Under review as a conference paper at ICLR 2026

A MECHANISTIC ANALYSIS OF LOW-PRECISION IN-
STABILITIES IN MICROSCALING FORMATS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large language models is expensive and compute-bound, and it
must be repeated as models scale, algorithms improve, and new data is col-
lected. To address this, next-generation hardware accelerators like NVIDIA’s
Blackwell increasingly support lower-precision arithmetic formats, including
Microscaling (MX) formats. In this work, we investigate the challenges and
viability of block-scaled precision formats during model training. Across
a broad sweep of weight-activation precision combinations and compute
budgets from 2 x 107 to 4.8 x 10'Y FLOPs, we generally observe that
training in MX formats exhibits sharp, stochastic instabilities in the loss,
particularly at larger compute scales. To explain this phenomenon, we
conduct controlled experiments and ablations on a smaller proxy model
that exhibits instability behavior similar to the language model, sweeping
across architectural settings, hyperparameters, and precision formats. These
experiments motivate a simple model in which multiplicative gradient bias
introduced by the quantization of layer-norm affine parameters and a small
fraction of activations can trigger runaway divergence. Through in situ
intervention experiments on our proxy model, we demonstrate that instabil-
ities can be averted or delayed by modifying precision schemes mid-training.
Guided by these findings, we evaluate stabilization strategies in the LLM
setting and show that certain hybrid configurations recover performance
competitive with full-precision training.

1 INTRODUCTION

Large language models (LLMs) have improved dramatically in recent years, largely by scaling
their capacity and the quantity of training data (Kaplan et al.l|2020; |OpenAl, 2025; |DeepMind),
2025; |Anthropic, 2025} |Grattafiori et al., [2024). For instance, training the Llama 3.1 405B
model required more than 10> FLOPs and utilized up to 16,000 H100 GPUs (Grattafiori
et al.| [2024]). Scaling these models involves not only the initial, compute-intensive pretraining
phase but also frequent retraining as new data, algorithms, or architectures emerge, as well
as post-training protocols that prepare the model for inference/deployment.

To reduce these computational burdens, recent hardware advancements have introduced
native support for lower-precision computations, such as FP8 training in NVIDIA H100
GPUs (Micikevicius et al., [2022b; Noune et al 2022)). Hardware accelerators powered by
NVIDIA’s Blackwell architecture further extend these capabilities with standardized, shared-
scale Microscaling (MX) formats like MXFP8 and MXFP6 (NVIDIA] 2025). These formats
store a per-block shared scale, which expands the effective dynamic range with minimal
memory overhead, while simultaneously enabling GEMMs at lower precision (Rouhani et al.|
2023} |[Darvish Rouhani et al., [2023b)). While pretraining is typically done in 16 or 32-bit
precision, some quantization schemes are already seeing industry adoption; for example,
DeepSeek-V3 employs tile-wise FP8 quantization within large tensors (Liu et al., [2024)), while
Cohere’s Command A model was trained in FP8 while reserving higher-precision operations
for activation functions and attention mechanisms (Cohere et al., 2025). At an even larger
scale, the Llama-4 series of models is reported to have been pretrained in FP8 precision
across nearly 32,000 GPUs (Meta}, 2025). On the deployment side, methods like QAT and

Under review as a conference paper at ICLR 2026

mixed-precision fine-tuning further underscore the importance of understanding low-precision
training dynamics (Jacob et al., [2017; |Abdolrashidi et al.| |2021; |Shao et al., [2024)).

Two primary challenges accompany the adoption of low-precision formats for training. First,
there is a potential performance tradeoff, where reducing precision may result in degradation
of loss and downstream accuracy, which can be characterized through scaling laws that account
for both compute and precision (Kumar et al.| [2024)). Second, instabilities during training can
occur, often manifesting as abrupt spikes in the loss curve that disrupt convergence (Fishman
et al.l [2024; Lee et al., [2025). When these instabilities push optimization into regions from
which recovery is impossible, they obstruct our ability to extract valid scaling laws, making
it impossible to even assess the tradeoffs introduced by low-precision training.

In this work, we set out to understand the training dynamics of low-precision MX precision
formats to identify format prescriptions for language model training on next-generation
hardware. However, like prior observations on (albeit non-MX) low-precision training
by [Fishman et al.| (2024)); [Lee et al.| (2025)), we found that training frequently became
unstable, particularly for larger, compute-intensive models. The instabilities are pervasive,
emerging across a broad range of activation functions, model scales, quantization formats,
and hyperparameter settings.

Because large-scale language model (LM) sweeps are computationally intensive and involve
many entangled components, we turn to a controlled synthetic setting to understand the
origin of these instabilities. Specifically, we present a residual multi-layer perceptron (MLP)
model that captures key architectural components of the LM, and allows us to identify
conditions under which training becomes unstable. In particular, we are able to perform
hyperparamter sweeps, ablations across MX configurations, quantization schemes (e.g.,
forward-only vs. full quantization), and activation functions, and analyze their effects on
stability.

Our findings support a phenomenological explanation in which training instabilities primarily
arise from systematic bias in gradient estimates introduced by quantization. We find that the
primary contribution to this bias is the quantization of the layer normalization (layernorm)
affine weights, whose values often become tightly clustered over the course of training. When
the values within a block converge too closely, division by the shared block scale can clamp
all values in that block to the largest representable number, destabilizing training. We verify
that this mechanism is not limited to synthetic settings but also emerges in the LM setting
by evaluating mitigation strategies to stabilize LM training, including disabling layernorm
quantization and using high precision in selective parts of the network computation.

2 RELATED WORK

2.1 LOW-PRECISION INSTABILITIES

Training large Transformer models at scale can reveal instabilities that can disrupt or even
halt learning (Liu et al., [2024; |(Chowdhery et al., [2022} Dehghani et al. 2023; Zhang et al.
2022; Molybog et al., 2023 |Fishman et al.l |2024; [Zoph et al.; [2022; [Ma et al., 2025; [Takase
et al.,2025)). In some cases, these issues are exacerbated or directly triggered by low-precision
quantization. For example, Fishman et al.|(2024) demonstrate that FP8 pretraining becomes
unstable when combined with the SwiGLU activation function, attributing the issue to an
outlier amplification effect that worsens due to progressive weight alignment over the course
of training. Similarly, Lee et al.| (2025) report that approximately 10% of BF16 runs using
the NanoGPT codebase fail to converge, whereas full-precision (TF32) training exhibits no
such failures. Other works (Sun et al., [2024; |Bondarenko et al.l 2023} [Xu et al.| |2023)), point
to activation outliers and gradient norm growth as contributors to these failures while [Tseng
et al.| (2025) proposes a stochastic rounding based algorithm to stabilize training in MXFP4
formats. Meanwhile, DeepSeek-V3 also attributes certain training failures due to blockwise
quantization of activation gradients (Liu et al.l |2024), underscoring the breadth of challenges
introduced by quantization schemes. [Wortsman et al.| (2024]) use small-scale proxy models to
study training instabilities in the context of growth of output and layer logits. We adopt a

Under review as a conference paper at ICLR 2026

similar approach, and use a simplified proxy model to understand the origin of low-precision
instabilities in LLMs.

2.2 REVIEW OF MX FORMATS AND EXPERIMENTAL APPROACH

MX formats are a class of low-precision numerical representations designed to enhance the
efficiency of deep learning models (Darvish Rouhani et al.l [2023a}; |[Rouhani et al., |2023)).
We defer a detailed review of the MX scheme to Appendix[A] To summarize, we represent
a block of k values, {V;}F_;, using a single shared scale factor X and k corresponding
low-precision elements {P;} where the P; are obtained by casting V;/X to the specified
low-precision format. We present results for a block size £k = 32 to match what will be
hardware supported. The scale X is calculated using X = 2Uog2(maxi([Vi])]—emax ctlem where
€max elem 1S the exponent of the largest normal number representable in the chosen element
data format.

In our experiments, we quantize both weights and activations using these MX formats using
the MX Pytorch Emulation Library (Microsoft], |2024)). As described in Appendix |Al this
quantization is applied dynamically to the inputs of matrix multiplication operations.

3 LLM EXPERIMENTS

3.1 SETUP

For our LM experiments, we use OLMo (Groeneveld et al., |2024)) combined with the MX
PyTorch Emulation Library (Microsoft, [2024) to enable training under various low-precision
configurations. All language models use the GeLU activation function; full hyperparameter
details are provided in Table|3] We sweep over a wide range of MX precision formats for both
weights and activations, including two FP6 variants (E3M2, E2M3), two FP8 variants (E4M3,
E5M2), and a bfloat16 baseline. Each configuration applies full quantization to both forward
and backward passes to both weights and activations, as implemented in the Microscaling
library (Microsoft], [2024]). For each format, we train approximately 70 modelsﬂ spanning
compute budgets from 2 x 107 to 4 x 10*® FLOPs. Model sizes range from ~20M to
~1.7B parameters. Token counts are determined using an adapted version of the FLOP
accounting code from Brandfonbrener et al.| (2024), originally developed for OLMo scaling
law experiments. Token-to-parameter ratios in our sweep range from approximately 2 to
156. Models are trained on the Fineweb-Edu dataset |Penedo et al.| (2024) and the StarCoder
dataset [Li et al.| (2023), with the longest runs trained on 35B tokens and the shortest runs
corresponding to models trained on 301M tokens.

3.2 INSTABILITIES IN LOW PRECISION

Figure[Ta]shows the training loss and gradient norm trajectories for bfloat16 models. Training
remains stable, with smooth convergence. By contrast, Figure [ID] illustrates example
instabilities in the MXFP8 E5M2-E5M2 weights-activations configuration, where some training
runs exhibit sharp upward spikes in loss and large increases in gradient norm magnitude.
We find these instabilities to be common across other low-precision MX configurations and
hyperparameter settings, as documented in Appendix [J| We observe the instabilities mainly
in larger, longer-trained models and that importantly, when training is destabilized, training
does not recover, and the loss continues to diverge. While the loss spikes appear abruptly,
the gradient norm typically grows more gradually (see, e.g., examples in Appendix |J|) and
fails to decrease over time as seen in stable bfloat16 training. This behavior strongly suggests
biased gradient estimates, a point that we will investigate further in subsequent sections.

1Some runs crashed and could not always be resumed, leading to small differences in number of
models trained for each format.

Under review as a conference paper at ICLR 2026

Train CrossEntropyLoss Train CrossEntropyLoss

,_.
o
3
oney

0 20000 40000 60000 80000 0 10000 20000 30000 40000 50000 60000
Step Step

(a) (b)

Figure 1: OLMo Train loss on Fineweb-Edu for weights and activations in bf16-bf16 (left)
and MXFP8 E5M2-E5M2 (right) for various FLOP budgets, for the same hyperparameter
configuration. Some runs, particularly larger models that are trained for longer, become
unstable and never recover. Low precision computations are done in both forward and
backward steps. Color bar on the right shows the token-to-parameter ratio.

4 SYNTHETIC EXPERIMENTS

4.1 SETUP

Our LM experiments with OLMo involve many potentially interacting components, and it is
computationally expensive to determine exactly where the low-precision failure mode occurs.
To facilitate this task, following [Wortsman et al.| (2024)), we develop a small-scale proxy
model. Given an input z = Ay € R%model | we consider a network composed of L residual
layers indexed by k = 0,...,L — 1. The hidden state at each layer is computed as:

hy = WILN (A,), Ap = Ay + WP g(hy), (1)

where LN denotes layer normalization and ¢ is the activation function (e.g., ReLU, GeLU,
SwiGLU). Each residual block contains two weight matrices: W,(fl) projects to the hidden
dimension, and W,(f) projects back to dyodel. By default, the hidden size is set to échmode

This student/proxy model is only useful insofar as it (at least partially) mimics the failure
modes of the LM setting, so let us note the simplifications performed on the language
model in order to obtain the proxy model. First, we dispense with the self-attention blocks
since ablating over attention did not change the qualitiative nature of the divergences we
observed. Second, we remove the embedding layers since our goal is to understand exactly
how low-precision block scaled arithmetic biases gradient computations, as well as simplify
the various types of LM layernorms (such as QK-norms) into a single layernorm. Finally,
we also train with MSE loss rather than cross-entropy, although we experimented with a
distributional KL loss and again did not observe qualitative differences. While we show that
this model nevertheless remains instructive and predictive of the mechanistic origins of the
LM instabilities, we caution that stability in this minimal model as a necessary (though
perhaps not sufficient) condition for stability in the full LM. Appendix |§| inludes more
experiments on how some of these simplifications affect the training dynamics of the model.

The targets are generated by a fixed auxiliary /teacher model that serves as a sufficiently
complex learnable function (Lin et al., |2025), and whose architecture can be taken to be
the same as the student’s without the layer normalization. For sweeps where we change the
depth and width of the student, we similarly scale the teacher model. A small Gaussian label
noise (0 = 1073) is added to the outputs. The inputs = are drawn i.i.d. from a standard
Gaussian, without cycling, using a fixed seed to ensure consistent batch order.

2In the case of SwiGLU, following |[Shazeer| (2020) we reduce the hidden dimension from 4dmodel
to %dmodel to maintain parity in parameter count.

Under review as a conference paper at ICLR 2026

To isolate the effect of precision, we train two copies of the student model from the same
initialization. The first is trained in full precision (FP32). After training, the weights are
reset to their initial state and retrained using a low-precision MX format, with quantization
applied to both forward and backward passes as described in Section Because the
random seed, kernel determinism, initialization, data, and batch order are identical, any
behavioral difference is attributable mainly to the change in precision.

Hyperparameter choices A key point explicated in Appendix [C] is that there are
hyperparameter choices for which the model in Equation will give rise to train instabilities
(even in FP32 precision). This is not necessarily a precision issue, but rather due to the
fact that in any SGD method there exists some small probability of taking wrong gradient
step(s). If the size of the steps are large due to, e.g., a large learning rate, this will be
visible as a sudden spike(s) in the loss. In order to move away from these “expected”
instabilities, before ablating or changing various components of the architecture, we carefully
tune hyperparameters for each depth and width configuration in which all high-precision
runs are stable, but low precision is not (at least for a canonical choice of activation function
such as GeLU). For the same reason, we fix a moderately large batch size (2048) throughout
to reduce variance in gradient estimates.

4.2 THE EFFECT OF ACTIVATION FUNCTIONS AND LAYERNORMS

Having fixed a hyperparameter regime in which instabilities only appear in low precision,
we first ablate the choice of activation function and the inclusion of layer normalization.
In Equation , this corresponds to varying ¢(-) and including the presence of LN(-).

In Figure 2a] we observe that with layer normalization enabled, both GeLU and SwiGLU
activations exhibit instability in low precision, with SwiGLU being significantly more prone
to divergence. This is consistent with the findings of [Fishman et al.| (2024), though our
results show that SwiGLU also destabilizes training in high precision, suggesting that it
generally increases stochasticity at least for this particular choice of hyperparameters, though
these instabilities are generally recoverable in high precision. We observe two irrecoverable
instabilities in GeLU under low precision that are absent in high precision.

Next, we look at the inclusion of layernorm. In Figure we observe that the loss improves
with the removal of layernorm. This is expected as the teacher network does not contain a
layernorm so that student model is able to more accurately represent its outputs. However,
removing layernorm tends to stabilize low-precision training runs and destabilize high
precision runs (for the same choice of hyperparameters in Figure . At first glance, these
results are perplexing since it appears that low precision is more robust to removal of
layernorms. We will return to this point in Section [5| when we explicate the subtleties of
layernorms in block scaling formats.

5 OVERFLOW DYNAMICS

Typically, instabilities in low precision happen due to over /underflow issues that can bias the
gradient. However, in a block scaling format, it is unclear how gradient bias can accumulate
when the shared scale explicitly puts nearly all values within a representable range.

5.1 OVERFLOW ISSUES WITH LAYERNORMS

To understand this, we begin by examining a concrete example of MXFP8 E4M3 as specified
in|Darvish Rouhani et al| (2023a)). The left panel of Fig. [3 plots the relative gap (2441 —2)/2:
between successive positive codes in this format, ordered from index 0 (the smallest sub-
normal, 27%) up to index 125 (448). The index stops at 125, rather than the expected
27 — 1 =127, because S 1111 111, is reserved for the NaN symbol, which would otherwise
correspond to a value of 480, and S 0000 000, is the zero code, leaving 126 remaining
codes (Darvish Rouhani et al.; |2023al). We can note the following:

Under review as a conference paper at ICLR 2026

GELU RELU SWIGLU No act. function (only LN)
100 4
m |
= |
5 10 11
B \
10- 4
Rl i i) Ml’ﬁ% ;
10
10!
m 100 ER
2]
=
% 10]
[
10- 4
i ‘MM
o 0 2 4 6

0 2 4 6 0 2 4 6
Training step (x10?)
—— L=3W=256 —— L=3,W=384 — L=3,W=512 — L=4W=256 — L=4,W=384 L=4W=512 — L=5W=256 L=5W=384 L=5W=512

(a) Loss curves of different activation functions with the inclusion of layernorm, for various model
depth/width settings. With layer normalization enabled, both GeLLU and SwiGLU activations
exhibit instability in low precision for some configurations, with SwiGLU being significantly more
prone to divergence, though we note that in high precision these divergences are often recoverable.

T fw
10" GELU (No LN) IRELU (No LN) SWIGLU (No LN) LINEAR (No act. function, no LN)

Em*i 1 \l .
-1 N "‘«‘J%Mi\w 1 Vil

MX FP§ MSE

g 7

%&% \\M%“«“Aﬂ:ﬁx_\ LM&: \\

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

105

Training step (x10°)
— L=4W=256 ——— L=4,W=384 L=4W=512 — L=5W=256 L=5W=384 L=5,W=512

(b) Loss curves of different activation functions without layernorm. When layernorm is removed,
lower precision runs tend to become more stable.

Figure 2: Shows the comparison between full and low precision training across different
activation functions, with and without layernorm.

1. For a fixed exponent bin the relative gap starts at 12.5% and decays to 6.6% as the
mantissa increases.

2. There is an overflow region (left of Figure3) when the value exceed the largest representable
normal number (448). Typically, these values are clamped down to 448.

The latter observation above means that if a block of values lies within a sufficiently small
band, these values may end up in the gray overflow region of Figure |3| after dividing by
the block scale. For example, from Algorithm [I] for the case of MXFP8 E4M3 which has

eclem — 8 the overflow criteria for a given value v within a block with a shared scale X is

(%‘ > 448 = [v| > 0.875 x (abs. max within block). 2)
This type of overflow region was noted for the case of narrower MXFP4 format in
(2025)). We show that, while MXFP8 E4M3 has a larger dynamic range, the same effect
becomes consequential in practice because layernorm affine weights are tightly clustered and
particularly susceptible to having all values within a block falling in this range. For example,

Under review as a conference paper at ICLR 2026

layernorm weights typically follow log-normal distributions with scale e# ~ 1 and deviation
0 < 1, and so a block of weights might look something like

[0.89740956, 0.89628334, 0.88358812, 0.88474816, 0.90372837 ...]

which all end up in the overflow region of Figure after dividing by X =

2llogs(abs. max)|—efS — 2-8. Ip our experiments, the impact of this effect is shown in
the middle plot of Figure [3] In the proxy model setting, in some cases, nearly all of the layer
norm weights fall within the band required to flow into the last bucket, losing heterogeneity
in nearly all blocks when they are clamped to the maximum normal value after scale di-
vision. Note that this explains, at least partially, why removing the layernorms stabilized
low-precision training in Figure 2b] While a different format, like MXFP8 E5M2 may avoid
this issue, the loss of precision from having only two mantissa bits can still lead to training
instabilities.

FP8 E4M3 relative gaps

279 275 273 2711 2 4 8 16 32 64128 448 LayerNorm Layer 0 Affine Overflow vs. Train Time Activation Overflow (Avg. Across All Layers) vs. Train Time
-] 0015

. 100 — yuthetic LN

100 4 —— Olmo FEN LN

0759 == Olmo AunLN

frac

0.010 4

0005 r ' U ~
000 = o 0000

®
g
overflow frac.

o o
o
o3
1 1

s LN overflow
act

SS.

107" 4
Rl K

T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 00 02 04 0.6 08 1.0 00 02 04 06 08 1.0
code index t normalized training progress normalized training progress

relative % gap
2

'

F

syn. MX los:
I

syn. MX lo:
n

Ny
OLMo loss
9
1
OLMo loss
©
L

IS
1
IS
1

RS A

Figure 3: Left: relative gap (2441 —x¢)/x; for successive positive FP8 E4M3 codes (sign bit
stripped). Within each exponent band the gap decays from 12.5% to 6.6%); the hatched region
marks values that would be clamped once the scaled magnitude exceeds the representable
limit of 448. Center: Top subplot shows what fraction of layernorm affine parameters end up
in the last quantization bin after division of the shared scale in the first layer of the network.
For OLMo, we look at the FFN layernorm and the attention layernorm. The synthetic loss
in this case exhibits a divergence in MX precision (but is stable in FP32 precision), and
corresponds to the student-teacher setup of Equation with four layers and dp,oqe1 = 512
and n = 6 x 10~*. Right: Shows the fraction of activation values (averaged across layers)
that end up in the last quantization bin after division by the shared scale.

In a typical LLM setting such as in OLMo, there are several different types of layernorms
which experience different degrees of clamping to the last quantization bin. As seen in the
middle-top plot of Figure [3] some components such as the attention layernorms, remain
relatively well behaved throughout training, whereas others, like the FFN layernorms or
the QK layernorms (Henry et al, [2020), can experience large, sudden overflow issues for
nearly 75% of weights. While it’s possible to disable the affine transformation of layernorms
in the LM setting and we indeed find that this significantly enlarges the stability window
(see Appendix [F]), we also observe that some residual instability still remains at larger
training durations, perhaps due to the presence of this effect in a small fraction of the
activation values. More broadly, this finding indicates a problem with applying shared-scales
to blocks of weights that follow approximately log-normal distributions, which may not have
a well-defined notion of a “max” relative to a resolution fixed by a given precision scheme. A
scale that adapts to both min and maz might avoid the bias; we defer this to future work
and note the prescription proposed in [Mishra et al.| (2025) as a potential solution. On the
activation side, we find that this effect is apparent in roughly ~1% of values in our synthetic
experiments and ~0.5% of values in OLMo (shown in the right subplot of Figure [3).

5.2 POTENTIAL MITIGATIONS

To clearly establish causality of which components can (de)stabilize training, we ask whether
an impending divergence can be averted by in-situ interventions to the training recipe.

Under review as a conference paper at ICLR 2026

Intervention at Step 4500 Intervention at Step 5080
ant

1072

train loss

intervene intervene

i
i

i

i

i

{

i i
i i
i {
i {
i {
i {
i {
i {
i {
i {
i {
i {
i |
well before instability just before instability}
i i
i i
i i
i i
i i
i i
H H

\ i W

0 2000 4000 6000 8000 0 2000 4000 6000 8000
training step training step

N .‘W.,l il 't.w,'.L i

i

Figure 4: Intervention experiment for a synthetic student-teacher model with dy,0qe1=512,
four layers, and learning rate n=6x10~%. Training is stable in FP32 (blue) but diverges in
MXFPS8 E4M3 (yellow) around step 5100. We test two intervention timings: step 4500 (left,
well before instability) and step 5080 (right, just before instability). Early interventions,
like disabling backward-pass quantization or switching to high-precision (FP32), successfully
prevent divergence, while using high precision for the activations (bfloat16) can greatly delay
it. Late interventions cannot avert instability but can only delay it; the most effective are
switching to FP32 or skipping quantization of layernorm weights.

Figure [4] tracks a configuration that is stable in FP32 but diverges in MXFP8 E4M3. This
setting corresponds to the previously described student-teacher scenario with four layers and
model dimension d,,qe1 = 512. The instability starts approximately at step 5090 and we
consider interventions just before the instability, at step 5080, and well before the instability,
at step 4500. For each intervention we keep the random seed, model state, and batch sequence
identical, so the training state at the intervention step is the same as in the baseline run, so
any divergence afterward is therefore solely attributable to the intervention.

e Switching entirely to FP32 precision for remaining training steps. Inter-
vening with FP32 significantly stabilizes training if the change is made sufficiently
early (step 4500), but it is ineffective if applied immediately before instability (step
5080). However, even at the later intervention, FP32 prolongs training stability
more effectively than the other approaches.

e Increasing the shared exponent by one (bump exponent). Adjusting the
exponent to avoid the last bucket overflow for blocks that have values that fall
into the range in Equation does not mitigate instability, which may be due to
insufficient precision improvement from a single increment too late in training.

e Avoiding MX quantization for layernorm affine parameters. Intervening
by omitting quantization of layernorm parameters partially stabilizes training and
delays instability significantly at both intervention steps, indicating that layernorm
parameters do contribute to instability dynamics. However, eventual instability
suggests a residual effect from quantized activations.

e Precision adjustments in forward and backward passes. We explored quan-
tizing weights and activations only during the forward pass (no backward-pass
quantization); maintaining weights in bfloat16 and activations in MXFP8 (both
passes); maintaining activations in bfloat16 for the forward pass but MXFPS8 for
backward (with MXFP8 weights); using BF16 activations for both forward and
backward passes while quantizing weights with MXFP8. As seen in Figure [d] among
these, applying the intervention just before instability (step 5080), bfloat16 activation
precision in both passes consistently provides the strongest immediate stabilization,
closely followed by disabling backward-pass quantization. When interventions occur
earlier (step 4500), not quantizing the backward step performs comparably to the
FP32 baseline, while fully bfloat16 activations delay instability considerably yet
eventually become unstable. These results suggest a stochastic model in which
multiple interacting factors can cause gradient bias/influence instability likelihood.

Under review as a conference paper at ICLR 2026

Key Takewaways The dominant MX precision-specific bias comes from overflow of
clustered layer-norm affine weights (and a small fraction of activations). Our intervention
experiments show that raising precision in key parts of the computation, such as increasing
the precision of layer norms or activations, can greatly improve stability.

6 STABILIZATION STRATEGIES IN LM SETTING

Motivated by the effective mitigations observed in our synthetic experiments, we return
to the language-model (OLMo) setting and consider two training strategies: (1) retaining
bfloat16 as the element format for activations and layer norms, and (2) applying MX
quantization only to the forward pass. We emphasize that these are diagnostic and not
production-ready mitigations. Keeping activations in bfloat16 generally yields no compute-
throughput gain on hardware where the MMA executes in bfloat16, because mixed-operand
kernels typically upcast the lower-precision operand to the MMA precision. Conversely,
downcasting activations to low precision during the matmul would reintroduce the very
instabilities we aim to avoid. We defer a more fine-grained study of which layers truly require
high-precision activations to future work. Likewise, quantizing only the forward pass can at
most accelerate the forward fraction of training. Under standard assumptions, the backward
step costs roughly twice the forward, so the idealized wall-clock speedup is capped near
~33%.

‘Weight Activation D/N Ratio

140.96 99.19 70.91 37.86 21.28 16.23 12.51

N=0.16B N=0.19B N=0.23B N=0.31B N=0.42B N=0.48B N=0.54B
bfloat16 bfloat16 0.710 0.703 0.698 0.691 0.688 0.686 0.686
MXFP8 E4M3 bfloat16 0.0 -0.002 -0.002 0.0 0.0 0.0 0.0
MXFP8 E5M2 bfloat16 0.105 0.107 0.112 0.004 0.002 -0.001 -0.001
MXFP8 E4M3 MXFP8 E4M3 0.005 0.002 0.002 0.004 0.002 -0.001 -0.001
MXFP8 E5M2 MXFP8 E5M2 0.010 0.012 0.057 0.019 0.007 0.004 0.004

Table 1: The validation loss on Fineweb-Edu of high precision runs versus low precision with
mitigations applied (values are shown as differences with respect to bf16-bf16 baseline; lower
is better). For the last two rows, we quantize only the forward pass.

In both cases, we find that training remains stable across all FP8 configurations. Table
reports validation loss differences relative to full-bfloat16 baselines. MXFP8 E4M3 weights
paired with bfloat16 activations in particular match full-precision performance across all
tested model sizes. In Appendix [G] we study how these results scale with compute and fit
valid Chinchilla-style scaling laws. Full loss curves and scaling law fits for both mitigation
strategies compared to bfloat16 baselines are also provided in Appendix [G}

7 CONCLUSION

We showed that training LLMs in shared-scale/MX configurations can lead to sharp, un-
recoverable instabilities. Using large-scale LLM sweeps and a simple proxy model trained
on synthetic data, we isolate a failure mode of quantization-induced gradient bias, where
shared-scale clamping (particularly of layer-norm affine weights and to a lesser extent, other
activations) injects gradient noise that ultimately destabilizes training. We evaluated several
diagnostic mitigations, and found that stability can be preserved using higher precision in
selective parts of the network computation.

Looking ahead, continued hardware advances will expand the frontier of what is computa-
tionally feasible. Some concrete directions include: extending our proxy model to include
mixture-of-experts with many layers, and other transformer-specific components to better
predict instabilities; developing a clear theoretical picture of instabilities in optimization (see
Appendix ; and designing new blockwise scaling schemes such as in [Mishra et al.| (2025)
that adapt to skewed or tightly clustered distributions.

Under review as a conference paper at ICLR 2026

A REVIEW OF SHARED-SCALE QUANTIZATION

In this section we provide a self-contained review of block scaling quantization schemes,
largely following Rouhani et al.| (2023); Darvish Rouhani et al| (2023a). Taking a step back,
the idea in shared-scale quantization methods is to introduce a number which represents
the shared scale among a group of values that could, e.g., represent weights or activations.
The idea is that low-precision data types tend to have a small representable range and
quantization can clip very large values or zero-out smaller values. By dividing by the shared
scale, the goal is to put these numbers in a representable range and save the scale such that
it may be multiplied at the end of the computation. There are many choices for how to
pick the scale, with pros and cons for each. For example, one approach is to have a single
scale factor for the entire tensor, which has a very low memory overhead but is usually too
coarse-grained and can lead to saturation issues. On the opposite end, one could keep a
scale factor for every value in the tensor which obviously allows for higher accuracy but
involves much more memory. Other approaches include tilewise scaling, where a scale factor
is used for a fixed-size submatrix. This was the approach taken in [Liu et al.| (2024). In
this work, we focus on block scaling methods, where a single 1-dimensional block of values
shares a scale. In particular, we focus on the “microscaling" (MX) format, where each block
consists of 32 values, with a shared scale that can be computed using Algorithm [I} When
performing matrix multiplications or dot products, these shared scales are carried around
and multiplied at the end of the computation (see Darvish Rouhani et al.| (2023al) for the
exact specifications).

Algorithm 1 Convert V € HP_DTYPE" to an MX block {X, P € LP_DTYPE*}

Require: k = 32 (hardware block size),
1: eflem — exponent of the largest normal value in LP_DTYPE
Ensure: Scale factor X and low-precision elements Py, ..., Py
m + max; (|V;])
shared_ exp [logy(m)| — eglem
: X ¢ 2shared_exp > block scale (a power of two)
: for i+ 1to k do
r+« Vi/X
P; + QUANTIZETOLP(r) > clamp if |r| overflows
end for
return (X, {P;}F))

© XIS, PN

The shared scale in MX formats can therefore be regarded as the largest power-of-two that
can represent the maximum within a block, shifted by the exponent of the largest normal
value in that type.

A.1 GEMM SIMULATION SETTINGS

We emulate MX (shared—scale) GEMMSs using the public PyTorch MX Emulation library [Mis
crosoft| (2024) and defer to their README for helpful visualizations of where the quantization
step happens. For each matrix multiply, the simulation proceeds as follows:

1. Inputs are quantized to MX. The high-precision activation A;_; and weight W;
are block-quantized using Algorithm [I] to produce the MX representation.

2. matmul accumulates in high precision. The matmul consumes emulated FP8
inputs but performs accumulation in FP32. The matmul output tensor A4;[M, N] is
therefore FP32.

3. High-precision write-back. The FP32 accumulator result is rounded once to
bfloat16 before the next operation (e.g., bias addition, activation, or the next layer).
It is not re-quantized to FP8 at this stage.

10

Under review as a conference paper at ICLR 2026

Elementwise vector operations (e.g., residual additions and the arithmetic inside layernorm)
are executed in bfloat16: operands are cast to bfloat16 and the operation itself runs in
bfloat16.

B MULTIPLICATIVE NOISE

Our synthetic experiments reveal that training instabilities in low-precision settings can
arise from both stochastic optimization effects and quantization-induced bias. These failures
appear to result from a complex interplay between architectural choices, activation functions,
layer normalization, and hyperparameters. One hypothesis, motivated by the growth of the
gradient norm in Figure] is that lower precision is systematically biasing the gradient. In
this section, we examine this hypothesis through a multiplicative noise model and show that
it is consistent with the instability patterns seen in low-precision training.

B.1 BEHAVIOR OF THE NOISE

Let

€t = Gt — Gt (3)
where g; denotes the exact gradient at time step ¢, and g; is its low-precision counterpart.
Under a multiplicative noise model, we posit that

gt = (1 + Ct)gh (4)
where ¢, is a (possibly data and parameter-dependent) noise matrix induced by quantization.
Although ¢, is not directly measurable (and may not even be uniquely defined e.g., due to
weight permutations), we can estimate the magnitude of its effect. Specifically, the deviation
vector ¢; satisfies

lleellz < 1€ llopllgell2, ()

where || - ||op denotes the operator norm. In Section we argue for a heuristic bound that
I llop must satisfy through training and how a runaway loss divergence may occur in this
model.

To test this model empirically, we replicate the synthetic experiment setup from Section [4]
For each configuration, we fix the random seed and weight initialization, then train one
model in FP32 to log the exact gradient g, at each step. We then retrain the same model
under MXFPS8 precision and compute the deviation e, = ¢g; — gy at every step. This allows
us to extract both the norm ratio ||¢||2/||g¢||2 and the cosine similarity between g; and g;.

Results are shown in Figure 5| Early in training, the estimate of ||;||op (as inferred from
Equation (5))) gradually decreases. However, as training progresses, the estimate begins to
rise. Once ||{;|lop ~ 2, we observe divergence in the loss. A similar trend is observed in the
cosine angle between gradients: it slowly degrades over several thousand steps and eventually
flatlines near zero, indicating that the low-precision gradient is no longer aligned with the
true descent direction.

B.2 A CruDE BOUND

To understand the behavior of ||¢ ||Op, consider that we have some optimum w, such that
VwL(w,) =~ 0. Linearizing around the minimum we have

VwL(wy) = H(wy — wy), (6)

where H = V2 L is the Hessian. The equation above makes no reference to precision — the
only approximation we've made is ignore terms of order (w; — w,)? and higher. Defining
&y = w; — wy, we then have

g: = Ho;. (7)
With some manipulations the GD update rule iﬁﬂ
Or41 = 0¢ — (L + C,) HO, (8)

3Strictly speaking, we are using the stochastic Adam update rule and not GD in our experiments,
and so the resulting bound should not be regarded as rigorous.

11

Under review as a conference paper at ICLR 2026

FP32 train loss
2
4 :'
g
MX train loss
g 2

10%

|
0.5

s1 A mm‘twku_ 'Mwm\ ‘WNM ol
T ---’hﬁ%ﬁ%mw@%www%

0 I 2 3 3 5 6 7 0 I 2 3 1 5 6 7

cos 6
118l lop

100

Training step (x10%)

— L=4,W=256 = L=4,W=384 = L=4W=512 L=6W=512

Figure 5: Shows the bound on the operator norm [|¢,|lop (as inferred from Equation (),
and the cosine angle between the low precision gradient and high precision gradient. Dashed
line in the lower right plot shows when the bound on ||{,||op is equal to 2.

and so
St+1 = —meH)oy — G Hby. 9)

We can therefore see that there is a driving term proportional to the noise ¢,; if the noise
operator norm is large enough, it can flip a contracting direction into an expanding one. The
stability criteria is therefore that the operator I — n;(1 + ¢,)H has spectral radius less than
one. In terms of the maximum eigenvalue of H, A\ ax, this means that a crude bound for
stability is

|1 — M Amax| + ¢ ||Ct||0p Amax S 1. (10)

Clearly, when the norm of {, grows, the region of stable 7;Amax shrinks. However, from the
“edge of stability” viewpoint of |Cohen et al.|(2021)), in the absence of multiplicative noise,
Amax 1S expected to increase until it hovers at or just above ~ 2/5. Once the multiplicative
term ¢, is introduced, we may then expect that the stability region defined by Equation ([10)
contracts. Developing a precise theory for this regime — building on the analysis of
let al.| (2020); Damian et al.| (2023); |Cohen et al.|(2021)) — is an interesting direction for future
work. In the meantime, we bypass an explicit spectral calculation by estimating a lower
bound on ||{,|| op directly in our synthetic experiments through Equation . Empirically, we
observe a pattern where the running average of this lower bound first drifts downward, later
turns upward (lower right of Figure . When it stabilizes around ~ 2, training instabilities
tend to follow; this observation marks a strong (but not perfect) qualitative correlate of
divergence.

C HYPERPARAMETER TUNING IN OUR PROXY MODEL

A key point we aim to distinguish is that there are two classes of instabilities we typically
encounter when training models. The first type arises due to incorrect hyperparameter choices.
For example, if the size of the steps are large due to, e.g., a large learning rate, this will be
visible as a sudden spike(s) in the loss. These types of instabilities are generally recoverable.
The second type involves a more serious issue with gradient bias, of the type characterized
in Appendix [B] In this case, optimization cannot recover since the errors in the gradient
computation can compound. In this section, we explain how we tune hyperparameters to
avoid the first class of instabilities.

12

Under review as a conference paper at ICLR 2026

C.1 SWEEPING OVER LEARNING RATES AND ARCHITECTURES

Learning rates To illustrate how learning rates can impact stability, we begin by sweeping
over learning rates n € (1 x 107°,5 x 107°,1 x 107%,5 x 107%,1 x 10~) across a range of
model depths and widths, in two low precision formats: (1) MXFP8 E4M3 in the forward
pass and MXFP8 E5M2 in the backward pas{’} and (2) MXFP6 E4M3 in both forward and
backward passes.

Results from this sweep are shown in Figure [f] We observe the following patterns: for
sufficiently low learning rates n < 1 x 1074, all precision formats remain stable. At 7 =
5 x 1074, differences between FP32 and lower-precision formats begin to emerge: FP32
exhibits two unstable runs, while FP8 shows six. At the highest learning rate (n =1 x 1073),
instabilities are observed across all formats, with larger models failing earlier in training.
Interestingly, we find that recovery from an instability is more rapid in FP32, whereas
instability in lower-precision formats—particularly FP6—is often more persistent.

We also experimented with a cosine learning rate schedule that starts at 1 x 10™2 and decays
to 1 x 107° and found that the effect of the schedule was mainly to suppress instabilities
at later training times, though we still observe the same differences between high and low
precision if the instability does not happen late in training.

n=1x10"3 n=5x10"3 n=1x10"* n=5x10"*

FP32 MSE loss
3>

MX FP8 MSE loss

MX FP6 E2M3 MSE loss

o
©
=
EN
s
©
s
£y
s
©
s
EN
o
©
s
EN
o
©
=
EN

Training step (x103)

— L=3,W=256 —— L=4W=256 — L=5W=256 — L=6,W=256 —— L=7,W=256 —— L=8,W=256
— L=3,W=384 —— L=4,W=384 —— L=5,W=384 —— L=6,W=384 L=7,W=384 L=8.W=384
—— L=3W=512 — L=4W=512 — L=5W=512 L=6W=512 L=7.W=512 L=8.W=512

Figure 6: Comparing FP32 with MXFP6 and MXFPS8 formats across different choices for the
learning rate. Color corresponds to model size, determined by the depth L and dyoqe1 = D
on the legend.

We find that instability differences between high and low precision seem to occur more
frequently in networks of intermediate size, for model dimensions in the range 384 < dpodel S
768 and depths 3 < L < 6. Intuitively, this makes sense since these models appear to be
large enough to exhibit sensitivity to low-precision effects, yet not large enough where overall
stochasticity causes generally unstable training at this learning rate.

“We use this asymmetric format to allow greater dynamic range in the backward pass, follow-
ing [Micikevicius et al|(2022a), and because it exhibited marginally greater stability than using E4M3
for both passes. Our results are not sensitive to this particular choice of low-precision formats.

13

Under review as a conference paper at ICLR 2026

Fixing LR to rule out tuning error To isolate precision effects, for each (L, dmodel) We
select an LR that yields no instabilities in FP32 with GeLU activation and hold it fixed when
comparing precisions or performing ablations. While a fully principled approach would use
P (Yang et al. [2022) to scale LRs with width, in practice, a manual grid search is sufficient
due to the small size of the proxy model. We find that there is a range of acceptable learning
rates that seem to work well in which high precision runs are stable and low-precision runs
are not, for each depth and width. For example, for 3 < L < 6, learning rates in roughly
[2 x 107%, 6 x 107%] are very reliably stable in FP32 yet can be unstable in low precision.
As depth/width increase, the stability region for low-precision narrows and requires lower
learning rates, even when FP32 remains stable at comparatively larger learning rates.

D DIFFERENCES BETWEEN OUR PROXY MODEL AND LLM

One potential limitation of our proxy model is that it omits certain architectural components
of the LLM (most notably self-attention) and that it is trained with mean—squared error
(MSE) rather than cross-entropy, reflecting the distributional learning task we study in the
synthetic setting.

In this section we ablate both choices. First, we show that the instability we observe already
appears without self-attention. Second, we add self-attention to the proxy and find that,
perhaps surprisingly, attention can be stabilizing in some regimes. These results suggest
that the primary failure modes we study are not driven by the attention mechanism itself
(at least at the scales probed here).

To incorporate attention into our model given in Equation , we consider the modifications
Ay==x 2z = Ap_1 + SelfAttn(LNl(Ak,l))

11
Apso = 2 + WP G(WIVLN, (2)) ()
That is, the we employ self attention with no mask with pre-attention layernorm. For the
attention ablation we treat inputs as sequences (shape (B, S, dmodel)) to enable “token—token”
interactions although this is a synthetic sequence dimension introduced solely for the ablation.
Given a fixed compute budget, increasing .S typically requires reducing the batch size B. In
general, we do not find that including attention causes additional instability, suggesting that
the primary failure mode is not caused by attention itself. An example training run with
this ablation is shown in Figure[7] In this instance, adding self-attention actually improves
training stability in the low-precision setting.

FP32 vs MX Loss (with/without attention)

10° 4 —— FP32 (without attn)

Loss

0 1000 2000 3000 4000 5000 6000
Step

Figure 7: Shows an example synthetic training run where we ablated over self-attention in
the proxy model, in both FP32 and MX FP8 E4M3. The orange run (low precision without
attention) is more prone to instability across training runs.

Next, we evaluate the impact of using an MSE loss in our proxy model. In Figure [§ we
evaluate stability in low precision when using MSE loss versus a KL loss on the softmax of
the logits (with temperature 1). Both runs eventually diverge, although optimization seems
to recover more quickly in the KL setting.

14

Under review as a conference paper at ICLR 2026

FP32 vs MX Loss (with/without KL loss)

=== MX (with KL)
MX (with MSE)

100

S |

|
|
: A
i ‘-
|
.
.
.
.
,
‘

L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Step

2

Figure 8: Shows an example synthetic training run where we used a KL loss on softmax
logits compared to an MSE loss. Both runs eventually diverge (while full precision is stable),
although the instability is less recoverable in the MSE case.

E ADDITIONAL SYNTHETIC SWEEPS

In this section, we present additional synthetic experiments to further examine the sources
and mitigation of low-precision instabilities.

Figure [summarizes the frequency of instability spikes across our depth-width sweep at
a fixed learning rate of n = 5 x 1074, The MX-mix format refers to the asymmetric
configuration using MXFP8 E4M3 in the forward pass and E5M2 in the backward pass. Spikes
were determined by the heuristic criteria that the loss at time step ¢ had to be a factor of
100 lager than the loss at time step ¢ — 1; this gives a rough lower bound on the number of
spikes.

Figure compares the impact of optimizer choice, focusing on SGD with momentum,
and vanilla SGD (momentum = 0). These experiments used a slightly higher learning
rate of n = 1 x 1072 to exaggerate differences. Compared with Figure [6, we observe that
SGD variants are more stable than Adam, perhaps due to Adam’s use of second-moment
accumulation, which may amplify quantization-induced bias in low-precision regimes.

Figure [I1] evaluates the effect of different weight initialization schemes. We compare stan-
dard Pytorch initialization, typically taken to be a Kaiming uniform distribution between
[~1/v/fan in, 1/v/fan in], against a variant using lower gain (gain = 0.5) under the Xavier
normal distribution. Reducing the variance of initial weights appears to improve loss spikes.

FP32 MX-mix MX-e4m3 MX-fp6

poopopooD Nooon Ooo pooo oo o gooooooon
-
-png - pEno

64 96 128 256 384 512 768 896 1024 64 96 128 256 384 512 768 896 1024 128 256 384 512 768 896 1024 2 &£ F 2
Width Width Width T E 9

Figure 9: Instability spikes measured in training, for different model depths and widths.

F LAYERNORM ABLATIONS ON LM SETTING

Here, we show results when we disable layernorm affine weights in the language model setting.
The result is shown in Figure In general, with all else being equal, disabling layernorm
weights does stabilize training significantly compared to the same run with affine weights.
However, eventually the run does become unstable, potentially due to overflow effects in

15

Under review as a conference paper at ICLR 2026

FP32 w/ SGD (momentum = 0) FP32 w/ SGD (momentum = 0.9) MXFP8 w/ SGD (momentum = 0) MXFP8 w/ SGD (momentum = 0.9)

MSE loss
g 3

Training step (x10%)

— L=3,W=256 —— L=3,W=S512 —— L=4,W=384 — L= L=5, W=512

— L=3,W=384 —— L=4,W=256 —— L=4,W=512 —— L=

Figure 10: SGD with and without momentum; a larger learning rate was used n = 1 x 1072.

0! FP32 baseline (default init) FP32 w/ lower gain Xavier normal MXFP8 (default init) MXFP8 w/ lower gain Xavier normal
1004
m 107 |
Z] Il
z \
102 |
{
107

— L=2,W=256
— L=2,W=384
— L=2.W=512

L=6, W=384
L=6, W=512

Figure 11: Baseline versus using a lower gain Xavier normal weight initialization.

critical activations in the network. For a lower learning rate, disabling affine weights almost
completely stabilizes training compared to enabling them i.e. it enlarges the stability window.

Train CrossEntropyLoss (E4M3 weights, E4M3 activations) Train CrossEntropyLoss (ESM2 weights, ESM2 activations)
Block Size LayerNorm Affine 8 | Block Size LayerNorm Affine
5o — block=32 — affine=Tue — block=32 — affine=True
8 — - block=128 — affine=ralse =« block=128 —— affine=False

!
:
1
H
[PIPUY N

o 10000 20000 30000 40000 50000 60000 0 5000 10000 15000 20000 25000 30000 35000
step step

(a) Train loss for weights and activations in (b) Train loss for weights and activations in
MXFP8 E4M3-E4M3 format. MXFP8 E5M2-E5M2 format.

Figure 12: Shows that at the same learning rate (2e-4), turning off affine parameters stablizes
the training, while learning rate le-3 again makes the training unstable.

16

Under review as a conference paper at ICLR 2026

G ScALING Law FiTs AND Loss CURVES AFTER MITIGATION

Weight: MXFP8 E5M2, Act: bfloat16

Weight: MXFP8 E4M3, Act: bfloat16

-1.10 |11

-1.05

-1.00

s /s
" o -0.95 4 H E Ef «
@ H 2 g o of/e a2
3 o S 2 - -09 ¢
& 5 00 g d L 12\ £
S ' = i . > o =
: -0.85 100 Y R
. S 0.8
o - 0.80 o e .
/,/ A4
-0.75 N
N -0.7
-0.70
107 107
107 102 102 1020 102 10%7 102 102 102 102
FLOPs FLOPs
(a) Scaling law fit for FP8 E4M3-bfloat16. (b) Scaling law fit for FP8 E5M2-bfloat16.

Figure 13: Scaling law fit for combinations of precision formats of weights and keep the
activations in high precision. Fit was calculated using a Chinchilla model for the loss; details
and fit parameters are given in Section @

In addition to Figure [13] we provide scaling law for the mitigation where we quantize only the
forward pass; this is shown in Figure [[4 which can be compared against the bfloat16 baseline

in Figure[I5] Scaling law fits were performed using the methods described in
(2022); Brandfonbrener et al. (2024) where the validation loss was fit with a functional form

A B
L(N,D)—E-i-m‘f'ﬁ,

for constants A, B, E, «, and 3. The fitted values of these constants are given in Table [2|

(12)

We also provide the loss curves after implementing these mitigation strategies; these are
shown in Figure [L6] and Figure

Weight: MXFP8 E4M3, Act: MXFP8 E4M3, Quantize Forward Only Weight: MXFP8 E5M2, Act: MXFP8 E5M2, Quantize Forward Only
. ’/" -11
/ -1.1 /
I’, "'
S hd
10° ¥4 10° .
o / °
$fs & -10 e e
p . 232 Y :
5 $ A . 2 s . 2
@ - S @ . S
£ b c £ c
e \e . 09 g A . -09%
o * o = & . =
10° s 2 o 10° o
L] L] .’
//'
K 0.8 o . - 0.8
e 'l L4
(4
L]
-0.7 —
107 107 07
1017 1018 1019 1020 1021 1017 1013 1019 1020 1021
FLOPs FLOPs
(a) Scaling law fit for MXFP8-FP8 E4M3. (b) Scaling law fit for MXFP8 E5M2-E5M2.

Figure 14: Scaling law fits for fixed stable of precision formats of weights and activations
quantizing only the forward pass.

17

Under review as a conference paper at ICLR 2026

Weight: bfloat16, Act: bfloat16 Weight: MXFP6 E2M3, Act: MXFP6 E2M3
e \
;
-1.1 /’, -11
, /
4 ’
I’ /l
/’I /l
. e/
10° A 10° o & 10
* o -1.0 o o/ 0 :
s ¥ G
2 s 358 0 < ff ¥,
g A 2 g $[e 8t 8
L L]
g :, : : E‘ EEJ e o ° : -0.9‘_:’
g . o o\e o "095 © e e s e s
& . ‘e = S ;/- ° =
L L]
108 B 108 5 e
9/ . e o
/e ° , e o - 0.8
o e ° - 0.8 I 4 ° o
/' [] ,/' °
.
-0.7
-0.7
107 107
1017 1015 1019 1020 1021 1017 1018 1019 1020 1021
FLOPs FLOPs
(a) Scaling law fit for bfloat16-bfloat16. (b) Scaling law fit for FP6 E2M3-FP6 E2M3.

Figure 15: Scaling law fits for bfloat16-bfloat16 (baseline) and for MXFP6 format.

Weight Activation A B E a B a

MXFP6 E2M3 bfloat16 1.84e+03 8.77e+03 0.52 0.50 0.51 0.51
MXFP8 E4M3 bfloat16 2.82e+03 2.04e+04 0.54 0.52 0.55 0.51
MXFP8 EBM2 bfloat16 1.68e+03 1.84e+04 0.52 0.49 0.55 0.53
bfloat16 bfloat16 1.94e+03 2.18e+04 0.53 0.50 0.56 0.53

MXFP8 E4M3 MXFP8 E4M3 1.57e+03 2.11e+04 0.52 049 0.55 0.53
MXFP8 EBM2 MXFP8 EBM2 2.20e+03 3.98¢e+04 0.54 0.51 0.59 0.54

Table 2: Fitted scaling law parameters. For the last two rows, we quantize only the forward
pass. The last column is equal to the ratio a = §/(a+), the exponent of the optimal model
size relative to FLOPs.

18

Under review as a conference paper at ICLR 2026

MXFP8 (E4M3 weights, E4M3 activations) Quantize Forward Only

Train CrossEntropyLoss 200 Optimizer Total Grad Norm
45 175
17.5
4.0
1504 150
35 12.5 125
£
%30 21004 w0 g
s 3 g
© s
25 s
5.0
50
2.0
254
25
15)
0.0
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Step Step

(a) Train loss and gradient norm for weights: MXFP8 E4M3, Activation: MXFP8 E4M3 while quantizing
only the forward pass.
MXFP8 (E5M2 weights, E5M2 activations) Quantize Forward Only

Train CrossEntropyLoss 200 Optimizer Total Grad Norm
45 175
17.5
4.0
1504 150
35 125 125
13
230 2 10.0 100 3
s 3 g
© s
2.5 75
5.0
50
2.0
254
25
15 A AAAA I R
0.0
0 20000 40000 60000 80000 100000 120000 0 20000 40000 60000 80000 100000 120000
Step Step

(b) Train loss and gradient norm for weights: MXFP8 E5M2, Activation: MXFP8 E5M2.

Figure 16: Train loss and gradient norm when quantizing only the forward pass.

19

Under review as a conference paper at ICLR 2026

MXFP8 E4M3 weights, bfloat16 activations

Train CrossEntropyLoss 20,0 Optimizer Total Grad Norm
45 175
17.54
4.0
1504 150
35 1254 125
1
230 21001 100
3 H g
G 4
25 7 s
5.0
2.0 0
254
25
15
0.0
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Step Step
(a) Train loss and gradient norm for MXFP8 E4M3-MXFP8 E4M3.
MXFP8 E5M2 weights, bfloat16 activations
Train CrossEntropyLoss 200 Optimizer Total Grad Norm
45 175
17.54
4.0
1504 150
35 12.54 125
E
2 3.0 21004 100 §
s ° g
]
[c]
25 757 75
5.0
2.0 50
2.59
15 25
0.01
0 20000 40000 60000 80000 100000 120000 140000 0 20000 40000 60000 80000 100000 120000 140000
Step Step

(b) Train loss and gradient norm for MXFP8 E5M2-MXFP8 E5M2.

Figure 17: Train loss and gradient norm when activations are kept in high precision (bfloat16).

20

Under review as a conference paper at ICLR 2026

H DEeTAILS OF LM TRAINING

All models are trained on the Fineweb-Edu dataset (Penedo et all [2024) using the Olmo
codebase (Groeneveld et al.| [2024)), with the longest runs trained on 35B tokens and the
shortest runs corresponding to models trained on 301M tokens. Models were trained with
a learning rate schedule with a linear warmup starting at 2e-5 increasing to 2e-4, followed
by cosine decay back to 2e-5 (Porian et al.l 2025). Training runs that involved using MX
precision formats were done performed using MX Pytorch Emulation Library (Microsoft,
2024)).

Parameter Value

n 6—24 for small models
Number of heads n

Head dimension 64

MLP hidden multiplier 4

Depth n

Context length 512

Activation GeLU

Positional encoding RoPE

Biases False
Normalization PyTorch layernorm
QK normalization True

Tokenizer Llama2

Table 3: Model parameters used for training.

21

Under review as a conference paper at ICLR 2026

I VALIDATION LOSSES IN LANGUAGE MODELS WITH MITIGATIONS

Table [and continued in [5] shows validation losses for all models with mitigations applied
(quantization only in the forward pass, or activations in high precision), trained using our at
different FLOP budgets relative to bfloat16 baseline.

formats bfloat16 E4M3 E5M2 E4M3 E5M2
D/N bfloat16 bfloatl6 bfloatl6 E4M3 E5M?2
87.35 1.1522 -0.027 -0.027 -0.027 -0.012
46.99 1.1084 0.002 0.007 0.007 0.012
26.897 1.1011 0.004 0.001 0.004 0.009
16.06 %6117 1.0956 -0.001 0.014 0.004 0.009
9.92 1.0971 0.003 0.003 0.008 0.013
6.30 1.0950 0.0 -0.005 -0.01 0.01
4.10 1.1042 0.001 -0.006 0.006 0.006
2.73 1.1255 -0.001 -0.004 0.004 0.019
191.02 1.030 0.005 0.0 0.010 0.01
102.78 1.0464 -0.016 0.036 -0.011 -0.021
58.81 0.9898 0.005 0.005 0.005 0.015
35.14 0.9806 -0.001 0.004 0.004 0.009
21.70 4.37c 117 0.9765 0.003 0.003 0.003 0.013
13.78 ’ 0.9717 0.003 0.003 0.003 0.008
8.97 0.9732 0.002 0.002 0.002 0.012
5.97 2.3174 0.303 0.843 2.763 1.237
4.05 0.9839 0.001 0.006 0.006 0.006
2.80 0.9949 0.0 0.0 0.0 0.005
128.62 0.9198 0.0 0.0 0.005 0.015
76.84 0.9052 0.0 0.005 0.005 0.015
47.46 0.8969 0.002 0.003 0.003 0.008
30.14 0.8894 0.001 0.001 0.006 0.011
19.62 9560417 0.8846 0.0 0.005 0.005 0.01
13.05 ’ 0.8879 0.002 0.002 0.002 0.012
8.86 0.8849 0.0 0.005 0.005 0.005
6.13 0.8882 0.002 0.002 0.002 0.007
4.31 0.8933 0.002 0.002 0.002 0.007
3.08 0.8961 0.004 0.004 0.004 0.009
2.24 0.9059 -0.001 0.004 0.064 0.004
168.03 0.8546 0.0 0.005 0.005 0.015
103.78 0.8430 0.002 0.002 0.187 0.012
65.91 0.8335 0.001 0.001 0.001 0.011
42.896 0.8258 -0.001 0.004 0.004 0.009
28.54 9.09¢+ 18 0.8242 0.001 0.001 0.001 0.011
19.37) 0.8200 0.0 0.0 0.0 0.005
13.399 0.8197 0.0 0.0 0.0 0.005
9.428 0.8187 0.001 0.001 0.001 0.006
6.74 0.8192 0.001 0.001 0.001 0.006
4.89 0.8215 0.003 0.006 0.003 0.003
2.02 0.8327 0.002 0.002 0.002 0.002

Table 4: Validation loss table, with separate columns for various weight and activation
precisions. For the last 2 columns, we quantize only the forward pass. The second column
indicates the total FLOP count used for those values of tokens-to-parameter ratios (D/N).
Values are shown as differences with respect to bfloat16 baseline (lower is better).

22

Under review as a conference paper at ICLR 2026

formats bfloat16 E4M3 E5M2 E4M3 E5M2
D/N bfloatl6 bfloatl6 bfloatl6é E4M3 E5M2
144.14 0.794 0.001 0.006 0.006 0.011
93.81 0.784 0.001 0.001 0.001 0.011
62.41 0.780 0.0 0.005 0.005 0.01
42.37 0.774 0.001 0.001 0.001 0.006
29.30 4576418 0.772 -0.002 0.003 0.003 0.003
14.74) 0.767 -0.002 0.003 0.003 0.003
10.70 0.766 -0.001 0.004 -0.001 0.004
7.87 0.766 -0.001 0.004 -0.001 0.004
4.42 0.769 0.001 0.001 0.001 0.006
3.37 0.772 -0.002 0.003 0.003 0.003
2.60 0.775 0.0 0.0 0.0 0.005
2.02 0.779 0.001 0.001 0.001 0.001
136.47458 0.748 0.002 0.002 0.002 0.002
92.646 0.741 -0.001 0.004 0.004 0.009
64.075 0.736 -0.001 0.004 0.004 0.009
45.084 0.731 -0.001 0.004 0.004 0.009
32.233 le 19 0.728 0.002 0.002 0.002 0.007
23.391 0.725 0.0 0.005 0.0 0.005
17.210 0.724 0.001 0.001 0.001 0.006
12.826 0.724 0.001 0.001 0.001 0.311
9.674 0.723 0.002 0.002 0.002 0.002
7.38 0.723 0.002 0.002 0.002 0.077
4.43 0.727 -0.002 0.003 0.003 0.003
2.75 0.732 -0.002 0.023 0.003 0.003

Table 5: MXFPS8 of the validation loss table, with separate rows for Weight and Activation
precisions. For the last 2 columns, we quantize only the forward pass. The second column
indicates the FLOP count used.

23

Under review as a conference paper at ICLR 2026

J ADDITIONAL UNSTABLE LM SWEEPS

In Figure (19| and Figure m we show some other examples of weight /activation MX precision
combinations we found to be unstable. In general, we were not able to find any stable
combinations of weights and activations in lower precision across the formats we tested.
In Figure we also show a pretraining training run on the StarCoder
dataset, which is comprised of entirely code, as a data point that these divergences are not
dataset-dependent.

MXFP8 (E4M3 weights, E4M3 activations)

Train CrossEntropyLoss Optimizer Total Grad Norm

0 5000 10000 15000 20000 25000 30000 35000 0 5000 10000 15000 20000 25000 30000 35000
step Step

(a) Train loss and grad norm for weights and activations in E4AM3-E4M3 format.

MXFP8 (E5M2 weights, ESM2 activations)

Train CrossEntropyLoss Optimizer Total Grad Norm

140

0 10000 20000 30000 40000
step

(b) Train loss and grad norm for weights and activations in E5M2-E5M2 format.

Figure 18: Shows OLMo training runs (top) on StarCoder. The low precision computations
are done in both forward and backward steps, on both weights and activations. Color bar on
the right shows the token-to-parameter ratio.

24

Under review as a conference paper at ICLR 2026

MXFP8 E5M2 weights, MXFP8 E4M3 activations

Train CrossEntropyLoss 200 Optimizer Total Grad Norm
10 -
160
17.5
140
8 15.0
120
125
€ 100
w © S 100 »
3 3 80 &
o
75
60
a
5.0
40
25
2 20
0.0
0 20000 40000 60000 80000 100000 120000 140000 0 20000 40000 60000 80000 100000 120000 140000
Step Step
(a) Train loss and grad norm for MXFP8 ESM2-MXFP8 E4M3.
MXFP8 E4M3 weights, MXFP8 E5M2 activations
Train CrossEntropyLoss 200 Optimizer Total Grad Norm
175
6 175
15.0 150
5
12.5 125
£
%4 2 10.0+ 100 &
s E E
]
c]
751 75
3
5.0
50
2.59
2 25
0.01
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Step Step

(b) Train loss and grad norm for MXFP8 E4M3-MXFP E5M2.

Figure 19: Unstable MXFP8 combinations of precision formats of weights and activations.

25

Under review as a conference paper at ICLR 2026

MXFP6 E2M3 weights, MXFP8 E4M3 activations

Train CrossEntropyLoss 200 Optimizer Total Grad Norm
175
7 17.5
15.04 150
6
12.54 125
s £
8 2 10.0 100 &
s E] 5
G
4 754 75
5.0
3 50
2,59
2 25
0.0
0 100 200 300 400 500 0 100 200 300 400 500
Step Step
(a) for MXFP6 E2M3-MXFP8 E4M3.
MXFP6 E2M3 weights, MXFP8 E5M2 activations
Train CrossEntropyLoss 200 Optimizer Total Grad Norm
a5 175
17.5
4.0 15.04 %0
] 125
s 125
13
2 2 10.04 100 &
J30 3 g
o
7.5 75
25
5.0
50
2.0 2.5
25
0.0
15
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Step Step

(b) Train loss and for MXFP6 E2M3-MXFP8 E5M2.

Figure 20: Unstable combinations of precision formats of weights and activations for MXFP6
weights.

26

Under review as a conference paper at ICLR 2026

REFERENCES

Abdolrashidi, A., Wang, L., Agrawal, S., Malmaud, J., Rybakov, O., Leichner, C., and
Lew, L. (2021). Pareto-optimal quantized resnet is mostly 4-bit. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), page
3085-3093. IEEE.

Anthropic (2025). Claude 4 system card. https://www-cdn.anthropic.com/
4263b940cabb546aa0e3283£35b686f4f3b2ff47 . pdf. Accessed: 2025-06-20.

Bondarenko, Y., Nagel, M., and Blankevoort, T. (2023). Quantizable transformers: Removing
outliers by helping attention heads do nothing.

Brandfonbrener, D., Anand, N., Vyas, N., Malach, E., and Kakade, S. (2024). Loss-to-loss
prediction: Scaling laws for all datasets. arXiv preprint arXiv:2411.12925.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P.,
Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez,
J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson,
B., Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya,
A., Ghemawat, S., Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fedus, L.,
Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M., Lewkowycz, A., Moreira,
E., Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., and Fiedel, N.
(2022). Palm: Scaling language modeling with pathways.

Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar, A. (2021). Gradient descent on
neural networks typically occurs at the edge of stability. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Cohere, T., :, Aakanksha, Ahmadian, A., Ahmed, M., Alammar, J., Alizadeh, M., Alnumay,
Y., Althammer, S., Arkhangorodsky, A., Aryabumi, V., Aumiller, D., Avalos, R., Aviv,
Z., Bae, S., Baji, S., Barbet, A., Bartolo, M., Bebensee, B., Beladia, N., Beller-Morales,
W., Bérard, A., Berneshawi, A., Bialas, A., Blunsom, P., Bobkin, M., Bongale, A., Braun,
S., Brunet, M., Cahyawijaya, S., Cairuz, D., Campos, J. A., Cao, C., Cao, K., Castagné,
R., Cendrero, J., Currie, L. C., Chandak, Y., Chang, D., Chatziveroglou, G., Chen, H.,
Cheng, C., Chevalier, A., Chiu, J. T., Cho, E., Choi, E., Choi, E., Chung, T., Cirik, V.,
Cismaru, A., Clavier, P., Conklin, H., Crawhall-Stein, L., Crouse, D., Cruz-Salinas, A. F.,
Cyrus, B., D’souza, D., Dalla-Torre, H., Dang, J., Darling, W., Domingues, O. D., Dash,
S., Debugne, A., Dehaze, T., Desai, S., Devassy, J., Dholakia, R., Duffy, K., Edalati, A.,
Eldeib, A., Elkady, A., Elsharkawy, S., Ergiin, 1., Ermis, B., Fadaee, M., Fan, B., Fayoux,
L., Flet-Berliac, Y., Frosst, N., Gallé, M., Galuba, W., Garg, U., Geist, M., Azar, M. G.,
Gilsenan-McMahon, E., Goldfarb-Tarrant, S., Goldsack, T., Gomez, A., Gonzaga, V. M.,
Govindarajan, N., Govindassamy, M., Grinsztajn, N., Gritsch, N., Gu, P., Guo, S., Haefeli,
K., Hajjar, R., Hawes, T., He, J., Hofstétter, S., Hong, S., Hooker, S., Hosking, T., Howe,
S., Hu, E., Huang, R., Jain, H., Jain, R., Jakobi, N., Jenkins, M., Jordan, J., Joshi, D.,
Jung, J., Kalyanpur, T., Kamalakara, S. R., Kedrzycki, J., Keskin, G., Kim, E., Kim,
J., Ko, W.-Y., Kocmi, T., Kozakov, M., Kryscinski, W., Jain, A. K., Teru, K. K., Land,
S., Lasby, M., Lasche, O., Lee, J., Lewis, P., Li, J., Li, J., Lin, H., Locatelli, A., Luong,
K., Ma, R., Mach, L., Machado, M., Magbitang, J., Lopez, B. M., Mann, A., Marchisio,
K., Markham, O., Matton, A., McKinney, A., McLoughlin, D., Mokry, J., Morisot, A.,
Moulder, A., Moynehan, H., Mozes, M., Muppalla, V., Murakhovska, L., Nagarajan, H.,
Nandula, A., Nasir, H., Nehra, S., Netto-Rosen, J., Ohashi, D., Owers-Bardsley, J., Ozuzu,
J., Padilla, D., Park, G., Passaglia, S., Pekmez, J., Penstone, L., Piktus, A., Ploeg, C.,
Poulton, A., Qi, Y., Raghvendra, S., Ramos, M., Ranjan, E., Richemond, P., Robert-
Michon, C., Rodriguez, A., Roy, S., Ruder, S., Ruis, L., Rust, L., Sachan, A., Salamanca,
A., Saravanakumar, K. K., Satyakam, 1., Sebag, A. S., Sen, P., Sepehri, S., Seshadri,
P., Shen, Y., Sherborne, T., Shi, S. S., Shivaprasad, S., Shmyhlo, V., Shrinivason, A.,
Shteinbuk, I., Shukayev, A., Simard, M., Snyder, E., Spataru, A., Spooner, V., Starostina,

27

https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf

Under review as a conference paper at ICLR 2026

T., Strub, F., Su, Y., Sun, J., Talupuru, D., Tarassov, E., Tommasone, E., Tracey, J.,
Trend, B., Tumer, E., Ustiin, A., Venkitesh, B., Venuto, D., Verga, P., Voisin, M., Wang,
A., Wang, D., Wang, S., Wen, E., White, N., Willman, J., Winkels, M., Xia, C., Xie, J.,
Xu, M., Yang, B., Yi-Chern, T., Zhang, 1., Zhao, Z., and Zhao, Z. (2025). Command a:
An enterprise-ready large language model.

Damian, A., Nichani, E., and Lee, J. D. (2023). Self-stabilization: The implicit bias of
gradient descent at the edge of stability. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Darvish Rouhani, B., Garegrat, N., Savell, T., More, A., Han, K.-N., Zhao, R., and Hall, M.
(2023a). Open compute project.

Darvish Rouhani, B., Zhao, R., Elango, V., Shafipour, R., Hall, M., Mesmakhosroshahi, M.,
More, A., Melnick, L., Golub, M., Varatkar, G., et al. (2023b). With shared microexponents,
a little shifting goes a long way. In Proceedings of the 50th Annual International Symposium
on Computer Architecture, pages 1-13.

DeepMind, G. (2025). Gemini 2.5 technical report. https://storage.googleapis.com/
deepmind-media/gemini/gemini_v2_5_report.pdf. Accessed: 2025-06-20.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P., Heek, J., Gilmer, J., Steiner, A.,
Caron, M., Geirhos, R., Alabdulmohsin, I., Jenatton, R., Beyer, L., Tschannen, M., Arnab,
A., Wang, X., Riquelme, C., Minderer, M., Puigcerver, J., Evci, U., Kumar, M., van
Steenkiste, S., Elsayed, G. F., Mahendran, A., Yu, F., Oliver, A., Huot, F., Bastings,
J., Collier, M. P., Gritsenko, A., Birodkar, V., Vasconcelos, C., Tay, Y., Mensink, T.,
Kolesnikov, A., Paveti¢, F., Tran, D., Kipf, T., Lué¢i¢, M., Zhai, X., Keysers, D., Harmsen,
J., and Houlsby, N. (2023). Scaling vision transformers to 22 billion parameters.

Fishman, M., Chmiel, B., Banner, R., and Soudry, D. (2024). Scaling {p8 training to
trillion-token llms. arXiv preprint arXiv:2409.12517.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A.,
Mathur, A., Schelten, A., Vaughan, A., et al. (2024). The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Groeneveld, D., Beltagy, 1., Walsh, P., Bhagia, A., Kinney, R., Tafjord, O., Jha, A. H., Ivison,
H., Magnusson, I., Wang, Y., et al. (2024). Olmo: Accelerating the science of language
models. arXiv preprint arXiv:2402.00838.

Henry, A., Dachapally, P. R., Pawar, S. S., and Chen, Y. (2020). Query-key normalization
for transformers. CoRR, abs/2010.04245.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D.
d. L., Hendricks, L. A., Welbl, J., Clark, A., et al. (2022). Training compute-optimal large
language models. arXiv preprint arXiw:2203.15556.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., and Kalenichenko,
D. (2017). Quantization and training of neural networks for efficient integer-arithmetic-only
inference.

Jastrzebski, S., Szymczak, M., Fort, S.; Arpit, D., Tabor, J., Cho, K., and Geras, K. (2020).
The break-even point on optimization trajectories of deep neural networks.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S.,
Radford, A., Wu, J., and Amodei, D. (2020). Scaling laws for neural language models.
arXiv preprint arXiw:2001.08361.

Kumar, T., Ankner, Z., Spector, B. F., Bordelon, B., Muennighoff, N., Paul, M., Pehlevan,
C., R¢, C., and Raghunathan, A. (2024). Scaling laws for precision. arXiv preprint
arXiw:2411.04330.

Lee, J., Bae, J., Kim, B., Kwon, S. J., and Lee, D. (2025). To fp8 and back again: Quantifying
reduced precision effects on llm training stability.

28

https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf

Under review as a conference paper at ICLR 2026

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki,
C., Li, J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko, O., Gontier, N., Meade, N.,
Zebaze, A., Yee, M.-H., Umapathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang, Z.,
Murthy, R., Stillerman, J., Patel, S. S.; Abulkhanov, D., Zocca, M., Dey, M., Zhang, Z.,
Fahmy, N., Bhattacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas, P., Kunakov, M.,
Zhdanov, F., Romero, M., Lee, T., Timor, N., Ding, J., Schlesinger, C., Schoelkopf, H.,
Ebert, J., Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson, C. J., Dolan-Gavitt, B.,
Contractor, D., Reddy, S., Fried, D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,
S., Wolf, T., Guha, A., von Werra, L., and de Vries, H. (2023). Starcoder: may the source
be with youl!

Lin, L., Wu, J., Kakade, S. M., Bartlett, P. L., and Lee, J. D. (2025). Scaling laws in linear
regression: Compute, parameters, and data.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., et al. (2024). Deepseek-v3 technical report. arXiv preprint arXiv:2412.19487.

Ma, J., Pei, H., Lausen, L., and Karypis, G. (2025). Understanding silent data corruption in
llm training.

Meta, A. (2025). The llama 4 herd: The beginning of a new era of natively multimodal ai
innovation.

Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey, P., Grisenthwaite, R., Ha, S.,
Heinecke, A., Judd, P., Kamalu, J., et al. (2022a). Fp8 formats for deep learning. arXiv
preprint arXiw:2209.05433.

Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey, P., Grisenthwaite, R., Ha, S.,
Heinecke, A., Judd, P., Kamalu, J., Mellempudi, N., Oberman, S., Shoeybi, M., Siu, M.,
and Wu, H. (2022b). Fp8 formats for deep learning.

Microsoft (2024). Mx pytorch emulation library.

Mishra, A., Stosic, D., Layton, S., and Micikevicius, P. (2025). Recipes for pre-training llms
with mxfp8.

Molybog, 1., Albert, P., Chen, M., DeVito, Z., Esiobu, D., Goyal, N., Koura, P. S., Narang,
S., Poulton, A.; Silva, R., Tang, B., Liskovich, D., Xu, P., Zhang, Y., Kambadur, M.,
Roller, S., and Zhang, S. (2023). A theory on adam instability in large-scale machine
learning.

Noune, B., Jones, P., Justus, D., Masters, D., and Luschi, C. (2022). 8-bit numerical formats
for deep neural networks.

NVIDIA (2025). Nvidia blackwell architecture.

OpenAl (2025). Gpt-4.5 system card. https://cdn.openai.com/
gpt-4-5-system-card-2272025.pdf. Accessed: 2025-06-20.

Penedo, G., Kydli¢ek, H., allal, L. B., Lozhkov, A., Mitchell, M., Raffel, C., Werra, L. V.,
and Wolf, T. (2024). The fineweb datasets: Decanting the web for the finest text data at
scale. In The Thirty-eight Conference on Neural Information Processing Systems Datasets
and Benchmarks Track.

Porian, T., Wortsman, M., Jitsev, J., Schmidt, L., and Carmon, Y. (2025). Resolving
discrepancies in compute-optimal scaling of language models.

Rouhani, B. D., Zhao, R., More, A., Hall; M., Khodamoradi, A., Deng, S., Choudhary, D.,
Cornea, M., Dellinger, E., Denolf, K., et al. (2023). Microscaling data formats for deep
learning. arXiv preprint arXiw:2310.10537.

29

https://cdn.openai.com/gpt-4-5-system-card-2272025.pdf
https://cdn.openai.com/gpt-4-5-system-card-2272025.pdf

Under review as a conference paper at ICLR 2026

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z., Zhang, K., Gao, P., Qiao, Y., and
Luo, P. (2024). Omniquant: Omnidirectionally calibrated quantization for large language
models.

Shazeer, N. (2020). Glu variants improve transformer.

Sun, M., Chen, X., Kolter, J. Z., and Liu, Z. (2024). Massive activations in large language
models. arXiv preprint arXiv:2402.17762.

Takase, S., Kiyono, S., Kobayashi, S., and Suzuki, J. (2025). Spike no more: Stabilizing the
pre-training of large language models.

Tseng, A., Yu, T., and Park, Y. (2025). Training llms with mxfp4.

Wortsman, M., Liu, P. J., Xiao, L., Everett, K. E., Alemi, A. A., Adlam, B., Co-Reyes,
J. D., Gur, I., Kumar, A., Novak, R., Pennington, J., Sohl-Dickstein, J., Xu, K., Lee, J.,
Gilmer, J., and Kornblith, S. (2024). Small-scale proxies for large-scale transformer training
instabilities. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net.

Xu, K., Lin, J., Wang, Z., Hu, P., and Zhao, Z. (2023). Improved fully quantized training
via rectifying batch normalization. arXiv preprint arXiv..

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi, D., Ryder, N., Pachocki, J.,
Chen, W., and Gao, J. (2022). Tensor programs v: Tuning large neural networks via
zero-shot hyperparameter transfer.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li,
X., Lin, X. V., Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D., Koura, P. S.,
Sridhar, A., Wang, T., and Zettlemoyer, L. (2022). Opt: Open pre-trained transformer
language models.

Zoph, B., Bello, I., Kumar, S., Du, N., Huang, Y., Dean, J., Shazeer, N., and Fedus, W.
(2022). St-moe: Designing stable and transferable sparse expert models.

30

	Introduction
	Related Work
	Low-Precision Instabilities
	Review of MX Formats and Experimental Approach

	LLM Experiments
	Setup
	Instabilities in Low Precision

	Synthetic Experiments
	Setup
	The Effect of Activation Functions and layernorms

	Overflow Dynamics
	Overflow Issues with layernorms
	Potential Mitigations

	Stabilization Strategies in LM Setting
	Conclusion
	Review of Shared-Scale Quantization
	GEMM simulation settings

	Multiplicative Noise
	Behavior of the Noise
	A Crude Bound

	Hyperparameter Tuning in our Proxy Model
	Sweeping over learning rates and architectures

	Differences Between our Proxy Model and LLM
	Additional Synthetic Sweeps
	LayerNorm Ablations on LM Setting
	Scaling Law Fits and Loss Curves after Mitigation
	Details of LM Training
	Validation Losses in Language Models with Mitigations
	Additional Unstable LM Sweeps

