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Abstract

Value decomposition has long been a fundamental technique in multi-agent rein-
forcement learning and dynamic programming. Specifically, the value function of
a global state (s1, s2, . . . , sN ) is often approximated as the sum of local functions:
V (s1, s2, . . . , sN ) ≈

∑N
i=1 Vi(si). This approach has found various applications

in modern reinforcement learning systems. However, the theoretical justification
for why this decomposition works so effectively remains underexplored. In this
paper, we uncover the underlying mathematical structure that enables value decom-
position. We demonstrate that a Markov decision process (MDP) permits value
decomposition if and only if its transition matrix is not “entangled”—a concept
analogous to quantum entanglement in quantum physics. Drawing inspiration
from how physicists measure quantum entanglement, we introduce how to measure
the “Markov entanglement” and show that this measure can be used to bound the
decomposition error in general multi-agent MDPs. Using the concept of Markov
entanglement, we proved that a widely-used class of policies, the index policy, is
weakly-entangled and enjoys a sublinear O(

√
N) scale of decomposition error

for N -agent systems. Finally, we show Markov entanglement can be efficiently
estimated, guiding practitioners on the feasibility of value decomposition.

1 Introduction

Learning the value function given certain policy, or policy evaluation, is one of the most fundamental
tasks in RL. Significant attention has been paid to single-agent policy evaluation [39, 8, 40]. However,
when it comes to multi-agent reinforcement learning (MARL), single-agent methodologies typically
suffer from the curse of dimensionality: the state space of the system scales exponentially with the
number of agents. To tackle this problem, one common technique is value decomposition,

V (s1, s2, . . . , sN ) ≈
N∑
i=1

Vi(si) ,

where Vi is some local function that can be learned independently by each agent. It quickly follows
that this decomposition greatly reduces the computation complexity from exponential to linear
dependency on the number of agents N .

The remaining question is whether this decomposition is effective. This is non-trivial due to the
coupling of agents—individual agent’s action and transition depend on other agents. For example, in
a ride-hailing platform, if one driver took the order, then other drivers are not allowed fulfill the same
order. As a result, value decomposition may lose information and introduce bias without considering
the global constraints.

In the past several decades, both positive and negative results have been reported. Back to the last
century, [49, 47] apply Lagrange relaxations to decompose the global value and obtain the well-known
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Whittle index policy. The Lagrange decomposition idea has also been proved successful in many
other important multi-agent tasks such as network revenue management [1, 50], resource allocation
[27, 7], and online matching [11, 12, 36, 28]. However, Lagrange decomposition relies on the
knowledge of system dynamics and [2] show its decomposition error can be arbitrarily bad for general
multi-agent MDPs. In more recent days, practitioners apply online (deep) reinforcement learning
to train a local value function for each individual agent. This practice gives birth to state-of-the-art
dispatching policies in ride-hailing platforms and has been well recognized by the operations research
community, such as DiDi Chuxing [33] (Daniel H. Wagner Prize, 2020) and Lyft [4] (Franz Edelman
Laureates, 2024). Intervention policies based on a similar value decomposition idea also demonstrate
substantial empirical advantages and have been deployed by a behavioral health platform in Kenya
[5] (Pierskalla Award, 2024). In broader MARL literature, value decomposition serves as one key
component of centralized training and decentralized execution (CTDE) paradigm, achieving strong
empirical performance [38, 29, 35]. However, recent research has started reflecting on the invalidity
and potential flaw of value decomposition in practice [25, 16].

Despite all these empirical success and failures, there remains little theoretical understanding of
whether and how we can decompose the value function in multi-agent MDPs.

1.1 This paper

In this paper, we will uncover the underlying mathematical structure that enables/disables value
decomposition. Our new theoretical framework quantifies the inter-dependence of agents in multi-
agent MDPs and systematically characterizes the effectiveness of value decomposition. For simplicity,
we will demonstrate the main results through two-agent MDPs indexed by agent A and B. We later
extend our results to general N -agent MDPs in Appendix H.

We start with a trivial example where two agents are independent, i.e. each following independent
MDPs. It’s clear that the global value function can be decomposed as the sum of value functions of
local MDPs. As two agents are independent, it holds Pπ(s′A, s

′
B | sA, sB) = Pπ(s′A | sA) ·Pπ(s′B |

sB), or in matrix form,
P π

AB = P π
A ⊗ P π

B ,

where ⊗ is the tensor product or Kronecker product of matrices. The important question is whether
we can extend beyond this trivial case of independent subsystems.

A Sufficient and Necessary Condition We introduce a new condition called “Markov Entangle-
ment” to describe the intrinsic structure of transition dynamics in multi-agent MDPs.

Definition 1 (Markov Entanglement). Consider a two-agent MDP with transition P π
AB . If

there exists

P π
AB =

K∑
j=1

xjP
(j)
A ⊗ P

(j)
B ,

then P π
AB is separable; otherwise entangled.

Compared with the preceding example of independent subsystems, Markov entanglement offers an
intuitive interpretation: a two-agent MDP is separable if it can be expressed as a linear combination
of independent subsystems. We then demonstrate,

separable P π
AB ⇐⇒ decomposable V π

AB ,

where V π
AB is decomposable if there exist local value functions VA,VB such that V π

AB(sA, sB) =
VA(sA) + VB(sB) for all (sA, sB). This result sharply unravels the secret structure of system
dynamics governing value decomposition. As a sufficient condition, our finding strictly generalizes
the previous independent subsystem example, extending it to scenarios involving interacting and
coupled agents. As a necessary condition, we prove that exact value decomposition under any reward
kernel requires the system dynamics to be separable. Taken together, this result provides a complete
characterization of when exact value function decomposition is possible in multi-agent MDPs.

More interestingly, our Markov entanglement condition turns out be a mathematical counterpart of
quantum entanglement in quantum physics, whose definition is provided below.
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Definition 2 (Quantum Entanglement). Consider a two-party quantum state ρAB . If there
exists

ρAB =

K∑
j=1

xjρ
(j)
A ⊗ ρ

(j)
B , x ≥ 0 ,

then ρAB is separable; otherwise entangled.

The quantum state is represented by a density matrix, a positive semidefinite matrix with unit trace,
analogous to transition matrix in the Markov world. The concept of quantum entanglement describes
the inter-dependence of particles in a quantum system, while Markov entanglement describes that of
agents in a Markov system.

Finally, we introduce several novel proof techniques concerning the sufficient and necessary condition,
including an “absorbing” technique for separable transition matrices and a novel characterization of
the linear space spanned by tensor products of transition matrices. We believe these techniques hold
independent interest for the broader RL community.

Decomposition Error in General Multi-agent MDPs Despite the precise characterization of
Markov entanglement and exact value decomposition, general multi-agent MDPs can exhibit arbitrary
complexity, with agents intricately entangled. This raises a critical question: can value decomposition
serve as a meaningful approximation in such scenarios? To address this, we introduce a mathematical
quantification to measure the Markov entanglement in general multi-agent MDPs,

E(P π
AB) := min

P∈PSEP

d(P π
AB ,P ) , (1)

where PSEP is the set of all separable transition matrices and d(·, ·) is some distance measure. In
other words, the degree of Markov entanglement is determined by its distance to the closest separable
transition matrix. This concept can also find its counterpart in quantum physics, with the measure of
quantum entanglement defined as

E(ρAB) := min
ρ∈ρSEP

d(ρAB , ρ) ,

where ρSEP is the set of all separable quantum states. In quantum physics, various distance measures
have been designed for density matrices and capture different physical interpretations [31]. In the
Markov world, we analogously design distance measures for transition matrices and relate them to
the value decomposition error,∥∥∥decomposition error of V π

AB

∥∥∥ = O
(
E(P π

AB)
)
.

where ∥·∥ depends on the distance we use to measure Markov entanglement. We explore diverse
distance measures including the well-known total variation distance and its stationary distribution
weighted variant. We also design a novel agent-wise distance incorporating the multi-agent structure,
which may be of independent interest to the MARL community. We further demonstrate how different
distance measures give birth to the decomposition error in different norms.

Applications of Markov Entanglement Finally, we leverage our Markov entanglement theory to
analyze several structured multi-agent MDPs. We prove that a widely-used class of index policies is
asymptotically separable, exhibiting a decomposition error that scales as O(

√
N) with the number

of agents N . This result theoretically justifies the practical effectiveness of value decomposition
for index-based policies. Our proof builds on innovations that integrate Markov entanglement with
mean-field analysis. We also show that Markov entanglement admits an efficient empirical estimation,
thus helping practitioners determine when value decomposition is feasible.

1.2 Other related work

In the first section, we have reviewed typical empirical works on value decomposition. Here, we
complement that discussion with related literature on theoretical insights.

Prior theoretical research has extensively investigated the decomposition of optimal value functions in
multi-agent settings. A prominent area involves Lagrange relaxation, with the Restless Multi-Armed

3



Bandit (RMAB, [49]) as a foundational model. Lagrange relaxation decouples the constraint of agents,
yielding a decomposable value that upper bounds the original value. The per-agent decomposition
error is proven to decay asymptotically to zero [47, 48, 41] and enjoys a quadratic or exponential
rate [20, 21, 11, 51, 52]. Other work generalizes to Weakly-Coupled MDPs (WCMDPs) [6, 13, 19].
However, [2] showed Lagrange relaxation can have arbitrarily large errors and proposed an alternative
decomposition called Approximate Linear Programs (ALP), which is proven to have tighter error
[12]. Despite these advancements, characterizing decomposition error for general multi-agent MDPs
remains unknown. In contrast, our Markov entanglement theory analyzes value decomposition for
general multi-agent MDPs under arbitrary policies, including optimal ones.

Another line of theoretical work has concentrated on policy optimization via value decomposition.
Despite reported empirical successes, rigorous theoretical analysis remains challenging. [5] derived
an approximation ratio for a specific index policy on a two-state RMAB. [43, 16] analyzed the
convergence of the CTDE paradigm under strong exploration assumptions, while also highlighting
scenarios of divergence. In contrast, our work instead focuses on policy evaluation rather than
optimization. This enables us to derive clear and interpretable bounds on the decomposition error for
general finite-state multi-agent MDPs that only require the existence of a stationary distribution.

Notations We abbreviate subscripts (s) := (s1:N ) := (s1, s2, . . . , sN ). Particularly, for two-agent
case, when the context is clear, we abbreviate (s) := (sAB) := (sA, sB). Let [N ] = {1, 2, . . . , N}
and Z+ be the set of positive integers.

2 Model

We consider a standard two-agent MDP MAB(S,A,P , rA, rB , γ) with joint state space S =
SA × SB and joint action space A = AA ×AB where A,B represent two agents. For simplicity,
let |SA| = |SB | = |S| and |AA| = |AB | = |A|. For agents at global state s = (sA, sB) with
action a = (aA, aB) taken, the system will transit to s′ = (s′A, s

′
B) according to transition kernel

s′ ∼ P (· | s,a) and each agent i ∈ {A,B} will receive its local reward ri(si, ai). The global reward
rAB is defined as the summation of local rewards rAB(s,a) := rA(sA, aA) + rB(sB , aB), or in
vector form rAB ∈ R|S|2|A|2 := rA⊗e+e⊗rB , where ⊗ is the tensor product and e = 1 ∈ R|S||A|

is the vector of all ones.1 We further assume the local rewards are bounded, i.e. for agent i ∈ {A,B},
|ri(si, ai)| ≤ rimax for all (si, ai).

Given any global policy π : S → ∆(A), the global Q-value under policy π is defined as the dis-
counted summation of global rewards Qπ

AB(s,a) = E
[∑∞

t=0 γ
trAB(s

t,at) | π, (s0,a0) = (s,a)
]

where γ ∈ [0, 1) is the discount factor. The value function is then defined as V π
AB(s) =

Ea∼π(·|s) [Q
π
AB(s,a)]. We denote P π

AB ∈ R|S|2|A|2×|S|2|A|2 as the transition matrix induced by
π where Pπ

AB (s′,a′ | s,a) = P (s′ | s,a) · π (a′ | s′). Then by the Bellman Equation, we have
Qπ

AB = (I − γP π
AB)

−1
rAB . Our objective is to decompose this global Q-value Qπ

AB as the sum-
mation of some local functions QA and QB , i.e. Qπ

AB(s,a) = QA(sA, aA) + QB(sB , aB), or in
vector form,

Qπ
AB = QA ⊗ e+ e⊗QB . (2)

Notice we formally introduce our research question using Q-value instead of V-value function as in the
introduction. Q-value decomposition is a stronger result that implies V-value function decomposition.
It also turns out that Q-value further incorporates action information enabling more general theoretical
analysis. More discussions can be found in Appendix B.

2.1 Local (Q-)value functions

Recent literature offers several algorithms for learning local (Q-)values. In this paper, we use a
meta-algorithm framework in 1 to summarize their underlying principles.

This meta-algorithm framework is simple and intuitive: each agent independently fits its local Q-
values based on its local observations. Notably, the framework requires no prior knowledge of the
MDP, and learning can be performed in a fully decentralized manner. Furthermore, we use term meta
in that we do not pose restrictions on how agents estimate their local Q-values. For tabular case, one

1In Appendix J.4, we extend our results to multi-agent MDP model where the global cannot be decomposed.
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Meta Algorithm 1: Leaning Local Q-value Functions
Require: Global policy π; horizon length T .

1: Execute π for T epochs and obtain D =
{
(stAB , a

t
AB , r

t
AB , s

t+1
AB , at+1

AB )
}T−1

t=1
.

2: Each agent i ∈ {A,B} fits Qπ
i using local observations Di =

{
(sti, a

t
i, r

t
i , s

t+1
i , at+1

i )
}T−1

t=1
.

can plug in Temporal Difference (TD) learning [39] or its variants. For large-scale problems, one
can apply linear function approximations (e.g. [5, 24, 8]) or more sophisticated neural networks (e.g.
[33, 38, 29]).

Despite the flexibility in fitting local value functions, it is helpful to call out a particular approach: TD
learning for local Q-values in the tabular case, as it facilitates the analysis and reveals the structure of
value decomposition in the next section.

Local TD learning. Although each agent’s environment is not Markovian in a local sense (it is, more
precisely, partially observed Markovian), one can still define its “marginalized” local transition matrix
under the stationary distribution. Mathematically, for agent A, we denote P π

A ∈ R|S||A|×|S||A| as its
local transition where

Pπ
A(s

′
A, a

′
A | sA, aA) =

∑
s′B ,a′

B

∑
sB ,aB

Pπ
AB (s′AB , a

′
AB | sAB , aAB)µ

π
AB(sB , aB | sA, aA) . (3)

Here, µπ
AB ∈ ∆(S) denotes the global stationary distribution under policy π (for convenience, we

assume π induces a unichain, i.e. µπ
AB is unique and strictly positive).2 Given this "marginalized"

local transition, the local Q-values obtained by Meta Algorithm 1 using tabular TD learning converge
to the solution of the following “marginalized” Bellman equation:

Qπ
A = (I − γP π

A)
−1

rA .

By symmetry, we can derive analogous results for agent B, obtaining its transition matrix P π
B and

local Q-values Qπ
B . Next, we show how Qπ

A and Qπ
B contribute to the exact value decomposition.

3 Exact value decomposition

To begin, recall the key condition we identify in the introduction: Markov Entanglement in Defini-
tion 1. Our first theorem shows that an MDP with no Markov entanglement is indeed sufficient for
the exact value decomposition. More importantly, local TD learning (or Meta Algorithm 1 more
generally) is guaranteed to recover such decomposition, i.e. Qπ

AB = Qπ
A ⊗ e+ e⊗Qπ

B .

Theorem 1. Consider a two-agent MDP MAB and policy π : S → ∆(A). If two agents are

separable, i.e. there exists K ∈ Z+, measure {xj}j∈[K], and transition matrices
{
P

(j)
A ,P

(j)
B

}
j∈[K]

such that P π
AB =

∑K
j=1 xjP

(j)
A ⊗P

(j)
B . Then it holds P π

A =
∑K

i=1 xjP
(j)
A and P π

B =
∑K

j=1 xjP
(j)
B .

Furthermore, the Eq. (2) holds

Qπ
AB = Qπ

A ⊗ e+ e⊗Qπ
B .

This theorem establishes that even when the system is not independent, as long as it can be represented
as a linear combination of independent subsystems, the global Q-value admits an exact decomposition.

An illustrative example of coupling and Markov entanglement To elucidate the concept of
Markov entanglement, we present an example of two-agent MDP where agents are coupled but
not entangled. Consider a two-agent MDP MAB with |AA| = |AB | = 2 , where action 1 means
activate and 0 means idle. Each agent i ∈ {A,B} has its own local transition kernel Pi. We examine
the following policy: at each time-step, we randomly activate one agent and keep another idle, i.e.

2For µπ
AB(sB , aB | sA, aA) to be well-defined, we require µπ

AB(sA, aA) > 0. If µπ
AB(sA, aA) = 0, then

action aA is never taken in state sA under policy π, and we exclude such pairs by restricting the feasible action
set A(sA). All theoretical results apply to the remaining valid state-action pairs.
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π(a | s) = 1/2 if a = (0, 1) or a = (1, 0). Consequently, this policy couples the agents through the
constraint aA + aB = 1 at each timestep. However, we will demonstrate that despite this coupling,
there’s no entanglement. Specifically, we construct the following decomposition

P π
AB =

1

2
P 0

A ⊗ P 1
B +

1

2
P 1

A ⊗ P 0
B , (4)

where P a
i refers to the transition matrix of agents i ∈ {A,B} taking action a ∈ {0, 1}. Intuitively,

the right-hand side of Eq. (4) describes how at each time step, the global system randomly selects
between two possible transitions: P 0

A ⊗P 1
B or P 1

A ⊗P 0
B , each with equal probability (akin to rolling

a fair dice). This example thus clearly demonstrates a coupled system can still be separable and thus
admits an exact value decomposition.

Proof of sufficiency Theorem 1 admits a simple proof based on the several basic properties of tensor
product. First of all, given P π

AB =
∑K

j=1 xjP
(j)
A ⊗ P

(j)
B , we can plug this into the formulation of

P π
A in Eq. (3) and quickly verify P π

A =
∑K

i=1 xiP
(i)
A . It remains to show Eq. (2). Notice that

(I − γP π
AB)

−1
(rA ⊗ e) =

∞∑
t=0

γt

 K∑
j=1

xjP
(j)
A ⊗ P

(j)
B

t

(rA ⊗ e)

(i)
=

∞∑
t=0

γt

 K∑
j=1

xjP
(j)
A

t

rA

⊗ e =
(
(I − γP π

A)
−1

rA

)
⊗ e = Qπ

A ⊗ e .

where we refer to (i) as an “absorbing” technique based on the bilinearity and mixed-product property
of tensor product3. Specifically, since Pe = e for any transition matrix P , we have for any t, K∑

j=1

xjP
(j)
A ⊗ P

(j)
B

t

(rA ⊗ e) =

 K∑
j=1

xjP
(j)
A ⊗ P

(j)
B

t−1 K∑
j=1

xj

(
P

(j)
A rA

)
⊗
(
P

(j)
B e

)
=

 K∑
j=1

xjP
(j)
A ⊗ P

(j)
B

t−1 K∑
j=1

xjP
(j)
A rA

⊗ e = . . . =

 K∑
j=1

xjP
(j)
A

t

rA

⊗ e .

Similar results can be derived for P π
B such that (I − γP π

AB)
−1

(e⊗ rB) = e ⊗ Qπ
B . Finally,

combining the above results, we have

Qπ
AB = (I − γP π

AB)
−1

rAB = (I − γP π
AB)

−1
(rA ⊗ e+ e⊗ rB) = Qπ

A ⊗ e+ e⊗Qπ
B .

3.1 Necessary condition for the exact value decomposition

We then investigate whether Markov entanglement is necessary for the exact Q-value decomposition.
The answer is in general no, since one can construct trivial counterexamples such as rA = rB = 0 or
γ = 0, where the decomposition trivially holds. On the other hand, we focus on a stronger and more
general concept of the exact value decomposition that holds under any reward kernel given γ > 0.
Formally, we present the following theorem.
Theorem 2. Consider a two-agent Markov MDP MAB with discount factor γ > 0 and π : S →
∆(A). Suppose there exists local functions Qi : ri → R|S||A| for i ∈ {A,B} such that Qπ

AB =
QA(rA)⊗ e+ e⊗QB(rB) holds for any pair of reward rA, rB , then A,B must be separable.

Combined with Theorem 1, we conclude Markov entanglement serves as a sufficient and necessary
condition for the exact value decomposition. We also emphasize that Theorem 2 considers general
local functions Qi. This generality accommodates all methods for fitting local Qi, such as deep
neural networks, provided that the training relies solely on the local observations of agent i.

There exist other possible ways for value decomposition. For example, [38, 16] consider
Qπ

AB(s,a) = LA(sA, aA, rAB) + LB(sB , aB , rAB) where LA, LB are learned jointly via min-
imizing the global Bellman error4; [35, 29, 37, 42] consider general monotonic operations beyond

3We introduce several basic properties of tensor product in Appendix A.
4In Appendix E, we provide an example of entangled MDP that allows for an exact value decomposition

where LA depends on both rA and rB .
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additive decompositions. These methods introduce possibly richer representations at the cost of more
sophisticated implementations and less interpretability, which is beyond the scope of this paper.

Proof sketch of necessity Our proof builds on several novel techniques. Recall PSEP is the set of
all separable transition matrices.

Step 1: Understanding the orthogonal complement. If a transition matrix is entangled, it will have
non-zero component in the orthogonal complement of PSEP, which we construct as

P⊥
SEP =


|S||A|−1∑

j=1

(
εje

⊤)⊗W 1
j +

|S||A|−1∑
j=1

W 2
j ⊗

(
εje

⊤) ∣∣∣∣∣∣W 1
1:j ,W

2
1:j ∈ R|S||A|×|S||A|

 ,

where εj = (1, 0, . . . , 0,−1, 0, . . . , 0)⊤ with the first element 1 and (j + 1)-th element −1. Then,
we study an intermediate transition matrix (1− γ)(I − γP π

AB)
−1. We show if it’s entangled, we are

able to construct rA, rB based on its component in P⊥
SEP such that Qπ

AB is not decomposable under
this pair of rewards. We thus conclude decomposable Qπ

AB =⇒ separable (1− γ)(I − γP π
AB)

−1.

Step 2: Connecting to “inverse”. Finally, we complete the proof via a lemma showing separable
(1− γ)(I − γP π

AB)
−1 ⇐⇒ separable P π

AB . The ⇐= side is straightforward since (I − γP π
AB)

−1

is the Neumann series of γP π
AB . For the converse =⇒, we seek to invert this Neumann series. This

is achieved by a careful analysis of the operator norm of I − (1− γ)(I − γP π
AB)

−1.

4 Value decomposition error in general two-agent MDPs

In general, the system transition P π
AB can be arbitrarily entangled. In these scenarios, we investigate

when value decomposition Qπ
A ⊗ e+ e⊗Qπ

B is an effective approximation of Qπ
AB . As mentioned

in the introduction, we define the measure of Markov entanglement in Eq. (1) as certain distance
between P π

AB and its closet separable transition matrix. We will examine several distance measures
for transition matrices and relate them to the decomposition error.

4.1 Entry-wise error bound

Total variation distance One widely used metric for transition matrices is Total Variation (TV)
distance. Specifically, for two transition matrices P ,P ′ ∈ R|S|2|A|2×|S|2|A|2 , define

∥P − P ′∥TV := max
(s,a)∈S×A

DTV(P (·, · | s,a),P ′(·, · | s,a)) , (5)

where DTV is the total variation distance between probability measures. While TV distance is
straightforward, it does not take into account the inherent multi-agent structure.

Agent-wise distance We thus introduce a more refined distance specially designed for multi-agent
MDPs. Formally, the Agent-wise Total Variation (ATV) distance between two transition matrices
P ,P ′ ∈ R|S|2|A|2×|S|2|A|2 w.r.t agent A is defined as

∥P − P ′∥ATVA
:= max

(s,a)∈S×A
DTV

 ∑
s′B ,a′

B

P (·, · | s,a),
∑

s′B ,a′
B

P ′(·, · | s,a)

 . (6)

The ATV distance w.r.t agent B can be defined similarly. Intuitively, compared to TV, ATV focuses on
an individual agent and measures the difference between its local transitions. One can also verify ATV
is tighter distance, i.e. ∥P − P ′∥ATVA

≤ ∥P − P ′∥TV. We can plug ATV into Eq. (1) and obtain
the measure of Markov entanglement w.r.t ATV distance Ei(P

π
AB) := minP∈PSEP

∥P π
AB − P ∥ATVi

for i ∈ {A,B}. In fact, one can also verify

EA(P
π
AB) = min

PA

max
(s,a)∈S×A

DTV

(
P π

AB(·, · | s,a),PA(·, · | sA, aA)
)
, (7)

The following theorem connects these measures to the value decomposition error.
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Theorem 3. Consider a two-agent Markov system MAB and policy π : S → ∆(A) with the measure
of Markov entanglement EA(P

π
AB), EB(P

π
AB) defined in Eq. (7), then the decomposition error is

entry-wise bounded by the measure of Markov entanglement,∥∥∥Qπ
AB − (Qπ

A ⊗ e+ e⊗Qπ
B)
∥∥∥
∞

≤
4γ
(
EA(P

π
AB)r

A
max + EB(P

π
AB)r

B
max

)
(1− γ)2

.

4.2 Error weighted by stationary distribution

Entry-wise error bound is a very strong result for Q-value decomposition. This comes with the
entry-wise TV bounds in both TV and ATV distance. An alterative choice is to consider an error
weighted by the stationary distribution. Formally, consider∥∥∥Qπ

AB−(Qπ
A ⊗ e+ e⊗Qπ

B)
∥∥∥
µπ
AB

:=
∑
s,a

µπ
AB(s,a)

∣∣∣Qπ
AB(s,a)−(Qπ

A(sA, aA)+Qπ
B(sB , aB))

∣∣∣ .
We note that this norm is clearly weaker than the entry-wise norm. Nevertheless, a stationary
distribution weighted error bound is sufficient in many practical scenarios. Similar ideas are also
quite common in policy evaluation literature [14, 40, 9].

Distance weighted by stationary distribution To analyze this µπ
AB-weight decomposition error,

we analogously propose the µπ
AB-weighted distance measure of Markov entanglement. Specifically,

we have the following µπ
AB-weighted version of Eq. (7).

EA(P
π
AB) = min

PA

∑
s,a

µπ
AB(s,a)DTV

(
P π

AB(·, · | s,a),PA(·, · | sA, aA)
)
. (8)

Eq. (8) substitutes the µπ
AB-weighted average for the maximum operator in Eq. (7). Finally, we have

the following variant of Theorem 3.
Theorem 4. Under the same setup as Theorem 3 with µπ

AB-weighted measure of Markov entangle-
ment EA(P

π
AB), EB(P

π
AB) defined in Eq. (8), the µπ

AB-weighted decomposition error is bounded,∥∥∥Qπ
AB − (Qπ

A ⊗ e+ e⊗Qπ
B)
∥∥∥
µπ
AB

≤
4γ
(
EA(P

π
AB)r

A
max + EB(P

π
AB)r

B
max

)
(1− γ)2

.

Compared to Theorem 3, Theorem 4 measures a weaker µπ
AB-weighted decomposition error, while

the condition on P π
AB is also relaxed, requiring only a weighted average bound in Eq. (8).

4.3 Multi-agent Markov entanglement

Finally, we extend the results to multi-agent MDPs with the measure of Markov entanglement
E1:N (P π

1:N ) for an N -agent MDP. The extension is relatively straightforward. We demonstrate the
extension of Theorem 4 below and more details can be found in Appendix H.
Theorem 5. Consider a N -agent MDP M1:N with the measure of Markov entanglement Ei(P

π
1:N )

w.r.t ATV distance, the µπ
1:N -weighted decomposition error is bounded by the measure of Markov

entanglement, ∥∥∥∥∥Qπ
1:N (s,a)−

N∑
i=1

Qπ
i (si, ai)

∥∥∥∥∥
µπ
1:N

≤
4γ
(∑N

i=1 Ei(P
π
1:N )rimax

)
(1− γ)2

.

5 Applications of Markov Entanglement

In this section, we apply Markov entanglement and demonstrate a widely-used class of index policies
is asymptotically separable. To begin, we introduce the model of Restless Multi-Armed Bandit
(RMAB, [49]). In an N -agent RMAB, each agent follows a homogeneous two-action MDP with
action 1 meaning activate and 0 idle. A central decision maker will activate M ≤ N agents at each
timestep and leave other agents idle. In other words, agents transit independently but are coupled
under constraint

∑N
i=1 ai = M . In RMAB, arguably the most classical and widely-used policy is the

index policy, which we formally define as

8



Definition 3 (Index Policy). There exists a priority index νs for each local state s. The decision
maker will always activate agents in the descending order of the priority until the budget constraint
M is met. Ties are resolved fairly via uniform random sampling of agents at the same state.

The index policy traces back to the well-known Gittins Index [46], Whittle Index [49, 47, 20], and
fluid-based index policies [41, 21]. [33, 4, 5, 30, 44, 3] apply data-driven method to optimize index
policies and report great empirical success in industrial implementations. Understanding the mystery
behind such success calls for a theory for general index policies. We then present our main theorem.

Theorem 6. Consider an N -agent restless multi-armed bandit. For any index policy satisfying mild
technical conditions, there exists constant C independent of N , such that for any agent i ∈ [N ], its
µπ
1:N -weighted measure of Markov entanglement is bounded, Ei(P

π
1:N ) ≤ C/

√
N .

Theorem 6 requires two standard technical conditions for index policies: non-degenerate and uniform
global attractor property, which are used in almost all related theoretical work [47, 41, 20, 21] and
are detailed in Appendix I. Theorem 6 justifies index polices are asymptotically separable. Combined
with an N -agent version of Theorem 4, we obtain the sublinear decomposition error for index policies∥∥∥∥∥Qπ

1:N (s,a)−
N∑
i=1

Qπ
i (si, ai)

∥∥∥∥∥
µπ
1:N

≤ O(
√
N) .

This sublinear error result explains why the value decomposition in [33, 4, 5] manages to effectively
approximate the global value function in large-scale practical applications.

5.1 Efficient verification of value decomposition

For practitioners, verifying the feasibility of value decomposition is challenging due to the exponential
computational complexity of estimating the global Q-value. As a solution, Markov entanglement
offers an efficient way to empirically test whether value decomposition can be safely applied. Consider
the µπ

AB-weighted measure of Markov entanglement in Eq. (8), we have

EA(P
π
AB) ≈

1

2
min
PA

1

T

T∑
t=1

∑
s′A,a′

A

∣∣P π
AB(s

′
A, a

′
A | st,at)− PA(s

′
A, a

′
A | stA, atA)

∣∣ (9)

In other words, we can apply a Monte-Carlo estimation for EA(P
π
AB). Notice Eq. (9) is convex for

PA, which enables efficient solutions. As a result, Eq. (9) provides an efficient estimation of Markov
entanglement via simulation and can be easily extend to N -agent MDPs.

Numerical experiments. Finally, we empirically study the value decomposition for the index policy
on a circulant RMAB benchmark [3, 52, 10, 18] that has 4 different states each local agent. As a result,
the global state space scales as large as 41800 > 101000 for N = 1800 agents. The specific transitions
and rewards are introduced in Appendix K. For each RMAB instance, we sample a trajectory of
length T = 5N and use the collected data to i) solve Eq. (9) to estimate the measure of Markov
entanglement; ii) train local Q-value decomposition. It quickly follows from the results in Figure 1:

The estimated Markov entanglement decays as O(1/
√
N) in the left panel, consistent with theoretical

predictions. This also implies a low decomposition error scaling of O(
√
N), as seen in the right

panel. Furthermore, the simulated trajectory has a length of T = 5N while the global state space has
size |S|N , making both entanglement estimation and local Q-value decomposition sample-efficient.

6 Discussions

Comparison with quantum entanglement One notable difference between the definition of
Markov and quantum entanglement is that the former does not require coefficients x ≥ 0. In
Appendix C, we show there exist separable two-agent MDPs that can only be represented by linear
combinations but not convex combinations of independent subsystems, highlighting a structural
difference between Markov and quantum entanglement. Finally, we emphasize that our analogy
to quantum entanglement is mostly in the mathematical formulation; there is no clear physical
interpretation analogy between Markov and quantum entanglement.
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Figure 1: Circulant RMAB under an index policy. Left: empirical estimation of Markov entanglement
multiplied by the number of agents, NE1(P

π
1:N ). Right: µ-weighted decomposition error.

Relations to Influenced-based MARL There’s another line of MARL research that explicitly
models the influence of other agents as intrinsic rewards for exploration [45, 26]. It turns out the
mutual information can be viewed as the measure of Markov entanglement under KL-divergence.
Specifically, we can rewrite mutual information in [45] as

I(S′
2, A

′
2;S2, A2|S1, A1) =

∑
s,a,s′2,a

′
2

pπ(s,a, s′2, a
′
2)

(
log

pπ(s′2, a
′
2|s,a)

pπ(s′2, a
′
2|s2, a2)

)
=
∑
s,a

µπ(s,a)DKL (pπ(·|s,a)||P2(·|s2, a2)) .

This is highly related to our measure of Markov entanglement under a µπ-weighted agent-wise
KL-divergence, which we can define as

E2(P12) = min
P2

∑
s,a

µπ(s,a)DKL (pπ(·|s,a)||P2(·|s2, a2)) .

Intuitively, the measure of Markov entanglement can be viewed as how closely one agent can be
approximated as an independent subsystem. This characterization aligns naturally with mutual
information. Furthermore, since KL-divergence provides an upper bound for total variation distance,
it consequently bounds our Markov entanglement measure relative to the ATV distance introduced in
our paper. This connection demonstrates that influence-based MARL methods naturally fit within our
theoretical framework, corresponding to a specialized distance measure.

7 Conclusion

This paper established the mathematical foundation of value decomposition in MARL. Drawing inspi-
ration from quantum physics, we propose the idea of Markov entanglement and prove that it serves
as a sufficient and necessary condition for the exact value decomposition. We further characterize
the decomposition error in general multi-agent MDPs through the measure of Markov entanglement.
As application examples, we prove widely-used index policies are asymptotically separable and
suggest practitioners using Markov entanglement as a proxy for estimating the effectiveness of value
decomposition.
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A Linear algebra with tensor product

We briefly introduce the basic properties of tensor product or Kronecker product. Let A ∈
Rm1×n1 ,B ∈ Rm2×n2 , then

A⊗B =

 a11B a12B . . . a1n1
B

a21B a22B . . . a2n1
B

. . . . . . . . . . . .
am11B am12B . . . am1n1

B

 ∈ Rm1m2×n1n2 .

Tensor product satisfies the following basic properties,

• 1. Bilinearity For any matrix A,B,C and constant k, it holds k(A⊗B) = (kA)⊗B =
A⊗ (kB), (A+B)⊗C = A⊗C +B ⊗C, and A⊗ (B +C) = A⊗B +A⊗C.

• 2. Mixed-product Property For any matrix A,B,C,D, if AC and BD form valid
matrix product, then (A⊗B)(C ⊗D) = (AC)⊗ (BD).

B Decompose value functions

Compared to the decomposition of Q-value, the value function further requires the reward to be
state-dependent. To illustrate, notice by Bellman equation,

V π
AB = (I − γP π

AB)
−1rπAB ,

where we abuse notation and denote Pπ
AB(s

′ | s) =
∑

a π(a | s)P (s′ | s,a) and reward rπAB(s) =∑
a π(a | s)rAB(s,a). A key subtlety arises because rπAB may not be decomposable—even when

rAB is decomposable—unless the reward rAB is state-dependent. Consequently, we cannot directly
apply the "absorbing" equation as in the proof of Theorem 1.

On the other hand, Q-value decomposition bypasses the state-dependence assumption and provides a
stronger condition that directly implies value function decomposition. As a result, while learning
local value functions may seem more intuitive, we recommend learning local Q-values instead and
using them to approximate the global value function.

C Comparison with quantum entanglement

It turns out that our Markov entanglement condition serves as a mathematical counterpart of quantum
entanglement in quantum physics. We provide the formal definition of the latter for comparison.
Definition 4 (Two-party Quantum Entanglement). Consider a two-party quantum system composed
of two subsystems A and B. The joint state ρAB is separable if there exists K ∈ Z+, a probability
measure {xj}j∈[K], and density matrices

{
ρ
(j)
A , ρ

(j)
B

}
j∈[K]

such that

ρAB =

K∑
j=1

xjρ
(j)
A ⊗ ρ

(j)
B .

If there exists no such decomposition, ρAB is entangled.

The density matrices are square matrices satisfying certain properties such as positive semi-
definiteness and trace normalization, which can be viewed as the counterparts of transition matrices
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in the Markov world. Despite the similarities in mathematical form, quantum entanglement imposes
an additional constraint requiring {xj}j∈[K] to be a probability measure, i.e. x ≥ 0. In contrast, our
Markov entanglement defined in Definition 1 permits general linear coefficients {xj}j∈[K] as long

as
∑k

j=1 xj = 1. This distinction raises the important question of whether negative coefficients are
indeed necessary in characterizing Markov entanglement.

To start with, we introduce the set of all separable transition matrices

PSEP =

P ≥ 0

∣∣∣∣∣∣ P =

K∑
j=1

xjP
(j)
A ⊗ P

(j)
B ,

K∑
j=1

xj = 1

 ,

where K ∈ Z+ and
{
P

(j)
A ,P

(j)
B

}
j∈[K]

are transition matrices. P ≥ 0 calls for every element of

PSEP to be a valid transition matrix. It’s clear that a transition matrix P π
AB is separable if and only if

P π
AB ∈ PSEP. On the other hand, a direct analogy of quantum entanglement gives us the following

set that further requires non-negative coefficients,

P+
SEP =

P ≥ 0

∣∣∣∣∣∣ P =
K∑
j=1

xjP
(j)
A ⊗ P

(j)
B ,

K∑
j=1

xj = 1 , x ≥ 0

 .

Interestingly, it turns out P+
SEP ⊈ PSEP. In other words, there exist separable two-agent MDPs that can

only be represented by linear combinations but not convex combinations of independent subsystems.
Specifically, consider the following basis

E00 =

(
1 0
1 0

)
, E01 =

(
1 0
0 1

)
, E10 =

(
0 1
1 0

)
, E11 =

(
0 1
0 1

)
And the corresponding transition matrix we provide is

P =

 0.5 0 0 0.5
0.5 0 0 0.5
0.5 0 0 0.5
0 0.5 0.5 0

 =
1

2
E00 ⊗E00 +

1

2
E10 ⊗E11 +

1

2
E11 ⊗E10 −

1

2
E10 ⊗E10

One can also verify P can not be represented by the convex combination of tensor products of
these basis. This result justifies the necessity of negative coefficients in x and highlights a structural
difference between Markov entanglement and quantum entanglement

D Proof of Theorem 2

We provide the full proof of Theorem 2 in this section.

Step 1: Characterize the Orthogonal Complement. To start with, we consider the smallest
subspace containing all transition matrices ΩP := span(P) where P are the set of all transition
matrices in Rm×m. We then study the dimension of ΩP .

Lemma 1. The dimension of ΩP is dim(ΩP) = m2 −m+ 1.

Proof. Let Zij ∈ Rm×m such that

Zij(a, b) =

{
1 (a = i ∧ b = j) ∨ (a = b)
0 o.w.

.

One basis for all transition matrices is given by {Zij}i,j∈[m] whose cardinarlity is m2 −m+ 1.

Let ΩP⊗2 := span(P1 ⊗P2) be the minimal subspace containing all separable transition matrices. It
quickly follows that

dim(ΩP⊗2) = (dim(ΩP))
2 .
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We then construct the orthogonal complement of ΩP⊗2 under Frobenius inner product. Let
{εj}j∈[m−1] be a set of vector in Rm such that εj = (1, 0, . . . , 0,−1, 0, . . . , 0)⊤ with the first
element 1 and j + 1-th element −1. Notice that

Tr
(
eε⊤j P

)
= Tr

(
ε⊤j Pe

)
= 0 ,

for all εj . Consider the following subspace

Ω′ =


m−1∑
j=1

(
εje

⊤)⊗W 1
j +

m−1∑
j=1

W 2
j ⊗

(
εje

⊤) | W 1
1:j ,W

2
1:j ∈ Rm×m

 .

We then show Ω′ is exactly the orthogonal complement of ΩP⊗2 . First, notice that

dim(Ω′) = 2(m− 1)m2 − (m− 1)2 .

and thus dim(Ω′) + dim(ΩP⊗2) = m4. Moreover, one can verify for any X ∈ ΩP⊗2 and Y ∈ Ω′,
Tr(X⊤Y ) = 0. As a result, it holds

Ω′ = Ω⊥
P⊗2 .

Step 2: Connection to “Inverse" The decomposition of Q-value ultimately concerns with the
properties of (I − γP π

AB)
−1. The following lemma bridges this gap.

Lemma 2. Given any transition matrix P and γ > 0, P is separable if and only if (1−γ)(I−γP )−1

is separable.

Proof. (⇒) One can verify that (I − γP )e = (1 − γ)e, which implies (1 − γ)(I − γP )−1 is a
transition matrix. Moreover, (1−γ)(I−γP )−1 = (1−γ)

∑∞
i=0(γP )i falls in ΩP⊗2 as P ∈ ΩP⊗2 .

(⇐) This side is more involved. Denote U := (1 − γ)(I − γP )−1. Then if the spectral radius
ρ(I −U) < 1, then

U−1 = (I − (I −U))
−1

=

∞∑
i=0

(I −U)i ∈ ΩP⊗2 .

This implies U−1 = 1
1−γ (I − γP ) ∈ ΩP⊗2 and thus P ∈ ΩP⊗2 , finishing the proof. It then suffices

to show ρ(I −U) < 1. Notice that

λi(I −U) = 1− λi(U) = 1− 1− γ

λ(I − γP )
= 1− 1− γ

1− γλi(P )
.

Let λi(P ) = a+ bi and taking modulus for both side

|λi(I −U)| =
∣∣∣∣γ − γλi(P )

1− γλi(P )

∣∣∣∣
=

|γ − γλi(P )|
|1− γλi(P )|

=

√
γ2(1− a)2 + γ2b2

(1− γa)2 + γ2b2

=

√
1 +

(1− γ)(2aγ − γ − 1)

(1− γa)2 + γ2b2

≤

√
1− (1− γ)2

(1− γa)2 + γ2b2
< 1 .

We conclude the proof given ρ(I −U) = maxi |λi(I −U)| < 1.
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Step 3: Put it together By Lemma 2, if P π
AB is entangled, then (1 − γ)(I − γP π

AB)
−1 is also

entangled. Then there exists Y ∈ Ω′ ̸= 0 such that Tr(Y ⊤(I − γP π
AB)

−1) ̸= 0. We apply singular
value decomposition to all W 1

1:j ,W
2
1:j and conclude there exists some j and u,v ∈ Rm such that

either Tr(
(
eε⊤j

)
⊗
(
vu⊤) (I − γP π

AB)
−1) ̸= 0 or Tr(

(
vu⊤) ⊗ (eε⊤j ) (I − γP π

AB)
−1) ̸= 0. We

assume the former without loss of generality, it holds

(ε⊤j ⊗ u⊤)(I − γP π
AB)

−1(e⊗ v) ̸= 0 .

Now set rA = 0 and rB = v. Since Qπ
AB is decomposable, there exists some local function QA, QB

such that

(I − γP π
AB)

−1(e⊗ v) = QA(0)⊗ e+ e⊗QB(v) .

Left multiply by (ε⊤j ⊗ u⊤), we have

(ε⊤j ⊗ u⊤)(I − γP π
AB)

−1(e⊗ v) = (ε⊤j ⊗ u⊤)(QA(0)⊗ e) ̸= 0 ,

Then set rA = 0 and rB = −v, we can similarly derive

−(ε⊤j ⊗ u⊤)(I − γP π
AB)

−1(e⊗ v) = (ε⊤j ⊗ u⊤)(QA(0)⊗ e) ̸= 0 ,

This gives use (ε⊤j ⊗ u⊤)(QA(0)⊗ e) = 0, which is a contradiction.

E Decomposition via general functions

Entangled P precludes the local decomposition with local value functions, but may admit decom-
positions with more general functions. Consider P = 1

4

(
ee⊤

)
⊗
(
ee⊤

)
+ δ

(
ϵe⊤
)
⊗
(
eϵ⊤
)
, where

e = [1, 1], ϵ = [1− 1]. Clearly such P is entangled. We also have P k = 1
4

(
ee⊤

)
⊗
(
ee⊤

)
for k ≥ 2.

Then (I − γP )−1 = I + γ+γ2

4

(
ee⊤

)
⊗
(
ee⊤

)
+ δγ

(
ϵe⊤
)
⊗
(
eϵ⊤
)
. Then for any rA, rB , we have

(I − γP )−1 (rA ⊗ e+ e⊗ rB) = rA ⊗ e+ hA

(
γ + γ2

)
/2e⊗ e+ rB ⊗ e+ hB

(
γ + γ2

)
/2e⊗

e+ 2δγ
(
ϵ⊤rB

)
ϵ⊗ e where hA = e⊤rA, hB = e⊤rB .

F Proof of Theorem 3

Additional Notations For (semi-)norm ∥ · ∥α and norm ∥ · ∥β , we define the α, β-norm for matrix
A as

∥A∥α,β = sup
∥x∥β=1

∥Ax∥α .

We further abbreviate ∥A∥α := ∥A∥α,α. Moreover, we define the operator |x| taking the absolute
value of each element of vector or matrix x.

To prove the theorem, we introduce the key technique of analyzing perturbation bounds of the
transition matrix, which is also used in [17].

Lemma 3 (Lemma 1 in [17]). Let P ,P ′ ∈ Rn×n such that (I − P )−1 and (I − P ′)−1 exist. Then
it holds

(I − P ′)−1 = (I − P )−1 + (I − P ′)−1(P ′ − P )(I − P )−1 .

We are then ready to prove the main theorem.
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Proof of Theorem 3. Let PA,PB be the optimal solution to Eq. (7) w.r.t agent A,B. For any subset
of state-action pairs of agent A, F ⊆ SA ×AA, we have

∣∣∣∣∣∣
∑

s′A,a′
A∈F

(P π
A − PA)(s′A,a′

A|sA,aA)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

s′A,a′
A∈F

∑
s′B ,a′

B

∑
sB ,aB

(P π
AB − PA ⊗ PB)(s′,a′|s,a) µ

π
AB(sB , aB | sA, aA)

∣∣∣∣∣∣
≤
∑

sB ,aB

∣∣∣∣∣∣
∑

s′A,a′
A∈F

∑
s′B ,a′

B

(P π
AB − PA ⊗ PB)(s′,a′|s,a)

∣∣∣∣∣∣µπ
AB(sB , aB | sA, aA)

≤
∑

sB ,aB

EA(P
π
AB)µ

π
AB(sB , aB | sA, aA) = EA(P

π
AB)

where the last inequality follows from the definition of agent-wise total variation distance. Since the
result holds for any F and (sA, aA) ∈ SA ×AA, we have

∥P π
A − PA∥TV ≤ EA(P

π
AB) ,

and similar results hold for P π
B .

Next we have

(I − γP π
AB)

−1
(rA ⊗ e)−

(
(I − γP π

A)
−1

rA

)
⊗ e

=(I − γP π
AB)

−1
(rA ⊗ e)− (I − γPA ⊗ PB)

−1
(rA ⊗ e)

+ (I − γPA ⊗ PB)
−1

(rA ⊗ e)−
(
(I − γP π

A)
−1

rA

)
⊗ e

(i)
= (I − γP π

AB)
−1(rA ⊗ e)− (I − γPA ⊗ PB)

−1
(rA ⊗ e)︸ ︷︷ ︸

(I)

+
(
(I − γPA)

−1
rA

)
⊗ e−

(
(I − γP π

A)
−1

rA

)
⊗ e︸ ︷︷ ︸

(II)

where (i) also follows the same “absorbing” technique in the proof of Theorem 1.

For (I), apply Lemma 3, it holds

∥∥∥(I − γP π
AB)

−1(rA ⊗ e)− (I − γPA ⊗ PB)
−1

(rA ⊗ e)
∥∥∥
∞

=
∥∥∥(I − γP π

AB)
−1 (γP π

AB − γPA ⊗ PB) (I − γPA ⊗ PB)
−1

(rA ⊗ e)
∥∥∥
∞

≤
∥∥(I − γP π

AB)
−1
∥∥
∞

∥∥∥(γP π
AB − γPA ⊗ PB)

(
(I − γPA)

−1
rA

)
⊗ e
∥∥∥
∞

(i)

≤
∥∥(I − γP π

AB)
−1
∥∥
∞ 2γEA(P

π
AB)

∥∥∥(I − γPA)
−1

rA

∥∥∥
∞

≤2γEA(P
π
AB)r

A
max

1− γ

∥∥(I − γP π
AB)

−1
∥∥
∞ ≤ 2γEA(P

π
AB)r

A
max

(1− γ)2
,
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where (i) follows by the definition of agent-wise total variation distance when ∥rA∥∞ ̸= 0, and also
trivially hold when ∥rA∥∞ = 0. Similarly, for (II) we have∥∥∥((I − γPA)

−1
rA

)
⊗ e−

(
(I − γP π

A)
−1

rA

)
⊗ e
∥∥∥
∞

=
∥∥∥((I − γPA)

−1 − (I − γP π
A)

−1
)
rA

∥∥∥
∞

=
∥∥∥(I − γP π

A)
−1

(γP π
A − γPA) (I − γPA)

−1
rA

∥∥∥
∞

≤2γEA(P
π
AB)r

A
max

(1− γ)2
.

Then we have∥∥∥(I − γP π
AB)

−1
(rA ⊗ e)−

(
(I − γP π

A)
−1

rA

)
⊗ e
∥∥∥
∞

≤ 4γEA(P
π
AB)r

A
max

(1− γ)2
.

We can derive similar results for agent B, i.e.,∥∥∥(I − γP π
AB)

−1
(e⊗ rB)− e⊗

(
(I − γP π

B)
−1

rB

)∥∥∥
∞

≤ 4γEB(P
π
AB)r

B
max

(1− γ)2
.

Put it all together we have∥∥∥Qπ
AB − (Qπ

A ⊗ e+ e⊗Qπ
B)
∥∥∥
∞

≤ 4γ(EA(P
π
AB)r

A
max + EB(P

π
AB)r

B
max)

(1− γ)2
.

G Proof of Theorem 4

We first introduce the µ-weighted ATV distance Formally, we introduce the following norm.

Definition 5 (µ-norm). Given a transition matrix P ∈ R|S||A|×|S||A| with occupancy measure5

µ ∈ R|S||A|, for any vector x ∈ R|S||A| the µ-norm is defined as

∥x∥µ :=
∑

(s,a)∈S×A

µ(s, a) |x(s, a)| = µ⊤ |x| . (10)

One can verify that µ-norm satisfies triangle inequality and is a valid norm when µ(s, a) > 0 for all
(s, a). Otherwise µ-norm is a semi-norm in general. We then introduce the distance
Definition 6 (µ-weighted Agent-wise Total Variation Distance). Given probability distribution
µ ∈ R|S|2|A|2 , the µ-weighted total variation distance between two transition matrices P ,P ′ ∈
R|S|2|A|2×|S|2|A|2 w.r.t agent A is defined as

∥P − P ′∥µ−ATVA
=

1

2
sup

∥x∥∞=1

∥ (P − P ′) (x⊗ e)∥µ .

The µ-weighted ATV distance w.r.t agent B can be defined similarly. We claim that the µ-weighted
ATV is also a counterpart of ATV distance in Definition 6. This follows from the constrained
optimization formulation of ATV

∥P − P ′∥ATVA
=

1

2
sup

∥x∥∞=1

∥ (P − P ′) (x⊗ e)∥∞ . (11)

Thus µ-ATV substitutes µ-norm for the original ℓ∞-norm. We plug µ-weighted ATV into Eq. (1) and
obtain the corresponding measure of Markov entanglement E(P π

AB) and EA(P
π
AB). Similar to ATV

in Eq. (7), this µ-weighted version of EA(P
π
AB) admits the following formulation

EA(P
π
AB) ≤ min

PA

∑
s,a

ρπAB(s,a)DTV

(
P π

AB(·, · | s,a),PA(·, · | sA, aA)
)
. (12)

5Since µ ∈ R|S||A| is the stationary distribution of P ∈ R|S||A|×|S||A|, we use “stationary distribution" and
“occupancy measure" exchangeably when the context is clear.
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This recovers Eq. (8) that substitutes the µ-weighted average for the maximum operator in Eq. (7).
Thus intuitively, E(P π

AB) w.r.t µ-weighted ATV distance measures how closely agent A can be
approximated as an independent subsystem under the stationary distribution.

We provide the proof for two agents here, one can easily generalize the proof to multi-agent scenarios.
Compared to the proof of Theorem 3, this proof follows similar framework and differs in several
details.

The first one is the following lemma for the “localized” stationary distribution
Lemma 4. P π

A has stationary distribution µπ
A with

∀(sA, aA) , µπ
A(sA, aA) =

∑
sB ,aB

µπ
AB(sA, sB , aA, aB) .

In other words, the local stationary distribution of each agent is exactly the marginal distribution of
global µπ

AB .

Proof of Lemma 4. We proof by verify the definition of stationary distribution. For any (s′A, a
′
A), it

holds∑
sA,aA

( ∑
sB ,aB

µπ
AB(sA, sB , aA, aB)

)
Pπ(s′A, a

′
A | sA, aA)

=
∑

sA,aA

∑
sB ,aB

µπ
AB(sA, sB , aA, aB)

∑
s′B ,a′

B

∑
s′′B ,a′′

B

Pπ (s′A, s
′
B , a

′
A, a

′
B | sA, s′′B , aA, a′′B)µπ

AB(s
′′
B , a

′′
B | sA, aA)

=
∑

sA,aA

∑
sB ,aB

µπ
AB(sB , aB | sA, aA)

∑
s′B ,a′

B

∑
s′′B ,a′′

B

Pπ (s′A, s
′
B , a

′
A, a

′
B | sA, s′′B , aA, a′′B)µπ

AB(sA, s
′′
B , aA, a

′′
B)

=
∑

sA,aA

∑
s′B ,a′

B

∑
s′′B ,a′′

B

Pπ (s′A, s
′
B , a

′
A, a

′
B | sA, s′′B , aA, a′′B)µπ

AB(sA, s
′′
B , aA, a

′′
B)

=
∑

s′B ,a′
B

µπ
AB(s

′
A, s

′
B , a

′
A, a

′
B) .

where the last equation follows from the definition of µπ
AB . Hence we conclude that∑

sB ,aB
µπ
AB(sA, sB , aA, aB) is a stationary distribution of P π

A .

We are then ready to prove Theorem 4. We first note that similar to ATV distance in Eq. (7), the
optimal solution to EA(P

π
AB) w.r.t µπ

AB-weighted ATV distance also only depends on PA. Thus, let
PA,PB be the optimal solutions to EA(P

π
AB), EB(P

π
AB) respectively.

Let x ∈ R|SA||AA| with ∥x∥∞ = 1. Following the same technique in the proof of Theorem 4, we
have

µπ⊤

A |(P π
A − PA)x|

=
∑

sA,aA

µπ
A(sA, aA)

∣∣∣∣∣∣
∑

s′A,a′
A

(P π
A − PA)(s′A,a′

A|sA,aA) x(s
′
A, a

′
A)

∣∣∣∣∣∣
=
∑

sA,aA

µπ
A(sA, aA)

∣∣∣∣∣∣
∑

s′A,a′
A

x(s′A, a
′
A)

∑
s′B ,a′

B

∑
sB ,aB

(P π
AB − PA ⊗ PB)(s′,a′|s,a) µ

π
AB(sB , aB | sA, aA)

∣∣∣∣∣∣
≤
∑
s,a

∣∣∣∣∣∣
∑

s′A,a′
A

x(s′A, a
′
A)

∑
s′B ,a′

B

(P π
AB − PA ⊗ PB)(s′,a′|s,a)

∣∣∣∣∣∣µπ
AB(s,a) ≤ 2EA(P

π
AB)

where the second last inequality follows from Lemma 4. We then conclude

∥P π
A − PA∥µ,∞ ≤ 2EA(P

π
AB) ,

and similar results hold for P π
B . We then apply the decomposition
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(I − γP π
AB)

−1
(rA ⊗ e)−

(
(I − γP π

A)
−1

rA

)
⊗ e

=(I − γP π
AB)

−1(rA ⊗ e)− (I − γPA ⊗ PB)
−1

(rA ⊗ e)︸ ︷︷ ︸
(I)

+
(
(I − γPA)

−1
rA

)
⊗ e−

(
(I − γP π

A)
−1

rA

)
⊗ e︸ ︷︷ ︸

(II)

For (I), we have∥∥∥(I − γP π
AB)

−1(rA ⊗ e)− (I − γPA ⊗ PB)
−1

(rA ⊗ e)
∥∥∥
µπ
AB

=
∥∥∥(I − γP π

AB)
−1 (γP π

AB − γPA ⊗ PB) (I − γPA ⊗ PB)
−1

(rA ⊗ e)
∥∥∥
µπ
AB

(i)

≤ 1

1− γ

∥∥∥((γP π
AB − γPA ⊗ PB) (I − γPA)

−1
rA

)
⊗ e
∥∥∥
µπ
AB

≤2γE(π)

1− γ

∥∥∥(I − γPA)
−1

rA

∥∥∥
∞

≤ 2γE(π)rmax

(1− γ)2
,

where (i) follows from the fact that for any x

∥Px∥µ = µ⊤|Px| ≤ µ⊤P |x| = µ⊤|x| = ∥x∥µ .

For (II) one can use Lemma 4 to verify∥∥∥((I − γPA)
−1

rA

)
⊗ e−

(
(I − γP π

A)
−1

rA

)
⊗ e
∥∥∥
µπ
AB

=
∥∥∥(I − γPA)

−1
rA − (I − γP π

A)
−1

rA

∥∥∥
µπ
A

And similar results to (I) holds. We then conclude the proof of Theorem 4.

H Results for multi-agent MDPs

In quantum physics, the concept of quantum entanglement of two-party system can be well extended
to multi-party system. In this section, we demonstrate a similar extension of two-agent Markov
entanglement to multi-agent settings. We begin with the model of multi-agent MDPs.

Consider an N -agent MDP M1:N (S,A,P , r1:N , γ) with joint state space S = ×N
i=1Si and joint

action space A = ×N
i=1Ai. For simplicity, we assume |Si| = |S| and |Ai| = |A| for each agent i.

For agents at global state s = (s1, s2, . . . , sN ) with action a = (a1, a2, . . . , aN ) taken, the system
will transit to s′ = (s′1, s

′
2, . . . , s

′
N ) according to transition kernel s′ ∼ P (· | s,a) and each agent

i ∈ [N ] will receive its local reward ri(si, ai). The global reward r1:N is defined as the summation
of local rewards r1:N (s,a) :=

∑N
i=1 ri(si, ai), or in vector form,

r1:N ∈ R|S|N |A|N :=

N∑
i=1

(e⊗)i−1ri(⊗e)N−i .

We further assume the local rewards are bounded, i.e. for agent i ∈ [N ], |ri(si, ai)| ≤
rimax for all (si, ai). Given any global policy π : S → ∆(A), we denote P π

1:N ∈
R|S|N |A|N×|S|N |A|N as the transition matrix induced by π where Pπ

1:N (s′1:N , a′1:N | s1:N , a1:N ) :=
P (s′1:n | s1:N , a1:N )π (a′1:N | s′1:N ) . Then the global Q-value is defined by Bellman Equation
Qπ

1:N = (I − γP π
1:N )−1r1:N . The local Q-values follow the similar framework to Meta Algorithm 1

where each agent i ∈ [N ] fits Qπ
i using its local observations. We then sum up local Q-values to

approximate the global Q-value, i.e.

Qπ
1:N (s,a) ≈

N∑
i=1

Qπ
i (si, ai) .
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To illustrate the extension, we first provide the definition of multi-party quantum entanglement here
for reference.
Definition 7 (Multi-party Quantum Entanglement). Consider a multi-party quantum system composed
of N subsystems, indexed by [N ]. The joint state ρ1:N is separable if there exists K ∈ Z+, probability

distribution {xi}i∈[K], and density matrices
{
ρ
(j)
1:N

}
j∈[K]

such that

ρ1:N =

K∑
j=1

xjρ
(j)
1 ⊗ ρ

(j)
2 ⊗ · · · ⊗ ρ

(j)
N .

If there exists no such decomposition, ρ1:N is called entangled.

Analogically, we define the Multi-agent Markov Entanglement,
Definition 8 (Multi-agent Markov Entanglement). Consider a N -agent Markov system M1:N and
policy π : S → ∆(A), the agents are separable under policy π if there exists K ∈ Z+, measure

{xj}j∈[K] satisfying
∑K

j=1 xj = 1, and transition matrices
{
P

(j)
1:N

}
j∈[K]

such that

P π
1:N =

K∑
j=1

xjP
(j)
1 ⊗ P

(j)
2 ⊗ · · · ⊗ P

(j)
N .

If there exists no such decomposition, the agents are entangled under policy π.

For clarity, we use superscript si to denote the i-th element in state space and subscript si to represent
the state at i-th arm. Furthermore, we denote S−i := S \ si and s := s1:N := {s1, s2, . . . , sN} is
the profile of N -arms.

Given any global policy π, for any agent i ∈ [N ],

Pπ
i (s

′
i, a

′
i | si, ai) =

∑
s′−i,a

′
−i

∑
s−i,a−i

Pπ
1:N (s′1:N , a′1:N | s1:N , a1:N ) ρπ1:N (s−i, a−i | si, ai) .

Definition 9 (Measure of Multi-agent Markov Entanglement). Consider a N -agent Markov system
M1:N with joint state space S = ×N

i=1Si and action space A = ×N
i=1Ai. Given any policy

π : S → ∆(A), the measure of Markov entanglement of N agents is

E(P π
1:N ) = min

P∈PSEP

d(P π
1:N ,P ) , (13)

where d(·, ·) is some distance measure.

The following theorem generalizes the results of value-decomposition for two-agent Markov systems
in Theorem 3 to multi-agent Markov systems.
Theorem 7. Consider a N -agent MDP M1:N with joint state space S = ×N

i=1Si and action space
A = ×N

i=1Ai. Given any policy π : S → ∆(A) with the measure of Markov entanglement Ei(P
π
1:N )

w.r.t ATV distance, it holds for any agent i,

∥P π
i − Pi∥∞ ≤ 2iE(P π

1:N ) .

where Pi is the optimal solution of Eq. (13). Furthermore, the decomposition error is entry-wise
bounded by the measure of Markov entanglement,∥∥∥∥∥Qπ

1:N (s,a)−
N∑
i=1

Qπ
i (si, ai)

∥∥∥∥∥
∞

≤
4γ
(∑N

i=1 Ei(P
π
1:N )rimax

)
(1− γ)2

.

The proof mainly follows the following lemma, which generalizes the key technique used in Theo-
rem 1.
Lemma 5. For any agent i, it holds K∑

j=1

xjP
(j)
1 ⊗ P

(j)
2 ⊗ · · · ⊗ P

(j)
N

·
(
(e⊗)i−1ri(⊗e)N−i

)
= (e⊗)i−1

 K∑
j=1

xjP
(j)
i ri

 (⊗e)N−i .

(14)
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The lemma follows from the property of tensor product. We can also extend Theorem 4 to multi-agent
MDPs.
Theorem 8. Consider a N -agent MDP M1:N with joint state space S = ×N

i=1Si and action space
A = ×N

i=1Ai. Given any policy π : S → ∆(A) with the measure of Markov entanglement Ei(P
π
1:N )

w.r.t the µπ
1:N -weighted agent-wise total variation distance, it holds for any agent i,

∥P π
i − Pi∥µπ

i ,∞
≤ 2Ei(P

π
1:N ) .

where Pi is the optimal solution of Eq. (13) and µπ
i is the stationary distribution of the projected

transition P π
i . Furthermore, the µπ

1:N -weighted decomposition error is bounded by the measure of
Markov entanglement,∥∥∥∥∥Qπ

1:N (s,a)−
N∑
i=1

Qπ
i (si, ai)

∥∥∥∥∥
µπ
1:N

≤
4γ
(∑N

i=1 Ei(P
π
1:N )rimax

)
(1− γ)2

.

I Proof of Theorem 6

We first provide an overview of the proof and introduce the technical assumptions.

To begin, we consider the system configuration m ∈ ∆|S| where ms =
1
N ♯{Agents in state s} is

the proportion of agents in state s. When N → ∞, the transition between configurations will become
deterministic under index policy and m will approach its mean-field limit m∗. Furthermore, in the
mean-field, each agent’s local transition will only depend its local state. As a result, the system will
de-couple and become separable as N → ∞.

To formalize this intuition, we introduce the following lemma that connects Markov entanglement
measure with the mean-field analysis
Lemma 6. The measure of Markov entanglement w.r.t µπ

1:N -weighted ATV distance is bounded by
the deviation of mean-field configuration,

Ei(π) ≤ |S|2 · E [∥m−m∗∥∞] ,

where the expectation is taking over the stationary distribution m ∼ µπ
1:N .

We thus focus on the deviation from m to m∗. We extend the concentration analysis from [20, 21] to
derive a new stability bound for the RHS. Specifically, we finishing the proof via demonstrating the
deviation decays at the rate O(1/

√
N).

One caveat here is that we have to restrict chaotic behaviors in the mean-field limit. We thus introduce
two technical assumptions.

We first define the transition of configuration under index policy π as ϕπ : ∆|S| → ∆|S| such that
ϕπ(m) = E [m[t+ 1] | m[t] = m, π] .

For t > 0, we denote Φt := (ϕπ)t apply the transition mapping for t rounds.
Assumption A (Uniform Global Attractor Property (UGAP)). There exists a uniform global attractor
m∗ of ϕπ(·), i.e. for all ε > 0, there exists T (ε) such that for all t ≥ T (ε) and all m ∈ ∆|S|, one
has ∥Φt(m)−m∗∥∞ < ε.

The UGAP assumption ensures the uniqueness of m∗ and guarantees fast convergence from any
initial m to m∗.
Assumption B (Non-degenerate RMAB). There exists state s ∈ S such that 0 < π∗(s, 0) < 1,
where π∗ is the policy under m∗.

The non-degenerate assumption further restricts cyclic behavior in the mean-field limit.

Non-degenerate and UGAP are two standard technical assumptions for the index policy, which
restrict chaotic behavior in asymptotic regime and will be further introduced in subsequent sections.
We note here these two assumptions are also used in almost all theoretical work on index policies
[47, 41, 20, 21].

Proof of Theorem 6. In the subsequent proof, we let ν1 > ν2 > ν3 > · · · > ν|S|. This does not lose
generality in that we can always exchange state index. The proof consists of several steps
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Step 1: Find m∗ Recall the transition mapping for configurations ϕπ : ∆|S| → ∆|S|,
ϕπ(m) = E [m[t+ 1] | m[t] = m, π] .

Notice that the definition of ϕπ does not depend on N . We adapt from Lemma B.1 in [20] defined
specially for Whittle Index,
Lemma 7 (Piecewise Affine). Given any index policy π, ϕπ is a piecewise affine continuous function
with |S| affine pieces.

When the context is clear, we abbreviate ϕπ as ϕ. For any m ∈ ∆|S|, define s(m) ∈ [|S|] be
the state such that

∑s(m)−1
i=1 mi ≤ α <

∑s(m)
i=1 mi. Lemma 7 characterizes for any m ∈ Zi :={

m ∈ ∆|S| | s(m) = i
}

, there exists Ks(m), bs(m) such that
ϕ(m) = Ks(m)m+ bs(m) .

By Brouwer fixed point theorem, there exists a fixed point m∗ such that ϕ(m∗) = m∗. The UGAP
condition guarantees the uniqueness of m∗. Our choice of π∗ is the corresponding policy under m∗.

Step 2: Connecting policy entanglement with the deviation of stationary distribution Combine
Proposition 9 with the RMAB model, we have
Lemma 8. The measure of Markov entanglement w.r.t µπ

1:N -weighted ATV distance is bounded by
the deviation of mean-field configuration,

Ei(π) ≤ |S|2 · E [∥m−m∗∥∞] ,

where the expectation is taking over the stationary distribution m ∼ µπ
1:N .

Proof. Given the homogeneity of agents, we first demonstrate for any two agent i, j, it holds∑
s1:N

µπ(s1:N ) |π(ai = a | s1:N )− π∗(ai = a | si)| =
∑
s1:N

µπ(s1:N ) |π(aj = a | s1:N )− π∗(aj = a | si)| .

To see this, we first notice by the definition of index policy
|π(ai = a | si = s,m)− π∗(a | s)| = |π(aj = a | sj = s,m)− π∗(a | s)| .

It then suffices to prove
∑

si=s,s1:N=m µ(s1:N ) =
∑

sj=s,s1:N=m µ(s1:N ). If∑
si=s,s1:N=m µ(s1:N ) ≤

∑
sj=s,s1:N=m µ(s1:N ), we can exchange the agent index of i and j. This

will result in the same stationary distribution and
∑

si=s,s1:N=m µ(s1:N ) ≥
∑

sj=s,s1:N=m µ(s1:N )

and thus the equation. We then rewrite the bound in Proposition 9,

E(π) ≤ 1

2
sup
i

∑
s1:N

µπ(s1:N )
∑
ai

|π(ai | s1:N )− π∗(ai | si)|

= sup
i

∑
s1:N

µπ(s1:N ) |π(ai = 1 | s1:N )− π∗(ai = 1 | si)|

=
1

N

∑
s1:N

µπ(s1:N )

N∑
i=1

|π(ai = 1 | s1:N )− π∗(ai = 1 | si)|

=
∑
m

µπ(m)
∑
s∈S

ms |π(a = 1 | s,m)− π∗(a = 1 | s)|

For any configuration m and state s, we have
ms |π(a = 1 | s,m)− π∗(a = 1 | s)|

=ms

∣∣∣∣π∗(a = 1 | s)m∗
sN + ks

m∗
sN + ℓs

− π∗(a = 1 | s)
∣∣∣∣

=
m∗

sN + ℓs
N

∣∣∣∣ks − ℓsπ
∗(a = 1 | s)

m∗
sN + ℓs

∣∣∣∣
≤|S|∥m−m∗∥∞ ,

where |ks| ≤ (|S| − 1)∥m−m∗∥∞N representing the additional fraction of state s to be activated
due to the deviation from m∗ and |ℓs| ≤ ∥m−m∗∥∞N representing the deviation of ms from m∗

s .
The results then hold by taking summation over s and expectation over m.
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Step 3: Concentrations and local stability To bound E [∥m−m∗∥∞], we start with several
technical lemmas from previous RMAB literature. We use the same notation Φt = ϕ(Φt−1).
Lemma 9 (One-step Concentration, Lemma 1 in [21]). Let ϵ[1] = m[1]− ϕ(m[0]), it holds

E [∥ϵ[1]∥1 | m[0]] ≤
√

|S|
N

.

Lemma 10 (Multi-step Concentration, Lemma C.4 in [20]). There exists a positive constant K such
that for all t ∈ N and δ > 0,

Pr
[
∥m[t]− Φt(m)∥∞ ≥ (1 +K +K2 + · · ·+Kt)δ | m[0] = m

]
≤ t|S|e−2Nδ2

Lemma 11 (Local Stability, Lemma C.5 in [20]). Under non-degenerate and UGAP:

(i) Ks(m∗) is a stable matrix, i.e. its spectral radius is strictly less than 1.

(ii) For any ϵ, there exists T (ϵ) > 0 such that for all m ∈ ∆|S|,
∥∥ΦT (ϵ)(m)−m∗

∥∥
∞ < ϵ.

The first result implies there exists some matrix norm ∥·∥β such that
∥∥Ks(m∗)

∥∥
β
< 1. By the

equivalence of norms, there exists constant C1
β , C

2
β > 0 such that for all x ∈ R|S|

C1
β∥x∥β ≤ ∥x∥∞ ≤ C2

β∥x∥β .
Combine the second result of Lemma 11 and non-degenerate condition, we can construct a neigh-
borhood N of m∗ such that N = B(m∗, ϵ) ∩ ∆|S| ∈ Zs(m∗) where ϵ > 0 and B(m∗, ϵ) =
{m | ∥m−m∗∥∞ < ϵ} is an open ball. We next show that m[0] under stationary distribution
will concentrate in N with high probability. Let T̃ = T (ϵ/2) such that for all m ∈ ∆|S|,
∥ΦT̃ (m)−m∗∥∞ < ϵ/2. It holds

Pr [m[0] ̸= N ] = Pr [∥m[0]−m∗∥∞ ≥ ϵ]

(i)
= Pr

[∥∥∥m[T̃ ]−m∗
∥∥∥
∞

≥ ϵ | m[0] = m
]

≤ Pr
[∥∥∥m[T̃ ]− ΦT̃ (m)

∥∥∥
∞

≥ ϵ

2
| m[0] = m

]
+ Pr

[
∥ΦT̃ (m)−m∗∥∞ ≥ ϵ

2

]
= Pr

[∥∥∥m[T̃ ]− ΦT̃ (m)
∥∥∥
∞

≥ ϵ

2
| m[0] = m

]
≤ T̃ |S|e−2uN

where (i) follows from the stationarity m[T̃ ] and m[0] are i.i.d and the constant u =(
ϵ

2(1+K+K2+···+KT̃ )

)2
does not depend on N .

Step 4: Put it together Finally, we are ready to bound E [∥m−m∗∥∞]. Notice for all m[0] ∈ N ,
we have

m[1]−m∗ = ϕ(m[0]) + ϵ[1]−m∗

= Ks(m∗) (m[0]−m∗) + ϵ[1] .

Taking ∥·∥β on both side,

∥m[1]−m∗∥β ≤
∥∥Ks(m∗) (m[0]−m∗)

∥∥
β
+ ∥ϵ[1]∥β

≤
∥∥Ks(m∗)

∥∥
β
∥m[0]−m∗∥β + ∥ϵ[1]∥β .

Taking expectation on both side,

E
[
∥m[1]−m∗∥β

]
=E

[
∥ϕ(m[0])−m∗∥β · 1 {m[0] ∈ N}

]
+ E

[
∥ϕ(m[0])−m∗∥β · 1 {m[0] /∈ N}

]
+ E

[
∥ϵ[1]∥β

]
≤
∥∥Ks(m∗)

∥∥
β
E
[
∥m[0]−m∗∥β · 1 {m[0] ∈ N}

]
+ Pr [m[0] /∈ N ] sup

m[0]

∥ϕ(m[0])−m∗∥β + E
[
∥ϵ[1]∥β

]
≤
∥∥Ks(m∗)

∥∥
β
E
[
∥m[0]−m∗∥β

]
+ Pr [m[0] /∈ N ] sup

m[0]

∥ϕ(m[0])−m∗∥β + E
[
∥ϵ[1]∥β

]
.
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By stationarity, one have E
[
∥m[1]−m∗∥β

]
= E

[
∥m[0]−m∗∥β

]
. This refines the above in-

equality,

E [∥m[0]−m∗∥∞] ≤
C2

β

1−
∥∥Ks(m∗)

∥∥
β

(
sup
m[0]

Pr [m[0] /∈ N ] ∥ϕ(m[0])−m∗∥β + E
[
∥ϵ[1]∥β

])

≤
C2

β

C1
β(1−

∥∥Ks(m∗)

∥∥
β
)
(Pr [m[0] /∈ N ] + E [∥ϵ[1]∥∞])

≤
C2

β

C1
β(1−

∥∥Ks(m∗)

∥∥
β
)

(
T̃ |S|e−2uN +

√
|S|√
N

)
.

We combine Lemma 8 and conclude the proof of Theorem 6.

J Extensions of Markov entanglement

J.1 (Weakly-)coupled MDPs

Weakly-coupled MDPs (WCMDP) are a rich class of multi-agent model that capture many real-world
applications such as supply chain management, queuing network and resource allocations [2, 12, 36].
Compared to general multi-agent MDP, WCMDP further ensures each agent follow its local transition
while the agents’ actions are coupled with each other. Formally,

Definition 10 (Weakly-coupled MDPs). An N -agent MDP M1:N (S,A,P , r1:N , γ) is a weakly-
coupled MDP if

• Each agent has local transition kernel Pi such that ∀s,a, s′, P (s′ | s,a) =
∏N

i=1 Pi(s
′
i |

si, ai).

• At global state s, agents’ joint actions a are subject to m coupling constraints∑N
i=1 d(si, ai) ≤ b ∈ Rm.

We then demonstrate that this weakly-coupled structure can further refine the analysis of Markov
entanglement measure.

Proposition 9. Consider a N -agent weakly-coupled MDP M1:N (S,A,P , r1:N , γ). Given any
policy π : S → ∆(A) with measure of Markov entanglement Ei(P

π
1:N ) w.r.t the µπ

1:N -weighted
agent-wise total variation distance, it holds for i ∈ [N ],

Ei(P
π
1:N ) ≤ min

π′

1

2

∑
s

µπ
1:N (s)

∑
ai

|π(ai | s)− π′(ai | si)| ,

where π′ : Si → Ai is any local policy for agent i.

Proof of Proposition 9. We demonstrate the proof for two-agent WCMDP and the generalization to
multi-agent WCMDP is straightforward. Consider P π′

A be the transition of agent A under local policy
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π′. We focus on agent A

EA(P
π
AB)

≤1

2

∑
s,a

µπ
AB(s,a)

∑
s′A,a′

A

∣∣∣Pπ
AB(s

′
A, a

′
A | s,a)− Pπ′

A (s′A, a
′
A | sA, aA)

∣∣∣
=
1

2

∑
s,a

µπ
AB(s,a)

∑
s′A,a′

A

∣∣∣∣∣∣
∑
s′B

Pπ
AB(s

′, aA | s,a)− Pπ′

A (s′A | sA, aA)π′(a′A | s′A)

∣∣∣∣∣∣
(i)
=
1

2

∑
s,a

µπ
AB(s,a)

∑
s′A,a′

A

∣∣∣∣∣∣
∑
s′B

Pπ
AB(s

′, aA | s,a)−
∑
s′B

P (s′ | s,a)π′(a′A | s′A)

∣∣∣∣∣∣
=
1

2

∑
s,a

µπ
AB(s,a)

∑
s′A,a′

A

∣∣∣∣∣∣
∑
s′B

P (s′ | s,a) (π(a′A | s′)− π′(a′A | s′A))

∣∣∣∣∣∣
≤1

2

∑
s,a

µπ
AB(s,a)

∑
s′

P (s′ | s,a)
∑
a′
A

|π(a′A | s′)− π′(a′A | s′A)|

(ii)
=

1

2

∑
s′

µπ
AB(s

′)
∑
a′
A

|π(a′A | s′)− π′(a′A | s′A)| .

where (i) follows from the transition structure of weakly coupled MDP P (s′ | s,a) = P (s′A |
sA, aA) · P (s′B | sB , aB); and (ii) comes from the fact that Pπ(s′ | s) =

∑
a π(a | s)P (s′ | s,a)

and
∑

s µ
π(s)Pπ(s′ | s) = µπ(s′).

Proposition 9 establishes an upper bound for Markov entanglement in WCMDP. Intuitively, this
bound characterizes how agent i can be viewed as making independent decisions. It takes advantage
of the weakly-coupled structure and shaves off the transition in Markov entanglement measure.

J.2 Coupled MDPs with exogenous information

In many practical scenarios, the agents’ transitions and actions are coupled by a shared exogenous
signal. For example, in ride-hailing platforms, the specific dispatch is related to the exogenous order
at the current moment [33, 24, 4]; in warehouse routing, the scheduling of robots is also related to the
exogenous task revealed so far [15].

We will then enrich our framework by incorporating these exogenous information. At each timestep
t, there will an exogenous information zt revealed to the decision maker. zt is assumed to evolve
following a Markov chain independent of the action and transition of agents. We assume zt ∈ Z and
Z is finite.

Given the current state s and exogenous information z, the policy is given by π : S × Z → ∆(Ã),
where Ã refers to the set of feasible actions. We then have the global transition depending on
exogenous information z,

Pπ
ABz(s

′,a′, z′ | s,a, z) = P (s′ | s,a, z) · π(a′ | s′, z′) · P (z′ | z) .

and global Q-value Qπ
ABz ∈ R|S|N |A|N |Z|,

Qπ
AB(s,a, z) = E

[ ∞∑
t=0

N∑
i=1

r(si,t, ai,t, zt) | s0 = s,a0 = a, z0 = z

]
.

We assume the system is unichain and the stationary distribution is µπ
ABz . Then we can derive the

local transition under new algorithm by

PAz(s
′
A, a

′
A, z

′ | sA, aA, z) =
∑

sB ,aB

µπ
ABz(sB , aB | sA, aA, z)

∑
s′B ,a′

B

Pπ
ABz(s

′,a′, z′ | s,a, z) ,

Given the local transition, we have the local value Qπ
Az = (I−γPAz)

−1(rAz) via Bellman Equation.
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Combined with exogenous information, we consider the following value decomposition

Qπ
AB(s,a, z) = Qπ

A(sA, aA, z) +Qπ
B(sB , aB , z) .

We start by introducing agent-wise Markov entanglement defined for each agent

P π
ABz =

K∑
j=1

xjP
(j)
Az ⊗ P

(j)
B . (15)

Proposition 10. If the system is agent-wise separable for all agents, then

Qπ
ABz = Qπ

Az ⊗ e|S||A| + e|S||A| ⊗Qπ
Bz .

Proof. The proof is basically the same as Theorem 1. One can first quickly show that PAz =∑K
j=1 xjP

(j)
Az . And then it holds K∑

j=1

xjP
(j)
Az ⊗ P

(j)
B

t (
rA ⊗ e|z| ⊗ e|S||A|

)

=

 K∑
j=1

xjP
(j)
Az ⊗ P

(j)
B

t−1 K∑
j=1

xj

(
P

(j)
Az (rA ⊗ e|z|)

)
⊗
(
P

(j)
B e

)
=

 K∑
j=1

xjP
(j)
Az ⊗ P

(j)
B

t−1 K∑
j=1

xjP
(j)
Az (rA ⊗ e|z|)

⊗ e

= . . . =

 K∑
j=1

xjP
(j)
Az

t

(rA ⊗ e|z|)

⊗ e .

We then provide the measure of Markov entanglement with exogenous information w.r.t agent-wise
total variation distance.

EA(P
π
AB ,Z) := min

1

2

∥∥∥∥∥∥P π
ABz −

K∑
j=1

xjP
(j)
Az ⊗ P

(j)
B

∥∥∥∥∥∥
ATV1

= min
PAz

max
s,a,z

1

2

∑
s′A,a′

A,z′

|Pπ
ABz(s

′
A, a

′
A, z

′ | s,a, z)− PAz(s
′
A, a

′
A, z

′ | sA, aA, z)| .

(16)

Similar to Theorem 3, we can connect this measure of Markov entanglement with the value decompo-
sition error.

Theorem 11. Consider a N -agent Markov system M1:N . Given any policy π : S → ∆(A) with the
measure of Markov entanglement Ei(P

π
1:N ,Z) w.r.t the agent-wise total variation distance, it holds

for any agent i, ∥∥∥∥∥∥P π
iz −

K∑
j=1

xjP
(j)
iz

∥∥∥∥∥∥
∞

≤ 2Ei(P
π
1:N ,Z) .

Furthermore, the decomposition error is entry-wise bounded by the measure of Markov entanglement,∥∥∥∥∥Qπ
1:N (s,a, z)−

N∑
i=1

Qπ
iz(si, ai, z)

∥∥∥∥∥
∞

≤
4γ
(∑N

i=1 Ei(P
π
1:N ,Z)rimax

)
(1− γ)2

.
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In practice, exogenous information is often discussed in the context of (weakly-)coupled MDPs,
where each agent independent evolves by Pi(si+1 | si, ai, z). Interestingly, we can derive a similar
result to Proposition 9 that shaves off the transition in entanglement analysis.

Proposition 12. Consider a N -agent Weakly Coupled Markov system M1:N . Given any policy
π : S → ∆(A) and its measure of Markov entanglement Ei(P

π
1:N ,Z) w.r.t the µπ

1:N -weighted
agent-wise total variation distance, it holds

Ei(P
π
1:N ,Z) ≤ 1

2

∑
s1:N ,z

µπ(s1:N , z)
∑
ai

|π(ai | s1:N , z)− π′(ai | si, z)| ,

for any policies π′.

Proof. We provide the proof for two-agent MDP, which can be easily generalized to N -agent case.

EA(P
π
AB ,Z)

≤1

2

∑
s,a,z

µ(s,a, z)
∑

s′A,a′
A,z′

|Pπ
ABz(s

′
A, a

′
A, z

′ | s,a, z)− PAz(s
′
A, a

′
A, z

′ | sA, aA, z)|

=
1

2

∑
s,a,z

µ(s,a, z)
∑

s′A,a′
A,z′

∣∣∣∣∣∣
∑
s′B

Pπ
ABz(s

′, aA, z
′ | s,a, z)− PAz(s

′
A, z

′ | sA, aA, z)π′(a′A | s′A, z′)

∣∣∣∣∣∣
=
1

2

∑
s,a,z

µ(s,a, z)
∑

s′A,a′
A,z′

∣∣∣∣∣∣
∑
s′B

Pπ
ABz(s

′, aA, z
′ | s,a, z)−

∑
s′B

P (s′, z′ | s,a, z)π′(a′A | s′A, z′)

∣∣∣∣∣∣
=
1

2

∑
s,a,z

µ(s,a, z)
∑

s′A,a′
A,z′

∣∣∣∣∣∣
∑
s′B

P (s′, z′ | s,a, z) (π(a′A | s′, z′)− π′(a′A | s′A, z′))

∣∣∣∣∣∣
≤1

2

∑
s,a,z

µ(s,a, z)
∑
s′,z′

P (s′, z′ | s,a, z)
∑
a′
A

|π(a′A | s′, z′)− π′(a′A | s′A, z′)|

=
1

2

∑
s′,z′

µ(s′, z′)
∑
a′
A

|π(a′A | s′, z′)− π′(a′A | s′A, z′)| .

J.3 Factored MDPs

Another common class of multi-agent MDPs is Factored MDPs (FMDPs, [22, 23, 32]), which
explicitly model the structured dependencies in state transitions. For instance, in a server cluster, the
state transition of each server depends only on its neighboring servers. Formally, we define

Definition 11 (Factored MDPs). An N -agent MDP M1:N (S,A,P , r1:N , γ) is a factored MDP if
each agent i has neighbor set Zi ∈ [N ] such that its transition is affected by all its neighbors, i.e.
P (s′i | s,a) = P (s′i | sZi , aZi).

The neighbor set |Zi| is often assumed to be much smaller compared to the number of agents N . This
helps to encode exponentially large system very compactly. We show this idea can also be captured in
Markov entanglement. Consider the measure of Markov entanglement w.r.t ATV distance in Eq. (7),

EA(P
π
AB) = min

PA

max
(s,a)∈S×A

DTV

(
P π

AB(·, · | s,a),PA(·, · | sA, aA)
)

= min
PA

max
(s,a)∈S×A

DTV

(
P π

AB(·, · | sZA
, aZA

),PA(·, · | sA, aA)
)
.

Thus we conclude the agent-wise Markov entanglement will only depend on its neighbor set.
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Meta Algorithm 2: Q-value Decomposition with Shared Reward
Require: Global policy π; horizon length T .

1: Execute π for T epochs and obtain D =
{
(stAB , a

t
AB , r

t
AB , s

t+1
AB , at+1

AB )
}T−1

t=1
.

2: Each agent i ∈ {A,B} fits Qπ
i using local observations Di =

{
(sti, a

t
i, ri, s

t+1
i , at+1

i )
}T−1

t=1
where the local reward (rA, rB) is learned via solving

min
rA,rB

T∑
t=1

(
rtAB(s,a)− (rA(s

t
A, a

t
A) + rB(s

t
B , a

t
B))
)2

.

J.4 Fully cooperative Markov games

In fully cooperative settings, only a global reward will be reviewed to all agents. Unlike the modeling
in section 2, this global reward may not necessarily be decomposed as the summation of local rewards.
In this case, we propose meta algorithm 2 as an extension of meta algorithm 1.

This algorithm follows similar framework of meta algorithm 1 and differs at we now learn the
closet local reward decomposition from data. When the reward is completely decomposable, meta
algorithm 2 recovers meta algorithm 1. Thus intuitively, the more accurate we can decompose the
global reward, the less decomposition error we have. Formally, we define the measure of reward
entanglement

e(rAB) := min
rA,rB

∥rAB − (rA ⊗ e+ e⊗ rB)∥µπ
AB

. (17)

This measure characterizes how accurate we can decompose the global reward under stationary
distribution. We then obtain an extension of Theorem 4
Proposition 13. Consider a fully cooperative two-agent Markov system MAB . Given any policy
π : S → ∆(A) with the measure of Markov entanglement EA(P

π
AB), EB(P

π
AB) w.r.t the µπ

AB-
weighted agent-wise total variation distance and the measure of reward entanglement e(rAB), it
holds∥∥∥Qπ

AB − (Qπ
A ⊗ e+ e⊗Qπ

B)
∥∥∥
µπ
AB

≤ e(rAB)

1− γ
+

4γ
(
EA(P

π
AB)r

A
max + EB(P

π
AB)r

B
max

)
(1− γ)2

,

where rAmax, r
B
max is the bound of optimal solution of Eq. (17).

Although Proposition 1 offers a theoretical guarantee for general two-agent fully cooperative Markov
games, its utility is greatest in systems with low reward and transition entanglement. Fully cooperative
settings remain inherently challenging–for instance, even the asymptotically optimal Whittle Index
may achieve only a 1

N -approximation ratio for RMABs with global rewards [34]. In practice, most
research [38, 35] relies on sophisticated deep neural networks to learn decompositions in such settings.
We thus defer a more refined analysis of fully cooperative scenarios to future work.

K Simulation environments

In this section, we empirically study the value decomposition for index policies. Our simulations
build on a circulant RMAB benchmark, which is widely used in the literature [3, 52, 10, 18].

Circulant RMAB A circulant RMAB has four states indexed by {0, 1, 2, 3}. Transition kernels
Pa = p(s, 0, s′)s,s′∈S for action a = 0 and a = 1 are given by

P0 =

1/2 0 0 1/2
1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

 , P1 =

1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2
1/2 0 0 1/2

 .

The reward solely depends on the state and is unaffected by the action:

r(0, a) = −1, r(1, a) = 0, r(2, a) = 0, r(3, a) = 1; ∀a ∈ {0, 1}.
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We set the discount factor to γ = 0.5 and require N/5 arms to be pulled per period. Initially, there
are N/6 arms in state 0, N/3 arms in state 1 and N/2 arms in state 2, the same as [52]. We then test
an index policy with priority: state 2 > state 1 > state 0 > state 3.

K.1 Monte-Carlo estimation of Markov entanglement

For each RMAB instance, we simulate a trajectory of length T = 6N and collect data for the later
5N epochs. Notice RMAB is a special instance of WCMDP, we thus apply the result in Proposition 9

Ei(P
π
1:N ) ≤ 1

2
min
π′

∑
s

µπ
1:N (s)

∑
ai

|π(ai | s)− π′(ai | si)|

≈ 1

2
min
π′

1

T

T∑
t=1

∑
ai

|π(ai | s)− π′(ai | si)| (18)

Notice Eq. (18) is convex for π′ and π′ only takes support of size |S||A| = 8. we thus apply efficient
convex optimization solvers. We replicate this experiment for 10 independent runs to obtain the mean
estimation and standard error in the left panel of Figure 1.

K.2 Learning local Q-values

For each RMAB instance, we simulate a trajectory of length T = 6N , reserving the later T = 5N
epochs as the training phase for each agent to fit local Q-value functions. During testing, we estimate
the µ-weighted decomposition error using 50 simulations sampled from the stationary distribution.

The ground-truth Qπ
1:N is approximated via Monte Carlo learning [39], with each estimate derived

from 30-step simulations averaged over 3N independent runs. Due to the high computational cost
of Monte Carlo methods—especially for very large RMABs—we limit the training phase to 10
independent runs and use the mean local Q-value as an approximation. Error bars represent the
standard error for both Monte Carlo estimates and µ-weighted decomposition errors.

In addition to µ-weighted error, we also introduce a concept of relative error, defined as∥∥∥Qπ
1:N (s,a)−

∑N
i=1 Q

π
i (si, ai)

∥∥∥
µπ
1:N

/ ∥Qπ
1:N∥µπ

1:N
. This relative error reflects the approximate

ratio of our value decomposition. We present our simulation results below.

Figure 2: Value Decomposition error in circulant RMAB under an index policy. Left: µ-weighted
decomposition error. Right: Relative error, ∥decomposition error∥µ / ∥Qπ

1:N∥µ

It immediately follows that the µ-weighted error grows at a sublinear rate O(
√
N) and the relative

error decays at rate O(1/
√
N). This justifies our theoretical guarantees in Theorem 6. Furthermore,

we notice the relative error is no larger than 3% over all data points. As a result, the meta algorithm 1
is able to provide a very close approximation especially for large-scale MDPs even with small amount
of training data T = 5N while the global state space has size |S|N .
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K.3 Sample Complexity and Computation

While each RMAB instance has an exponentially large state space |S|N , we show that our empiri-
cal estimation of Markov entanglement—along with the decomposition error—converges quickly.
Specifically, we illustrate these errors for an RMAB instance with with 900 agents in Figure 3.
As exhibits in Figure 3, both errors decay and converges within T = 3N samples. Furthermore,

Figure 3: Different errors in RMAB with 900 agents: empirical estimation of Markov entanglement
(blue); µπ

1:N -weighted decomposition error (green); the true measure of Markov estimated with
T = 10N samples (red dashed line).

the empirical estimation of Markov entanglement converges in T < N samples, demonstrating its
efficiency. Finally, we use standard convex optimization solvers to compute Markov entanglement,
which can be run efficiently on a single CPU.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. Our main contributions are also detailed in section 1.1. Also see
Appendix J, H for more theoretical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss other possible value decompositions in section 3.1 and
Appendix E, J.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Theorem 1, 2, 3 and 4 hold for general multi-agent as long as a stationary
distribution exists (see section 2). Theorem 6 relies on standard assumptions for index
polices, detailed in Appendix I. All proofs are included in main text or Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our empirical results build on a publicly-accessible RMAB benchmark in
[3, 52, 10, 18], detailed in Appendix K. We upload the codes and instructions to recover the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our empirical results build on a publicly-accessible RMAB benchmark in
[3, 52, 10, 18], detailed in Appendix K. We upload the codes and instructions to recover the
results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We detail the calculation of error bars in Appendix K.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This work focuses on establishing a new mathematical foundation for MARL.
This work is not related to any private or personal data, and there’s no explicit negative
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not foresee any high risk for misuse of this work.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
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synthetic models, whose proposers have been appropriately cited.
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• The answer NA means that the paper does not use existing assets.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not involve LLMs as any important, original, or non-standard compo-
nents.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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