote helps the398
fix of misinterpretation of the question while mak-399
ing little help in fixing calculation error. On the400
contrary, MCS is beneficial for other three cate-401

Figure 5: ROC Curves for DE to filter out the
incorrect CoT outputs. It shows the ROC Curve for
AddSub (Left), Singleeq (Medium) and SingleOp
(Right). The results indicate that DE is a reliable
metrics that can determine the samples most likely
to be incorrectly predicted for humans to involve.

gories of errors including “modifying”, “adding” and 402
“deleting”. The difference between Self-consistency 403
and MCS illustrates why MCS + Self-consistency 404
achieves great performance as shown in Tab. 2. 405
Obviously, MCS and Self-consistency play different 406
roles and be mutually complementary. 407

4.4 Additional Study 408

To validate the effectiveness of Diversity Entropy 409
in determining whether the manual correction is 410
necessary for each sample, we draw a ROC Curve 411
in Fig. 5 to demonstrate its ability to rank the 412
likelihood of incorrect outputs. The selection of 413
the threshold involves a trade-off between perfor- 414
mance and human labor. Fig. 4 shows that the 415
performance stabilizes after reaching the threshold 416
of top 20% to top 40% for most datasets. Therefore, 417
we set the threshold to be top 40% across all our 418
experiments. As the manual correction is labor- 419
consuming and time-consuming, Diversity Entropy 420
can help save time and labor by allowing humans 421
to focus on checking only a small percentage. 422

6



Calculation Strategy ASDiv AQuA SVAMP GSM8K

Unnormalized Weighted Average 73.71 44.09 74.50 61.41
Normalized Weighted Average 73.71 40.94 74.60 61.56

Unnormalized Weighted Sum 73.80 42.52 74.50 60.20
Normalized Weighted Sum 73.37 44.88 71.30 59.21

Unnormalized Unweighted Sum (Majority Vote) 75.52 44.09 74.60 61.56

Table 4: Accuracy comparison of different strategies of computing answer probability. The threshold of
Diversity Metrics is set to be top 40%.

Figure 6: Experiments of different numbers of ra-
tionales.

Analysis of Aggregation Strategies The ma-423
jority vote method of calculating the answer proba-424
bility over all sampled rationales can be regarded425
as taking an unnormalized unweighted sum. As426
described in Wang et al. [2022], other methods of427
computing answer probability of a include the un-428
normalized weighted average, normalized weighted429
average, unnormalized weighted sum,430

and normalized weighted sum. More details431
about the above calculation are provided in Ap-432
pendix ??. Tab. 4 shows that unnormalized un-433
weighted sum generally outperforms others. We use434
this setting in experiments as Wang et al. [2022].435

Analysis of the Number of Sampled Ratio-436
nales We test the accuracy with respect to vary-437
ing the number of rationales (i.e., 5, 10, 15, 20, 25,438
30, 35, 40) in Fig. 6. The results are arithmetic439
reasoning accuracy on SingleEq. For a fair com-440
parison, both MCS and Self-consistency use the441
same prompts as in Wei et al. [2022]. Both MCS442
and Self-consistency use the same 5 rationales sam-443
pled from the decoder. In our experiments, the444
threshold of Diversity Metrics is set to be top 40%.445
The results show that MCS generally outperforms446
self-consistency and benefits from the increasing447
number of sampled rationales.448

4.5 Balancing Cost and Utility 449

In this section, we conduct experiments on the 450
SingleEq dataset to quantitatively calculate cost 451
and utility for CAMLOP . For the cost, we consider 452
money and time. We set the price of the LLM as 453
pllm and the time cost as tllm. Since we use GPT-3, 454
the price pllm for a single math problem (decoding 455
once) is $0.08 on average, and the time cost tllm 456
is 0.8 second based on empirical results 5. The 457
price of solving a single math problem with only 458
human labor is phuman and the time cost is thuman. 459
We set phuman to be $0.125 and thuman to be 60 460
seconds based on our empirical results. 6 The price 461
of human labor for MCS to correct a single math 462
problem pMCS is $0.0625 and the time cost tMCS 463
is 30 seconds based on empirical results. Note the 464
time required to inspect and correct is less than 465
the time needed to fully solve the entire problem, 466
therefore tMCS ă thuman. 467

For the utility, we consider user satisfaction 468
as the comprehensive score. We ask five users 469
to write down their satisfaction levels and calcu- 470
late the average 7. We also perform regression 471
analysis on user satisfaction based on LLM and 472
Human and ultimately learn the utility function 473
upxllm,xhumanq “ x2.05

llm ˚x1.94
human. For more details, 474

please refer to Appendix G. 475

We experiment on five candidate plans based 476
on models from Sec. 4.2 and Sec. 4.4 (Fig. 4 and 477
Fig. 6): 478

5The pricing of text-davinci-002 is $0.02 per 1000
tokens, which can be found at https://openai.com/
pricing. We set pllm to be $0.08 because an input
sample for few-shot CoT contains about 4000 tokens
on average when decoding only once. Note that we
only calculated the time for the main part (i.e., the
decoding) and ignored other parts that were fast enough
to be ignored compared to the API calls.

6Minimum hourly wage in the United States is
$7.5, which can be found at https://www.worker.gov/
pay-for-hours-worked/. Solving a problem requires
60 seconds on average. Therefore, the price and time
cost required to complete a problem are $0.125 and 60
seconds, respectively.

7See Appendix for more details about user satis-
faction. The impact of accuracy on user satisfaction
is much larger than time cost, we speculate that most
users care more about accuracy of solving problems than
the time cost, as SingleEq is a math-solving dataset.
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Plans Time Money Acc. Utility(User Satis.)

Human 60s $0.125 93.20 86.40

CoT Prompting 0.8s $0.080 85.04 81.60
Self-Consistency (Nself “ 10) 8s $0.800 92.49 85.80

MCS (NMCS “ 5, α “ 20%) 10.8s $0.4925 91.00 84.20
MCS + Self-consistency (NMCS “ 5, α “ 20%) 10.8s $0.4925 93.50 88.80

MCS (NMCS “ 5, α “ 40%) 16.8s $0.505 92.51 85.60
MCS + Self-consistency (NMCS “ 5, α “ 40%) 16.8s $0.505 94.09 90.80

Table 5: Analysis of cost and utility for SingleEq. MCS + Self-consistency generally outperforms other
methods with higher utility and acceptable cost. N¨: # sampled rationale. α: DE threshold. Acc.:
Accuracy. User Satis.: User Satisfaction. More details are shown in Appendix G.

1. Human: A plan that requires only human la-479
bor, which costs phuman and thuman seconds.480

2. CoT-prompting : A naive CoT plan that only481
requires GPT-3 for decoding only once, which482
costs pllm and tllm seconds.483

3. Self-consistency : A Self-consistency plan that484
requires only LLMs to sample from the decoder485
Nself times, which will cost Nself ˚ pllm and486
Nself ˚ tllm seconds.487

4. MCS : MCS samples from LLM decoder488
NMCS times and uses top α as threshold,489
requiring pNMCS ` 1q ˚pllm `α ˚pMCS and490
pNMCS ` 1q ˚ tllm ` α ˚ tMCS seconds.491

5. MCS + Self-consistency : A MCS + Self-492
consistency plan that requires to sample from493
the decoder NMCS times, which costs the494
same as the MCS plan.495

The results are shown in Tab. 5. The result shows496
that MCS +Self-consistency generally outperforms497
other methods with higher utility (i.e., better user498
satisfaction) as well as an acceptable cost.499

5 Related Work500

5.1 Human-In-the-Loop System501

Human-in-the-Loop system, aiming to achieve what502
neither humans nor machines can accomplish inde-503
pendently, is defined as a model requiring human504
interaction [Karwowski, 2006]. When machines505
cannot solve the problem, or when cost or security506
considerations require humans to participate, man-507
ual intervention is necessary [Wu et al., 2022, Zan-508
zotto, 2019, Mosqueira-Rey et al., 2023]. Human-509
in-the-loop system outperforms both standalone AI510
and humans working alone [Bien et al., 2018].511

Recently, LLM-based AI (Artificial Intelligence)512
systems are developing very quickly, and this trend513
is expected to expand to the majority of the work-514
force in the near future [Ouyang et al., 2022, Zhang515
et al., 2022, Sanh et al., 2021]. However, these516
systems do not always provide satisfactory answers517

without human intervention, especially mathemat- 518
ical problems. Additionally, in domains such as 519
criminal fact identification and charge predictions, 520
inference should be reasonable and controlled by 521
humans [Custers, 2022] while LLMs are not quali- 522
fied. Different from ChatGPT’s RLHF (Reinforce- 523
ment Learning from Human Feedback), we take 524
the first step to use human feedback in an online 525
way without access to parameters. Even though 526
it’s a preliminary step, this online method could 527
benefit from further refinement and combination 528
with RLHF in future research. 529

5.2 Chain-of-Thought Prompting 530

Chain-of-Thought (CoT) prompting enables mod- 531
els to decompose multi-step problems into smaller 532
steps. With CoT, LLMs can solve complex reason- 533
ing problems that cannot be solved with standard 534
prompting methods [Wei et al., 2022, Wang et al., 535
2022]. Despite its usefulness, CoT may be prone 536
to errors, which can have a negative impact on the 537
reasoning of the model. Fortunately, most mistakes 538
can be easily interpreted. About half of these mis- 539
takes are related to incorrect calculations while the 540
other half are mistakes from flawed reasoning where 541
rationales lack the necessary knowledge [Google 542
Research, 2023]. To address this issue, we limit 543
users to modifying, deleting, or adding a single sub- 544
logic as a means of resolving both types of errors. 545
Additionally, we have found that most mistakes can 546
be easily detected and corrected by humans through 547
rationales. Against this background, CoT presents 548
an opportunity for humans to modify predicted 549
outcomes through sub-logics of rationales. 550

6 Conclusion 551

We propose the MCS to explore how manual cor- 552
rection of rationales can improve LLM’s reasoning 553
ability. Then, we propose CAMLOP to quantita- 554
tively and systematically analyze and balance the 555
cost and the corresponding utility. Experiments 556
demonstrate that our MCS significantly outper- 557
forms strong baselines including the CoT prompting 558
approach and Self-consistency approach. 559
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7 Limitations560

In this paper, we focused on the manual correction561
of the incorrect logic of the sampled output of Chain562
of Thought, without considering the mechanism563
of the fully automatic pipeline. As a machine-564
learning pipeline, human involvement may lead565
to additional human labor, which may be able to566
avoid by training a model to correct the incorrect567
reasoning paths.568
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Method Part
Arithmetic Reasoning

AddSub MultiArith SingleEq

Num. Ratio Acc. Num. Ratio Acc. Num. Ratio Acc.

CoT-Prompting
Part 1 245 62.03% 97.55 299 49.83% 100.00 369 72.64% 97.83
Part 2 150 37.97% 53.33 301 50.17% 82.39 139 27.36% 51.08
Part 1&2 395 100.00% 82.78 600 100.00% 93.00 508 100.00% 85.04

Self-Consistency
Part 1 245 62.03% 97.55 299 49.83% 100.00 369 72.64% 97.83
Part 2 150 37.97% 71.33 301 50.17% 87.38 139 27.36% 66.19
Part 1&2 395 100.00% 90.63 600 100.00% 94.17 508 100.00% 89.17

Table 6: Analysis for Diversity Entropy in Filtering Stage (I). The accuracy of Part 1 is generally larger
than Part 2. The result demonstrates the superiority of Diversity Entropy and experimentally confirms
the intuition that incorrectly predicted samples tend to have greater diversity in their final answer when
solving difficult reasoning problems. For each task, we report the median scores among 5 runs.

Method Part
Arithmetic Reasoning

SingleOp ASDiv AQuA

Num. Ratio Acc. Num. Ratio Acc. Num. Ratio Acc.

CoT-Prompting
Part 1 423 75.27% 98.35 1122 53.53% 96.88 48 18.90% 52.08
Part 2 139 24.73% 58.99 974 46.47% 42.51 206 81.10% 37.38
Part 1&2 562 100.00% 94.84 2096 100.00% 73.19 254 100.00% 40.55

Self-Consistency
Part 1 423 75.27% 98.35 1122 53.53% 96.88 48 18.90% 52.08
Part 2 139 24.73% 70.50 974 46.47% 52.78 206 81.10% 32.04
Part 1&2 562 100.00% 95.73 2096 100.00% 77.72 254 100.00% 38.19

Table 7: Analysis for Diversity Entropy in Filtering Stage (II). The accuracy of Part 1 is generally larger
than Part 2. The result demonstrates the superiority of Diversity Entropy and experimentally confirms
the intuition that incorrectly predicted samples tend to have greater diversity in their final answer when
solving difficult reasoning problems. For each task, we report the median scores among 5 runs.

same final answer (i.e., the Diversity Entropy score778
as Sec. 2.1 of such samples should be equal to 0);779
Part 2 has sampled rationales pointing to different780
final answers, which is the part outside the first781
part of samples (i.e., the Diversity Entropy score782
as Sec. 2.1 of such samples should be greater than783
0). Next, we calculate the accuracy of Part 1 and784
Part 2 for each dataset separately. We use the785
first answer of each sample as the result of CoT-786
Prompting and use all five answers to calculate the787
Diversity Entropy score. The results are shown in788
Tab. 6, Tab. 7, Tab. 8 and Tab. 9. The accu-789
racy of Part 1 is generally larger than Part 2. It790
demonstrates the superiority of Diversity Entropy791
and experimentally confirms the intuition that in-792
correctly predicted samples tend to have greater793
diversity in their final answer when solving difficult794
reasoning problems.795

B Experiments for Correction Stage796

B.1 Incorrect Rationale Could Output the797
Correct Final Answer after Manually798
Correcting the Erroneous Rationale.799

An incorrect rationale could output the correct800
final answer after correcting the erroneous rationale.801
To empirically prove this, we conduct quantitative802
experiments for twelve datasets and discover that803

in general most of the errors of CoT indeed are 804
caused by incorrect rationales. After correcting 805
these incorrect rationales, the final answers turn 806
out to be correct. 807

Specifically, we explored the limits of the CoT- 808
based methods (namely CoT-Prompting, Self- 809
Consistency, and MCS) when humans correct ra- 810
tionales while disregarding cost. Humans were in- 811
structed to thoroughly check all samples and ensure 812
the correctness of all rationales. Tables 10 and 11 813
present the results, where the upper bound of CoT- 814
Prompting is denoted as CoT-Upperbound and 815
the upper bound of Self-Consistency is denoted as 816
SC-Upperbound. Self Consistency and MCS+Self 817
Consistency have the same upper bound in extreme 818
cases (i.e., the threshold of Diversity Entropy score 819
is set to 100%) while CoT-Upperbound and MCS 820
have the same upper bound in extreme cases (i.e., 821
the threshold of Diversity Entropy score is set to 822
100%). The experimental results demonstrate that 823
the upper bounds are quite high, indicating that an 824
incorrect rationale could produce the correct final 825
answer after correcting the errors. To note, this 826
limitation represents only the upper bounds of our 827
method, and its practical implementation would 828
require significant time and resources. 829
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Method Part
Arithmetic Reasoning Commonsense Reasoning

SVAMP GSM8K CSQA

Num. Ratio Acc. Num. Ratio Acc. Num. Ratio Acc.

CoT-Prompting
Part 1 438 43.80% 92.92 256 19.41% 93.36 792 64.86% 85.98
Part 2 562 56.20% 47.86 1063 80.59% 47.70 429 35.14% 47.09
Part 1&2 1000 100.00% 68.00 1319 100.00% 56.48 1221 100.00% 72.32

Self-Consistency
Part 1 438 43.80% 92.92 256 19.41% 93.36 792 64.86% 85.98
Part 2 562 56.20% 62.46 1063 80.59% 50.71 429 35.14% 57.81
Part 1&2 1000 100.00% 75.70 1319 100.00% 58.85 1221 100.00% 76.09

Table 8: Analysis for Diversity Entropy in Filtering Stage (III). The accuracy of Part 1 is generally larger
than Part 2. The result demonstrates the superiority of Diversity Entropy and experimentally confirms
the intuition that incorrectly predicted samples tend to have greater diversity in their final answer when
solving difficult reasoning problems. For each task, we report the median scores among 5 runs.

Method Part
Commonsense Reasoning Symbolic Reasoning

StrategyQA Letter (4) Coinflip (4)

Num. Ratio Acc. Num. Ratio Acc. Num. Ratio Acc.

CoT-Prompting
Part 1 1502 65.88% 66.31 175 35.00% 72.00 384 38.40% 98.70
Part 2 778 34.12% 48.59 325 65.00% 36.31 616 61.60% 69.48
Part 1&2 2280 100.00% 60.13 500 100.00% 49.20 1000 100.00% 81.40

Self-Consistency
Part 1 1502 65.88% 66.31 175 35.00% 72.00 384 38.40% 98.70
Part 2 778 34.12% 52.57 325 65.00% 44.62 616 61.60% 89.61
Part 1&2 2280 100.00% 61.40 500 100.00% 54.40 1000 100.00% 93.20

Table 9: Analysis for Diversity Entropy in Filtering Stage (IV). The accuracy of Part 1 is generally larger
than Part 2. The result demonstrates the superiority of Diversity Entropy and experimentally confirms
the intuition that incorrectly predicted samples tend to have greater diversity in their final answer when
solving difficult reasoning problems. For each task, we report the median scores among 5 runs.

B.2 Correcting Erroneous Sub-logic830
Indeed Solves the Majority of831
Erroneous Rationale.832

Correcting erroneous sub-logic indeed solves the833
majority of erroneous rationale. We conduct the an-834
alytical experiment across multiple tasks in Sec. 4.3835
and provide the evidence.836

We conduct experiments on twelve datasets to837
check whether correcting sub-logics solves the ma-838
jority of incorrect rationales. Each task is repre-839
sented by a pie chart. For each task, we conduct840
the error analysis for CoT prompting and analyze841
the error types of rationales. We divided the er-842
ror types into four categories: errors that are able843
to be corrected by the “modifying” operation, the844
“adding” operation, the “deleting” operation, and845
the rest of the errors that are unable to be manu-846
ally corrected. The percentage of each type across847
datasets is shown in Fig. 3.848

Sec. 4.3 presents experiments in Fig. 3 on twelve849
datasets to check whether correcting sub-logics850
solves the majority of erroneous rationales. Figure 3851
illustrates the error analysis of the CoT Prompting852
across twelve tasks. We list the detailed numbers853
of the error analysis in Tab. 12 and Tab. 13. Re-854
sults show that correcting erroneous sub-logic in-855
deed solves the majority of erroneous rationale (i.e.,856

each erroneous rationale indeed can be corrected 857
by only editing a single erroneous sub-logic). 858

B.3 Correcting Each Sub-logics 859
Independently is Much Easier and 860
More User-friendly than Correcting 861
the Entire Rationale 862

We conduct the human evaluation. The question- 863
naire survey shows that correcting each sub-logic 864
independently (i.e., our approach) is much easier 865
and more user-friendly than checking the entire ra- 866
tionale. We present the time that humans need to 867
check and correct the incorrect sub-logics compared 868
to correcting the entire rationale as Tab. 14 and 869
Tab. 15. 870

The result presents the average time (seconds) 871
needed for a human to check and correct the incor- 872
rect sub-logics compared to correcting the entire 873
rationale for each sample. The time humans need to 874
check and correct the incorrect sub-logics is much 875
less than the time needed to correct the entire ratio- 876
nale for each sample, proving that correcting each 877
sub-logic independently is much easier and more 878
user-friendly for humans than checking the entire 879
rationale. 880
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Model Arithmetic Reasoning

AddSub MultiArith SingleEq SingleOp ASDiv AQuA SVAMP GSM8K

CoT-Prompting 82.78 93.00 85.04 94.84 73.19 40.55 68.00 56.48
CoT-Upperbound 97.72 96.33 94.09 96.80 75.62 47.64 77.50 63.76

Self-Consistency 90.63 94.17 89.17 95.73 77.72 38.19 75.70 58.85
SC-Upperbound 98.48 96.33 95.67 98.93 81.58 44.49 82.00 64.67

Table 10: Upperbound Analysis of CoT-Prompting, Self-Consistency and MCS (I). The experimental
results demonstrate that the upper bounds are quite high, indicating that an incorrect rationale could
produce the correct final answer after correcting the errors. To note, this limitation represents only the
upper bounds of our method, and its practical implementation would require significant time and resources.
For each task, we report the median scores among 5 runs.

Model Commonsense Symbolic

CSQA StraQA Letter Coinflip

CoT-Prompting 72.32 60.13 49.20 81.40
CoT-Upperbound 74.61 60.88 93.80 81.40

Self-Consistency 76.09 61.40 54.40 93.20
SC-Upperbound 77.97 62.23 96.00 93.20

Table 11: Upperbound Analysis of CoT-Prompting,
Self-Consistency and MCS (II). The experimental
results demonstrate that the upper bounds are quite
high, indicating that an incorrect rationale could
produce the correct final answer after correcting
the errors. To note, this limitation represents only
the upper bounds of our method, and its practical
implementation would require significant time and
resources. For each task, we report the median
scores among 5 runs.

C Inference for CAMLOP881

Given a model parameterized by c, d, and a fixed882
cost y, the model predicts the optimal choice883
px˚

1 , x
˚
2 q with the highest utility, which is desired884

by the company strategic decision-makers. Note885
an important feature of this optimal choice: at886
this data point (namely, optimal choice point) the887
indifference curve is tangent to p1x1 ` p2x2 “ y.888
According to this feature, the inference is to get889
px˚

1 , x
˚
2 q that satisfied the following equation:890

u1px˚
1 , x

˚
2 q “ ´

p1
p2

(3)891

which will derive the optimal choice px˚
1 , x

˚
2 q:892

x˚
1 “

c

c ` d

m

p1
, x˚

2 “
d

c ` d

m

p2
(4)893

D Learning for CAMLOP894

We have seen how to make the best decision based895
on the inference of CAMLOP. But in real life we896
have to work the other way around: we observe897
some historical cost and utility datapoints, but our898
problem is to estimate what kind of utility function899
is induced from the observations.900

Concretely, suppose that we observe a number 901
of industries making choices between LLMs and 902
human workers based on their considerations of 903
commute times, money costs, accuracy, etc. There 904
exists an analytic solution of c, d obtained by sta- 905
tistical techniques that best fit the observed data 906
points. In this way, the historical datapoints give a 907
way to estimate the utility function. More specifi- 908
cally, we use regression analysis to find the utility 909
function that best describes the relation between x 910
and utility. Mean square error is typically employed 911
as the loss function for learning the utility function. 912
The loss function is defined on J training datapoints 913

X “ tpx
p1q

1 , x
p1q

2 q, px
p2q

1 , x
p2q

2 q, ..., px
pJq

1 , x
pJq

2 qu: 914

Lpc, dq “
1

J

J
ÿ

i“1

log upx
piq
1 , x

piq
2 ; c, dq (5) 915

where the model parameters are c, d. A normal 916
equation or gradient descent can be used to optimize 917
this loss function and obtain the final c, d. 918

E Experiment Details 919

We choose GPT-3 because of its superior CoT rea- 920
soning performance, as reported in the work of Wei 921
et al. [2022] and Wang et al. [2022]. Due to the lim- 922
ited context window size (up to 4096 word-pieces 923
for the GPT-3 series of models), we use an 8-shot 924
setting for all datasets. Our experiments are based 925
on access to the OpenAI GPT-3 API. We perform 926
all experiments in the few-shot setting, without 927
training or fine-tuning the LLM. For a fair compar- 928
ison, we use the same prompts as in the work of 929
Wei et al. [2022]. For arithmetic reasoning tasks, 930
we use the same set of 8 manually written exem- 931
plars. For commonsense reasoning tasks, exemplars 932
are randomly selected from the training set with 933
manually written CoT prompts. 934

We list the exact set of prompts used for all 935
arithmetic reasoning tasks in Tab. 16, since there 936
are multiple sets of prompts introduced in Wei 937
et al. [2022]. The prompts for CommonsenseQA 938
and StrategyQA are the same as used in Wei et al. 939
[2022]. 940
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Operation
Arithmetic Reasoning

AddSub MultiArith SingleEq SingleOp ASDiv AQuA

Num. Ratio Num. Ratio Num. Ratio Num. Ratio Num. Ratio Num. Ratio

Modifying 33 92% 22 24% 3 11% 19 28% 15 4% 2 1%
Adding 0 0% 10 11% 0 0% 19 28% 38 10% 16 16%
Deleting 0 0% 0 0% 7 25% 0 0% 0 0% 0 0%

Unable 3 8% 60 65% 18 64% 30 44% 327 86% 132 88%

Table 12: Detailed numbers of the error analysis (I). The results are the detailed numbers of Fig. 3.

Operation
Arithmetic Reasoning Commonsense Reasoning Symbolic Reasoning

SVAMP GSM8K CSQA StraQA Letter (4) Conflip (4)

Num. Ratio Num. Ratio Num. Ratio Num. Ratio Num. Ratio Num. Ratio

Modifying 41 13% 54 10% 28 8% 39 36% 223 88% 0 0%
Adding 19 6% 11 2% 0 0% 0 0% 0 0% 0 0%
Deleting 35 11% 25 4% 0 0% 0 0% 0 0% 0 0%

Unable 225 70% 478 84% 310 92% 69 64% 30 12% 186 100%

Table 13: Detailed numbers of the error analysis (II). The results are the detailed numbers of Fig. 3.

F Diversity Metrics Over Diverse941

Reasoning Paths942

As described in Sec. 4.4, the majority vote method943
of calculating the answer probability over all sam-944
pled rationales can be regarded as taking an un-945
normalized unweighted sum. As described in Wang946
et al. [2022], other methods of computing answer947
probability of a include the unnormalized weighted948
average, normalized weighted average, unnormal-949
ized weighted sum, and normalized weighted sum.950
Tab. 4 shows that unnormalized unweighted sum951
generally outperforms others. We use this setting952
in all experiments following Wang et al. [2022].953

In practice, the majority vote method of cal-954
culating the answer probability over all sampled955
rationales proposed at Eq. 1 is the same as taking956

the unweighted sum over ai (i.e.,
ř|N |

i“11pai “ aq), 957
where |N | denotes the number of answers (i.e., the 958
number of sampling times). As described in Wang 959
et al. [2022], another selection of computing answer 960
probability of a over all sampled rationales is to 961
use unnormalized probability pai

of the language 962
model generating ai given the prompt of sample s: 963

pai
“ P pri,ai | sq (6) 964

Then we use all unnormalized probability pai
965

given by the language model’s decoder to calculate 966
the probability pa of the answer a for sample s: 967

pa “

ř|N |

i“11pai “ aqpai

|N |
(7) 968

where |N | denotes the number of rationales de- 969

Human Operation Arithmetic Reasoning

AddSub MultiArith SingleEq SingleOp ASDiv AQuA SVAMP GSM8K

Correcting sub-logics 21s 24s 30s 14s 26s 62s 16s 45s
Correcting entire rationale 49s 80s 60s 32s 44s 102s 48s 77s

Table 14: Time (seconds) spent for correcting the incorrect sub-logics compared to correcting the entire
rationale (I). The time humans need to check and correct the incorrect sub-logics is much less than
the time needed to correct the entire rationale for each sample, proving that correcting each sub-logic
independently is much easier and more user-friendly for humans than checking the entire rationale.

Human Operation Commonsense Symbolic

CSQA StraQA Letter Coinflip

Correcting sub-logics 14s 24s 18s 36s
Correcting entire rationale 26s 36s 28s 40s

Table 15: Time (seconds) spent for correcting the incorrect sub-logics compared to correcting the entire
rationale (II). The time humans need to check and correct the incorrect sub-logics is much less than
the time needed to correct the entire rationale for each sample, proving that correcting each sub-logic
independently is much easier and more user-friendly for humans than checking the entire rationale.
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Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today?
A: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees
they planted. So, they must have planted 21 - 15 = 6 trees. The answer is 6.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot?
A: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars.
The answer is 5.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have
left in total?
A: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 + 42
= 74 chocolates. 35 have been eaten. So in total they still have 74 - 35 = 39 chocolates. The
answer is 39.
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?
A: Jason had 20 lollipops. Since he only has 12 now, he must have given the rest to Denny. The
number of lollipops he has given to Denny must have been 20 - 12 = 8 lollipops. The answer is 8.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many
toys does he have now?
A: He has 5 toys. He got 2 from mom, so after that he has 5 + 2 = 7 toys. Then he got 2 more
from dad, so in total he has 7 + 2 = 9 toys. The answer is 9.
Q: There were nine computers in the server room. Five more computers were installed each day,
from monday to thursday. How many computers are now in the server room?
A: There are 4 days from monday to thursday. 5 computers were added each day. That means
in total 4 * 5 = 20 computers were added. There were 9 computers in the beginning, so now
there are 9 + 20 = 29 computers. The answer is 29.
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more.
How many golf balls did he have at the end of wednesday?
A: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 - 23 = 35 balls.
On Wednesday he lost 2 more so now he has 35 - 2 = 33 balls. The answer is 33.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: She bought 5 bagels for $3 each. This means she spent 5 * $3 = $15 on the bagels. She had
$23 in beginning, so now she has $23 - $15 = $8. The answer is 8.

Table 16: Few-shot exemplars for arithmetic reasoning tasks.

coded for the sample s. The result of using the970
calculation output of Eq. 7 as the probability of971
answer a is shown in Tab. 4 as Unnormalized972
Weighted Sum . Apart from computing pa by973
taking the unnormalized probability of the language974
model generating pri, aiq given s, we can normalize975
the output probability for pri,aiq by the output976
length of ri [Brown et al., 2020b]:977

pai
“ exp

1
K

řK
k“1 log ptk (8)978

where ptk is the log probability of generating the979
k-th token tk in pri, aiq conditioned on the previous980
tokens, and K is the total number of tokens in981
pri,aiq:982

ptk “ P ptk | s, t1, . . . , tk´1q (9)983

The result of using the calculation output of Eq. 8984
as the normalized probability pa

i of the language985
model generating ai given prompt of sample s is986
shown in Tab. 4 as Normalized Weighted Sum.987

In addition, in Tab. 4 we also report the results by988
taking a weighted average, which means calculating989
a score for each a of its weighted sum divided by990
ř|N |

i“1 1pai “ aq.991
Tab. 4 shows that unnormalized unweighted sum992

generally outperforms others. We use this setting993
in all experiments following Wang et al. [2022].994

G Details of Balancing Cost and 995

Utility 996

In Sec 5, we conduct experiments on the SingleEq 997
dataset to quantitatively calculate cost and utility 998
for CAMLOP . The trends on other datasets are 999
consistent with SingleEq dataset. We randomly 1000
selected one dataset as an example to demonstrate 1001
the superiority of MCS in balancing cost and utility. 1002

For the cost, we consider money and time. We 1003
set the price of the LLM as pllm and the time cost 1004
as tllm. Since we use GPT-3, the price pllm for 1005
a single math problem (decoding once) is $0.08 1006
on average, and the time cost tllm is 0.8 second 1007
based on empirical results 8. The price of solving 1008
a single math problem with only human labor is 1009
phuman and the time cost is thuman. We set phuman 1010
to be $0.125 and thuman to be 60 seconds based 1011
on our empirical results. 9 The price of human 1012
labor for MCS to correct a single math problem 1013

8The pricing of text-davinci-002 is $0.02 per 1000
tokens, which can be found at https://openai.com/
pricing. We set pllm to be $0.08 because an input
sample for few-shot CoT contains about 4000 tokens
on average when decoding only once. Note that we
only calculated the time for the main part (i.e., the
decoding) and ignored other parts that were fast enough
to be ignored compared to the API calls.

9Minimum hourly wage in the United States is
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Plans Time Money Acc. Utility(User Satis.)

Human 60s $0.125 93.20 86.40

CoT Prompting 0.8s $0.080 85.04 81.60
Self-Consistency (Nself “ 10) 8s $0.800 92.49 85.80

MCS (NMCS “ 5, α “ 20%) 10.8s $0.4925 91.00 84.20
MCS + Self-consistency (NMCS “ 5, α “ 20%) 10.8s $0.4925 93.50 88.80

MCS (NMCS “ 5, α “ 40%) 16.8s $0.505 92.51 85.60
MCS + Self-consistency (NMCS “ 5, α “ 40%) 16.8s $0.505 94.09 90.80

Table 17: Analysis of cost and utility for SingleEq. MCS + Self-consistency generally outperforms other
methods with higher utility and acceptable cost. N¨: # sampled rationale. α: DE threshold. Acc.:
Accuracy. User Satis.: User Satisfaction.

pMCS is $0.0625 and the time cost tMCS is 301014
seconds based on empirical results. Note the time1015
required to inspect and correct is less than the time1016
needed to fully solve the entire problem, therefore1017
tMCS ă thuman.1018

For the utility, we consider user satisfaction as1019
the comprehensive score. We ask five users to write1020
down their satisfaction levels and calculate the av-1021
erage. The human ratings are collected via Amazon1022
Turk. In addition to the effective data collected1023
from 5 users for each evaluation method, data from1024
several users were excluded due to failures in the1025
attention verification. The hourly salary is $10 per1026
hour and per user. We randomly select a set of1027
examples and the satisfaction level is rated from1028
1 to 5, with 1 as the worst satisfaction and 5 as1029
the most user-friendly and best satisfaction. The1030
human rating scores are then averaged.1031

We experiment on candidate plans based on mod-1032
els from Sec. 4.2 and Sec. 4.4 (Fig. 4 and Fig. 6),1033
and the results are shown in Tab. 17. The calcu-1034
lation of time and money in Tab. 17 is shown as1035
below:1036

1. Human: A plan that requires only human la-1037
bor, which costs phuman and thuman seconds.1038
So the time needed is thuman “ 60seconds, and1039
the money needed is phuman “ $0.1251040

2. CoT-prompting : A naive CoT plan that only1041
requires GPT-3 for decoding only once, which1042
costs pllm and tllm seconds. So the money1043
needed is pllm “ $0.08 and the time needed is1044
tllm “ 0.8second.1045

3. Self-consistency (Nself “ 10): A Self-1046
consistency plan that requires only LLMs to1047
sample from the decoder Nself times, which1048
will cost Nself ˚ pllm and Nself ˚ tllm sec-1049
onds. For Nself “ 10, the money needed is1050

$7.5, which can be found at https://www.worker.gov/
pay-for-hours-worked/. Solving a problem requires
60 seconds on average. Therefore, the price and time
cost required to complete a problem are $0.125 and 60
seconds, respectively.

Nself ˚ pllm “ 10 ˚ $0.08 “ $0.8, the time 1051
needed is Nself ˚ tllm “ 10 ˚ 0.8 “ 8seconds. 1052

4. MCS (NMCS “ 5, α “ 20%): MCS samples 1053
from LLM decoder NMCS times and uses top 1054
α as threshold, requiring pNMCS `1q ˚pllm ` 1055
α˚pMCS and pNMCS `1q ˚ tllm `α˚ tMCS 1056
seconds. For NMCS “ 5, α “ 20%, the money 1057
needed is pNMCS ` 1q ˚ pllm ` α ˚ pMCS “ 1058
$0.08 ˚ 6 ` 20% ˚ $0.0625 “ $0.4925, the time 1059
needed is pNMCS ` 1q ˚ tllm ` α ˚ tMCS “ 1060
0.8 ˚ 6s ` 20% ˚ 30s “ 10.8 seconds. 1061

5. MCS + Self-consistency (NMCS “ 5, α “ 1062
20%): A MCS + Self-consistency (NMCS “ 5, 1063
α “ 20%) plan that requires to sample from the 1064
decoder NMCS times, which costs the same 1065
as the MCS (NMCS “ 5, α “ 20%) plan. 1066

6. MCS (NMCS “ 5, α “ 40%): MCS samples 1067
from LLM decoder NMCS times and uses top 1068
α as threshold, requiring pNMCS `1q ˚pllm ` 1069
α˚pMCS and pNMCS `1q ˚ tllm `α˚ tMCS 1070
seconds. For NMCS “ 5, α “ 40%, the money 1071
needed is pNMCS ` 1q ˚ pllm ` α ˚ pMCS “ 1072
$0.08 ˚ 6 ` 40% ˚ $0.0625 “ $0.505, the time 1073
needed is pNMCS ` 1q ˚ tllm ` α ˚ tMCS “ 1074
0.8 ˚ 6s ` 40% ˚ 30s “ 16.8 seconds. 1075

7. MCS + Self-consistency (NMCS “ 5, α “ 1076
40%): A MCS + Self-consistency (NMCS “ 5, 1077
α “ 40%) plan that requires to sample from the 1078
decoder NMCS times, which costs the same 1079
as the MCS (NMCS “ 5, α “ 40%) plan. 1080

The results are shown in Tab. 17. The result 1081
shows that MCS +Self-consistency generally out- 1082
performs other methods with higher utility (i.e., 1083
better user satisfaction) as well as an acceptable 1084
cost. 1085

We performed regression analysis on user satis- 1086
faction based on LLM and Human and ultimately 1087
learned the utility function upxLLM ,xHumanq “ 1088
x2.05
LLM ˚ p10 ˚ xHumanq1.94, where xLLM equals to 1 1089

when using LLM to decode one time, and xHuman 1090
equals to 10 when solving the problem with only 1091
human. 1092
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H Related Work1093

H.1 Human-In-the-Loop System1094

The human-in-the-Loop system, aiming to achieve1095
what neither humans nor machines can accomplish1096
independently, is defined as a model requiring hu-1097
man interaction [Karwowski, 2006]. When the1098
machine cannot solve the problem, or when cost or1099
security considerations require humans to partici-1100
pate, manual intervention is necessary [Wu et al.,1101
2022, Zanzotto, 2019, Mosqueira-Rey et al., 2023].1102
Previous human-in-the-loop systems focus either1103
on adding appropriate tags to data or providing1104
feedback on cases with a certain confidence interval1105
to the machines and thus retrain the model after-1106
ward with the labeled data or rewarded cases [Wu1107
et al., 2022, Zanzotto, 2019]. The human-in-the-1108
loop system outperforms both standalone AI and1109
humans working alone [Bien et al., 2018].1110

Recently, LLM-based AI (Artificial Intelligence)1111
systems are developing very quickly, and this trend1112
is expected to expand to the majority of the work-1113
force in the near future [Ouyang et al., 2022, Zhang1114
et al., 2022, Sanh et al., 2021]. However, these1115
systems do not always provide satisfactory answers1116
without human intervention, especially mathemat-1117
ical problems. Additionally, in domains such as1118
criminal fact identification and charge predictions,1119
inference should be reasonable and controlled by hu-1120
mans [Custers, 2022] while LLMs are not qualified.1121
Therefore, it is essential to develop a human-in-1122
the-loop prompting-based system that is designed1123
with the ability to collaborate with people. Such a1124
system would make work more efficient and effec-1125
tive. Until recently, few researchers have system-1126
atically and quantitatively explored human-in-the-1127
loop prompting-based systems.1128

Different from ChatGPT’s RLHF (Reinforcement1129
Learning from Human Feedback) 10, we take the1130
first step to use human feedback in an online way1131
without access to parameters. Even though it’s a1132
preliminary step, this online method could bene-1133
fit from further refinement and combination with1134
RLHF in future research.1135

H.2 In-context Learning1136

Over the past decade, there have been signif-1137
icant advancements in Large Language Models1138
(LLMs) [Ouyang et al., 2022, Zhang et al., 2022,1139
Sanh et al., 2021]. These developments have1140
been further accelerated by the introduction of1141
In-Context Learning (ICL) [Kojima et al., 2022].1142
Essentially, LLMs are capable of processing a few1143
training examples and a test instance as its natu-1144
ral language instruction. It then directly decodes1145
the output without requiring any updates to its1146
parameters. LLMs can perform diverse tasks effec-1147

10https://openai.com/blog/chatgpt.

tively when provided with corresponding instruc- 1148
tions [Ouyang et al., 2022, Srivastava et al., 2022, 1149
Wei et al., 2022]. This presents an opportunity for 1150
humans to modify predicted outcomes through nat- 1151
ural language instructions, which serve as a flexible 1152
and user-friendly interface. 1153

H.3 Chain-of-Thought Prompting 1154

Chain-of-Thought (CoT) prompting enables mod- 1155
els to decompose multi-step problems into smaller 1156
steps. With CoT, LLMs can solve complex reason- 1157
ing problems that cannot be solved with standard 1158
prompting methods [Wei et al., 2022, Wang et al., 1159
2022]. Despite its usefulness, CoT may be prone 1160
to errors, which can have a negative impact on the 1161
reasoning of the model. Fortunately, most mistakes 1162
can be easily interpreted. About half of these mis- 1163
takes are related to incorrect calculations while the 1164
other half are mistakes from flawed reasoning where 1165
rationales lack the necessary knowledge [Google 1166
Research, 2023]. To address this issue, we limit 1167
users to modifying, deleting, or adding a single sub- 1168
logic as a means of resolving both types of errors. 1169
Additionally, we have found that most mistakes 1170
can be easily detected and corrected by humans 1171
through rationales. Against this background, CoT 1172
presents an opportunity for humans to efficiently 1173
modify predicted outcomes through sub-logics of 1174
rationales. 1175
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