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ABSTRACT

Graphs have been ubiquitous in Machine Learning due to their versatile nature
in modelling real world situations. Graph embedding is an important precursor
to using graphs in Machine Learning , and much of performance of algorithms
developed later depends heavily on this. However very little theoretical work
exists in this area , resulting in the proliferation of several benchmarks without
any mathematical validation , which is detrimental. In this paper we present an
analysis of deterministic graph embedding in general , using tools from Functional
Analysis and Topology. We prove several important results pertaining to graph
embedding which may have practical importance .One limitation of our work in
it’s present form is that it’s applicable to only deterministic embedding approaches
, although we strongly hope to extend it to random graph embedding methods as
well in future. We sincerely hope that this work will be beneficial to researchers
working in field of graph embedding.

1 INTRODUCTION

Graphs are ubiquitous in Machine learning[10][25].They are versatile in modelling several real world
phenomena[6] like drug design to friendship recommendation in social networks[7]. An important
challenge is finding a way to represent graphs[14] in a way so that it can be easily exploited for tasks
in machine learning[8] , graph embedding is a technique used to perform this. Graph embedding is
an important precursor to using graphs in Machine learning[7] [4]. Several approaches have been
proposed in this regard[4][5][11][12][13] [15], but no evaluation method was ever proposed.

Analysis in this area has been mostly emperical without much theoretical backing[9][12].In this
paper we use tools from functional analysis specifically Hilbert spaces and topology to evaluate
all graph embedding approaches in an abstract way .To the author’s best knowledge this is the first
theoretical work in the area of analyzing several embedding methods under single framework using
functional analysis and topology.We consider features to be embedded on only nodes and do not
consider features on edges. We also assume that graph is defined by the postion of its Vertices .

Most graph embedding approches proposed till now fall under a sinlge paradigm namely a proximity
function which measures the distance between nodes , a linear mapping i.e an encoder which maps
this graph to a graph in higher dimensional space , and a proximity function on this higher dimensional
graph , finally a loss function which measures discrepancy between the two distance functions[4].

In Section 2 we give necessary mathematical prerequisites like Hilbert spaces[2] , point set topology[1]
etc.In Section 3 we translate graph embedding problem into mathematical language namely a 3 tuple
space and also prove that the 3 tuple space is a Hilbert space and a closed set .In section 4 we prove
some important theorems pertaining to our analysis. Finally we give algorithmic aspects of our
approach.Finally we give the conclusions and future work .

As this is the first step , Our paper considers only deterministic embedding approaches[17] and does
not consider random walk based aproaches[13][16] ,however we definitely have strong intention to
analyze the latter in future.
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2 PREREQUISITES

In this section , we introduce mathematical prerequisites namely functional analysis and topology
terminology and also some important facts corresponding to them.

2.1 TOPOLOGICAL SPACE

A topological space is an ordered pair (X, τ ), where X is a set and τ is a collection of subsets of X,
satisfying the following axioms:

The empty set and X itself belong to τ .
Any arbitrary (finite or infinite) union of members of τ still belongs to τ .
The intersection of any finite number of members of τ still belongs to τ .
The elements of τ are called open sets and the collection τ is called a topology on X.
The complement of open sets are called Closed sets

2.2 COMPACT SPACE

Formally, a topological space X is called compact if each of its open covers(open sets which cover
the set) has a finite subcover. That is, X is compact if for every collection C of open subsets of X
such that

X =
⋃
x∈C

x

In an arbitrary topological space compactness is tough to visualize but in metric spaces it’s intuitive
which says that compact sets are precisely closed and bounded sets which agrees with our intuition.

2.3 HOMOTOPY AND FUNDAMENTAL GROUP

Homotopy is continuous deformation of functions , more formally it is defined as

H:X×[0,1]→ Y such that
H(x,0) = f(x) and H(x,1) = g(x) for all x.

• Every function is homotopic to itself trivially, by setting H(x,t) = f(x) for all t ∈ [0,1], Hence
Homotopy is symmetric .

• Suppose H:X×[0,1]→ Y is a homotopy from f to g then K:X×[0,1]→ Y where K(x,t) =
H(x,1-t) for all t ∈ [0,1] now K is a homotopy from g to f,hence Homotopy is reflexive

• Suppose H:X×[0,1]→ Y is a homotopy from f to g and K:X×[0,1]→ Y is a homotopy from
g to h

L(x, t) = H(x, t)0 ≤ t ≤ 1/2

= K(x, t)1/2 ≤ t ≤ 1

So Homotopy is Transitive as well.

Combining these three we see that homotopy is equivalence relation, and its equivalence classes form
a group called Fundamental group.

2.4 MULTIVARIATE POLYNOMIALS

A Monomial in ’n’ variables (x1, x2, ......xn) is of the form

xa11 x
a2
2 ..........x

an
n

Where ai are indices of the variables and are non-negative integers.
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We can simplify the notation for monomials as follows: let a = (a1, ..., an) be an n-tuple of
nonnegative integers. Then we set xa = xa11 x

a2
2 ..........x

an
n

Total degree of this Monomial is a1 + a2 + ........+ an

A polynomial f in x1, ..., xn with coefficients in ’K’ is a finite linear combination (with coefficients
in K) of Monomials. We will write a polynomial f in the form

f =
∑
α aαx

α, aα ∈ K

where the sum is over a finite number of n-tuples a = (a1, ..., an). The set of all polynomials
inx1, ..., xnwith coefficients in ’K’ is denoted K[x1, ..., xn].

2.5 NORM LINEAR SPACE AND HILBERT SPACE

2.5.1 NORM

Given a vector space V over a field ’F’ of the Real or Complex numbers , a norm on V is a non-negative
valued function p: V→ R with the following properties:

For all a ∈ F and all u, v∈ V,

• p(u + v) ≤ p(u) + p(v) (being sub-a dditive or satisfying the triangle inequality).

• p(av) = | a | p(v) (being absolutely homogeneous or absolutely scalable linearly).

• If p(v) = 0 then v = 0 is the zero vector.

A Vector space V with a norm defined on it is called a norm linear space.A Norm linear space with a
complete norm defined on it is called Banach Space.

2.5.2 INNER PRODUCT SPACE AND HILBERT SPACE

Inner product space is the space satisfying the following properties

• The inner product is conjugate symmetric; that is, the inner product of a pair of elements
is equal to the complex conjugate of the inner product of the swapped elements: 〈x, y〉 =

〈y, x〉.
• Inner product is bilinear mapping i.e 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.
• Inner product is a homogenous mapping 〈αx, z〉 = α〈x, z〉.
• Inner product is a positive mapping i.e 〈x, x〉 ≥ 0 for all x .

Given a metric space (X, d), a Sequence {xn}n≥1 is Cauchy, if for every positive real number ε ≥ 0
there is a positive integer N such that for all positive integers m, n geq N, the distance d(xm, xn) ≤ ε
A Metric space in which every cauchy sequence converges is called a Complete metric space .
Hilbert space is a Norm linear space which is a complete metric space and also an Inner Prod-
uct Space

2.6 CONNECTED AND PATH CONNECTED SPACES

• A topological space X is said to be disconnected if it is the union of two disjoint non-empty
open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be
connected if it is connected under its subspace topology.

• A path-connected space is a stronger notion of connectedness, requiring the structure of a
path. A path from a point x to a point y in a topological space X is a continuous function f
from the unit interval to X i.e f : [0,1]→ X with f(0) = x and f(1) = y. A path-component
of X is an equivalence class of X under the equivalence relation which makes x equivalent
to y if there is a path from x to y. The space X is said to be path-connected (or pathwise
connected or 0-connected) if there is exactly one path-component, i.e. if there is a path
joining any two points in X
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3 ENCODER - DECODER PERSPECTIVE OF GRAPH EMBEDDING

We formulate the problem of problem of graph embedding into the language of mathematics specifi-
cally topology and fuctional analysis using encoder decoder formulation , in this paper we closely
follow the approach taken by [4] , first we introduce the necessary framework Now we translate our
problem into the language of topology and functional analysis.Consider the 3 tuple space M ×V ×V

M = Set of all matrices over the field of real numbers.
V = Vector space of all multivariate polynomials in prefixed number of variables and degree.

Our goal in this work is to encode nodes as low-dimensional vectors that summarize their graph
position and the structure of their local graph neighbourhood.These Low dimensional embeddings
are encodings of nodes in the original graph, and the geometric relations between nodes in these
should reflect the relations in the original graph.

Terminology for Encoder-Decoder perspective :

• Encoder This function maps nodes to the low dimensional space. Mathematically it can be
written as

ENC : V → Rd

• Decoder Decoder function as the name suggests decodes the structural informationof the
graph.Mathematically it can be written as

DEC : Rd ×Rd → R+

• Loss function Loss function measures the discrepancy between proximity measures of
original and latent space graph ,mathematically it is

l : R×R→ R

• A pairwise proximity function It’s a mathematical function which gives measure of proximity
of 2 nodes in the original graph, formally it’s given by

SG : V × V → R+

Decoder gives the proximity of the nodes in the latent space , our goal should be to construct a
decoder which will deviate the least from the original proximity function ,more formally our goal is
to minimize ∑

(vi,vj)∈D l[(DEC(zi, zj), SG((vi, vj)]

We give a summary about the existing embedding techniques and their corresponding encode,decoder
and loss functions in the table1, taken from[4].as we can see all of the involved functions are
multivariate fuctions of the coordinates in latent space.Most of the present methods rely on Direct
encoding which means the encoder function is a Matrix or a Linear Mapping, so in our analysis
we restrict to linear encoders , we give results for optimal embeddings in linear encoders. Now we
can easily see that every embedding can be chracterized by the above 3 functions if loss function is
fixed to be l2 norm which we do as it’s the most popular choice of loss function in embedding as we
can see from the table all functions encoders,proximity measures (although they are discrete spaces
they are closed so functions on them can be extended to the whole space )[1] and decoders are all
multivariate polynomials in their coordinates in latent space.however although they are polynomials
their degree is bounded and number of variables is equal to the the dimension of the latent space.

The 3 tuple space is hence the space of all graph embeddings with linear encoders, polynomial
decoders and polynomial proximity measures . Every embedding can be thought as a point in this 3
Tuple space. So we study the topology and analysis of this 3 tuple space to gain further insights into
the graph embedding problem, now we prove some basic theorems of our papers.
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Table 1: Table summarizing various embedding methods taken from [4]

Method Decoder Proximity measure

Laplacian Eigenmaps
∥∥zi − zj∥∥22 General

Graph factorization ztizj Aij
GraRep ztizj Aij , A

2
ij ......A

k
ij

HOPE ztizj General

4 MATHEMATICAL RESULTS CORRESPONDING TO GRAPH EMBEDDING

Theorem 1. 1. Product of Closed sets is Closed.

2. Product of Convex sets is Convex.

3. Set of all Polynomials in prefixed number of variables and degree is a Vector Space.

4. If M is connected , convex and closed space and V is finite dimensional vector space then
the Space M × V × V is Connected , closed and convex .

Proof. (i) If A and B are closed sets Ac and Bc are open , because product of open sets is open we
know that A× B = Ac × Y

⋃
X × Bc hence A× B is closed by induction it trivially extends to

finitely many products.

(ii)Say A and B are convex sets , consider A×B , (a,b) and (c,d) ∈ A×B . α(a,b) +(1-α)(c,d) = (
αa+ 1- αc) , αb+ 1- αd) ∈ A×B because A and B are convex.

(iii)Set of all polynomials with prefixed number of variables and degree is a vector space by
compact notation introduced in previous sections f =

∑
α aαx

α, aα ∈ K the proof is the same as
that of single variable so if fand g are 2 polynomials f+g is also a polynomial and so is λf forall λ ∈ F .

(iv) Suppose M and V are coonected then M × V × V is a connected space which is standard
proof found in all topology books. However we prove the converse as it’s not that common ,
so we give it here sayM×V ×V is connected now take the projection mapping onto first coordinate π1

π1 : M × V × V →M
π2 : M × V × V → V

πi are continuous as projection maps are surjective open continuous maps and image of a connected
set under continuous mapping is connected , but M and V are connected by the definition of
connectedness in the previous sections .

Theorem 2. 1. There is unique embedding for which loss function takes it’s minimal value.

2. Encoder matrix can always be UNIQUELY approximated by the matrices of form
(a)‖A‖ ≤ k where k is any real number and‖.‖ is any norm on matrices
(b) Set of all matrices of Operator norm less than 1.(need not be square matrices)
(c) Set of all Positive Definite matrices .

3. This Optimal embedding can always be attained irrespective of which embedding we start
by continuously varying in the 3 tuple space

Proof. (i) We give the proof in several steps. call M × V × V as ’E’.Vector space ’V’ is finite
dimensional and hence Hilbert space and set of all matrices of order m× n is a Hilbert space as it
can be identified by Rm×n and hence is also a Hilbert space.
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If x and y ∈ E , then (x+y)/2 ∈ E by convexity taking α to be 2. let δ = inf{‖ x ‖ :x∈E} by the
definition 2δ ≤ ‖ x+ y ‖ . we know from the definition of inner roduct and norm that‖x+ y‖2

= 〈x + y, x + y〉 and‖x− y‖2 = 〈x − y, x − y〉, by adding both the equations we get‖x+ y‖2 +
‖x− y‖2 = 〈x + y, x + y〉 + 〈x − y, x − y〉 = 〈x, x〉 + 〈y, y〉 + 2〈x, y〉 + 〈x, x〉 + 〈y, y〉 - 2〈x, y〉 ,
finally we get

‖x+ y‖2 +‖x− y‖2 = 2(‖x‖2 +‖y‖2).

By the definition of closed set we know that ∃ a sequence {yn} ∈ E such that‖yn‖ → δ as n→∞
now that‖yn − ym‖2 ≤ 2 (‖y‖2n +‖y‖2m) - 4δ2

as n → ∞‖yn − ym‖ → 0 , so the sequence yn is cauchy.because the space is complete its also
convergent so ∃ x0 such that yn → x0 and this x0 ∈ E as E is closed.so this x0 is the unique norm
element By using δ = inf{‖ x ‖ :x∈E} and Parallellogram Identity we get

‖x− y‖2 ≤ 2 (‖x‖2 +‖y‖2) - 4δ2

If‖x‖=‖y‖=δ then‖x− y‖2 ≤ 0⇒ x = y (as norm can’t be negative).

so there exists an element of smallest norm which is unique , our only assumption was space is
closed and convex so by applying this result to M × V × V we get the desired result by inducing the
following norm on it . we define norm on it as

d(f, g) =‖f − g‖2.

(ii) We use hilbert projection theorem for closed convex sets in Hilbert Spaces , and prove that the
sets below are all closed and convex (a) let Ak = {A:‖A‖ ≤ k} now clearly (∞, k] is closed set ,
also norm is a continuous function and by definition of continuous function we have‖.‖−1(∞, k] is a
closed set too , for convexity we use the below arguement

∥∥(αA) + (1− αB)
∥∥ ≤‖α‖A+

∥∥(1− α)B
∥∥ (1)

= α‖A‖+ (1− α)‖B‖ (2)
≤ (α)k + (1− α)k (3)

so we proved that Ak is a closed and convex set.

(b) Although this looks like special case of (a), we show that the convex hull here involves orthonomal
matrices which enjoy very nice properties and simplify computations , however no explicit characteri-
zation can be given in case (a) unlike here , we give a proof when the matrix is square , the proof for
general non square called as stiefel manifold is given in [22],
Stiefel manifold (St(p,n))= {X ∈ Rn×p : XTX = Ip}
As ’A’ is unitary matrix by its isometry property we know its operator norm is 1,so‖A‖ = 1 whenever
A*A = I by using triangle inequality we get that

∥∥(αA) + (1− αB)
∥∥ ≤‖α‖A+

∥∥(1− α)B
∥∥ (4)

= α‖A‖+ (1− α)‖B‖ (5)
≤ (α)1 + (1− α)1 (6)
≤ 1 (7)

to prove the other direction we use singular value decomposition which says that A = UσV ∗

U∗AV = σ
‖σ‖ =‖U∗AV ‖ =‖A‖ ≤ 1
so largest singular value of A is 1 so all its singular values are less than one , For convexity we have
the following , consider all the points of {−1, 1}n say s1, s2, ......s2n , now all elements of σ are
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in the convex hull of these 2n points , the proof is given in [24] .hence σ is in the convex hull of
diag(si). As A = UσV ∗ , So A is also in the convex hull of orthonormal matrices.

(c) Finally we prove that set of Positive definite matrices is closed and convex , convexity is trivial by
the definition of semdefinite matrices , for closedness we use the theorem 3.1 from [23] specifically
part(ii) so now we define a mapping from matrix to an ’n’ tuple namely f : A → (δ1, δ2, ......δn)
This is clearly a continuous map as determinant is continuous map and product of continuous maps
is continuous , now the preimage of (∆1,∆2, ......∆n) ∩ (R+ ×R+ × ......R+)︸ ︷︷ ︸

n times

(which is closed) is

our set.

Finally when we use Hilbert projection theorem combined with above facts we get the desired result .

((iii) We first prove that the space is path connected and hence the statement follows . To do this we
just have to prove that the space M × V × V is contractible i.e it has trivial fundamental group , Say
E is a convex set, let x0 ∈ E, we define a function H as

H : A× [0, 1]→ A H(x, t) = tx0 + (1− t)x

by convexity H(x,t) ∈ A , H is polynomial in x and t and hence continuous so it’s a homotopy by
definition also we can check that

H(x, 0) = x for all x ∈ A
H(x, 1) = x0 for all x ∈ A

As H is homotopic to Identity map , E is contractible or is homotopic to point space . As fundamental
group is homotopy invariant we get that fundamental group of E is trivial.

Remark. • In (i) Our theorem we just proved gives important results which say that there
is one and only one embedding which is optimal in the sense of minimal loss.Although it
might be tempting to say as the set is convex and‖.‖2 is a strictly convex function so it’s one
line proof, however‖.‖2 is not a norm (it fails to satisfy the scaling property i.e it scales
quadratically not linearly)

• Approximating the encoder matrix with certain nice matrix familes will save computational
power we empasize when it’s possible.The encoder matrix should be non square matrix in
most of the cases in practice , because we have to embed it in high low dimensional space ,
in (ii) our results ii(a),ii(b) hold in the general sense , not necessarily square , hence more
practical .Also some families like ’set of matrices of bounded rank’ cannot be used for
Approximation of encoder , the proof can be found in [24]

• In (iii) no matter which embedding we start from we can always reach the optimal embedding
by continuously moving from our embedding and traversing through a series of embeddings
and whenever integration is involved in 3 tuple space we can safely consider only the straight
path without any loss .
Also as a byproduct , we also get that as norm is continuous by intermediate value theorem
we will have to traverse through all the embeddings whose loss lies between our initial
embedding and the optimal embedding .

5 ALGORITHMIC AND COMPUTATIONAL ASPECTS

This section we consider the computational aspects of finding an optimal matrix to the encoder in
terms of loss function, this is reduced to the problem of Covex optimization as both the norm and
search space are all convex , however our work is better than previous work in the fact that we also
know that local minima exists and is unique even when compactness is not assumed , with this the
problem of getting stuck in local minima is eliminated.so our problem of finding optimal encoder is
equivalent to solving a convex optimization which can be framed as

min
A∈C

∥∥∥A− Â∥∥∥
2
C is a closed convex set
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Problems of the above type are quite banal in Machine Learning , now to finding the optimal
embedding in terms of loss function we can frame it as

min
x∈V×V

‖x‖2

To analyze the complexity of the algorithm we need to analyze the complexity of search space i.e
dimension of the search space suppose that ai is the maximum power of xi in any of the multivariable
polynomial then the dimension of V is

Πn
i=1ai

and hence the dimension of V× V is 2Πn
i=1ai

Above convex optimization problem is also banal and already well investigated in the ML community
, so we are only giving the necessary details necessary to guage the complexity of theproblem , our
main goal in this paper is to disclose the relation between two superficially unfamiliar fields and
explore the beauty of such connection to further enhance our understanding of both the fields.

6 CONCLUSION AND FUTURE WORK

In this paper we to the best of our knowledge propose a first ever theoretical model for analyzing graph
embedding methods and give a formal abstract method for evaluating various embedding methods
at once and also prove certain results correspondingly. We prove certain theoretical results which
we think might have practical significance like can there be multiple extrema of graph embedding
,also can we approximate encoder matrix with matrix families having certain nice properties . We
din’t consider questions like , Can there be embeddings with non linear encoders and can achieve
better performance?, If yes , under what conditions ?.Also our approach works only for deterministic
embedding methods but we also need to analyze random walk based approach for graph embedding
as well.Our future research work would be focusing on this aspect.
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You may include other additional sections here.
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