
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A Mechanistic Analysis of Low-Precision In-
stabilities in Microscaling Formats

Anonymous authors
Paper under double-blind review

Abstract

Training large language models is expensive and compute-bound, and it
must be repeated as models scale, algorithms improve, and new data is col-
lected. To address this, next-generation hardware accelerators like NVIDIA’s
Blackwell increasingly support lower-precision arithmetic formats, including
Microscaling (MX) formats. In this work, we investigate the challenges and
viability of block-scaled precision formats during model training. Across
a broad sweep of weight-activation precision combinations and compute
budgets from 2 × 1017 to 4.8 × 1019 FLOPs, we generally observe that
training in MX formats exhibits sharp, stochastic instabilities in the loss,
particularly at larger compute scales. To explain this phenomenon, we
conduct controlled experiments and ablations on a smaller proxy model
that exhibits instability behavior similar to the language model, sweeping
across architectural settings, hyperparameters, and precision formats. These
experiments motivate a simple model in which multiplicative gradient bias
introduced by the quantization of layer-norm affine parameters and a small
fraction of activations can trigger runaway divergence. Through in situ
intervention experiments on our proxy model, we demonstrate that instabil-
ities can be averted or delayed by modifying precision schemes mid-training.
Guided by these findings, we evaluate stabilization strategies in the LLM
setting and show that certain hybrid configurations recover performance
competitive with full-precision training.

1 Introduction

Large language models (LLMs) have improved dramatically in recent years, largely by scaling
their capacity and the quantity of training data (Kaplan et al., 2020; OpenAI, 2025; DeepMind,
2025; Anthropic, 2025; Grattafiori et al., 2024). For instance, training the Llama 3.1 405B
model required more than 1025 FLOPs and utilized up to 16,000 H100 GPUs (Grattafiori
et al., 2024). Scaling these models involves not only the initial, compute-intensive pretraining
phase but also frequent retraining as new data, algorithms, or architectures emerge, as well
as post-training protocols that prepare the model for inference/deployment.

To reduce these computational burdens, recent hardware advancements have introduced
native support for lower-precision computations, such as FP8 training in NVIDIA H100
GPUs (Micikevicius et al., 2022b; Noune et al., 2022). Hardware accelerators powered by
NVIDIA’s Blackwell architecture further extend these capabilities with standardized, shared-
scale Microscaling (MX) formats like MXFP8 and MXFP6 (NVIDIA, 2025). These formats
store a per-block shared scale, which expands the effective dynamic range with minimal
memory overhead, while simultaneously enabling GEMMs at lower precision (Rouhani et al.,
2023; Darvish Rouhani et al., 2023b). While pretraining is typically done in 16 or 32-bit
precision, some quantization schemes are already seeing industry adoption; for example,
DeepSeek-V3 employs tile-wise FP8 quantization within large tensors (Liu et al., 2024), while
Cohere’s Command A model was trained in FP8 while reserving higher-precision operations
for activation functions and attention mechanisms (Cohere et al., 2025). At an even larger
scale, the Llama-4 series of models is reported to have been pretrained in FP8 precision
across nearly 32,000 GPUs (Meta, 2025). On the deployment side, methods like QAT and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

mixed-precision fine-tuning further underscore the importance of understanding low-precision
training dynamics (Jacob et al., 2017; Abdolrashidi et al., 2021; Shao et al., 2024).

Two primary challenges accompany the adoption of low-precision formats for training. First,
there is a potential performance tradeoff, where reducing precision may result in degradation
of loss and downstream accuracy, which can be characterized through scaling laws that account
for both compute and precision (Kumar et al., 2024). Second, instabilities during training can
occur, often manifesting as abrupt spikes in the loss curve that disrupt convergence (Fishman
et al., 2024; Lee et al., 2025). When these instabilities push optimization into regions from
which recovery is impossible, they obstruct our ability to extract valid scaling laws, making
it impossible to even assess the tradeoffs introduced by low-precision training.

In this work, we set out to understand the training dynamics of low-precision MX precision
formats to identify format prescriptions for language model training on next-generation
hardware. However, like prior observations on (albeit non-MX) low-precision training
by Fishman et al. (2024); Lee et al. (2025), we found that training frequently became
unstable, particularly for larger, compute-intensive models. The instabilities are pervasive,
emerging across a broad range of activation functions, model scales, quantization formats,
and hyperparameter settings.

Because large-scale language model (LM) sweeps are computationally intensive and involve
many entangled components, we turn to a controlled synthetic setting to understand the
origin of these instabilities. Specifically, we present a residual multi-layer perceptron (MLP)
model that captures key architectural components of the LM, and allows us to identify
conditions under which training becomes unstable. In particular, we are able to perform
hyperparamter sweeps, ablations across MX configurations, quantization schemes (e.g.,
forward-only vs. full quantization), and activation functions, and analyze their effects on
stability.

Our findings support a phenomenological explanation in which training instabilities primarily
arise from systematic bias in gradient estimates introduced by quantization. We find that the
primary contribution to this bias is the quantization of the layer normalization (layernorm)
affine weights, whose values often become tightly clustered over the course of training. When
the values within a block converge too closely, division by the shared block scale can clamp
all values in that block to the largest representable number, destabilizing training. We verify
that this mechanism is not limited to synthetic settings but also emerges in the LM setting
by evaluating mitigation strategies to stabilize LM training, including disabling layernorm
quantization and using high precision in selective parts of the network computation.

2 Related Work

2.1 Low-Precision Instabilities

Training large Transformer models at scale can reveal instabilities that can disrupt or even
halt learning (Liu et al., 2024; Chowdhery et al., 2022; Dehghani et al., 2023; Zhang et al.,
2022; Molybog et al., 2023; Fishman et al., 2024; Zoph et al., 2022; Ma et al., 2025; Takase
et al., 2025). In some cases, these issues are exacerbated or directly triggered by low-precision
quantization. For example, Fishman et al. (2024) demonstrate that FP8 pretraining becomes
unstable when combined with the SwiGLU activation function, attributing the issue to an
outlier amplification effect that worsens due to progressive weight alignment over the course
of training. Similarly, Lee et al. (2025) report that approximately 10% of BF16 runs using
the NanoGPT codebase fail to converge, whereas full-precision (TF32) training exhibits no
such failures. Other works (Sun et al., 2024; Bondarenko et al., 2023; Xu et al., 2023), point
to activation outliers and gradient norm growth as contributors to these failures while Tseng
et al. (2025) proposes a stochastic rounding based algorithm to stabilize training in MXFP4
formats. Meanwhile, DeepSeek-V3 also attributes certain training failures due to blockwise
quantization of activation gradients (Liu et al., 2024), underscoring the breadth of challenges
introduced by quantization schemes. Wortsman et al. (2024) use small-scale proxy models to
study training instabilities in the context of growth of output and layer logits. We adopt a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

similar approach, and use a simplified proxy model to understand the origin of low-precision
instabilities in LLMs.

2.2 Review of MX Formats and Experimental Approach

MX formats are a class of low-precision numerical representations designed to enhance the
efficiency of deep learning models (Darvish Rouhani et al., 2023a; Rouhani et al., 2023).
We defer a detailed review of the MX scheme to Appendix A. To summarize, we represent
a block of k values, {Vi}ki=1, using a single shared scale factor X and k corresponding
low-precision elements {Pi} where the Pi are obtained by casting Vi/X to the specified
low-precision format. We present results for a block size k = 32 to match what will be
hardware supported. The scale X is calculated using X = 2⌊log2(maxi(|Vi|))⌋−emax elem where
emax elem is the exponent of the largest normal number representable in the chosen element
data format.

In our experiments, we quantize both weights and activations using these MX formats using
the MX Pytorch Emulation Library (Microsoft, 2024). As described in Appendix A, this
quantization is applied dynamically to the inputs of matrix multiplication operations.

3 LLM Experiments

3.1 Setup

For our LM experiments, we use OLMo (Groeneveld et al., 2024) combined with the MX
PyTorch Emulation Library (Microsoft, 2024) to enable training under various low-precision
configurations. All language models use the GeLU activation function; full hyperparameter
details are provided in Table 3. We sweep over a wide range of MX precision formats for both
weights and activations, including two FP6 variants (E3M2, E2M3), two FP8 variants (E4M3,
E5M2), and a bfloat16 baseline. Each configuration applies full quantization to both forward
and backward passes to both weights and activations, as implemented in the Microscaling
library (Microsoft, 2024). For each format, we train approximately 70 models1 spanning
compute budgets from 2 × 1017 to 4 × 1019 FLOPs. Model sizes range from ∼20M to
∼1.7B parameters. Token counts are determined using an adapted version of the FLOP
accounting code from Brandfonbrener et al. (2024), originally developed for OLMo scaling
law experiments. Token-to-parameter ratios in our sweep range from approximately 2 to
156. Models are trained on the Fineweb-Edu dataset Penedo et al. (2024) and the StarCoder
dataset Li et al. (2023), with the longest runs trained on 35B tokens and the shortest runs
corresponding to models trained on 301M tokens.

3.2 Instabilities in Low Precision

Figure 1a shows the training loss and gradient norm trajectories for bfloat16 models. Training
remains stable, with smooth convergence. By contrast, Figure 1b illustrates example
instabilities in the MXFP8 E5M2-E5M2 weights-activations configuration, where some training
runs exhibit sharp upward spikes in loss and large increases in gradient norm magnitude.
We find these instabilities to be common across other low-precision MX configurations and
hyperparameter settings, as documented in Appendix J. We observe the instabilities mainly
in larger, longer-trained models and that importantly, when training is destabilized, training
does not recover, and the loss continues to diverge. While the loss spikes appear abruptly,
the gradient norm typically grows more gradually (see, e.g., examples in Appendix J) and
fails to decrease over time as seen in stable bfloat16 training. This behavior strongly suggests
biased gradient estimates, a point that we will investigate further in subsequent sections.

1Some runs crashed and could not always be resumed, leading to small differences in number of
models trained for each format.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000
Step

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Train CrossEntropyLoss

0 20000 40000 60000 80000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

bfloat16 weights, bfloat16 activations

(a)

0 10000 20000 30000 40000 50000 60000
Step

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Lo
ss

Train CrossEntropyLoss

0 10000 20000 30000 40000 50000 60000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

MXFP8 (E5M2 weights, E5M2 activations)

(b)
0 20000 40000 60000 80000

Step

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Lo

ss

Train CrossEntropyLoss

0 20000 40000 60000 80000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

bfloat16 weights, bfloat16 activations

Figure 1: OLMo Train loss on Fineweb-Edu for weights and activations in bf16-bf16 (left)
and MXFP8 E5M2-E5M2 (right) for various FLOP budgets, for the same hyperparameter
configuration. Some runs, particularly larger models that are trained for longer, become
unstable and never recover. Low precision computations are done in both forward and
backward steps. Color bar on the right shows the token-to-parameter ratio.

4 Synthetic Experiments

4.1 Setup

Our LM experiments with OLMo involve many potentially interacting components, and it is
computationally expensive to determine exactly where the low-precision failure mode occurs.
To facilitate this task, following Wortsman et al. (2024), we develop a small-scale proxy
model. Given an input x ≡ A0 ∈ Rdmodel , we consider a network composed of L residual
layers indexed by k = 0, . . . , L− 1. The hidden state at each layer is computed as:

hk = W
(1)
k LN(Ak−1), Ak = Ak−1 +W

(2)
k ϕ(hk), (1)

where LN denotes layer normalization and ϕ is the activation function (e.g., ReLU, GeLU,
SwiGLU). Each residual block contains two weight matrices: W

(1)
k projects to the hidden

dimension, and W
(2)
k projects back to dmodel. By default, the hidden size is set to 4dmodel

2)

This student/proxy model is only useful insofar as it (at least partially) mimics the failure
modes of the LM setting, so let us note the simplifications performed on the language
model in order to obtain the proxy model. First, we dispense with the self-attention blocks
since ablating over attention did not change the qualitiative nature of the divergences we
observed. Second, we remove the embedding layers since our goal is to understand exactly
how low-precision block scaled arithmetic biases gradient computations, as well as simplify
the various types of LM layernorms (such as QK-norms) into a single layernorm. Finally,
we also train with MSE loss rather than cross-entropy, although we experimented with a
distributional KL loss and again did not observe qualitative differences. While we show that
this model nevertheless remains instructive and predictive of the mechanistic origins of the
LM instabilities, we caution that stability in this minimal model as a necessary (though
perhaps not sufficient) condition for stability in the full LM. Appendix D inludes more
experiments on how some of these simplifications affect the training dynamics of the model.

The targets are generated by a fixed auxiliary/teacher model that serves as a sufficiently
complex learnable function (Lin et al., 2025), and whose architecture can be taken to be
the same as the student’s without the layer normalization. For sweeps where we change the
depth and width of the student, we similarly scale the teacher model. A small Gaussian label
noise (σ = 10−3) is added to the outputs. The inputs x are drawn i.i.d. from a standard
Gaussian, without cycling, using a fixed seed to ensure consistent batch order.

2In the case of SwiGLU, following Shazeer (2020) we reduce the hidden dimension from 4dmodel
to 8

3
dmodel to maintain parity in parameter count.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To isolate the effect of precision, we train two copies of the student model from the same
initialization. The first is trained in full precision (FP32). After training, the weights are
reset to their initial state and retrained using a low-precision MX format, with quantization
applied to both forward and backward passes as described in Section 2.2. Because the
random seed, kernel determinism, initialization, data, and batch order are identical, any
behavioral difference is attributable mainly to the change in precision.

Hyperparameter choices A key point explicated in Appendix C is that there are
hyperparameter choices for which the model in Equation (1) will give rise to train instabilities
(even in FP32 precision). This is not necessarily a precision issue, but rather due to the
fact that in any SGD method there exists some small probability of taking wrong gradient
step(s). If the size of the steps are large due to, e.g., a large learning rate, this will be
visible as a sudden spike(s) in the loss. In order to move away from these “expected”
instabilities, before ablating or changing various components of the architecture, we carefully
tune hyperparameters for each depth and width configuration in which all high-precision
runs are stable, but low precision is not (at least for a canonical choice of activation function
such as GeLU). For the same reason, we fix a moderately large batch size (2048) throughout
to reduce variance in gradient estimates.

4.2 The Effect of Activation Functions and layernorms

Having fixed a hyperparameter regime in which instabilities only appear in low precision,
we first ablate the choice of activation function and the inclusion of layer normalization.
In Equation (1), this corresponds to varying ϕ(·) and including the presence of LN(·).
In Figure 2a, we observe that with layer normalization enabled, both GeLU and SwiGLU
activations exhibit instability in low precision, with SwiGLU being significantly more prone
to divergence. This is consistent with the findings of Fishman et al. (2024), though our
results show that SwiGLU also destabilizes training in high precision, suggesting that it
generally increases stochasticity at least for this particular choice of hyperparameters, though
these instabilities are generally recoverable in high precision. We observe two irrecoverable
instabilities in GeLU under low precision that are absent in high precision.

Next, we look at the inclusion of layernorm. In Figure 2b, we observe that the loss improves
with the removal of layernorm. This is expected as the teacher network does not contain a
layernorm so that student model is able to more accurately represent its outputs. However,
removing layernorm tends to stabilize low-precision training runs and destabilize high
precision runs (for the same choice of hyperparameters in Figure 2a). At first glance, these
results are perplexing since it appears that low precision is more robust to removal of
layernorms. We will return to this point in Section 5 when we explicate the subtleties of
layernorms in block scaling formats.

5 Overflow Dynamics

Typically, instabilities in low precision happen due to over/underflow issues that can bias the
gradient. However, in a block scaling format, it is unclear how gradient bias can accumulate
when the shared scale explicitly puts nearly all values within a representable range.

5.1 Overflow Issues with layernorms

To understand this, we begin by examining a concrete example of MXFP8 E4M3 as specified
in Darvish Rouhani et al. (2023a). The left panel of Fig. 3 plots the relative gap (xt+1−xt)/xt

between successive positive codes in this format, ordered from index 0 (the smallest sub-
normal, 2−9) up to index 125 (448). The index stops at 125, rather than the expected
27 − 1 = 127, because S 1111 1112 is reserved for the NaN symbol, which would otherwise
correspond to a value of 480, and S 0000 0002 is the zero code, leaving 126 remaining
codes (Darvish Rouhani et al., 2023a). We can note the following:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

10 3

10 2

10 1

100

101

FP
32

 M
SE

GELU RELU SWIGLU No act. function (only LN)

0 2 4 6
10 3

10 2

10 1

100

101

M
X

FP
8 M

SE

0 2 4 6 0 2 4 6 0 2 4 6
Training step (×10³)

L=3,W=256 L=3,W=384 L=3,W=512 L=4,W=256 L=4,W=384 L=4,W=512 L=5,W=256 L=5,W=384 L=5,W=512

(a) Loss curves of different activation functions with the inclusion of layernorm, for various model
depth/width settings. With layer normalization enabled, both GeLU and SwiGLU activations
exhibit instability in low precision for some configurations, with SwiGLU being significantly more
prone to divergence, though we note that in high precision these divergences are often recoverable.

10 5

10 4

10 3

10 2

10 1

100

101

FP
32

 M
SE

GELU (No LN) RELU (No LN) SWIGLU (No LN) LINEAR (No act. function, no LN)

0 2 4 6
10 5

10 4

10 3

10 2

10 1

100

101

M
X

FP
8 M

SE

0 2 4 6 0 2 4 6 0 2 4 6

Training step (×10³)
L=4,W=256 L=4,W=384 L=4,W=512 L=5,W=256 L=5,W=384 L=5,W=512

(b) Loss curves of different activation functions without layernorm. When layernorm is removed,
lower precision runs tend to become more stable.

Figure 2: Shows the comparison between full and low precision training across different
activation functions, with and without layernorm.

1. For a fixed exponent bin the relative gap starts at 12.5% and decays to 6.6% as the
mantissa increases.

2. There is an overflow region (left of Figure 3) when the value exceed the largest representable
normal number (448). Typically, these values are clamped down to 448.

The latter observation above means that if a block of values lies within a sufficiently small
band, these values may end up in the gray overflow region of Figure 3 after dividing by
the block scale. For example, from Algorithm 1, for the case of MXFP8 E4M3 which has
eelem
max = 8 the overflow criteria for a given value v within a block with a shared scale X is∣∣∣ v

X

∣∣∣ > 448⇒ |v| > 0.875× (abs. max within block). (2)

This type of overflow region was noted for the case of narrower MXFP4 format in Tseng et al.
(2025). We show that, while MXFP8 E4M3 has a larger dynamic range, the same effect
becomes consequential in practice because layernorm affine weights are tightly clustered and
particularly susceptible to having all values within a block falling in this range. For example,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

layernorm weights typically follow log-normal distributions with scale eµ ∼ 1 and deviation
σ ≪ 1, and so a block of weights might look something like

[0.89740956, 0.89628334, 0.88358812, 0.88474816, 0.90372837 . . .]

which all end up in the overflow region of Figure 3 after dividing by X =

2⌊log2(abs. max)⌋−eelemmax = 2−8. In our experiments, the impact of this effect is shown in
the middle plot of Figure 3. In the proxy model setting, in some cases, nearly all of the layer
norm weights fall within the band required to flow into the last bucket, losing heterogeneity
in nearly all blocks when they are clamped to the maximum normal value after scale di-
vision. Note that this explains, at least partially, why removing the layernorms stabilized
low-precision training in Figure 2b. While a different format, like MXFP8 E5M2 may avoid
this issue, the loss of precision from having only two mantissa bits can still lead to training
instabilities.

2 9 2 5 2 3 2 1 1 2 4 8 16 32 64 128 448

0 20 40 60 80 100 120
code index t

0

20

40

60

80

100

rel
ati

ve
 %

 ga
p

12.5%
6.6%

ov
erf

low
 re

gio
n >

 44
8

FP8 E4M3 relative gaps

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
LN

 ov
erf

low
 fr

ac
.

LayerNorm Layer 0 Affine Overflow vs. Train Time
synthetic LN
Olmo FFN LN
Olmo Attn LN

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

sy
n.

M
X

los
s

0.0 0.2 0.4 0.6 0.8 1.0
normalized training progress

2

4

OL
M

o l
os

s

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.005

0.010

0.015

ac
t. o

ve
rfl

ow
 fr

ac
.

Activation Overflow (Avg. Across All Layers) vs. Train Time
synthetic
Olmo

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

sy
n.

M
X

los
s

0.0 0.2 0.4 0.6 0.8 1.0
normalized training progress

2

4

OL
M

o l
os

s
Figure 3: Left: relative gap (xt+1−xt)/xt for successive positive FP8 E4M3 codes (sign bit
stripped). Within each exponent band the gap decays from 12.5% to 6.6%; the hatched region
marks values that would be clamped once the scaled magnitude exceeds the representable
limit of 448. Center: Top subplot shows what fraction of layernorm affine parameters end up
in the last quantization bin after division of the shared scale in the first layer of the network.
For OLMo, we look at the FFN layernorm and the attention layernorm. The synthetic loss
in this case exhibits a divergence in MX precision (but is stable in FP32 precision), and
corresponds to the student-teacher setup of Equation (1) with four layers and dmodel = 512
and η = 6× 10−4. Right: Shows the fraction of activation values (averaged across layers)
that end up in the last quantization bin after division by the shared scale.

In a typical LLM setting such as in OLMo, there are several different types of layernorms
which experience different degrees of clamping to the last quantization bin. As seen in the
middle-top plot of Figure 3, some components such as the attention layernorms, remain
relatively well behaved throughout training, whereas others, like the FFN layernorms or
the QK layernorms (Henry et al., 2020), can experience large, sudden overflow issues for
nearly 75% of weights. While it’s possible to disable the affine transformation of layernorms
in the LM setting and we indeed find that this significantly enlarges the stability window
(see Appendix F), we also observe that some residual instability still remains at larger
training durations, perhaps due to the presence of this effect in a small fraction of the
activation values. More broadly, this finding indicates a problem with applying shared-scales
to blocks of weights that follow approximately log-normal distributions, which may not have
a well-defined notion of a “max” relative to a resolution fixed by a given precision scheme. A
scale that adapts to both min and max might avoid the bias; we defer this to future work
and note the prescription proposed in Mishra et al. (2025) as a potential solution. On the
activation side, we find that this effect is apparent in roughly ∼1% of values in our synthetic
experiments and ∼0.5% of values in OLMo (shown in the right subplot of Figure 3).

5.2 Potential Mitigations

To clearly establish causality of which components can (de)stabilize training, we ask whether
an impending divergence can be averted by in-situ interventions to the training recipe.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000
training step

10 3

10 2

10 1

tra
in

los
s

intervene
well before instability

Intervention at Step 4500
MX FP8 E4M3 (orig. instability)
FP32 baseline
All FP32 (no MX ops)
Bump overflow exponent
No LayerNorm quant

No back-prop quant
BF16 weights
BF16 acts fwd-only
BF16 acts (all)

0 2000 4000 6000 8000
training step

intervene
just before instability

Intervention at Step 5080
MX FP8 E4M3 (orig. instability)
FP32 baseline
All FP32 (no MX ops)
Bump overflow exponent
No LayerNorm quant

No back-prop quant
BF16 weights
BF16 acts fwd-only
BF16 acts (all)

Figure 4: Intervention experiment for a synthetic student-teacher model with dmodel=512,
four layers, and learning rate η=6×10−4. Training is stable in FP32 (blue) but diverges in
MXFP8 E4M3 (yellow) around step 5100. We test two intervention timings: step 4500 (left,
well before instability) and step 5080 (right, just before instability). Early interventions,
like disabling backward-pass quantization or switching to high-precision (FP32), successfully
prevent divergence, while using high precision for the activations (bfloat16) can greatly delay
it. Late interventions cannot avert instability but can only delay it; the most effective are
switching to FP32 or skipping quantization of layernorm weights.

Figure 4 tracks a configuration that is stable in FP32 but diverges in MXFP8 E4M3. This
setting corresponds to the previously described student-teacher scenario with four layers and
model dimension dmodel = 512. The instability starts approximately at step 5090 and we
consider interventions just before the instability, at step 5080, and well before the instability,
at step 4500. For each intervention we keep the random seed, model state, and batch sequence
identical, so the training state at the intervention step is the same as in the baseline run, so
any divergence afterward is therefore solely attributable to the intervention.

• Switching entirely to FP32 precision for remaining training steps. Inter-
vening with FP32 significantly stabilizes training if the change is made sufficiently
early (step 4500), but it is ineffective if applied immediately before instability (step
5080). However, even at the later intervention, FP32 prolongs training stability
more effectively than the other approaches.

• Increasing the shared exponent by one (bump exponent). Adjusting the
exponent to avoid the last bucket overflow for blocks that have values that fall
into the range in Equation (2) does not mitigate instability, which may be due to
insufficient precision improvement from a single increment too late in training.

• Avoiding MX quantization for layernorm affine parameters. Intervening
by omitting quantization of layernorm parameters partially stabilizes training and
delays instability significantly at both intervention steps, indicating that layernorm
parameters do contribute to instability dynamics. However, eventual instability
suggests a residual effect from quantized activations.

• Precision adjustments in forward and backward passes. We explored quan-
tizing weights and activations only during the forward pass (no backward-pass
quantization); maintaining weights in bfloat16 and activations in MXFP8 (both
passes); maintaining activations in bfloat16 for the forward pass but MXFP8 for
backward (with MXFP8 weights); using BF16 activations for both forward and
backward passes while quantizing weights with MXFP8. As seen in Figure 4, among
these, applying the intervention just before instability (step 5080), bfloat16 activation
precision in both passes consistently provides the strongest immediate stabilization,
closely followed by disabling backward-pass quantization. When interventions occur
earlier (step 4500), not quantizing the backward step performs comparably to the
FP32 baseline, while fully bfloat16 activations delay instability considerably yet
eventually become unstable. These results suggest a stochastic model in which
multiple interacting factors can cause gradient bias/influence instability likelihood.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Key Takewaways The dominant MX precision-specific bias comes from overflow of
clustered layer-norm affine weights (and a small fraction of activations). Our intervention
experiments show that raising precision in key parts of the computation, such as increasing
the precision of layer norms or activations, can greatly improve stability.

6 Stabilization Strategies in LM Setting

Motivated by the effective mitigations observed in our synthetic experiments, we return
to the language-model (OLMo) setting and consider two training strategies: (1) retaining
bfloat16 as the element format for activations and layer norms, and (2) applying MX
quantization only to the forward pass. We emphasize that these are diagnostic and not
production-ready mitigations. Keeping activations in bfloat16 generally yields no compute-
throughput gain on hardware where the MMA executes in bfloat16, because mixed-operand
kernels typically upcast the lower-precision operand to the MMA precision. Conversely,
downcasting activations to low precision during the matmul would reintroduce the very
instabilities we aim to avoid. We defer a more fine-grained study of which layers truly require
high-precision activations to future work. Likewise, quantizing only the forward pass can at
most accelerate the forward fraction of training. Under standard assumptions, the backward
step costs roughly twice the forward, so the idealized wall-clock speedup is capped near
∼33%.

Weight Activation D/N Ratio

140.96 99.19 70.91 37.86 21.28 16.23 12.51
N=0.16B N=0.19B N=0.23B N=0.31B N=0.42B N=0.48B N=0.54B

bfloat16 bfloat16 0.710 0.703 0.698 0.691 0.688 0.686 0.686

MXFP8 E4M3 bfloat16 0.0 -0.002 -0.002 0.0 0.0 0.0 0.0
MXFP8 E5M2 bfloat16 0.105 0.107 0.112 0.004 0.002 -0.001 -0.001

MXFP8 E4M3 MXFP8 E4M3 0.005 0.002 0.002 0.004 0.002 -0.001 -0.001
MXFP8 E5M2 MXFP8 E5M2 0.010 0.012 0.057 0.019 0.007 0.004 0.004

Table 1: The validation loss on Fineweb-Edu of high precision runs versus low precision with
mitigations applied (values are shown as differences with respect to bf16-bf16 baseline; lower
is better). For the last two rows, we quantize only the forward pass.

In both cases, we find that training remains stable across all FP8 configurations. Table 1
reports validation loss differences relative to full-bfloat16 baselines. MXFP8 E4M3 weights
paired with bfloat16 activations in particular match full-precision performance across all
tested model sizes. In Appendix G, we study how these results scale with compute and fit
valid Chinchilla-style scaling laws. Full loss curves and scaling law fits for both mitigation
strategies compared to bfloat16 baselines are also provided in Appendix G.

7 Conclusion

We showed that training LLMs in shared-scale/MX configurations can lead to sharp, un-
recoverable instabilities. Using large-scale LLM sweeps and a simple proxy model trained
on synthetic data, we isolate a failure mode of quantization-induced gradient bias, where
shared-scale clamping (particularly of layer-norm affine weights and to a lesser extent, other
activations) injects gradient noise that ultimately destabilizes training. We evaluated several
diagnostic mitigations, and found that stability can be preserved using higher precision in
selective parts of the network computation.

Looking ahead, continued hardware advances will expand the frontier of what is computa-
tionally feasible. Some concrete directions include: extending our proxy model to include
mixture-of-experts with many layers, and other transformer-specific components to better
predict instabilities; developing a clear theoretical picture of instabilities in optimization (see
Appendix B); and designing new blockwise scaling schemes such as in Mishra et al. (2025)
that adapt to skewed or tightly clustered distributions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

A Review of Shared-Scale Quantization

In this section we provide a self-contained review of block scaling quantization schemes,
largely following Rouhani et al. (2023); Darvish Rouhani et al. (2023a). Taking a step back,
the idea in shared-scale quantization methods is to introduce a number which represents
the shared scale among a group of values that could, e.g., represent weights or activations.
The idea is that low-precision data types tend to have a small representable range and
quantization can clip very large values or zero-out smaller values. By dividing by the shared
scale, the goal is to put these numbers in a representable range and save the scale such that
it may be multiplied at the end of the computation. There are many choices for how to
pick the scale, with pros and cons for each. For example, one approach is to have a single
scale factor for the entire tensor, which has a very low memory overhead but is usually too
coarse-grained and can lead to saturation issues. On the opposite end, one could keep a
scale factor for every value in the tensor which obviously allows for higher accuracy but
involves much more memory. Other approaches include tilewise scaling, where a scale factor
is used for a fixed-size submatrix. This was the approach taken in Liu et al. (2024). In
this work, we focus on block scaling methods, where a single 1-dimensional block of values
shares a scale. In particular, we focus on the “microscaling" (MX) format, where each block
consists of 32 values, with a shared scale that can be computed using Algorithm 1. When
performing matrix multiplications or dot products, these shared scales are carried around
and multiplied at the end of the computation (see Darvish Rouhani et al. (2023a) for the
exact specifications).

Algorithm 1 Convert V ∈ HP_DTYPEk to an MX block {X, P ∈ LP_DTYPEk}
Require: k = 32 (hardware block size),
1: eelem

max — exponent of the largest normal value in LP_DTYPE
Ensure: Scale factor X and low-precision elements P1, . . . , Pk

2: m← maxi
(
|Vi|

)
3: shared_exp←

⌊
log2(m)

⌋
− eelem

max
4: X ← 2shared_exp ▷ block scale (a power of two)
5: for i← 1 to k do
6: r ← Vi/X
7: Pi ← QuantizeToLP(r) ▷ clamp if |r| overflows
8: end for
9: return (X, {Pi}ki=1)

The shared scale in MX formats can therefore be regarded as the largest power-of-two that
can represent the maximum within a block, shifted by the exponent of the largest normal
value in that type.

A.1 GEMM simulation settings

We emulate MX (shared–scale) GEMMs using the public PyTorch MX Emulation library Mi-
crosoft (2024) and defer to their README for helpful visualizations of where the quantization
step happens. For each matrix multiply, the simulation proceeds as follows:

1. Inputs are quantized to MX. The high-precision activation Ai−1 and weight Wi

are block-quantized using Algorithm 1 to produce the MX representation.

2. matmul accumulates in high precision. The matmul consumes emulated FP8
inputs but performs accumulation in FP32. The matmul output tensor Ai[M,N] is
therefore FP32.

3. High-precision write-back. The FP32 accumulator result is rounded once to
bfloat16 before the next operation (e.g., bias addition, activation, or the next layer).
It is not re-quantized to FP8 at this stage.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Elementwise vector operations (e.g., residual additions and the arithmetic inside layernorm)
are executed in bfloat16: operands are cast to bfloat16 and the operation itself runs in
bfloat16.

B Multiplicative Noise

Our synthetic experiments reveal that training instabilities in low-precision settings can
arise from both stochastic optimization effects and quantization-induced bias. These failures
appear to result from a complex interplay between architectural choices, activation functions,
layer normalization, and hyperparameters. One hypothesis, motivated by the growth of the
gradient norm in Figure 1, is that lower precision is systematically biasing the gradient. In
this section, we examine this hypothesis through a multiplicative noise model and show that
it is consistent with the instability patterns seen in low-precision training.

B.1 Behavior of the Noise

Let
εt ≡ g̃t − ḡt, (3)

where ḡt denotes the exact gradient at time step t, and g̃t is its low-precision counterpart.
Under a multiplicative noise model, we posit that

g̃t = (1 + ζt)ḡt, (4)
where ζt is a (possibly data and parameter-dependent) noise matrix induced by quantization.
Although ζt is not directly measurable (and may not even be uniquely defined e.g., due to
weight permutations), we can estimate the magnitude of its effect. Specifically, the deviation
vector εt satisfies

∥εt∥2 ≤ ∥ζt∥op∥ḡt∥2, (5)
where ∥ · ∥op denotes the operator norm. In Section B.2, we argue for a heuristic bound that
∥ζt∥op must satisfy through training and how a runaway loss divergence may occur in this
model.

To test this model empirically, we replicate the synthetic experiment setup from Section 4.
For each configuration, we fix the random seed and weight initialization, then train one
model in FP32 to log the exact gradient ḡt at each step. We then retrain the same model
under MXFP8 precision and compute the deviation εt = g̃t − ḡt at every step. This allows
us to extract both the norm ratio ∥εt∥2/∥ḡt∥2 and the cosine similarity between g̃t and ḡt.

Results are shown in Figure 5. Early in training, the estimate of ∥ζt∥op (as inferred from
Equation (5)) gradually decreases. However, as training progresses, the estimate begins to
rise. Once ∥ζt∥op ∼ 2, we observe divergence in the loss. A similar trend is observed in the
cosine angle between gradients: it slowly degrades over several thousand steps and eventually
flatlines near zero, indicating that the low-precision gradient is no longer aligned with the
true descent direction.

B.2 A Crude Bound

To understand the behavior of ∥ζ∥op, consider that we have some optimum w∗ such that
∇wL(w∗) ≈ 0. Linearizing around the minimum we have

∇wL(wt) = H(wt − w∗), (6)
where H = ∇2

wL is the Hessian. The equation above makes no reference to precision – the
only approximation we’ve made is ignore terms of order (wt − w∗)

2 and higher. Defining
δt ≡ wt − w∗, we then have

ḡt = Hδt. (7)
With some manipulations the GD update rule is3

δt+1 = δt − ηt(I + ζt)Hδt (8)
3Strictly speaking, we are using the stochastic Adam update rule and not GD in our experiments,

and so the resulting bound should not be regarded as rigorous.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

10 2

10 1

100

FP
32

 tr
ain

 lo
ss

10 2

10 1

100

101

M
X

tra
in

los
s

0 1 2 3 4 5 6 7
1.0

0.5

0.0

0.5

1.0

co
s

0 1 2 3 4 5 6 7
10 1

100

101

102

||
t||

op

Training step (×10³)
L=4,W=256 L=4,W=384 L=4,W=512 L=6,W=512

Figure 5: Shows the bound on the operator norm ∥ζt∥op (as inferred from Equation (5)),
and the cosine angle between the low precision gradient and high precision gradient. Dashed
line in the lower right plot shows when the bound on ∥ζt∥op is equal to 2.

and so

δt+1 = (I − ηtH)δt − ηtζtHδt. (9)

We can therefore see that there is a driving term proportional to the noise ζt; if the noise
operator norm is large enough, it can flip a contracting direction into an expanding one. The
stability criteria is therefore that the operator I − ηt(1 + ζt)H has spectral radius less than
one. In terms of the maximum eigenvalue of H, λmax, this means that a crude bound for
stability is

|1− ηtλmax|+ ηt ∥ζt∥op λmax ≲ 1. (10)

Clearly, when the norm of ζt grows, the region of stable ηtλmax shrinks. However, from the
“edge of stability” viewpoint of Cohen et al. (2021), in the absence of multiplicative noise,
λmax is expected to increase until it hovers at or just above ∼ 2/η. Once the multiplicative
term ζt is introduced, we may then expect that the stability region defined by Equation (10)
contracts. Developing a precise theory for this regime – building on the analysis of Jastrzebski
et al. (2020); Damian et al. (2023); Cohen et al. (2021) – is an interesting direction for future
work. In the meantime, we bypass an explicit spectral calculation by estimating a lower
bound on ∥ζt∥op directly in our synthetic experiments through Equation (5). Empirically, we
observe a pattern where the running average of this lower bound first drifts downward, later
turns upward (lower right of Figure 5). When it stabilizes around ≈ 2, training instabilities
tend to follow; this observation marks a strong (but not perfect) qualitative correlate of
divergence.

C Hyperparameter Tuning in our Proxy Model

A key point we aim to distinguish is that there are two classes of instabilities we typically
encounter when training models. The first type arises due to incorrect hyperparameter choices.
For example, if the size of the steps are large due to, e.g., a large learning rate, this will be
visible as a sudden spike(s) in the loss. These types of instabilities are generally recoverable.
The second type involves a more serious issue with gradient bias, of the type characterized
in Appendix B. In this case, optimization cannot recover since the errors in the gradient
computation can compound. In this section, we explain how we tune hyperparameters to
avoid the first class of instabilities.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C.1 Sweeping over learning rates and architectures

Learning rates To illustrate how learning rates can impact stability, we begin by sweeping
over learning rates η ∈ (1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3) across a range of
model depths and widths, in two low precision formats: (1) MXFP8 E4M3 in the forward
pass and MXFP8 E5M2 in the backward pass4, and (2) MXFP6 E4M3 in both forward and
backward passes.

Results from this sweep are shown in Figure 6. We observe the following patterns: for
sufficiently low learning rates η ≲ 1 × 10−4, all precision formats remain stable. At η =
5 × 10−4, differences between FP32 and lower-precision formats begin to emerge: FP32
exhibits two unstable runs, while FP8 shows six. At the highest learning rate (η = 1× 10−3),
instabilities are observed across all formats, with larger models failing earlier in training.
Interestingly, we find that recovery from an instability is more rapid in FP32, whereas
instability in lower-precision formats–particularly FP6–is often more persistent.

We also experimented with a cosine learning rate schedule that starts at 1× 10−3 and decays
to 1× 10−5 and found that the effect of the schedule was mainly to suppress instabilities
at later training times, though we still observe the same differences between high and low
precision if the instability does not happen late in training.

10 3

10 2

10 1

100

101

FP
32

 M
SE

 lo
ss

= 1 × 10 5 = 5 × 10 5 = 1 × 10 4 = 5 × 10 4 = 1 × 10 3

10 3

10 2

10 1

100

101

M
X

FP
8 M

SE
 lo

ss

0 2 4 6
10 3

10 2

10 1

100

101

M
X

FP
6 E

2M
3

M
SE

 lo
ss

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

Training step (×10³)
L=3,W=256
L=3,W=384
L=3,W=512

L=4,W=256
L=4,W=384
L=4,W=512

L=5,W=256
L=5,W=384
L=5,W=512

L=6,W=256
L=6,W=384
L=6,W=512

L=7,W=256
L=7,W=384
L=7,W=512

L=8,W=256
L=8,W=384
L=8,W=512

Figure 6: Comparing FP32 with MXFP6 and MXFP8 formats across different choices for the
learning rate. Color corresponds to model size, determined by the depth L and dmodel = D
on the legend.

We find that instability differences between high and low precision seem to occur more
frequently in networks of intermediate size, for model dimensions in the range 384 ≲ dmodel ≲
768 and depths 3 ≲ L ≲ 6. Intuitively, this makes sense since these models appear to be
large enough to exhibit sensitivity to low-precision effects, yet not large enough where overall
stochasticity causes generally unstable training at this learning rate.

4We use this asymmetric format to allow greater dynamic range in the backward pass, follow-
ing Micikevicius et al. (2022a), and because it exhibited marginally greater stability than using E4M3
for both passes. Our results are not sensitive to this particular choice of low-precision formats.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fixing LR to rule out tuning error To isolate precision effects, for each (L, dmodel) we
select an LR that yields no instabilities in FP32 with GeLU activation and hold it fixed when
comparing precisions or performing ablations. While a fully principled approach would use
µP (Yang et al., 2022) to scale LRs with width, in practice, a manual grid search is sufficient
due to the small size of the proxy model. We find that there is a range of acceptable learning
rates that seem to work well in which high precision runs are stable and low-precision runs
are not, for each depth and width. For example, for 3 ≲ L ≲ 6, learning rates in roughly
[2× 10−4, 6× 10−4] are very reliably stable in FP32 yet can be unstable in low precision.
As depth/width increase, the stability region for low-precision narrows and requires lower
learning rates, even when FP32 remains stable at comparatively larger learning rates.

D Differences Between our Proxy Model and LLM

One potential limitation of our proxy model is that it omits certain architectural components
of the LLM (most notably self-attention) and that it is trained with mean–squared error
(MSE) rather than cross-entropy, reflecting the distributional learning task we study in the
synthetic setting.

In this section we ablate both choices. First, we show that the instability we observe already
appears without self-attention. Second, we add self-attention to the proxy and find that,
perhaps surprisingly, attention can be stabilizing in some regimes. These results suggest
that the primary failure modes we study are not driven by the attention mechanism itself
(at least at the scales probed here).

To incorporate attention into our model given in Equation (1), we consider the modifications

A0 = x zk = Ak−1 + SelfAttn(LN1(Ak−1))

Ak>0 = zk +W
(2)
k ϕ(W

(1)
k LN2(zk))

. (11)

That is, the we employ self attention with no mask with pre-attention layernorm. For the
attention ablation we treat inputs as sequences (shape (B,S, dmodel)) to enable “token–token”
interactions although this is a synthetic sequence dimension introduced solely for the ablation.
Given a fixed compute budget, increasing S typically requires reducing the batch size B. In
general, we do not find that including attention causes additional instability, suggesting that
the primary failure mode is not caused by attention itself. An example training run with
this ablation is shown in Figure 7. In this instance, adding self-attention actually improves
training stability in the low-precision setting.

0 1000 2000 3000 4000 5000 6000
Step

10 2

10 1

100

101

102

103

Lo
ss

FP32 vs MX Loss (with/without attention)
FP32 (without attn)
MX (without attn)
MX (with attn)
FP32 (without attn)

Figure 7: Shows an example synthetic training run where we ablated over self-attention in
the proxy model, in both FP32 and MX FP8 E4M3. The orange run (low precision without
attention) is more prone to instability across training runs.

Next, we evaluate the impact of using an MSE loss in our proxy model. In Figure 8, we
evaluate stability in low precision when using MSE loss versus a KL loss on the softmax of
the logits (with temperature 1). Both runs eventually diverge, although optimization seems
to recover more quickly in the KL setting.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Step

10 3

10 2

10 1

100

Lo
ss

FP32 vs MX Loss (with/without KL loss)
MX (with KL)
MX (with MSE)

Figure 8: Shows an example synthetic training run where we used a KL loss on softmax
logits compared to an MSE loss. Both runs eventually diverge (while full precision is stable),
although the instability is less recoverable in the MSE case.

E Additional Synthetic Sweeps

In this section, we present additional synthetic experiments to further examine the sources
and mitigation of low-precision instabilities.

Figure 9 summarizes the frequency of instability spikes across our depth-width sweep at
a fixed learning rate of η = 5 × 10−4. The MX-mix format refers to the asymmetric
configuration using MXFP8 E4M3 in the forward pass and E5M2 in the backward pass. Spikes
were determined by the heuristic criteria that the loss at time step t had to be a factor of
100 lager than the loss at time step t− 1; this gives a rough lower bound on the number of
spikes.

Figure 10 compares the impact of optimizer choice, focusing on SGD with momentum,
and vanilla SGD (momentum = 0). These experiments used a slightly higher learning
rate of η = 1× 10−2 to exaggerate differences. Compared with Figure 6, we observe that
SGD variants are more stable than Adam, perhaps due to Adam’s use of second-moment
accumulation, which may amplify quantization-induced bias in low-precision regimes.

Figure 11 evaluates the effect of different weight initialization schemes. We compare stan-
dard Pytorch initialization, typically taken to be a Kaiming uniform distribution between
[−1/

√
fan in, 1/

√
fan in], against a variant using lower gain (gain = 0.5) under the Xavier

normal distribution. Reducing the variance of initial weights appears to improve loss spikes.

64 96 128 256 384 512 768 896 1024
Width

1
2

3
4

5
6

7
8

De
pth

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 1 2 1

0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1 1
FP32

64 96 128 256 384 512 768 896 1024
Width

1
2

3
4

5
6

7
8

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 2 1 1 2

0 0 0 0 1 1 1 1 1

0 0 0 0 0 1 2 3 2

0 0 0 0 0 2 0 1 1
MX-mix

64 96 128 256 384 512 768 896 1024
Width

1
2

3
4

5
6

7
8

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 2 1

0 0 0 0 0 1 1 1 2

0 0 0 0 3 0 1 2 1
MX-e4m3

64 96 12
8

25
6

38
4

51
2

76
8

89
6

10
24

Width

1
2

3
4

5
6

7
8

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 2

0 0 0 0 0 1 1 2 0

0 0 0 0 1 1 1 1 1
MX-fp6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

s
pik

es

Figure 9: Instability spikes measured in training, for different model depths and widths.

F LayerNorm Ablations on LM Setting

Here, we show results when we disable layernorm affine weights in the language model setting.
The result is shown in Figure 12. In general, with all else being equal, disabling layernorm
weights does stabilize training significantly compared to the same run with affine weights.
However, eventually the run does become unstable, potentially due to overflow effects in

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7
10 3

10 2

10 1

100

101

M
SE

 lo
ss

FP32 w/ SGD (momentum = 0)

0 1 2 3 4 5 6 7

FP32 w/ SGD (momentum = 0.9)

0 1 2 3 4 5 6 7

MXFP8 w/ SGD (momentum = 0)

0 1 2 3 4 5 6 7

MXFP8 w/ SGD (momentum = 0.9)

Training step (×10³)
L=3, W=256
L=3, W=384

L=3, W=512
L=4, W=256

L=4, W=384
L=4, W=512

L=5, W=256
L=5, W=384

L=5, W=512

Figure 10: SGD with and without momentum; a larger learning rate was used η = 1× 10−2.

0 1 2 3 4 5 6 7
10 3

10 2

10 1

100

101

M
SE

 lo
ss

FP32 baseline (default init)

0 1 2 3 4 5 6 7

FP32 w/ lower gain Xavier normal

0 1 2 3 4 5 6 7

MXFP8 (default init)

0 1 2 3 4 5 6 7

MXFP8 w/ lower gain Xavier normal

Training step (×10³)
L=2, W=256
L=2, W=384
L=2, W=512

L=3, W=256
L=3, W=384
L=3, W=512

L=4, W=256
L=4, W=384
L=4, W=512

L=5, W=256
L=5, W=384
L=5, W=512

L=6, W=256
L=6, W=384
L=6, W=512

Figure 11: Baseline versus using a lower gain Xavier normal weight initialization.

critical activations in the network. For a lower learning rate, disabling affine weights almost
completely stabilizes training compared to enabling them i.e. it enlarges the stability window.

(a) Train loss for weights and activations in
MXFP8 E4M3-E4M3 format.

(b) Train loss for weights and activations in
MXFP8 E5M2-E5M2 format.

Figure 12: Shows that at the same learning rate (2e-4), turning off affine parameters stablizes
the training, while learning rate 1e-3 again makes the training unstable.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G Scaling Law Fits and Loss Curves after Mitigation

1017 1018 1019 1020 1021

FLOPs

107

108

109

Pa
ra

m
et

er
s

Weight: MXFP8 E4M3, Act: bfloat16

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Tr
ai

n
Lo

ss

(a) Scaling law fit for FP8 E4M3-bfloat16.

1017 1018 1019 1020 1021

FLOPs

107

108

109

Pa
ra

m
et

er
s

Weight: MXFP8 E5M2, Act: bfloat16

0.7

0.8

0.9

1.0

1.1

Tr
ai

n
Lo

ss

(b) Scaling law fit for FP8 E5M2-bfloat16.

Figure 13: Scaling law fit for combinations of precision formats of weights and keep the
activations in high precision. Fit was calculated using a Chinchilla model for the loss; details
and fit parameters are given in Section G.

In addition to Figure 13 we provide scaling law for the mitigation where we quantize only the
forward pass; this is shown in Figure 14 which can be compared against the bfloat16 baseline
in Figure 15. Scaling law fits were performed using the methods described in Hoffmann et al.
(2022); Brandfonbrener et al. (2024) where the validation loss was fit with a functional form

L(N,D) = E +
A

Nα
+

B

Dβ
, (12)

for constants A, B, E, α, and β. The fitted values of these constants are given in Table 2.

We also provide the loss curves after implementing these mitigation strategies; these are
shown in Figure 16 and Figure 17.

1017 1018 1019 1020 1021

FLOPs

107

108

109

Pa
ra

m
et

er
s

Weight: MXFP8 E4M3, Act: MXFP8 E4M3, Quantize Forward Only

0.7

0.8

0.9

1.0

1.1

Tr
ai

n
Lo

ss

(a) Scaling law fit for MXFP8-FP8 E4M3.

1017 1018 1019 1020 1021

FLOPs

107

108

109

Pa
ra

m
et

er
s

Weight: MXFP8 E5M2, Act: MXFP8 E5M2, Quantize Forward Only

0.7

0.8

0.9

1.0

1.1

Tr
ai

n
Lo

ss

(b) Scaling law fit for MXFP8 E5M2-E5M2.

Figure 14: Scaling law fits for fixed stable of precision formats of weights and activations
quantizing only the forward pass.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1017 1018 1019 1020 1021

FLOPs

107

108

109

Pa
ra

m
et

er
s

Weight: bfloat16, Act: bfloat16

0.7

0.8

0.9

1.0

1.1

Tr
ai

n
Lo

ss

(a) Scaling law fit for bfloat16-bfloat16.

1017 1018 1019 1020 1021

FLOPs

107

108

109

Pa
ra

m
et

er
s

Weight: MXFP6 E2M3, Act: MXFP6 E2M3

0.7

0.8

0.9

1.0

1.1

Tr
ai

n
Lo

ss

(b) Scaling law fit for FP6 E2M3-FP6 E2M3.

Figure 15: Scaling law fits for bfloat16-bfloat16 (baseline) and for MXFP6 format.

Weight Activation A B E α β a

MXFP6 E2M3 bfloat16 1.84e+03 8.77e+03 0.52 0.50 0.51 0.51
MXFP8 E4M3 bfloat16 2.82e+03 2.04e+04 0.54 0.52 0.55 0.51
MXFP8 E5M2 bfloat16 1.68e+03 1.84e+04 0.52 0.49 0.55 0.53
bfloat16 bfloat16 1.94e+03 2.18e+04 0.53 0.50 0.56 0.53

MXFP8 E4M3 MXFP8 E4M3 1.57e+03 2.11e+04 0.52 0.49 0.55 0.53
MXFP8 E5M2 MXFP8 E5M2 2.20e+03 3.98e+04 0.54 0.51 0.59 0.54

Table 2: Fitted scaling law parameters. For the last two rows, we quantize only the forward
pass. The last column is equal to the ratio a = β/(α+β), the exponent of the optimal model
size relative to FLOPs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000
Step

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Train CrossEntropyLoss

0 20000 40000 60000 80000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

MXFP8 (E4M3 weights, E4M3 activations) Quantize Forward Only

(a) Train loss and gradient norm for weights: MXFP8 E4M3, Activation: MXFP8 E4M3 while quantizing
only the forward pass.

0 20000 40000 60000 80000 100000 120000
Step

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Train CrossEntropyLoss

0 20000 40000 60000 80000 100000 120000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

MXFP8 (E5M2 weights, E5M2 activations) Quantize Forward Only

(b) Train loss and gradient norm for weights: MXFP8 E5M2, Activation: MXFP8 E5M2.

Figure 16: Train loss and gradient norm when quantizing only the forward pass.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000
Step

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Train CrossEntropyLoss

0 20000 40000 60000 80000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

MXFP8 E4M3 weights, bfloat16 activations

(a) Train loss and gradient norm for MXFP8 E4M3-MXFP8 E4M3.

0 20000 40000 60000 80000 100000 120000 140000
Step

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Train CrossEntropyLoss

0 20000 40000 60000 80000 100000 120000 140000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

MXFP8 E5M2 weights, bfloat16 activations

(b) Train loss and gradient norm for MXFP8 E5M2-MXFP8 E5M2.

Figure 17: Train loss and gradient norm when activations are kept in high precision (bfloat16).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

H Details of LM Training

All models are trained on the Fineweb-Edu dataset (Penedo et al., 2024) using the Olmo
codebase (Groeneveld et al., 2024), with the longest runs trained on 35B tokens and the
shortest runs corresponding to models trained on 301M tokens. Models were trained with
a learning rate schedule with a linear warmup starting at 2e-5 increasing to 2e-4, followed
by cosine decay back to 2e-5 (Porian et al., 2025). Training runs that involved using MX
precision formats were done performed using MX Pytorch Emulation Library (Microsoft,
2024).

Parameter Value

n 6–24 for small models
Number of heads n
Head dimension 64
MLP hidden multiplier 4
Depth n
Context length 512
Activation GeLU
Positional encoding RoPE
Biases False
Normalization PyTorch layernorm
QK normalization True
Tokenizer Llama2

Table 3: Model parameters used for training.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I Validation Losses in Language Models with Mitigations

Table 4 and continued in 5 shows validation losses for all models with mitigations applied
(quantization only in the forward pass, or activations in high precision), trained using our at
different FLOP budgets relative to bfloat16 baseline.

D/N
formats bfloat16 E4M3 E5M2 E4M3 E5M2

bfloat16 bfloat16 bfloat16 E4M3 E5M2

87.35

2e+17

1.1522 -0.027 -0.027 -0.027 -0.012
46.99 1.1084 0.002 0.007 0.007 0.012
26.897 1.1011 0.004 0.001 0.004 0.009
16.06 1.0956 -0.001 0.014 0.004 0.009
9.92 1.0971 0.003 0.003 0.008 0.013
6.30 1.0950 0.0 -0.005 -0.01 0.01
4.10 1.1042 0.001 -0.006 0.006 0.006
2.73 1.1255 -0.001 -0.004 0.004 0.019

191.02

4.37e+17

1.030 0.005 0.0 0.010 0.01
102.78 1.0464 -0.016 0.036 -0.011 -0.021
58.81 0.9898 0.005 0.005 0.005 0.015
35.14 0.9806 -0.001 0.004 0.004 0.009
21.70 0.9765 0.003 0.003 0.003 0.013
13.78 0.9717 0.003 0.003 0.003 0.008
8.97 0.9732 0.002 0.002 0.002 0.012
5.97 2.3174 0.303 0.843 2.763 1.237
4.05 0.9839 0.001 0.006 0.006 0.006
2.80 0.9949 0.0 0.0 0.0 0.005

128.62

9.56e+17

0.9198 0.0 0.0 0.005 0.015
76.84 0.9052 0.0 0.005 0.005 0.015
47.46 0.8969 0.002 0.003 0.003 0.008
30.14 0.8894 0.001 0.001 0.006 0.011
19.62 0.8846 0.0 0.005 0.005 0.01
13.05 0.8879 0.002 0.002 0.002 0.012
8.86 0.8849 0.0 0.005 0.005 0.005
6.13 0.8882 0.002 0.002 0.002 0.007
4.31 0.8933 0.002 0.002 0.002 0.007
3.08 0.8961 0.004 0.004 0.004 0.009
2.24 0.9059 -0.001 0.004 0.064 0.004

168.03

2.09e+18

0.8546 0.0 0.005 0.005 0.015
103.78 0.8430 0.002 0.002 0.187 0.012
65.91 0.8335 0.001 0.001 0.001 0.011
42.896 0.8258 -0.001 0.004 0.004 0.009
28.54 0.8242 0.001 0.001 0.001 0.011
19.37 0.8200 0.0 0.0 0.0 0.005
13.399 0.8197 0.0 0.0 0.0 0.005
9.428 0.8187 0.001 0.001 0.001 0.006
6.74 0.8192 0.001 0.001 0.001 0.006
4.89 0.8215 0.003 0.006 0.003 0.003
2.02 0.8327 0.002 0.002 0.002 0.002

Table 4: Validation loss table, with separate columns for various weight and activation
precisions. For the last 2 columns, we quantize only the forward pass. The second column
indicates the total FLOP count used for those values of tokens-to-parameter ratios (D/N).
Values are shown as differences with respect to bfloat16 baseline (lower is better).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D/N
formats bfloat16 E4M3 E5M2 E4M3 E5M2

bfloat16 bfloat16 bfloat16 E4M3 E5M2

144.14

4.57e+18

0.794 0.001 0.006 0.006 0.011
93.81 0.784 0.001 0.001 0.001 0.011
62.41 0.780 0.0 0.005 0.005 0.01
42.37 0.774 0.001 0.001 0.001 0.006
29.30 0.772 -0.002 0.003 0.003 0.003
14.74 0.767 -0.002 0.003 0.003 0.003
10.70 0.766 -0.001 0.004 -0.001 0.004
7.87 0.766 -0.001 0.004 -0.001 0.004
4.42 0.769 0.001 0.001 0.001 0.006
3.37 0.772 -0.002 0.003 0.003 0.003
2.60 0.775 0.0 0.0 0.0 0.005
2.02 0.779 0.001 0.001 0.001 0.001

136.47458

1e+19

0.748 0.002 0.002 0.002 0.002
92.646 0.741 -0.001 0.004 0.004 0.009
64.075 0.736 -0.001 0.004 0.004 0.009
45.084 0.731 -0.001 0.004 0.004 0.009
32.233 0.728 0.002 0.002 0.002 0.007
23.391 0.725 0.0 0.005 0.0 0.005
17.210 0.724 0.001 0.001 0.001 0.006
12.826 0.724 0.001 0.001 0.001 0.311
9.674 0.723 0.002 0.002 0.002 0.002
7.38 0.723 0.002 0.002 0.002 0.077
4.43 0.727 -0.002 0.003 0.003 0.003
2.75 0.732 -0.002 0.023 0.003 0.003

Table 5: MXFP8 of the validation loss table, with separate rows for Weight and Activation
precisions. For the last 2 columns, we quantize only the forward pass. The second column
indicates the FLOP count used.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

J Additional Unstable LM Sweeps

In Figure 19 and Figure 20 we show some other examples of weight/activation MX precision
combinations we found to be unstable. In general, we were not able to find any stable
combinations of weights and activations in lower precision across the formats we tested.
In Figure 18 we also show a pretraining training run on the StarCoder (Li et al., 2023)
dataset, which is comprised of entirely code, as a data point that these divergences are not
dataset-dependent.

0 5000 10000 15000 20000 25000 30000 35000
Step

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Train CrossEntropyLoss

0 5000 10000 15000 20000 25000 30000 35000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

MXFP8 (E4M3 weights, E4M3 activations)

(a) Train loss and grad norm for weights and activations in E4M3-E4M3 format.

0 10000 20000 30000 40000
Step

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Train CrossEntropyLoss

0 10000 20000 30000 40000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

125

130

135

140

145

150

Ratio

MXFP8 (E5M2 weights, E5M2 activations)

(b) Train loss and grad norm for weights and activations in E5M2-E5M2 format.

Figure 18: Shows OLMo training runs (top) on StarCoder. The low precision computations
are done in both forward and backward steps, on both weights and activations. Color bar on
the right shows the token-to-parameter ratio.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000 120000 140000
Step

2

4

6

8

10

Lo
ss

Train CrossEntropyLoss

0 20000 40000 60000 80000 100000 120000 140000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

20

40

60

80

100

120

140

160

Ratio

MXFP8 E5M2 weights, MXFP8 E4M3 activations

(a) Train loss and grad norm for MXFP8 E5M2-MXFP8 E4M3.

0 10000 20000 30000 40000 50000 60000
Step

2

3

4

5

6

Lo
ss

Train CrossEntropyLoss

0 10000 20000 30000 40000 50000 60000
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

MXFP8 E4M3 weights, MXFP8 E5M2 activations

(b) Train loss and grad norm for MXFP8 E4M3-MXFP E5M2.

Figure 19: Unstable MXFP8 combinations of precision formats of weights and activations.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Step

2

3

4

5

6

7

Lo
ss

Train CrossEntropyLoss

0 100 200 300 400 500
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

MXFP6 E2M3 weights, MXFP8 E4M3 activations

(a) for MXFP6 E2M3-MXFP8 E4M3.

0 50 100 150 200 250 300 350 400
Step

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Train CrossEntropyLoss

0 50 100 150 200 250 300 350 400
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

 N
or

m

Optimizer Total Grad Norm

25

50

75

100

125

150

175

Ratio

MXFP6 E2M3 weights, MXFP8 E5M2 activations

(b) Train loss and for MXFP6 E2M3-MXFP8 E5M2.

Figure 20: Unstable combinations of precision formats of weights and activations for MXFP6
weights.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

References
Abdolrashidi, A., Wang, L., Agrawal, S., Malmaud, J., Rybakov, O., Leichner, C., and

Lew, L. (2021). Pareto-optimal quantized resnet is mostly 4-bit. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), page
3085–3093. IEEE.

Anthropic (2025). Claude 4 system card. https://www-cdn.anthropic.com/
4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf. Accessed: 2025-06-20.

Bondarenko, Y., Nagel, M., and Blankevoort, T. (2023). Quantizable transformers: Removing
outliers by helping attention heads do nothing.

Brandfonbrener, D., Anand, N., Vyas, N., Malach, E., and Kakade, S. (2024). Loss-to-loss
prediction: Scaling laws for all datasets. arXiv preprint arXiv:2411.12925.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P.,
Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez,
J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson,
B., Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya,
A., Ghemawat, S., Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fedus, L.,
Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M., Lewkowycz, A., Moreira,
E., Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., and Fiedel, N.
(2022). Palm: Scaling language modeling with pathways.

Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar, A. (2021). Gradient descent on
neural networks typically occurs at the edge of stability. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Cohere, T., :, Aakanksha, Ahmadian, A., Ahmed, M., Alammar, J., Alizadeh, M., Alnumay,
Y., Althammer, S., Arkhangorodsky, A., Aryabumi, V., Aumiller, D., Avalos, R., Aviv,
Z., Bae, S., Baji, S., Barbet, A., Bartolo, M., Bebensee, B., Beladia, N., Beller-Morales,
W., Bérard, A., Berneshawi, A., Bialas, A., Blunsom, P., Bobkin, M., Bongale, A., Braun,
S., Brunet, M., Cahyawijaya, S., Cairuz, D., Campos, J. A., Cao, C., Cao, K., Castagné,
R., Cendrero, J., Currie, L. C., Chandak, Y., Chang, D., Chatziveroglou, G., Chen, H.,
Cheng, C., Chevalier, A., Chiu, J. T., Cho, E., Choi, E., Choi, E., Chung, T., Cirik, V.,
Cismaru, A., Clavier, P., Conklin, H., Crawhall-Stein, L., Crouse, D., Cruz-Salinas, A. F.,
Cyrus, B., D’souza, D., Dalla-Torre, H., Dang, J., Darling, W., Domingues, O. D., Dash,
S., Debugne, A., Dehaze, T., Desai, S., Devassy, J., Dholakia, R., Duffy, K., Edalati, A.,
Eldeib, A., Elkady, A., Elsharkawy, S., Ergün, I., Ermis, B., Fadaee, M., Fan, B., Fayoux,
L., Flet-Berliac, Y., Frosst, N., Gallé, M., Galuba, W., Garg, U., Geist, M., Azar, M. G.,
Gilsenan-McMahon, E., Goldfarb-Tarrant, S., Goldsack, T., Gomez, A., Gonzaga, V. M.,
Govindarajan, N., Govindassamy, M., Grinsztajn, N., Gritsch, N., Gu, P., Guo, S., Haefeli,
K., Hajjar, R., Hawes, T., He, J., Hofstätter, S., Hong, S., Hooker, S., Hosking, T., Howe,
S., Hu, E., Huang, R., Jain, H., Jain, R., Jakobi, N., Jenkins, M., Jordan, J., Joshi, D.,
Jung, J., Kalyanpur, T., Kamalakara, S. R., Kedrzycki, J., Keskin, G., Kim, E., Kim,
J., Ko, W.-Y., Kocmi, T., Kozakov, M., Kryściński, W., Jain, A. K., Teru, K. K., Land,
S., Lasby, M., Lasche, O., Lee, J., Lewis, P., Li, J., Li, J., Lin, H., Locatelli, A., Luong,
K., Ma, R., Mach, L., Machado, M., Magbitang, J., Lopez, B. M., Mann, A., Marchisio,
K., Markham, O., Matton, A., McKinney, A., McLoughlin, D., Mokry, J., Morisot, A.,
Moulder, A., Moynehan, H., Mozes, M., Muppalla, V., Murakhovska, L., Nagarajan, H.,
Nandula, A., Nasir, H., Nehra, S., Netto-Rosen, J., Ohashi, D., Owers-Bardsley, J., Ozuzu,
J., Padilla, D., Park, G., Passaglia, S., Pekmez, J., Penstone, L., Piktus, A., Ploeg, C.,
Poulton, A., Qi, Y., Raghvendra, S., Ramos, M., Ranjan, E., Richemond, P., Robert-
Michon, C., Rodriguez, A., Roy, S., Ruder, S., Ruis, L., Rust, L., Sachan, A., Salamanca,
A., Saravanakumar, K. K., Satyakam, I., Sebag, A. S., Sen, P., Sepehri, S., Seshadri,
P., Shen, Y., Sherborne, T., Shi, S. S., Shivaprasad, S., Shmyhlo, V., Shrinivason, A.,
Shteinbuk, I., Shukayev, A., Simard, M., Snyder, E., Spataru, A., Spooner, V., Starostina,

27

https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

T., Strub, F., Su, Y., Sun, J., Talupuru, D., Tarassov, E., Tommasone, E., Tracey, J.,
Trend, B., Tumer, E., Üstün, A., Venkitesh, B., Venuto, D., Verga, P., Voisin, M., Wang,
A., Wang, D., Wang, S., Wen, E., White, N., Willman, J., Winkels, M., Xia, C., Xie, J.,
Xu, M., Yang, B., Yi-Chern, T., Zhang, I., Zhao, Z., and Zhao, Z. (2025). Command a:
An enterprise-ready large language model.

Damian, A., Nichani, E., and Lee, J. D. (2023). Self-stabilization: The implicit bias of
gradient descent at the edge of stability. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Darvish Rouhani, B., Garegrat, N., Savell, T., More, A., Han, K.-N., Zhao, R., and Hall, M.
(2023a). Open compute project.

Darvish Rouhani, B., Zhao, R., Elango, V., Shafipour, R., Hall, M., Mesmakhosroshahi, M.,
More, A., Melnick, L., Golub, M., Varatkar, G., et al. (2023b). With shared microexponents,
a little shifting goes a long way. In Proceedings of the 50th Annual International Symposium
on Computer Architecture, pages 1–13.

DeepMind, G. (2025). Gemini 2.5 technical report. https://storage.googleapis.com/
deepmind-media/gemini/gemini_v2_5_report.pdf. Accessed: 2025-06-20.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P., Heek, J., Gilmer, J., Steiner, A.,
Caron, M., Geirhos, R., Alabdulmohsin, I., Jenatton, R., Beyer, L., Tschannen, M., Arnab,
A., Wang, X., Riquelme, C., Minderer, M., Puigcerver, J., Evci, U., Kumar, M., van
Steenkiste, S., Elsayed, G. F., Mahendran, A., Yu, F., Oliver, A., Huot, F., Bastings,
J., Collier, M. P., Gritsenko, A., Birodkar, V., Vasconcelos, C., Tay, Y., Mensink, T.,
Kolesnikov, A., Pavetić, F., Tran, D., Kipf, T., Lučić, M., Zhai, X., Keysers, D., Harmsen,
J., and Houlsby, N. (2023). Scaling vision transformers to 22 billion parameters.

Fishman, M., Chmiel, B., Banner, R., and Soudry, D. (2024). Scaling fp8 training to
trillion-token llms. arXiv preprint arXiv:2409.12517.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A.,
Mathur, A., Schelten, A., Vaughan, A., et al. (2024). The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Groeneveld, D., Beltagy, I., Walsh, P., Bhagia, A., Kinney, R., Tafjord, O., Jha, A. H., Ivison,
H., Magnusson, I., Wang, Y., et al. (2024). Olmo: Accelerating the science of language
models. arXiv preprint arXiv:2402.00838.

Henry, A., Dachapally, P. R., Pawar, S. S., and Chen, Y. (2020). Query-key normalization
for transformers. CoRR, abs/2010.04245.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D.
d. L., Hendricks, L. A., Welbl, J., Clark, A., et al. (2022). Training compute-optimal large
language models. arXiv preprint arXiv:2203.15556.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., and Kalenichenko,
D. (2017). Quantization and training of neural networks for efficient integer-arithmetic-only
inference.

Jastrzebski, S., Szymczak, M., Fort, S., Arpit, D., Tabor, J., Cho, K., and Geras, K. (2020).
The break-even point on optimization trajectories of deep neural networks.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S.,
Radford, A., Wu, J., and Amodei, D. (2020). Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Kumar, T., Ankner, Z., Spector, B. F., Bordelon, B., Muennighoff, N., Paul, M., Pehlevan,
C., Ré, C., and Raghunathan, A. (2024). Scaling laws for precision. arXiv preprint
arXiv:2411.04330.

Lee, J., Bae, J., Kim, B., Kwon, S. J., and Lee, D. (2025). To fp8 and back again: Quantifying
reduced precision effects on llm training stability.

28

https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki,
C., Li, J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko, O., Gontier, N., Meade, N.,
Zebaze, A., Yee, M.-H., Umapathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang, Z.,
Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov, D., Zocca, M., Dey, M., Zhang, Z.,
Fahmy, N., Bhattacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas, P., Kunakov, M.,
Zhdanov, F., Romero, M., Lee, T., Timor, N., Ding, J., Schlesinger, C., Schoelkopf, H.,
Ebert, J., Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson, C. J., Dolan-Gavitt, B.,
Contractor, D., Reddy, S., Fried, D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,
S., Wolf, T., Guha, A., von Werra, L., and de Vries, H. (2023). Starcoder: may the source
be with you!

Lin, L., Wu, J., Kakade, S. M., Bartlett, P. L., and Lee, J. D. (2025). Scaling laws in linear
regression: Compute, parameters, and data.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., et al. (2024). Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437.

Ma, J., Pei, H., Lausen, L., and Karypis, G. (2025). Understanding silent data corruption in
llm training.

Meta, A. (2025). The llama 4 herd: The beginning of a new era of natively multimodal ai
innovation.

Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey, P., Grisenthwaite, R., Ha, S.,
Heinecke, A., Judd, P., Kamalu, J., et al. (2022a). Fp8 formats for deep learning. arXiv
preprint arXiv:2209.05433.

Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey, P., Grisenthwaite, R., Ha, S.,
Heinecke, A., Judd, P., Kamalu, J., Mellempudi, N., Oberman, S., Shoeybi, M., Siu, M.,
and Wu, H. (2022b). Fp8 formats for deep learning.

Microsoft (2024). Mx pytorch emulation library.

Mishra, A., Stosic, D., Layton, S., and Micikevicius, P. (2025). Recipes for pre-training llms
with mxfp8.

Molybog, I., Albert, P., Chen, M., DeVito, Z., Esiobu, D., Goyal, N., Koura, P. S., Narang,
S., Poulton, A., Silva, R., Tang, B., Liskovich, D., Xu, P., Zhang, Y., Kambadur, M.,
Roller, S., and Zhang, S. (2023). A theory on adam instability in large-scale machine
learning.

Noune, B., Jones, P., Justus, D., Masters, D., and Luschi, C. (2022). 8-bit numerical formats
for deep neural networks.

NVIDIA (2025). Nvidia blackwell architecture.

OpenAI (2025). Gpt-4.5 system card. https://cdn.openai.com/
gpt-4-5-system-card-2272025.pdf. Accessed: 2025-06-20.

Penedo, G., Kydlíček, H., allal, L. B., Lozhkov, A., Mitchell, M., Raffel, C., Werra, L. V.,
and Wolf, T. (2024). The fineweb datasets: Decanting the web for the finest text data at
scale. In The Thirty-eight Conference on Neural Information Processing Systems Datasets
and Benchmarks Track.

Porian, T., Wortsman, M., Jitsev, J., Schmidt, L., and Carmon, Y. (2025). Resolving
discrepancies in compute-optimal scaling of language models.

Rouhani, B. D., Zhao, R., More, A., Hall, M., Khodamoradi, A., Deng, S., Choudhary, D.,
Cornea, M., Dellinger, E., Denolf, K., et al. (2023). Microscaling data formats for deep
learning. arXiv preprint arXiv:2310.10537.

29

https://cdn.openai.com/gpt-4-5-system-card-2272025.pdf
https://cdn.openai.com/gpt-4-5-system-card-2272025.pdf

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z., Zhang, K., Gao, P., Qiao, Y., and
Luo, P. (2024). Omniquant: Omnidirectionally calibrated quantization for large language
models.

Shazeer, N. (2020). Glu variants improve transformer.

Sun, M., Chen, X., Kolter, J. Z., and Liu, Z. (2024). Massive activations in large language
models. arXiv preprint arXiv:2402.17762.

Takase, S., Kiyono, S., Kobayashi, S., and Suzuki, J. (2025). Spike no more: Stabilizing the
pre-training of large language models.

Tseng, A., Yu, T., and Park, Y. (2025). Training llms with mxfp4.

Wortsman, M., Liu, P. J., Xiao, L., Everett, K. E., Alemi, A. A., Adlam, B., Co-Reyes,
J. D., Gur, I., Kumar, A., Novak, R., Pennington, J., Sohl-Dickstein, J., Xu, K., Lee, J.,
Gilmer, J., and Kornblith, S. (2024). Small-scale proxies for large-scale transformer training
instabilities. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net.

Xu, K., Lin, J., Wang, Z., Hu, P., and Zhao, Z. (2023). Improved fully quantized training
via rectifying batch normalization. arXiv preprint arXiv:.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi, D., Ryder, N., Pachocki, J.,
Chen, W., and Gao, J. (2022). Tensor programs v: Tuning large neural networks via
zero-shot hyperparameter transfer.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li,
X., Lin, X. V., Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D., Koura, P. S.,
Sridhar, A., Wang, T., and Zettlemoyer, L. (2022). Opt: Open pre-trained transformer
language models.

Zoph, B., Bello, I., Kumar, S., Du, N., Huang, Y., Dean, J., Shazeer, N., and Fedus, W.
(2022). St-moe: Designing stable and transferable sparse expert models.

30

	Introduction
	Related Work
	Low-Precision Instabilities
	Review of MX Formats and Experimental Approach

	LLM Experiments
	Setup
	Instabilities in Low Precision

	Synthetic Experiments
	Setup
	The Effect of Activation Functions and layernorms

	Overflow Dynamics
	Overflow Issues with layernorms
	Potential Mitigations

	Stabilization Strategies in LM Setting
	Conclusion
	Review of Shared-Scale Quantization
	GEMM simulation settings

	Multiplicative Noise
	Behavior of the Noise
	A Crude Bound

	Hyperparameter Tuning in our Proxy Model
	Sweeping over learning rates and architectures

	Differences Between our Proxy Model and LLM
	Additional Synthetic Sweeps
	LayerNorm Ablations on LM Setting
	Scaling Law Fits and Loss Curves after Mitigation
	Details of LM Training
	Validation Losses in Language Models with Mitigations
	Additional Unstable LM Sweeps

