Human-in-the-Loop through Chain-of-Thought

Anonymous ACL submission

Abstract

While the emergence of powerful lan-
guage models along with Chain-of-thought
prompting has made automation more and
more omnipresent, it sometimes demon-
strates its weakness in long-term or multi-
step logical reasoning. For example, users
don’t always get desirable answers for
complex mathematical problems without
human involvement. Against this back-
ground, we present the Manual Correc-
tion System (MCS) — a human-in-the-
loop system enhanced by Chain-of-Thought
prompting, which explores how manual cor-
rection of sub-logics in rationales can im-
prove LLM’s reasoning performance. Mov-
ing one step forward, considering a system
with human-in-the-loop involves more than
having humans improve performance but
also controlling the cost. Therefore, we
post a Cost-utility Analysis Model for
Human-in-the-Loop systems (CAM-
LOP) based on classical economics theory
to analyze, quantify and balance the utility
and the corresponding cost. We conduct
experiments of MCS and CAMLOP with
twelve datasets. A significant advantage
w.r.t cost and utility proves its superiority
over strong baselines.

1 Introduction

Large language model-based Artificial Intelligence
systems are augmenting humans in certain roles,
and soon this trend will expand to the vast majority
of the workforce. However, while the emergence
of powerful language models [Sanh et al., 2021,
Ouyang et al., 2022, Zhang et al., 2022, Shao et al.,
2023] has made automation omnipresent, it some-
times demonstrates its weakness in long-term or
multi-step logical reasoning [Hosseini et al., 2014,
Kushman et al., 2014, Koncel-Kedziorski et al.,
2015, Roy and Roth, 2016]. For example, users
don’t always get desirable answers for a mathemat-
ical problem without human involvement. To make

*Corresponding authors.

tangible progress in mitigating these errors is where
we need humans, and a system with human-in-the-
loop involves more than having humans improve
performance but also controlling the cost. Against
this background, there comes a timing question:
how to get a human-in-the-loop system in the most
effective (namely, high-utility) and low-cost way?

See Fig. 1 as an example. For humans, solving the
whole problem in the leftmost box is often more
difficult than solving one of the sub-logics (e.g.,
2 (16 — 3) = 25). Correction of the erroneous
sub-logic (e.g., 2% (16 —3) = 25 — 2% (16 —3) = 26)
helps LLM reach a correct final answer.

In the last few years, thanks to explorations in
Large Language Models (LLMs) and advances in
in-context learning (ICL) technologies, giant break-
throughs have been obtained. Just by being fed
an instruction, models can function very well on
that task without manual finetuning [Brown et al.,
2020a|. This provides a chance for a human to
change the predicted results via natural language
instructions as a flexible and friendly interface.
Furthermore, changing the rationale for chain-of-
thought (CoT) prompting [Wei et al., 2022] is even
more user-friendly since short and simple sub-logics
in the rationale are easy for humans to handle.
Whereas manual correction helps, the labor of this
additional correction stage brings a direct and in-
direct cost (See Sec. 3 for more details). When
and how humans intervene will greatly affect the
cost and utility. Until recently, few researchers had
explored this balance in ICL.

We present the Manual Correction System
(MCS ; Sec. 2) — a human-in-the-loop system,
which explores when and how manual correction of
rationales can efficiently improve LLM’s reasoning
ability. To our knowledge, MCS is the first human-
in-the-loop system leveraging rationales. As shown
in Fig. 1, MCS consists of four stages: prompt-
ing the LLM with CoT, automatically filtering out
the incorrectly predicted samples, human correct-
ing their rationales, and prompting the LLM using
CoT again to obtain the final answer. Referring
to the “when” problem, we consider a diversity-
based method to get a cue to indicate when humans
should be involved, so as to reduce human labor

Input Sampling Stage

I;e h;lS?:l?:ngs_.

Ileft. So she has $2*(16-
3)=$25.

Q: Janet’s ducks lay

16 eggs per day. She
eats 3 for breakfast.

She sells the

remainder for $2 per
egg. How much does
she make every day? She has 16-3=11 eggs
A: Let's think step by left. So she has 16-
step. 3*$2=510.

[E——

She has 16-3=13 eggs
left. So she has 16*2-
3=$13.

LLM

Q: Amy starts with 7
peanuts. Gerald
gives Amy 55 more.
How many peanuts
does Amy end with?
A: Let's think step by
step.

Amy starts with 7
peanuts, so she has 7 +
55 = 62 peanuts.

Amy now has 7 + 55 =
62 peanuts in total.

Amy starts with 7
peanuts, so there are 7
+55 = 62 peanuts.

-—— -y

Don’t Need |
Correction |

-—— -

Filtering Stage Correction Stage Answer Stage
Q: Janet’s ducks lay 16
eggs per day. She eats
three for breakfast. She
- ells the remainder for
Need I $2peregg. How much
I' Correction | does sha make every
o day?__ —
[A: she has 16-3=13 |
eggs left. So she has
$2%(16-3)=526. I The answer
The answeris is $26.
\| Diversi
Q: Amy starts with 7 The answer

peanuts. Gerald gives is 62.
Amy 55 more. How

many peanuts does

Amy end with?

A: Amy starts with 7

peanuts, so she has 7 +

55 = 62 peanuts in

total.

The answer is

Figure 1: MCS comprises four stages: (1) sampling stage prompting the LLM using CoT prompting and
replacing the greedy decoding by sampling from the LLM’s decoder to generate a set of rationales (i.e.,
the complete logical chain of CoT output); (2) filtering stage filtering out the samples ranked high by
Diversity Entropy; (3) correction stage manually adding, deleting and modifying erroneous sub-logics in
the most likely rationale of the filtered sample, and (4) answer stage prompting the LLM using CoT
prompting again with manually corrected sub-logics and using greedy decoding to obtain the final answer.

as much as possible (See. 2.1). The diversity-based
method is inspired by the diversity of the ratio-
nales. We have found that even when the desired
answer is fixed, introducing the diversity degree of
the rationales can be highly beneficial; therefore we
introduce Diversity Metrics, as commonly used in
Active Learning field [Brinker, 2003, Yang et al.,
2015, Agarwal et al., 2020], to find data points re-
quiring manual intervention. Then it comes to the
“how” problem (See. 2.2). We empirically prove the
viability of paying attention to sub-logics instead of
the whole problem. We define three operations (i.e.,
modifying, adding, and deleting) that a human can
perform on the sub-logics of rationales for efficiency
and simplification.

With the development of Artificial Intelligence
(AI), some companies have started to explore the
use of LLMs in practice (e.g., IBM implementing Al
processes in HR [BENJ EDWARDS, 2023|). There-
fore, we propose a Cost-utility Analysis Model for
Human-in-the-LOoP systems (CAMLOP ; Sec. 3)
to analyze and balance the cost and utility. CAM-
LOP describes the cost-utility ratio that is intro-
duced from the economics theory into the Al field
to quantify these two factors (i.e., cost and utility)
and spread the two factors across various aspects
(e.g., time and money as cost; accuracy and user
satisfaction as utility) so that reliable scores of
various aspects are achieved.

We instantiate MCS with twelve datasets across
three classes of tasks — arithmetic, commonsense,
and symbolic reasoning (Sec. 4). MCS achieves

new state-of-the-art levels of performance across
most of the tasks. To show the applicability in real-
world business, we apply CAMLOP to practice by
posing an example to illustrate the balance between
utility and cost in Sec. 4.5. Notably, a significant
advantage w.r.t cost and utility proves our MCS ’s
superior over strong baselines.

2 Manual Correction System

MCS automatically finds the incorrectly predicted
samples to indicate when humans should be in-
volved (Sec. 2.1) and then provides efficient opera-
tions to indicate how to correct rationales (Sec. 2.2).
Fig. 1 shows the whole four stages in MCS. The
first and final stages are simple prompting. The
intermediate filtering stage and correction stage are
our focus, as detailed below.

2.1 Filtering Stage

As shown in Fig. 1, after the first stage, the LLM
samples three plausible rationales for a math prob-
lem that arrive at different answers. Just like hu-
mans, LLMs may make countless and various mis-
takes, but there are only a limited number of correct
rationales for the right result. If most of the sam-
pled rationales cannot make agreements, with a
high probability this sample is wrongly predicted.
To empirically prove that, we conduct quantitative
experiments and discover that incorrectly predicted
samples tend to have greater diversity in their final
answer when solving difficult reasoning problems.

(Please refer to Appendix A for more details).

Specifically, the LLM is prompted with a set of
manually written CoT exemplars following Wei
et al. [2022] in the first stage. (Please refer to Ap-
pendix for more details) Then, we sample a set
of candidate outputs from the LLM’s decoder to
generate a set of rationales’. Finally, we use the
diversity degree to identify the most likely incorrect
sample for humans to involve. Here, we adopt a
widely-used method to select the samples: Diversity
Entropy [Brinker, 2003, Yang et al., 2015, Agarwal
et al., 2020]. A further study about Diversity En-
tropy in Sec. 4.4 quantitatively demonstrates its
advantage.

Formally, given a manually written CoT prompt
and a sample s, MCS decodes a set of N outputs,
where each output r; is a sequence of tokens rep-
resenting the ¢-th rational, then the rational r; is
used to obtain the answer a;. As previously demon-
strated, a greater diversity of the set of answers
indicates potential incorrect predictions and flags a
sample for humans to involve. First, we obtain the
predicted answer a; though arg max, P(r;,a; | s).
For example, in Fig. 1, r; is She has 16 — 3 = 13
eggs left. So she has 162 —3 = $13., and a; is $13.
Then we calculate the answer distribution for the
answer set {a, .. ny} of s. For each distinct value
ac€ {a; .. n}, the probability is as follows:

SN =a)

V] (1)

Pa

where |N| denotes the number of answers. For
example, in Fig. 1, there are three answers as well
as three rationales. We use the answer entropy as
the Diversity Entropy (DE) score for the sample s:

DE = Z —Palog pa (2)

ae{a;}

The higher the DE score, the more likely it needs
manual correction. A threshold « is set for DE as
the hyper-parameter.

2.2 Correction Stage

Referring to how humans should involve in the
loop, the most straight-forward idea is humans han-
dling the filtered samples while the LLM processes
the rest samples. However, humans handling the
sample as a whole problem is still labor-consuming,
especially for those difficult mathematical problems.
Due to this, we claim that humans should pay local

"Most existing sampling algorithms including tem-
perature sampling [Ackley et al., 1985, Ficler and Gold-
berg, 2017], top-k sampling [Fan et al., 2018, Holtzman
et al., 2018, Radford et al., 2019] and nucleus sam-
pling [Holtzman et al., 2019] could be used for sampling
the required rationals. Here we follow Wang et al. [2022]
for a fair comparison. Other sampling methods can also
bring a general benefit.

attention to simple sub-logics in the rationale. Here,
a sub-logic is typically a group of words that can
stand alone as a complete thought in a complex
rationale. We denote a sentence as a sub-logic.

To support our claim, there exist some premises.
Firstly, an incorrect rationale could output the cor-
rect final answer after correcting the erroneous sub-
logic in the rationale. To empirically prove that,
we conduct quantitative experiments for twelve
datasets and discover that in general up to 50%
of errors of CoT indeed are caused by incorrect
intermediate rationales. After correcting these 50%
incorrect rationales, the final answers turn out to
be correct. Secondly, correcting sub-logics indeed
solves the majority of incorrect rationales. We con-
duct the analytical experiment across multiple tasks
in Sec. 4.3 and provide the evidence. Thirdly, the
questionnaire survey shows that correcting each
sub-logic independently is much easier and more
user-friendly for humans than checking the entire
rationale (Please refer to Appendix B for more
details).

Specifically, in the correction stage, we ask hu-
mans to check the filtered sample and only correct
the rationale with the highest probability. During
the correction, to simplify, the operations that a
human can perform on the sub-logics include “modi-
fying”, “adding”, and “deleting”. As shown in Tab. 1,
the first cause displays the modifying operation. Af-
ter the modifying operation, the corrected sub-logic
“3%100+ 8% 10+ 3 %1 = 383" helps the LLM output
the correct answer.

3 Cost-utility Analysis Model for
Human-in-the-Loop Systems

CAMLOP introduces the cost-utility relation that
is introduced from the economics theory [Varian,
2014] into the AI field to quantify these two fac-
tors (i.e., cost and utility). For human-in-the-loop
systems like MCS , we divide the goods into two
simple categories: human labor and LLM. Com-
pany strategic decision-makers always choose the
best bundle of goods they can afford/cost. The
costs include direct and indirect costs. The direct
cost is the money the goods spent while indirect
costs mainly include overhead costs from manage-
ment and rent. Indirect costs also include intangible
costs, such as the impact on customers, employees,
or delivery times should be considered. Utilities
include boosted accuracy, social prestige, and user
satisfaction. For simplicity, we only consider money
and time for cost while considering accuracy and
user satisfaction for utility in our experiments.

We draw Fig. 2 where the horizontal axis x; and
vertical axis xo are the quantity of human labor and
LLMs respectively. First, we introduce notations
related to the cost. We define p; * 1 as the cost
spent on human labor and p, * 2 as the cost spent

Correction Operation: Modifying

QUESTION: Q: I have 3 hundred, 8 tens, and 3 ones.
What number am 17 A:

RATIONALE: I have 3 hundred, 8 tens, and 3 ones.
That means I have «Before Modifying»: 3 100 +
8% 10+ 3% 1 =303 «After modifying»: 3 = 100 4

8% 10+ 3 %1 = 383.

Correction Operation: Deleting

QUuEsTION: Clarence has 5 oranges. He gets 3 more
from Joyce. Later, Clarence buys 9 Skittles at the store.
How many oranges does Clarence have in all? A:
RATIONALE: Clarence has 5 oranges. He gets 3 more
from Joyce, so now he has 5+3 = 8 oranges. «Delete»:
Later he buys 9 Skittles at the store, so he has 8—9 = —1
oranges.

Correction Operation: Adding

QUESTION: Q: There are 83 trees in a park. 36 of
them are willows and the rest are oaks. How many
more oaks than willows are there in the park? A:
RATIONALE: There are 83 trees in the park. 36 of
them are willows, and the rest are oaks. This means
there are 83 — 36 = 47 oaks in the park. There are 47
more oaks than willows. «Add»: There are 36 willows
and 47 oaks in the park now, so there are 47 — 36 = 11
more oaks than willows.

Table 1: Examples of manual correction for in-
correct sub-logic. The operations that a human
can perform on the rationales include modifying,
adding, and deleting.

Cobb-Douglas Utility Function

Indifference curves

Optional
choice

1 1
Figure 2: Illustration of CAMLOP.

on the LLMs. We indicate the bundle by (z1,z2)
(a data point in Fig. 2). The corresponding unit
price is p; and ps. The total cost the company
decision-maker has to spend is denoted as y. There-
fore, the budget constraint can be represented as
p1x1 + paxe < m. The solid straight line is the set
of data points that cost exactly y: p1x1 + paxe = m.
To note, the cost contains various aspects as men-
tioned before. In Fig. 2, for simplicity, we express
these different aspects as a unified value according
to a unified standard. Then we introduce utilities 2.
A utility function u(zq,z2) is a way to assign a
utility value to the bundle (z1,23). As shown in
Fig. 2, the set of all data points (x1,z2) such that
u(zy,x2) equals a constant is called a level set (solid
curve). Those data points on higher indifference

*Most notations are following those from [Varian,
2014]

curves are getting larger utility. We adopted a
commonly used utility function— Cobb-Douglas®
utility function u(z1,r2) = xz, where ¢ and d are
positive numbers that we need to learn %. Given
a model parameterized by ¢, d, and a fixed cost y,
the model predicts the optimal choice (z¥,z%) with
the highest utility, which is desired by the company
strategic decision-makers. Note an important fea-
ture of this optimal choice: at this data point the
indifference curve is tangent to pix1 + paxs = y.

To note, we introduce the modeling of CAMLOP
in this section. More details about the inference and
learning are shown in Appendix C and Appendix
D.

4 Experiments

4.1 Setup

Tasks and datasets. For arithmetic reasoning
tasks, we conducted a series of experiments on the
Math Word Problem Repository [Amini et al., 2019],
including AddSub [Hosseini et al., 2014], MultiArith
[Roy and Roth, 2016], SingleEq [Koncel-Kedziorski
et al., 2015] and SingleOp [Kushman et al., 2014].
We also included ASDiv [Miao et al., 2021], AQUA-
RAT [Miao et al., 2021], GSM8K [Cobbe et al.,
2021], and ASDiV [Patel et al., 2021]. For com-
monsense reasoning tasks, we used Commonsen-
sQA[Talmor et al., 2018] and StrategyQA[Geva
et al., 2021]. For symbolic reasoning tasks, we used
Last Letter Concatenation and Coinflip[Wei et al.,
2022]

Baselines. We primarily compare MCS with the
following baselines. It is noteworthy that all base-
lines use the same LLM as the decoder. All of the
annotators are undergraduate students who have
basic math knowledge. For a fair comparison, we
report the results of Self-consistency, MCS , and
MCS + Self-consistency with the same 5 rationales
sampled from the decoder. The details of the base-
lines are as follows:

1. CoT-prompting. Chain-of-thought prompting
with greedy decoding [Wei et al., 2022].

2. Self-consistency. Chain-of-thought prompting
replacing the greedy decoding strategy used
in CoT-prompting. Self-consistency generates
a set of rationales by sampling from LLM’s
decoder and determines the optimal answer by
taking a majority vote [Wang et al., 2022].

Shttp://www.columbia.edu/~md3405/IM_recap_1_
16.pdf

4Cobb-Douglas indifference curves is what
economists referred as “well-behaved indifference
curves”. Cobb-Douglas utility functions are proved
useful to present algebraic examples of economic field.

http://www.columbia.edu/~md3405/IM_recap_1_16.pdf
http://www.columbia.edu/~md3405/IM_recap_1_16.pdf

LLM Method AddSub MultiArith SingleEq SingleOp ASDiv. AQuA SVAMP GSMS8K
CoT-prompting 82.78 93.00 85.04 94.84 73.19 40.55 68.00 56.48

GPT3-002 Self-consistency ~ 90.63 94.17 89.17 95.73 7772 3819 75.70 58.85
MCS 92.15 95.50 92.51 96.62 75.52 44.09 74.60 61.56

MCS + Self-con. 97.22 95.50 94.09 98.75 79.63 41.34 80.10 62.92
CoT-prompting 88.86 94.00 94.49 94.31 79.58 47.24 79.10 59.51

GPT3-003 Self-consistency 91.65 97.83 96.26 95.55 84.11 50.39 83.10 63.99
MCS 95.70 97.50 96.65 96.26 8292 49.21 85.20 62.85

MCS + Self-con. 96.71 99.17 97.64 96.98 86.07 52.36 87.40 67.10
CoT-prompting 93.41 98.33 97.24 96.09 88.98 60.63 79.10 72.33

ChatGPT Self-consistency 93.41 99.33 97.83 96.62 91.98 63.78 82.70 77.41
MCS 95.95 99.50 97.83 96.62 90.94 61.02 83.00 74.53

MCS + Self-con. 96.20 99.83 98.23 96.98 93.37 64.17 85.50 79.08

Table 2: Arithmetic reasoning accuracy by MCS and MCS + Self-consistency compared to Chain-of-
Thought prompting and Self-consistency for LLM including GPT-3(text-davinceci-002), GPT-3(text-

davincci-003) and ChatGPT (gpt-3.5-turbo)

Models and scales. We use GPT-3 [Ouyang
et al., 2022, Brown et al., 2020b] and ChatGPT as
the LLM. More details are provided in Appendix
E. For our methods, we provide the following two
variants:

1. MCS . MCS is the result of manual correction
for the top 40% CoT predictions ranked out
using DE. A detailed analysis of the threshold
of Diversity Entropy is shown in Sec. 4.3.

2. MCS +Self-consistency. MCS + Self-
consistency is the result of combining marginal-
izing out the sampled rationales with MCS . In
practice, we use Self-consistency to get answers
by majority vote, and then we use MCS to man-
ually correct incorrect sub-logics of the first
rationale out of decoded rationales with DE
calculated based on the decoded rationales.

Sampling scheme. To sample diverse rationales,
we followed similar settings to those used in Wang
et al. [2022] for the open-text generation. We use
T = 0.7 without top-k truncation. For a fair com-
parison, we use the same prompts as in Wei et al.
[2022]. The threshold of DE is set to be top 40%

4.2 Main Results

Arithmetic Reasoning The results are shown in
Tab. 2. MCS generally improves the arithmetic rea-
soning performance at a large margin (4.68 points
on average) compared with CoT. MCS + Self-
consistency further improves the arithmetic rea-
soning performance (6.39 points on average). Es-
pecially for SingleEq and SVAMP, compared with
CoT, the accuracy increased by 9.05 and 12.10
points, respectively.

Commonsense and Symbolic Reasoning
Tab. 3 shows the results on commonsense and sym-
bolic reasoning tasks. Similarly, MCS improves
the performance and MCS + Self-consistency fur-
ther boosts it. For symbolic reasoning, we adopt

the out-of-distribution (OOD) setting where the
input prompt contains samples of 4-letters and 4-
flips [Wang et al., 2022] because this setting is more
challenging. We do not adopt the in-distribution
setting because GPT-3 can already achieve 100%
accuracy with the in-distribution setting as shown
in Wei et al. [2022]. Even in difficult OOD setting,
the gain of MCS +Self-consistency is significant
compared to CoT-prompting and Self-consistency.

Model Commonsense Symbolic
CSQA StraQA Letter Coinflip
CoT-prompting 72.32 60.13 49.20 81.40
Self-consistency 76.09 61.40 54.40 93.20
MCS 73.71 60.88 75.40 81.40
MCS + Self-con. 77.07 62.23 78.40 93.20

Table 3: Commonsense and symbolic reasoning
accuracy. For each task, we report the median
scores among 5 runs.

4.3 Analysis of Whether Correcting
Sub-logics Solves the Majority of
Incorrect Rationales

We conduct experiments on twelve datasets to check
whether correcting sub-logics solves the majority of
incorrect rationales. Each task is represented by a
pie chart. For each task, we conduct the error anal-
ysis for CoT prompting and analyze the error types
of rationales. We divided the error types into four
categories: errors that are able to be corrected by
the operation, the operation,
the “deleting” operation, and the rest of the errors
that are . The
percentage of each type across datasets is shown in
Fig. 3. More details are shown in Appendix B.2.
The first three categories constituent the major-
ity of incorrect rationales and can be solved by
correcting independent sub-logics instead of the
whole rationale. More specifically, CoT often makes

8%

AddSub MultiArith SingleEq
84% 92%
SVAMP GSMB8K CSQA

44%

10% %
. 1%

SingleOp ASDIV AQuUA

64%

100%
88%

36%

StrategyQA Letter (4) Coinflip (4)

Unable to be manually corrected

Able to be manually corrected by adding

Able to be manually corrected by modifying

Able to be manually corrected by deleting

Figure 3: Illustration of error analysis of Chain of Thought Prompting across twelve tasks. Each error
type is represented by a color. The share in color indicates the share of the error type.

Accuracy for AddSub with Different Thresholds

Accuracy for SingleEq with Different Thresholds Accuracy for SingleOp with Different Thresholds

It shows the results of MCS with 5%, 10%, 20%,
30%, 40% and 50% DE for AddSub (Left), SingleEq
(Medium) and (Right). Results show that
DE-based filtering is an efficient method to rank
the possibility to be incorrect for the output of CoT
predictions, and samples with incorrect output will
be ranked higher than those without.

mistakes when calculating polynomial calculations
with decimal points, which account for a large part
of manual correction and can be corrected by the

operation. For the operation,
it functions when CoT often fails to convert the
units, for example, from grams to kilograms. CoT
often outputs redundant logic, leading to incorrect
answers, which could be fixed by the “deleting” oper-
ation. Except for the error mentioned above, errors
that are include
misinterpretation of the question, incorrect formula,
whole incorrect composition of sub-logics and so
on.

Validation of Diversity Entropy Additionally,
we find that the advantage of Self-consistency of-
ten comes from fixing the errors that are
Sampling a large set
of rationales and taking a majority vote helps the
fix of misinterpretation of the question while mak-
ing little help in fixing calculation error. On the
contrary, MCS is beneficial for other three cate-

“deleting”

Figure 5: ROC Curves for DE to filter out the
incorrect CoT outputs. It shows the ROC Curve for
AddSub (Left), Singleeq (Medium) and

(Right). The results indicate that DE is a reliable
metrics that can determine the samples most likely
to be incorrectly predicted for humans to involve.

o

gories of errors including , and
. The difference between Self-consistency
and MCS illustrates why MCS + Self-consistency
achieves great performance as shown in Tab. 2.
Obviously, MCS and Self-consistency play different
roles and be mutually complementary.

4.4 Additional Study

To validate the effectiveness of Diversity Entropy
in determining whether the manual correction is
necessary for each sample, we draw a ROC Curve
in Fig. 5 to demonstrate its ability to rank the
likelihood of incorrect outputs. The selection of
the threshold involves a trade-off between perfor-
mance and human labor. Fig. 4 shows that the
performance stabilizes after reaching the threshold
of top 20% to top 40% for most datasets. Therefore,
we set the threshold to be top 40% across all our
experiments. As the manual correction is labor-
consuming and time-consuming, Diversity Entropy
can help save time and labor by allowing humans
to focus on checking only a small percentage.

Calculation Strategy

ASDiv. AQuA SVAMP GSMS8K

Unnormalized Weighted Average 73.71 44.09 74.50 61.41
Normalized Weighted Average 73.71 40.94 74.60 61.56
Unnormalized Weighted Sum 73.80 42.52 74.50 60.20
Normalized Weighted Sum 73.37 44.88 71.30 59.21
Unnormalized Unweighted Sum (Majority Vote) 75.52 44.09 74.60 61.56

Table 4: Accuracy comparison of different strategies of computing answer probability. The threshold of

Diversity Metrics is set to be top 40%.

Accuracy for Different Number of Rationales

Accuracy

Self-Consistency
—o— MCS

T T T T T

5 10 15 20 25 30 35 40
Number of Rationales
Figure 6: Experiments of different numbers of ra-
tionales.

Analysis of Aggregation Strategies The ma-
jority vote method of calculating the answer proba-
bility over all sampled rationales can be regarded
as taking an unnormalized unweighted sum. As
described in Wang et al. [2022], other methods of
computing answer probability of a include the un-
normalized weighted average, normalized weighted
average, unnormalized weighted sum,

and normalized weighted sum. More details
about the above calculation are provided in Ap-
pendix ??7. Tab. 4 shows that unnormalized un-
weighted sum generally outperforms others. We use
this setting in experiments as Wang et al. [2022].

Analysis of the Number of Sampled Ratio-
nales We test the accuracy with respect to vary-
ing the number of rationales (i.e., 5, 10, 15, 20, 25,
30, 35, 40) in Fig. 6. The results are arithmetic
reasoning accuracy on SingleEq. For a fair com-
parison, both MCS and Self-consistency use the
same prompts as in Wei et al. [2022]. Both MCS
and use the same 5 rationales sam-
pled from the decoder. In our experiments, the
threshold of Diversity Metrics is set to be top 40%.
The results show that MCS generally outperforms
self-consistency and benefits from the increasing
number of sampled rationales.

4.5 Balancing Cost and Utility

In this section, we conduct experiments on the
SingleEq dataset to quantitatively calculate cost
and utility for CAMLOP . For the cost, we consider
money and time. We set the price of the LLM as
Pum and the time cost as t;;,,. Since we use GPT-3,
the price pyj, for a single math problem (decoding
once) is $0.08 on average, and the time cost t;,
is 0.8 second based on empirical results ®>. The
price of solving a single math problem with only
human labor is ppyman and the time cost is thuman -
We set Pruman to be $0.125 and tj,uman to be 60
seconds based on our empirical results. ¢ The price
of human labor for MCS to correct a single math
problem pysos is $0.0625 and the time cost t o
is 30 seconds based on empirical results. Note the
time required to inspect and correct is less than
the time needed to fully solve the entire problem,
therefore tyrcs < thuman-

For the utility, we consider user satisfaction
as the comprehensive score. We ask five users
to write down their satisfaction levels and calcu-
late the average 7. We also perform regression
analysis on user satisfaction based on LLM and
Human and ultimately learn the utility function
W(Xiim, Xhuman) = xlzlﬁf *X}Lff‘nan. For more details,
please refer to Appendix G.

We experiment on five candidate plans based
on models from Sec. 4.2 and Sec. 4.4 (Fig. 4 and
Fig. 6):

5The pricing of text-davinci-002 is $0.02 per 1000
tokens, which can be found at https://openai.com/
pricing. We set pum to be $0.08 because an input
sample for few-shot CoT contains about 4000 tokens
on average when decoding only once. Note that we
only calculated the time for the main part (i.e., the
decoding) and ignored other parts that were fast enough
to be ignored compared to the API calls.

5Minimum hourly wage in the United States is
$7.5, which can be found at https://www.worker.gov/
pay-for-hours-worked/. Solving a problem requires
60 seconds on average. Therefore, the price and time
cost required to complete a problem are $0.125 and 60
seconds, respectively.

7See Appendix for more details about user satis-
faction. The impact of accuracy on user satisfaction
is much larger than time cost, we speculate that most
users care more about accuracy of solving problems than
the time cost, as SingleEq is a math-solving dataset.

https://openai.com/pricing
https://openai.com/pricing
https://www.worker.gov/pay-for-hours-worked/
https://www.worker.gov/pay-for-hours-worked/

Plans Time Money Acc. Utility(User Satis.)
Human 60s $0.125 93.20 86.40
CoT Prompting 0.8s $0.080 85.04 81.60
Self-Consistency (Nseip = 10) 8s $0.800 92.49 85.80
MCS (Nacs =5, a = 20%) 10.8s $0.4925 91.00 84.20
MCS + Self-consistency (Nacs =5, a = 20%) 10.8s $0.4925 93.50 88.80
MCS (Nacs =5, a = 40%) 16.8s $0.505 92.51 85.60
MCS + Self-consistency (Naycs =5, a = 40%) 16.8s $0.505 94.09 90.80

Table 5: Analysis of cost and utility for SingleEq. MCS + Self-consistency generally outperforms other
methods with higher utility and acceptable cost. N.: # sampled rationale. «: DE threshold. Acc.:
Accuracy. User Satis.: User Satisfaction. More details are shown in Appendix G.

1. Human: A plan that requires only human la-
bor, which costs pruman and truman Seconds.

2. CoT-prompting: A naive CoT plan that only
requires GPT-3 for decoding only once, which
costs pim and ty;,, seconds.

3. Self-consistency: A Self-consistency plan that
requires only LLMs to sample from the decoder
Nyeis times, which will cost Ngei¢ * Py and
Nyeif * tym seconds.

4. MCS : MCS samples from LLM decoder
Naeos times and uses top a as threshold,
requiring (Nyos +1) # Pum +a*pucs and
(Napes + 1) #tym + a=tycos seconds.

5. MCS + Self-consistency: A MCS + Self-
consistency plan that requires to sample from
the decoder Nj;cs times, which costs the
same as the MCS plan.

The results are shown in Tab. 5. The result shows
that MCS +Self-consistency generally outperforms
other methods with higher utility (i.e., better user
satisfaction) as well as an acceptable cost.

5 Related Work
5.1 Human-In-the-Loop System

Human-in-the-Loop system, aiming to achieve what
neither humans nor machines can accomplish inde-
pendently, is defined as a model requiring human
interaction [Karwowski, 2006]. When machines
cannot solve the problem, or when cost or security
considerations require humans to participate, man-
ual intervention is necessary |[Wu et al., 2022, Zan-
zotto, 2019, Mosqueira-Rey et al., 2023]. Human-
in-the-loop system outperforms both standalone Al
and humans working alone [Bien et al., 2018].
Recently, LLM-based AI (Artificial Intelligence)
systems are developing very quickly, and this trend
is expected to expand to the majority of the work-
force in the near future [Ouyang et al., 2022, Zhang
et al., 2022, Sanh et al., 2021]. However, these
systems do not always provide satisfactory answers

without human intervention, especially mathemat-
ical problems. Additionally, in domains such as
criminal fact identification and charge predictions,
inference should be reasonable and controlled by
humans [Custers, 2022] while LLMs are not quali-
fied. Different from ChatGPT’s RLHF (Reinforce-
ment Learning from Human Feedback), we take
the first step to use human feedback in an online
way without access to parameters. Even though
it’s a preliminary step, this online method could
benefit from further refinement and combination
with RLHF in future research.

5.2 Chain-of-Thought Prompting

Chain-of-Thought (CoT) prompting enables mod-
els to decompose multi-step problems into smaller
steps. With CoT, LLMs can solve complex reason-
ing problems that cannot be solved with standard
prompting methods [Wei et al., 2022, Wang et al.,
2022]. Despite its usefulness, CoT may be prone
to errors, which can have a negative impact on the
reasoning of the model. Fortunately, most mistakes
can be easily interpreted. About half of these mis-
takes are related to incorrect calculations while the
other half are mistakes from flawed reasoning where
rationales lack the necessary knowledge [Google
Research, 2023]. To address this issue, we limit
users to modifying, deleting, or adding a single sub-
logic as a means of resolving both types of errors.
Additionally, we have found that most mistakes can
be easily detected and corrected by humans through
rationales. Against this background, CoT presents
an opportunity for humans to modify predicted
outcomes through sub-logics of rationales.

6 Conclusion

We propose the MCS to explore how manual cor-
rection of rationales can improve LLM’s reasoning
ability. Then, we propose CAMLOP to quantita-
tively and systematically analyze and balance the
cost and the corresponding utility. Experiments
demonstrate that our MCS significantly outper-
forms strong baselines including the CoT prompting
approach and Self-consistency approach.

7 Limitations

In this paper, we focused on the manual correction
of the incorrect logic of the sampled output of Chain
of Thought, without considering the mechanism
of the fully automatic pipeline. As a machine-
learning pipeline, human involvement may lead
to additional human labor, which may be able to
avoid by training a model to correct the incorrect
reasoning paths.

References

David H Ackley, Geoffrey E Hinton, and Terrence J
Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147-169, 1985.

Sharat Agarwal, Himanshu Arora, Saket Anand,
and Chetan Arora. Contextual diversity for ac-
tive learning. In Furopean Conference on Com-
puter Vision, pages 137-153. Springer, 2020.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
Mathqga: Towards interpretable math word prob-
lem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13519, 2019.

BENJ EDWARDS. Ibm plans to replace 7,800 jobs
with ai over time, pauses hiring certain positions,
IBM CEO Arvind Krishna says he could see
30% of back-office functions replaced by Al
over 5 years., 2023. https://arstechnica.
com/information-technology/2023/05/

Curran Associates, Inc., 2020a. URL https:
//proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural informa-
tion processing systems, 33:1877-1901, 2020b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers
to solve math word problems. arXiv preprint
arXiw:2110.14168, 2021.

Bart Custers. Ai in criminal law: An overview
of ai applications in substantive and procedural
criminal law. Law and Artificial Intelligence,
pages 205223, 2022.

Angela Fan, Mike Lewis, and Yann Dauphin. Hier-
archical neural story generation. arXiv preprint
arXiw:1805.04833, 2018.

Jessica Ficler and Yoav Goldberg. Controlling lin-
guistic style aspects in neural language genera-
tion. arXiv preprint arXiw:1707.02633, 2017.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar
Khot, Dan Roth, and Jonathan Berant. Did aris-
totle use a laptop? a question answering bench-
mark with implicit reasoning strategies. Transac-

ibm-pauses-hiring-around-7800-roles-that-could-tbers @fllhced-ssgeaiion for Computational Lin-

Nicholas Bien, Pranav Rajpurkar, Robyn L Ball,
Jeremy Irvin, Allison Park, Erik Jones, Michael
Bereket, Bhavik N Patel, Kristen W Yeom, Katie
Shpanskaya, et al. Deep-learning-assisted diag-
nosis for knee magnetic resonance imaging: de-
velopment and retrospective validation of mrnet.
PLoS medicine, 15(11):€1002699, 2018.

Klaus Brinker. Incorporating diversity in active
learning with support vector machines. In Pro-
ceedings of the 20th international conference on
machine learning (ICML-03), pages 59-66, 2003.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language
models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877-1901.

guistics, 9:346-361, 2021.

Google Research. Minerva: Solving quantitative
reasoning problems with language models, 2023.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. Learning
to write with cooperative discriminators. arXiv
preprint arXiv:1805.06087, 2018.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes,
and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751,
2019.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb cate-
gorization. In EMNLP, pages 523-533. Citeseer,
2014.

Waldemar Karwowski. International Encyclopedia
of Ergonomics and Human Factors, -8 Volume
Set. Crc Press, 2006.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv
preprint arXiw:2205.11916, 2022.

https://arstechnica.com/information-technology/2023/05/ibm-pauses-hiring-around-7800-roles-that-could-be-replaced-by-ai/
https://arstechnica.com/information-technology/2023/05/ibm-pauses-hiring-around-7800-roles-that-could-be-replaced-by-ai/
https://arstechnica.com/information-technology/2023/05/ibm-pauses-hiring-around-7800-roles-that-could-be-replaced-by-ai/
https://arstechnica.com/information-technology/2023/05/ibm-pauses-hiring-around-7800-roles-that-could-be-replaced-by-ai/
https://arstechnica.com/information-technology/2023/05/ibm-pauses-hiring-around-7800-roles-that-could-be-replaced-by-ai/
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Rik Koncel-Kedziorski, Hannaneh Hajishirzi,
Ashish Sabharwal, Oren Etzioni, and Siena Du-
mas Ang. Parsing algebraic word problems into
equations. Transactions of the Association for
Computational Linguistics, 3:585-597, 2015.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. Learning to automatically solve
algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 271-281, 2014.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih
Su. A diverse corpus for evaluating and devel-
oping english math word problem solvers. arXwv
preprint arXiw:2106.15772, 2021.

Eduardo Mosqueira-Rey, Elena Hernandez-Pereira,
David Alonso-Rios, José Bobes-Bascaran, and
Angel Fernandez-Leal. Human-in-the-loop ma-
chine learning: A state of the art. Artificial
Intelligence Review, 56(4):3005-3054, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, et al. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Arkil Patel, Satwik Bhattamishra, and Navin
Goyal. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2105.07191, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, Ilya Sutskever, et al. Lan-
guage models are unsupervised multitask learners.
OpenAlI blog, 1(8):9, 2019.

Subhro Roy and Dan Roth.
arithmetic word problems.
arXiv:1608.01413, 2016.

Solving general
arXiw preprint

Victor Sanh, Albert Webson, Colin Raffel,
Stephen H Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler,
Teven Le Scao, Arun Raja, et al. Multitask
prompted training enables zero-shot task general-
ization. arXiv preprint arXiv:2110.08207, 2021.

Nan Shao, Zefan Cai, Chonghua Liao, Yanan Zheng,
Zhilin Yang, et al. Compositional task representa-
tions for large language models. In The FEleventh
International Conference on Learning Represen-
tations, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya
Gupta, Adria Garriga-Alonso, et al. Beyond
the imitation game: Quantifying and extrapolat-
ing the capabilities of language models. arXiv
preprint arXiw:2206.04615, 2022.

10

Alon Talmor, Jonathan Herzig, Nicholas Lourie,
and Jonathan Berant. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. arXiv preprint arXiv:1811.00937,
2018.

Hal R. Varian. Intermediate microeconomics: a
modern approach. New York :W.W. Norton Com-
pany, 2014.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language
models. arXiv preprint arXiw:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits rea-
soning in large language models. arXiv preprint

arXiv:2201.11903, 2022.

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang
Zhang, Tianlong Ma, and Liang He. A survey of
human-in-the-loop for machine learning. Future
Generation Computer Systems, 2022.

Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang,
and Alexander G Hauptmann. Multi-class active
learning by uncertainty sampling with diversity
maximization. International Journal of Com-
puter Vision, 113(2):113-127, 2015.

Fabio Massimo Zanzotto. Human-in-the-loop artifi-
cial intelligence. Journal of Artificial Intelligence
Research, 64:243-252, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin,
et al. Opt: Open pre-trained transformer lan-
guage models. arXiv preprint arXiv:2205.01068,
2022.

A Experiments for Filtering Stage

After the first stage, the LLM samples plausible
rationales for a problem that arrive at different
answers. Just like humans, LLMs may make count-
less and various mistakes, but there are only a
limited number of correct rationales for the right re-
sult. If most of the sampled rationales cannot make
agreements, with a high probability this sample is
wrongly predicted. To empirically prove that, we
conduct quantitative experiments and discover that
incorrectly predicted samples tend to have greater
diversity in their final answer when solving difficult
reasoning problems.

Specifically, the LLM is prompted with a set of
manually written CoT exemplars following Wei
et al. [2022] in the first stage. Then, we sample a set
of 5 candidate outputs from the LLM’s decoder to
generate a set of rationales. Based on the sampled
rationales, we divide the samples into two parts:
Part 1 has all sampled rationales pointing to the

Arithmetic Reasoning

Method Part AddSub MultiArith SingleEq
Num. Ratio Acc. Num. Ratio Acc. Num. Ratio Acc.
Part 1 245 62.03% 97.55 299 49.83% 100.00 369 72.64% 97.83
CoT-Prompting Part 2 150 37.97% 53.33 301 50.17% 82.39 139 27.36% 51.08
Part 1&2 395 100.00% 82.78 600 100.00% 93.00 508 100.00% 85.04
Part 1 245 62.03% 97.55 299 49.83% 100.00 369 72.64% 97.83
Self-Consistency Part 2 150 37.97% 71.33 301 50.17% 87.38 139 27.36% 66.19
Part 1&2 395 100.00% 90.63 600 100.00% 94.17 508 100.00% 89.17

Table 6: Analysis for Diversity Entropy in Filtering Stage (I). The accuracy of Part 1 is generally larger
than Part 2. The result demonstrates the superiority of Diversity Entropy and experimentally confirms
the intuition that incorrectly predicted samples tend to have greater diversity in their final answer when
solving difficult reasoning problems. For each task, we report the median scores among 5 runs.

Arithmetic Reasoning

Method Part SingleOp ASDiv AQuA
Num. Ratio Acc. Num. Ratio Acc. Num. Ratio Acc.
Part 1 423 75.27% 98.35 1122 53.53% 96.88 48 18.90% 52.08
CoT-Prompting Part 2 139 24.73% 5899 974 46.47% 42.51 206 81.10% 37.38
Part 1&2 562 100.00% 94.84 2096 100.00% 73.19 254 100.00% 40.55
Part 1 423 75.27% 98.35 1122 53.53% 96.8%8 48 18.90% 52.08
Self-Consistency Part 2 139 24.73% 70.50 974 46.47% 52.78 206 81.10% 32.04
Part 1&2 562 100.00% 95.73 2096 100.00% 77.72 254 100.00% 38.19

Table 7: Analysis for Diversity Entropy in Filtering Stage (II). The accuracy of Part 1 is generally larger
than Part 2. The result demonstrates the superiority of Diversity Entropy and experimentally confirms
the intuition that incorrectly predicted samples tend to have greater diversity in their final answer when
solving difficult reasoning problems. For each task, we report the median scores among 5 runs.

same final answer (i.e., the Diversity Entropy score
as Sec. 2.1 of such samples should be equal to 0);
Part 2 has sampled rationales pointing to different
final answers, which is the part outside the first
part of samples (i.e., the Diversity Entropy score
as Sec. 2.1 of such samples should be greater than
0). Next, we calculate the accuracy of Part 1 and
Part 2 for each dataset separately. We use the
first answer of each sample as the result of CoT-
Prompting and use all five answers to calculate the
Diversity Entropy score. The results are shown in
Tab. 6, Tab. 7, Tab. 8 and Tab. 9. The accu-
racy of Part 1 is generally larger than Part 2. It
demonstrates the superiority of Diversity Entropy
and experimentally confirms the intuition that in-
correctly predicted samples tend to have greater
diversity in their final answer when solving difficult
reasoning problems.

B Experiments for Correction Stage

B.1 Incorrect Rationale Could Output the
Correct Final Answer after Manually
Correcting the Erroneous Rationale.

An incorrect rationale could output the correct
final answer after correcting the erroneous rationale.
To empirically prove this, we conduct quantitative
experiments for twelve datasets and discover that

11

in general most of the errors of CoT indeed are
caused by incorrect rationales. After correcting
these incorrect rationales, the final answers turn
out to be correct.

Specifically, we explored the limits of the CoT-
based methods (namely CoT-Prompting, Self-
Cousistency, and MCS) when humans correct ra-
tionales while disregarding cost. Humans were in-
structed to thoroughly check all samples and ensure
the correctness of all rationales. Tables 10 and 11
present the results, where the upper bound of CoT-
Prompting is denoted as CoT-Upperbound and
the upper bound of Self-Consistency is denoted as
SC-Upperbound. Self Consistency and MCS-Self
Consistency have the same upper bound in extreme
cases (i.e., the threshold of Diversity Entropy score
is set to 100%) while CoT-Upperbound and MCS
have the same upper bound in extreme cases (i.e.,
the threshold of Diversity Entropy score is set to
100%). The experimental results demonstrate that
the upper bounds are quite high, indicating that an
incorrect rationale could produce the correct final
answer after correcting the errors. To note, this
limitation represents only the upper bounds of our
method, and its practical implementation would
require significant time and resources.

Arithmetic Reasoning

Commonsense Reasoning

Method Part

SVAMP GSM8K CSQA

Num. Ratio Acc. Num. Ratio Acc. Num. Ratio Acc.

Part 1 438 43.80% 92.92 256 19.41% 93.36 792 64.86% 85.98

CoT-Prompting Part 2 562 56.20% 47.86 1063 80.59% 47.70 429 35.14% 47.09
Part 1&2 1000 100.00% 68.00 1319 100.00% 56.48 1221 100.00% 72.32

Part 1 438 43.80% 92.92 256 19.41% 93.36 792 64.86% 85.98

Self-Consistency Part 2 562 56.20% 62.46 1063 80.59% 50.71 429 35.14% 57.81
Part 1&2 1000 100.00% 75.70 1319 100.00% 58.85 1221 100.00% 76.09

Table 8: Analysis for Diversity Entropy in Filtering Stage (III). The accuracy of Part 1 is generally larger
than Part 2. The result demonstrates the superiority of Diversity Entropy and experimentally confirms
the intuition that incorrectly predicted samples tend to have greater diversity in their final answer when
solving difficult reasoning problems. For each task, we report the median scores among 5 runs.

Commonsense Reasoning

Symbolic Reasoning

Method Part StrategyQA Letter (4) Coinflip (4)
Num. Ratio Acc. Num. Ratio Acc. Num. Ratio Acc.
Part 1 1502 65.88% 66.31 175 35.00% 72.00 384 38.40% 98.70
CoT-Prompting Part 2 778 34.12% 48.59 325 65.00% 36.31 616 61.60% 69.48
Part 1&2 2280 100.00% 60.13 500 100.00% 49.20 1000 100.00% 81.40
Part 1 1502 65.88% 66.31 175 35.00% 72.00 384 38.40% 98.70
Self-Consistency Part 2 778 34.12% 52.57 325 65.00% 44.62 616 61.60% 89.61
Part 1&2 2280 100.00% 61.40 500 100.00% 54.40 1000 100.00% 93.20

Table 9: Analysis for Diversity Entropy in Filtering Stage (IV). The accuracy of Part 1 is generally larger
than Part 2. The result demonstrates the superiority of Diversity Entropy and experimentally confirms
the intuition that incorrectly predicted samples tend to have greater diversity in their final answer when
solving difficult reasoning problems. For each task, we report the median scores among 5 runs.

B.2 Correcting Erroneous Sub-logic
Indeed Solves the Majority of
Erroneous Rationale.

Correcting erroneous sub-logic indeed solves the
majority of erroneous rationale. We conduct the an-
alytical experiment across multiple tasks in Sec. 4.3
and provide the evidence.

We conduct experiments on twelve datasets to
check whether correcting sub-logics solves the ma-
jority of incorrect rationales. Each task is repre-
sented by a pie chart. For each task, we conduct
the error analysis for CoT prompting and analyze
the error types of rationales. We divided the er-
ror types into four categories: errors that are able
to be corrected by the “modifying” operation, the
“adding” operation, the “deleting” operation, and
the rest of the errors that are unable to be manu-
ally corrected. The percentage of each type across
datasets is shown in Fig. 3.

Sec. 4.3 presents experiments in Fig. 3 on twelve
datasets to check whether correcting sub-logics
solves the majority of erroneous rationales. Figure 3
illustrates the error analysis of the CoT Prompting
across twelve tasks. We list the detailed numbers
of the error analysis in Tab. 12 and Tab. 13. Re-
sults show that correcting erroneous sub-logic in-
deed solves the majority of erroneous rationale (i.e.,

12

each erroneous rationale indeed can be corrected
by only editing a single erroneous sub-logic).

B.3 Correcting Each Sub-logics
Independently is Much Easier and
More User-friendly than Correcting
the Entire Rationale

We conduct the human evaluation. The question-
naire survey shows that correcting each sub-logic
independently (i.e., our approach) is much easier
and more user-friendly than checking the entire ra-
tionale. We present the time that humans need to
check and correct the incorrect sub-logics compared
to correcting the entire rationale as Tab. 14 and
Tab. 15.

The result presents the average time (seconds)
needed for a human to check and correct the incor-
rect sub-logics compared to correcting the entire
rationale for each sample. The time humans need to
check and correct the incorrect sub-logics is much
less than the time needed to correct the entire ratio-
nale for each sample, proving that correcting each
sub-logic independently is much easier and more
user-friendly for humans than checking the entire
rationale.

Model

Arithmetic Reasoning

AddSub MultiArith SingleEq SingleOp ASDiv AQuA SVAMP GSMS8K

CoT-Prompting 82.78 93.00 85.04 94.84 73.19 40.55 68.00 56.48
CoT-Upperbound 97.72 96.33 94.09 96.80 75.62 47.64 77.50 63.76
Self-Consistency 90.63 94.17 89.17 95.73 77.72 38.19 75.70 58.85
SC-Upperbound 98.48 96.33 95.67 98.93 81.58 44.49 82.00 64.67

Table 10: Upperbound Analysis of CoT-Prompting, Self-Consistency and MCS (I). The experimental
results demonstrate that the upper bounds are quite high, indicating that an incorrect rationale could
produce the correct final answer after correcting the errors. To note, this limitation represents only the
upper bounds of our method, and its practical implementation would require significant time and resources.
For each task, we report the median scores among 5 runs.

Model Commonsense Symbolic
CSQA StraQA Letter Coinflip
CoT-Prompting 72.32 60.13 49.20 81.40
CoT-Upperbound 74.61 60.88 93.80 81.40
Self-Consistency 76.09 61.40 54.40 93.20
SC-Upperbound 77.97 62.23 96.00 93.20

Table 11: Upperbound Analysis of CoT-Prompting,
Self-Consistency and MCS (II). The experimental
results demonstrate that the upper bounds are quite
high, indicating that an incorrect rationale could
produce the correct final answer after correcting
the errors. To note, this limitation represents only
the upper bounds of our method, and its practical
implementation would require significant time and
resources. For each task, we report the median
scores among 5 runs.

C Inference for CAMLOP

Given a model parameterized by ¢, d, and a fixed
cost gy, the model predicts the optimal choice
(¥, 2%) with the highest utility, which is desired
by the company strategic decision-makers. Note
an important feature of this optimal choice: at
this data point (namely, optimal choice point) the

indifference curve is tangent to p1x, + pexs = v.

According to this feature, the inference is to get
(¥, %) that satisfied the following equation:

u/x*7x* z_pil 3
(at.23) = 2 (3

which will derive the optimal choice (27, z3):

_d m
c+dps

_cm
c+dp;

D Learning for CAMLOP

*

y Ly =

(4)

Y

We have seen how to make the best decision based
on the inference of CAMLOP. But in real life we
have to work the other way around: we observe
some historical cost and utility datapoints, but our
problem is to estimate what kind of utility function
is induced from the observations.

13

Concretely, suppose that we observe a number
of industries making choices between LLMs and
human workers based on their considerations of
commute times, money costs, accuracy, etc. There
exists an analytic solution of ¢, d obtained by sta-
tistical techniques that best fit the observed data
points. In this way, the historical datapoints give a
way to estimate the utility function. More specifi-
cally, we use regression analysis to find the utility
function that best describes the relation between x
and utility. Mean square error is typically employed
as the loss function for learning the utility function.
The loss function is defined on J training datapoints

1 1 2 2 J J
X = {2, @, a3, ., (@, 20

J
Z Ogu xl ,J}Q),C,d) (5)

K‘ \

where the model parameters are ¢,d. A normal
equation or gradient descent can be used to optimize
this loss function and obtain the final ¢, d.

E Experiment Details

We choose GPT-3 because of its superior CoT rea-
soning performance, as reported in the work of Wei
et al. [2022] and Wang et al. [2022]. Due to the lim-
ited context window size (up to 4096 word-pieces
for the GPT-3 series of models), we use an 8-shot
setting for all datasets. Our experiments are based
on access to the OpenAl GPT-3 API. We perform
all experiments in the few-shot setting, without
training or fine-tuning the LLM. For a fair compar-
ison, we use the same prompts as in the work of
Wei et al. [2022]. For arithmetic reasoning tasks,
we use the same set of 8 manually written exem-
plars. For commonsense reasoning tasks, exemplars
are randomly selected from the training set with
manually written CoT prompts.

We list the exact set of prompts used for all
arithmetic reasoning tasks in Tab. 16, since there
are multiple sets of prompts introduced in Wei
et al. [2022]. The prompts for CommonsenseQA
and StrategyQA are the same as used in Wei et al.
[2022].

Arithmetic Reasoning

Operation

AddSub MultiArith SingleEq SingleOp ASDiv AQuA
Num. Ratio Num. Ratio Num. Ratio Num. Ratio Num. Ratio Num. Ratio
Modifying 33 92% 22 24% 3 11% 19 28% 15 4% 2 1%
Adding 0 0% 10 11% 0 0% 19 28% 38 10% 16 16%
Deleting 0 0% 0 0% 7 25% 0 0% 0 0% 0 0%
Unable 3 8% 60 65% 18 64% 30 44% 327 86% 132 88%

Table 12: Detailed numbers of the error analysis (I). The results are the detailed numbers of Fig. 3.

Arithmetic Reasoning Commonsense Reasoning Symbolic Reasoning

Operation gy ip GSMSK CSQA StraQA Letter (4) Conflip (4)

Num. Ratio Num. Ratio Num. Ratio Num. Ratio Num. Ratio Num. Ratio
Modifying 41 13% 54 10% 28 3% 39 36% 223 88% 0 0%
Adding 19 6% 11 2% 0 0% 0 0% 0 0% 0 0%
Deleting 35 11% 25 4% 0 0% 0 0% 0 0% 0 0%
Unable 225 70% 478 84% 310 92% 69 64% 30 12% 186 100%

Table 13: Detailed numbers of the error analysis (II). The results are the detailed numbers of Fig. 3.

F Diversity Metrics Over Diverse
Reasoning Paths

As described in Sec. 4.4, the majority vote method
of calculating the answer probability over all sam-
pled rationales can be regarded as taking an un-
normalized unweighted sum. As described in Wang
et al. [2022], other methods of computing answer
probability of a include the unnormalized weighted
average, normalized weighted average, unnormal-
ized weighted sum, and normalized weighted sum.
Tab. 4 shows that unnormalized unweighted sum
generally outperforms others. We use this setting
in all experiments following Wang et al. [2022].
In practice, the majority vote method of cal-
culating the answer probability over all sampled
rationales proposed at Eq. 1 is the same as taking

the unweighted sum over a; (i.e., Zglll(ai = a)),
where |N| denotes the number of answers (i.e., the
number of sampling times). As described in Wang
et al. [2022], another selection of computing answer
probability of a over all sampled rationales is to
use unnormalized probability pa, of the language
model generating a; given the prompt of sample s:

Pa;, = P(r;,a; | s) (6)

Then we use all unnormalized probability pa,
given by the language model’s decoder to calculate
the probability p, of the answer a for sample s:

N1 (a; = a)pa,
Pa = Zi:ll(ljzw)Pa, (7)

where |N| denotes the number of rationales de-

Human Operation

Arithmetic Reasoning

AddSub MultiArith SingleEq SingleOp ASDiv. AQuA SVAMP GSMSK

21s
49s

24s
80s

Correcting sub-logics
Correcting entire rationale

30s
60s

14s
32s

26s
44s

62s
102s

16s
48s

45s
e

Table 14: Time (seconds) spent for correcting the incorrect sub-logics compared to correcting the entire
rationale (I). The time humans need to check and correct the incorrect sub-logics is much less than
the time needed to correct the entire rationale for each sample, proving that correcting each sub-logic
independently is much easier and more user-friendly for humans than checking the entire rationale.

. Commonsense Symbolic
Human Operation
CSQA StraQA Letter Coinflip
Correcting sub-logics 14s 24s 18s 36s
Correcting entire rationale 26s 36s 28s 40s

Table 15: Time (seconds) spent for correcting the incorrect sub-logics compared to correcting the entire
rationale (II). The time humans need to check and correct the incorrect sub-logics is much less than
the time needed to correct the entire rationale for each sample, proving that correcting each sub-logic
independently is much easier and more user-friendly for humans than checking the entire rationale.

14

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today?

A: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees
they planted. So, they must have planted 21 - 15 = 6 trees. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot?

A: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars.
The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have
left in total?

A: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 + 42
= 74 chocolates. 35 have been eaten. So in total they still have 74 - 35 = 39 chocolates. The
answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?

A: Jason had 20 lollipops. Since he only has 12 now, he must have given the rest to Denny. The
number of lollipops he has given to Denny must have been 20 - 12 = 8 lollipops. The answer is 8.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many
toys does he have now?

A: He has 5 toys. He got 2 from mom, so after that he has 5 + 2 = 7 toys. Then he got 2 more
from dad, so in total he has 7 + 2 = 9 toys. The answer is 9.

Q: There were nine computers in the server room. Five more computers were installed each day,
from monday to thursday. How many computers are now in the server room?

A: There are 4 days from monday to thursday. 5 computers were added each day. That means
in total 4 * 5 = 20 computers were added. There were 9 computers in the beginning, so now
there are 9 + 20 = 29 computers. The answer is 29.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more.
How many golf balls did he have at the end of wednesday?

A: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 - 23 = 35 balls.
On Wednesday he lost 2 more so now he has 35 - 2 = 33 balls. The answer is 33.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: She bought 5 bagels for $3 each. This means she spent 5 * $3 = $15 on the bagels. She had

$23 in beginning, so now she has $23 - $15 = $8. The answer is 8.

Table 16: Few-shot exemplars for arithmetic reasoning tasks.

coded for the sample s. The result of using the
calculation output of Eq. 7 as the probability of
answer a is shown in Tab. 4 as Unnormalized
Weighted Sum . Apart from computing pa by
taking the unnormalized probability of the language
model generating (r;,a;) given s, we can normalize
the output probability for (r;,a;) by the output
length of r; [Brown et al., 2020b]:
Pa, = exp® Zio 0871,

(8)

where p;, is the log probability of generating the
k-th token ¢ in (r;, a;) conditioned on the previous
tokens, and K is the total number of tokens in
(I’i7 ai):

Dy, :P(tk’|s7t17~'~7tk—1) (9)
The result of using the calculation output of Eq. 8

as the normalized probability p? of the language
model generating a; given prompt of sample s is

shown in Tab. 4 as Normalized Weighted Sum.

In addition, in Tab. 4 we also report the results by
taking a weighted average, which means calculating
a score for each a of its weighted sum divided by
SIM 1(a; = a).

Tab. 4 shows that unnormalized unweighted sum
generally outperforms others. We use this setting
in all experiments following Wang et al. [2022].

15

G Details of Balancing Cost and
Utility

In Sec 5, we conduct experiments on the SingleEq
dataset to quantitatively calculate cost and utility
for CAMLOP . The trends on other datasets are
consistent with SingleEq dataset. We randomly
selected one dataset as an example to demonstrate
the superiority of MCS in balancing cost and utility.

For the cost, we consider money and time. We
set the price of the LLM as py;,, and the time cost
as t;;,. Since we use GPT-3, the price py,, for
a single math problem (decoding once) is $0.08
on average, and the time cost t;;,,, is 0.8 second
based on empirical results 8. The price of solving
a single math problem with only human labor is
Phuman and the time cost is tpuman. We set Pruman
to be $0.125 and thuman to be 60 seconds based
on our empirical results. ® The price of human
labor for MCS to correct a single math problem

8The pricing of text-davinci-002 is $0.02 per 1000
tokens, which can be found at https://openai.com/
pricing. We set pum to be $0.08 because an input
sample for few-shot CoT contains about 4000 tokens
on average when decoding only once. Note that we
only calculated the time for the main part (i.e., the
decoding) and ignored other parts that were fast enough
to be ignored compared to the API calls.

9Minimum hourly wage in the United States is

https://openai.com/pricing
https://openai.com/pricing

Plans Time Money Acc. Utility(User Satis.)
Human 60s $0.125 93.20 86.40
CoT Prompting 0.8s $0.080 85.04 81.60
Self-Consistency (Nseip = 10) 8s $0.800 92.49 85.80
MCS (Nacs =5, a = 20%) 10.8s $0.4925 91.00 84.20
MCS + Self-consistency (Nacs =5, a = 20%) 10.8s $0.4925 93.50 88.80
MCS (Nacs =5, a = 40%) 16.8s $0.505 92.51 85.60
MCS + Self-consistency (Naycs =5, a = 40%) 16.8s $0.505 94.09 90.80

Table 17: Analysis of cost and utility for SingleEq. MCS + Self-consistency generally outperforms other
methods with higher utility and acceptable cost. N.: # sampled rationale. «: DE threshold. Acc.:

Accuracy. User Satis.: User Satisfaction.

Pucs is $0.0625 and the time cost ty;og is 30
seconds based on empirical results. Note the time
required to inspect and correct is less than the time
needed to fully solve the entire problem, therefore
t-‘MCS < thuman-

For the utility, we consider user satisfaction as
the comprehensive score. We ask five users to write
down their satisfaction levels and calculate the av-
erage. The human ratings are collected via Amazon
Turk. In addition to the effective data collected
from 5 users for each evaluation method, data from
several users were excluded due to failures in the
attention verification. The hourly salary is $10 per
hour and per user. We randomly select a set of
examples and the satisfaction level is rated from
1 to 5, with 1 as the worst satisfaction and 5 as
the most user-friendly and best satisfaction. The
human rating scores are then averaged.

We experiment on candidate plans based on mod-
els from Sec. 4.2 and Sec. 4.4 (Fig. 4 and Fig. 6),
and the results are shown in Tab. 17. The calcu-
lation of time and money in Tab. 17 is shown as
below:

1. Human: A plan that requires only human la-
bor, which costs pruman and thumaen seconds.
So the time needed is tjyman = 60seconds, and
the money needed is Pruman = $0.125

. CoT-prompting: A naive CoT plan that only
requires GPT-3 for decoding only once, which
costs pyum and ty,, seconds. So the money
needed is py;, = $0.08 and the time needed is
tim = 0.8second.

. Self-consistency (Ngep = 10): A Self-
consistency plan that requires only LLMs to
sample from the decoder Ny ¢ times, which
will cost Nyeif # Pum and Ngerp * tyy, sec-

onds. For N,y = 10, the money needed is

$7.5, which can be found at https://www.worker.gov/
pay-for-hours-worked/. Solving a problem requires
60 seconds on average. Therefore, the price and time
cost required to complete a problem are $0.125 and 60
seconds, respectively.

16

Ngeif * pum = 10 % $0.08 = $0.8, the time
needed is Nyef * £y, = 10 * 0.8 = 8seconds.

MCS (Npyes =5, a=20%): MCS samples
from LLM decoder Nj;0s times and uses top
« as threshold, requiring (Nyscs +1) *pum +
ax*pycs and (Nacs +1) #tym +axtycs

seconds. For Ny;cs = 5, a = 20%, the money
needed is (Npscs + 1) * Pum + @ * pypros
$0.08 * 6 + 20% = $0.0625 = $0.4925, the time
needed is (NMCS + 1) *tym +axtycs
0.8 * 65 + 20% * 30s = 10.8 seconds.

MCS + Self-consistency (Nycs = 5, «
20%): A MCS —+ Self-consistency (Na;cs = 5,
a = 20%) plan that requires to sample from the
decoder Njy;cs times, which costs the same
as the MCS (Njcs =5, a = 20%) plan.

MCS (Nycs =5, a=40%): MCS samples
from LLM decoder Nj;cs times and uses top
« as threshold, requiring (Nyscs +1) # pim +
axpyes and (Naros + 1) #tym +axtacs

seconds. For Ny;cs = 5, a = 40%, the money
needed is (Nyos + 1) * Pum + @ * Prcs
$0.08 = 6 + 40% = $0.0625 = $0.505, the time
needed is (Nyros + 1) # tym + axtycs =
0.8 * 65 + 40% * 30s = 16.8 seconds.

MCS + Self-consistency (Nycs = 5, «
40%): A MCS + Self-consistency (Nycs = 5,
a = 40%) plan that requires to sample from the
decoder Nj;cs times, which costs the same
as the MCS (Njcs =5, a = 40%) plan.

The results are shown in Tab. 17. The result
shows that MCS +Self-consistency generally out-
performs other methods with higher utility (i.e.,
better user satisfaction) as well as an acceptable
cost.

We performed regression analysis on user satis-
faction based on LLM and Human and ultimately
learned the utility function w(Xrrar, Xguman) =
x299 1% (10 * X gryman) %4, where xz 1 equals to 1
when using LLM to decode one time, and Xgyman
equals to 10 when solving the problem with only
human.

https://www.worker.gov/pay-for-hours-worked/
https://www.worker.gov/pay-for-hours-worked/

H Related Work

H.1 Human-In-the-Loop System

The human-in-the-Loop system, aiming to achieve
what neither humans nor machines can accomplish
independently, is defined as a model requiring hu-
man interaction [Karwowski, 2006]. When the
machine cannot solve the problem, or when cost or
security considerations require humans to partici-
pate, manual intervention is necessary [Wu et al.,
2022, Zanzotto, 2019, Mosqueira-Rey et al., 2023].
Previous human-in-the-loop systems focus either
on adding appropriate tags to data or providing
feedback on cases with a certain confidence interval
to the machines and thus retrain the model after-
ward with the labeled data or rewarded cases [Wu
et al., 2022, Zanzotto, 2019]. The human-in-the-
loop system outperforms both standalone AI and
humans working alone [Bien et al., 2018].

Recently, LLM-based AI (Artificial Intelligence)
systems are developing very quickly, and this trend
is expected to expand to the majority of the work-
force in the near future [Ouyang et al., 2022, Zhang
et al., 2022, Sanh et al., 2021]. However, these
systems do not always provide satisfactory answers
without human intervention, especially mathemat-
ical problems. Additionally, in domains such as
criminal fact identification and charge predictions,
inference should be reasonable and controlled by hu-
mans [Custers, 2022| while LLMs are not qualified.
Therefore, it is essential to develop a human-in-
the-loop prompting-based system that is designed
with the ability to collaborate with people. Such a
system would make work more efficient and effec-
tive. Until recently, few researchers have system-
atically and quantitatively explored human-in-the-
loop prompting-based systems.

Different from ChatGPT’s RLHF (Reinforcement
Learning from Human Feedback) 10, we take the
first step to use human feedback in an online way
without access to parameters. Even though it’s a
preliminary step, this online method could bene-
fit from further refinement and combination with
RLHF in future research.

H.2 In-context Learning

Over the past decade, there have been signif-
icant advancements in Large Language Models
(LLMs) [Ouyang et al., 2022, Zhang et al., 2022,
Sanh et al., 2021]. These developments have
been further accelerated by the introduction of
In-Context Learning (ICL) [Kojima et al., 2022].
Essentially, LLMs are capable of processing a few
training examples and a test instance as its natu-
ral language instruction. It then directly decodes
the output without requiring any updates to its
parameters. LLMs can perform diverse tasks effec-

10https: //openai.com/blog/chatgpt.

17

tively when provided with corresponding instruc-
tions [Ouyang et al., 2022, Srivastava et al., 2022,
Wei et al., 2022]. This presents an opportunity for
humans to modify predicted outcomes through nat-
ural language instructions, which serve as a flexible
and user-friendly interface.

H.3 Chain-of-Thought Prompting

Chain-of-Thought (CoT) prompting enables mod-
els to decompose multi-step problems into smaller
steps. With CoT, LLMs can solve complex reason-
ing problems that cannot be solved with standard
prompting methods [Wei et al., 2022, Wang et al.,
2022]. Despite its usefulness, CoT may be prone
to errors, which can have a negative impact on the
reasoning of the model. Fortunately, most mistakes
can be easily interpreted. About half of these mis-
takes are related to incorrect calculations while the
other half are mistakes from flawed reasoning where
rationales lack the necessary knowledge [Google
Research, 2023]. To address this issue, we limit
users to modifying, deleting, or adding a single sub-
logic as a means of resolving both types of errors.
Additionally, we have found that most mistakes
can be easily detected and corrected by humans
through rationales. Against this background, CoT
presents an opportunity for humans to efficiently
modify predicted outcomes through sub-logics of
rationales.

https://openai.com/blog/chatgpt

