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ABSTRACT

While supervised fine-tuning (SFT) and preference learning (PL) are widely used
to enhance the instruction-following ability of large language models (LLMs),
they often struggle to generalize to novel or complex instructions and may com-
promise the models’ general capabilities. In-context learning (ICL) emerges as
a promising alternative due to its strong generalization without modifying the
model’s parameters, but its effectiveness is constrained by the reliance on high-
quality, manually curated demonstration pools. To overcome this limitation, we
propose ContextlF, a reinforcement learning (RL) framework for automatic con-
text generation. Guided by comprehensive context reward, ContextIF is opti-
mized by Group Relative Policy Optimization (GRPO). It aims to generate pre-
cise constraint summaries and optimal context demonstrations tailored to given
instructions, thereby improving the instruction-following performance of target
LLMs. We evaluate ContextIF on multiple representative instruction-following
benchmarks using popular open-source LLMs. Experimental results demonstrate
that ContextIF achieves substantial performance gains over existing SFT and
ICL methods, while also generalizing effectively to unseen constraint conditions.
Moreover, ContextIF preserves the parameters and general capabilities of the tar-
get models, offering strong adaptability and scalability. The code is provided in
the Supplementary Materials.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable performance across diverse domains
in natural language processing (NLP) (Touvron et al., 2023} |OpenAl [2023; |(GLM et al., [2024).
As these models are increasingly deployed to develop agents across diverse domains, effective in-
struction following has become a critical factor for their practical application. Agents must comply
with various constraints and instructions to ensure safe, trustworthy, and reliable interactions (Li
et al., 2024; Tu et al. 2024). However, existing LLMs often struggle to adhere to the complex,
multi-faceted constraints common in real-world instructions, limiting their effectiveness (Zhou et al.}
2023} |Sun et al., [2024; |Qin et al.| 2024b; Xia et al.| [2024). Although numerous methods have been
proposed to improve instruction-following capabilities, most studies focus on pre-training, Super-
vised Fine-Tuning (SFT), preference learning (PL) and reinforcement learning from human feed-
back (RLHF). These approaches require substantial high-quality data and computational resources
and are susceptible to catastrophic forgetting, which leads to the loss of previously acquired knowl-
edge and generalization ability (Lin et al.| [2023). Moreover, they face considerable challenges in
generalizing to unseen constrained tasks.

In-Context Learning (ICL) is a capability that enables LLMs to learn directly from demonstrations
provided within the input prompt (Brown et al.;2020). By leveraging just a few task-specific demon-
strations, LLMs can achieve strong performance across diverse tasks and rapidly adapt to new do-
mains or problems without extensive fine-tuning. This capability is particularly crucial for enhancing
instruction-following in scenarios involving numerous, complex, and multi-constraint requirements.
Existing research has explored the importance of ICL in instruction-following tasks and investigated
the impact of context (Zeng et al.l [2025} |Zhao et al.l |2024; |Li et al.l [2025). Their findings indicate
that ICL performance is highly contingent upon the quality of the provided examples, as different
demonstrations can significantly affect the model’s final adherence, underscoring the critical impor-
tance of context optimization for this task.
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Figure 1: Comparison of conventional SFT/ICL methods (Left) with our proposed ContextIF
(Right). Traditional SFT and ICL rely on extensive, high-quality human-annotated datasets, strug-
gling to generalize to unseen constraints. In contrast, ContextIF enhances instruction-following
performance by automatically generating high-quality constraint summaries and demonstrations.

While promising, the efficacy of ICL is fundamentally tethered to the quality and relevance of the
provided demonstrations. Prior research has predominantly approached this challenge through two
main paradigms: manual curation and retrieval-based selection (Wang et al., 2024). Manual cura-
tion, while capable of producing high-quality examples, is notoriously expensive, time-consuming,
and fails to scale to the vast diversity of real-world instructions. Retrieval-based methods, which
select examples from a pre-existing pool, offer better scalability but are fundamentally constrained
by the coverage and quality of their source pool. This dependency becomes a critical bottleneck
for complex instruction-following tasks, as illustrated in Figure |I} User instructions often contain
nuanced, compositional, or entirely novel constraints for which suitable demonstrations simply do
not exist in public datasets or general-purpose annotations. Consequently, retrieving context from
static datasets is often insufficient for enhancing instruction-following capabilities across diverse
domains. To address this limitation, existing studies have proposed that automatically generating
specific context via LLMs is key to unlocking the full potential of ICL (Chen et al., 2023 |Lee
et al.| [2025). However, self-generation without quality verification is often unreliable. The resulting
demonstrations often lack the necessary structural rigor and semantic alignment to be effective, and
can even degrade performance. Our work is motivated by the need for a principled framework to
reliably generate optimal, task-specific context on the fly.

In this paper, we propose ContextIF, a novel framework that empowers LLMs to dynamically gen-
erate its own optimal context for instruction-following. Instead of retrieving from static pools, Con-
textIF employs a generator model to create high-quality, task-specific demonstrations on the fly
for any given user query. The core of our framework is a reinforcement learning loop designed to
train this generator model. The generation process involves two key steps: first, deconstructing the
user query into a concise constraint summary, and second, constructing a parallel question-answer
demonstration that exemplifies these constraints. To guide this complex generation task, we in-
troduce a comprehensive context reward as the key innovation of our framework. This composite
reward signal is engineered to assess both the structural correctness and the semantic quality of the
generated context. The entire RL process is stabilized and optimized using Group Relative Policy
Optimization (GRPO), enabling the generator model to learn how to produce context that maximally
enhances instruction-following performance.

We conduct extensive experiments on two leading open-source models: LLaMA3-8B-Instruct and
Mistral-7B-Instruct. To evaluate instruction-following, we utilize a suite of four representative
benchmarks: IFEval, Multi-IF, FollowBench, and LiveBench. Our findings demonstrate that back-
bone LLMs equipped with ContextIF consistently and significantly outperform strong baselines.
These baselines include traditional SFT methods and various ICL strategies, even those that lever-
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age demonstrations from manually curated pools or are generated by significantly larger models like
GPT-40. Furthermore, our results show two critical advantages of our RL-based approach. First,
ContextIF excels at generalizing to unseen constraint types. Second, it preserves and even enhances
the model’s foundational capabilities, directly addressing the common challenge of catastrophic for-
getting associated with fine-tuning methods.

Our main contributions are summarized as follows:

e We introduce ContextIF, a novel RL framework that empowers LLMs to dynamically generate its
own optimal context for improving instruction-following, overcoming the static data limitations of
traditional fine-tuning and ICL.

e We design a multi-faceted Context Reward that precisely quantifies the structural and semantic
quality of generated demonstrations, providing the essential guidance signal for our RL framework.

e Extensive experiments show that ContextIF sets a new state-of-the-art for instruction-following
among open-source models. Furthermore, our approach demonstrates superior generalization to
unseen tasks and simultaneously enhances the model’s general capabilities.

2  RELATED WORK
We review two lines of related work: instruction following methods and In-Context augmentation.

2.1 INSTRUCTION FOLLOWING

Instruction following is a fundamental capability of LLMs, requiring them to understand and gener-
ate responses that satisfy complex human instructions (Li et al., 2023b; [Dong et al.l 2024). Recent
research has primarily focused on constraints within instructions, such as keywords and length (Zhou
et al.,|2023). Numerous evaluation benchmarks have been developed to assess instruction-following
ability under complex, multi-constraint contexts, including those based on synthetic instructions
and rule-based evaluations (Zhou et al.| 2023} [Yao et al.| 2023} Iso, 2022), as well as evaluations
utilizing complex data and large language models (Jiang et al., [2024} |Qin et al., |2024a; [Wen et al.}
2024). Based on these benchmarks, various methods have been proposed to enhance instruction
adherence, mainly focusing on (1) collecting supervised fine-tuning data (Sun et al., 2024} Dong
et al.,2024; Ren et al., 2025)), including distillation from larger models, back-translation to generate
new instruction-response pairs, and iterative response analysis for improvement (An et al.| [2025);
(2) gathering preference data, such as code verification (Dong et al.,|2024) and model validation (An
et al.,|2025;|Cheng et al.,2025); and (3) reinforcement learning with reward verification (Peng et al.,
2025 |[Lambert et al., 2025). However, conventional approaches to improving instruction-following
have centered on data collection and targeted training. This methodology is prone to several critical
issues, including catastrophic forgetting of prior knowledge and a degradation of generalist abilities.
Moreover, such models typically exhibit poor generalization when faced with novel constraints.

2.2 IN-CONTEXT AUGMENTATION

The ICL paradigm allows LLMs to perform new tasks without modifying their parameters by lever-
aging task-specific input-output pairs, known as demonstrations (He et al. [2025; Moeini et al.,
20235)). It is usually more effective than fine-tuning, allowing the model to adapt to new cases with
fewer data requirements in the instruction-following (Zhao et al.}[2024;[Zhang et al., 2025])). Previous
approaches to improving ICL performance have primarily focused on optimizing the selection and
ordering of a limited number of demonstrations (Wang et al., 2024; Dherin et al., [2025)). Given the
cost of manually crafting prompts, recent research has moved beyond selecting and ranking high-
quality examples, and interest in LLM-generated prompt strategies has grown (Chen et al. [2023).
However, previous ICL methods based on selection sorting heavily rely on large-scale demonstra-
tion pools for matching (Li et al [2023a; 2025)), and LLM-based methods generate contexts with
low matching accuracy. Building on this, our work explores how to leverage reinforcement learn-
ing to provide rewards for context, thereby enhancing the ability of LLMs to generate contexts.
Compared to previous methods, our approach offers a more precise example generation method and
demonstrates strong generalization capabilities on unseen tasks under the guidance of reinforcement
learning rewards.
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3 METHODOLOGY

3.1 OVERVIEW OF CONTEXTIF
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Figure 2: An overview of the ContextIF framework. (a) The policy model, trained with GRPO,
generates a constraint and demonstration context block based on a user query. This output is then
evaluated by reward model to compute the final RL signal. (b) The Format Reward provides a binary
signal for structural correctness. (c¢) The Constraint Reward provides a fine-grained score based on
the semantic quality of the summary and the demonstration, guiding the policy toward generating
task-optimal context for instruction-following.

We introduce ContextIF, a reinforcement learning framework designed to automate and optimize
context generation for instruction-following tasks, thereby overcoming the limitations of both man-
ually curated demonstration pools and context naively generated by LLMs themselves. As illus-
trated in in Figure [2] ContextIF includes a policy model, initialized from the same base LLM as
the actor model, to act as a context generator. Given a user query, the model’s task is to produce a
self-contained ICL demonstration, which includes a precise constraint summary and a correspond-
ing question-answer pair. This entire process is optimized using a context reward signal, which
guides the model to generate context that is both structurally sound and semantically effective for
the instruction-following task.

3.2 ICL RoLLOUT

The primary objective of the rollout phase in ContextIF is to autonomously generate a high-quality,
task-specific context intended for ICL. This process begins with the policy model, as shown in Figure
(), which receives a user’s query. Guided by a comprehensive system prompt, the policy’s task is
not to directly answer the query, but rather to perform a creative and analytical generation step.

Specifically, the policy executes a single, non-interactive rollout to produce a complete, self-
contained XML block. This generated block is structured to serve as a perfect ICL context, con-
taining three distinct and ordered tags: <constraint>, <question>, and <answer>. The <con-
straint>>tag represents the model’s analytical understanding of the initial query. The <question>and
<answer>tags together form a new, parallel instruction-following pair that exemplifies the identi-
fied constraints.

This generated context block itself constitutes the entire trajectory for reinforcement learning pro-
cess. Unlike traditional ICL where demonstrations are manually selected from a static pool, Con-
textIF dynamically crafts a new demonstration for each query. As depicted in Figure [2[a), this
dynamically generated context is then evaluated by reward Model. The resulting reward signal, in-
dicating the quality of the generated ICL demonstration, is then used to update the policy via group
computation. This entire loop trains the policy to become an expert ICL demonstrator, capable of
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generating optimal context to enhance instruction-following. The specific prompts used for model
inference and for the judge model are detailed in Appendix

3.3 REWARD DESIGN

Verifiable reward reinforcement learning has demonstrated strong empirical performance, becoming
a key technique for enhancing LLMs and gaining widespread adoption. In our training of Contex-
tIF, we similarly employ a composite reward that integrates a format-based verification reward and
a constraint verification reward. Specifically, the format reward evaluates whether the model’s out-
put strictly conforms to the expected context XML structure, while the constraint reward assesses
the quality of the constraint summary and the generated demonstration. Formally, the overall re-
ward Rcontext 18 decomposed into two components: Reormat and Reonstraint, Which are detailed as
follows.

Format Reward. Format reward Rgyma € {0, 1} Checks whether the model output contains the
required constraint summary, demonstration question, and demonstration answer in the correct order
specified by the ground truth:

1, if all required fields appear and are in the correct order
0, otherwise

Rformat = { (1)

Constraint Reward. Rongmaint € [0, 3], evaluates the semantic quality of the generated content us-
ing a powerful judge model LLaMA3-70B-Instruct. This reward is an aggregate score composed of
three distinct binary components. For each generated C-Q-A block, the judge model assesses three
criteria: First, the Constraint Summary (rgummary) 18 awarded a score of 1 if the <constraint>tag
accurately summarizes all constraints from the original query, and 0 otherwise. Second, the Demon-
stration Question (Tgemoq) receives a score of 1 if the generated <question>contains a parallel con-
straint structure to the query, and O otherwise. Finally, the Demonstration Answer (rgemoa) s given a
score of 1 if the generated <answer>faithfully follows all constraints within the generated question,
and 0 otherwise. Total match score for each match is:

7zconstraint = Tsummary + Tdemoq + Tdemoa (2)

The final reward value Rgonex; 1S finally derived as the sum of Rormar and Reonstraint:

Rcontext = Rformat + Rconstraint (3)

In summary, our reward design explicitly distinguishes between structural adherence and semantic
quality. By unifying the reward signal to encompass both strict XML format compliance and the
fine-grained quality of the generated constraint summary and demonstration, our model is guided to
produce outputs that are not only syntactically valid but also semantically optimal for the instruction-
following task. This holistic evaluation is crucial for training an effective context generator and
achieving success in downstream instruction-following scenarios.

3.4 RL TRAINING WITH GRPO

To effectively train our context generation model using the composite context reward, we employ
GRPO, a variant of Proximal Policy Optimization (PPO) particularly well-suited for LLM fine-
tuning. GRPO stabilizes the training process by normalizing advantage values within groups of
samples generated from the same initial query (Shao et al.| |2024). Let w6 represent the current
policy.

Normalized Advantage Across Query Groups. For each query Q, its responses derived from the
rollout form a group G consisting of multiple responses and their corresponding reward values:

GQ = {Aa (Slvrl)v(5277'2)»'“;(5717771)} @

where A denotes the verification for Q, and each reward r; is computed as the sum of the format and
constraint rewards associated with response s;, i.e., 7; = Rformat(Si; A)+Reonstraint (Si, A). For
each group, we calculate the mean and standard deviation of the rewards:

1 n
no=—>_ri (5)
i=1
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1 n
=1

Then, for each sample s; in the group, we define the normalized advantage:

Ai(s:]Q) = ZQ_ f g (7)

where 7 is a constant to avoid division by zero.

4 EXPERIMENT

4.1 BASELINES

In our experiments, we compare ContextIF with a series of strong baselines specifically optimized
for instruction following, including Conifer (Sun et al., 2024), SPAR (Cheng et al.| |2025)), AutoIF
(Dong et al., 2024) and UltralF (An et al., |2025), which employs SFT and DPO. Additionally, we
evaluated various industrial models, including GPT-40 (Hurst et al.| 2024), QwQ-32B (Yang et al.,
2024). A detailed description of each baseline is provided in Appendix B}

4.2 BACKBONE LLMs

LLaMA3 Series (Dubey et al., 2024) represent the state-of-the-art for open-source models of their
size, a result of training on a massive 15T token dataset and an enhanced post-training alignment
process, which together endow them with exceptional instruction-following capabilities.

Mistral-7B-Instruct (Jiang et al.l 2023)) is a highly influential model renowned for delivering re-
markable performance and efficiency at the 7B parameter scale. Its effectiveness is attributed to
architectural innovations like Grouped-Query Attention and Sliding Window Attention, making it a
widely adopted and resource-efficient baseline for research.

4.3 EVALUATION BENCHMARKS

We use four representative instruction-following benchmarks to evaluate our method: IFEval (Zhou
et al., [2023)), the most commonly used dataset; Multi-IF (He et al., 2024), which includes multi-
turn and multilingual instruction following; FollowBench (Jiang et al.|[2024) and LiveBench (White
et al., [2024)) , which cover a comprehensive range of constraint types. For common capabilities,
we employ a variety of specialized benchmarks: GSM8K (Cobbe et al., [2021a) and BBH (Suzgun
et al., [2022) , MMLU (Hendrycks et al.l [2020), and HumanEval (Chen et al., 2021b). A detailed
description of each benchmark, along with specific evaluation protocols, is provided in Appendix[C]

4.4 MAIN RESULTS

All experimental results on four instruction-following benchmarks are presented in Table [I] Our
analysis reveals that ContextIF not only significantly enhances the performance of its base models
but also establishes a new state-of-the-art among open-source models of a similar scale. We draw
the following key conclusions:

ContextIF Consistently and Substantially Improves Base Model Performance. The primary
finding is the remarkable performance uplift provided by our framework. On the LLaMA3-8B-
Instruct base, ContextIF-8B achieves significant improvements across all evaluated benchmarks.
For instance, the average score across all four IFEval metrics increases from 77.11 to 83.35. This
consistent and significant improvement validates the effectiveness and robustness of our reinforce-
ment learning-based context generation approach.

ContextIF-8B Achieves State-of-the-Art Performance Among 8B Models. When compared with
other specialized instruction-following methods fine-tuned from LLaMA3-8B-Instruct, ContextIF-
8B demonstrates a clear advantage. It surpasses models such as Conifer-8B, SPAR-8B, and UltralF-
8B across all four metrics on IFEval. This superiority also extends to other benchmarks, including
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Model IFEval MultilF FollowBench LiveBench
PL) IL) PS) IS) Avg. Turnl Turn2 Turn3 SSR Score
GPT-40 84.80 89.60 79.90 85.60 84.98 82.30 71.70 59.30 75.30 64.90
QwQ-32B 86.10 90.40 82.80 88.00 86.83 64.20 56.60 48.40 67.80 80.00
TULU 3 82.80 87.50 79.70 85.10 83.78 82.10 63.20 51.20 70.30 72.00
LLaMA3-70B-Instruct 84.04 89.21 77.76 84.53 83.89 63.83 52.24 4392 62.90 67.50
LLaMA3-8B Models
LLaMA3-8B-Instruct 77.02 84.05 69.44 77.94 77.11 63.83 52.24 4392 62.90 46.70
Conifer-8B 79.50 85.50 75.60 82.70 80.83 66.00 53.80 41.90 64.76 46.90
UltralF-8B 75.40 83.10 71.30 79.40 77.30 69.63 58.28 46.86 60.41 45.40
AutolF-8B 76.93 82.02 68.13 77.55 76.16 62.63 51.53 42.53 59.50 45.70
SPAR-8B 81.15 87.05 79.11 85.13 83.11 72.55 60.46 51.32 68.80 49.80
ContextIF-8B 83.54 88.72 77.07 84.05 83.35 74.32 62.58 53.51 69.37 59.90

Table 1: Evaluation results of different models on IFEval, MultilF, FollowBench(SSR), and
LiveBench datasets. Pr. and Ins. stand for prompt and instruction levels, respectively. S and L
represent strict and loose metrics for IFEval. For LiveBench, we only report the performance on the
subset of instruction-following data.

the highly challenging multi-turn dialogue of MultilF, where ContextIF-8B achieves the highest
Turn3 score 53.51 among all LLaMA3-8B-Instruct variants. This suggests that our strategy of op-
timizing for task-optimal context is more effective than the SFT and DPO strategies employed by
other methods.

ContextIF Competes with and Surpasses Larger and Proprietary Models. The most compelling
result is how ContextIF closes the gap with much larger and more powerful models. On the IFEval
metrics, the performance of ContextIF-8B is on par with significantly larger models like TULU 3
and LLaMA3-70B-Instruct, and remarkably close to the proprietary giant, GPT-40. More strikingly,
on the LiveBench benchmark, which specifically measures generalization to real-world instructions,
ContextIF-8B achieves a score of 59.90. While this score does not match that of the larger-parameter
QwQ-32B, it significantly surpasses its own base model 46.70 and outperforms other same-scale
instruction-following models like SPAR-8B 49.80. This provides strong evidence that the tailored,
high-quality contexts generated by our framework provide a superior signal for generalization, en-
abling smaller open-source models to match the performance of vastly larger counterparts on critical
instruction-following tasks.

In summary, the results unequivocally validate our approach. By training a model to generate opti-
mized context via our multi-faceted reward signal, ContextIF dramatically elevates the performance
of its base models. It not only establishes leadership among models of a similar scale but also
demonstrates a remarkable ability to compete with and, in the key aspect of real-world general-
ization, surpass proprietary and much larger models. This makes ContextIF a highly effective and
parameter-efficient solution for advancing the state-of-the-art in instruction following. We demon-
strate the robustness of our approach with consistent improvements on Mistral-7B-Instruct, with
detailed results provided in Section[E.2]

4.5 COMPARISON WITH ICL STRATEGIES

To validate the effectiveness of our proposed ContextIF framework, we conducted a comprehensive
comparison of various context generation strategies, with results presented in Table 2} We first ob-
serve that while a well-prompted zero-shot baseline can slightly improve the instruction-following
capabilities of the LLaMA3-8B-Instruct model, employing randomly selected in-context demonstra-
tions consistently degrades performance across all benchmarks. Our analysis suggests that randomly
chosen contexts often introduce significant distracting information, negatively impacting the model’s
ability to follow instructions and underscoring that effective context is paramount. The viability of
automatic high-quality context generation is established when using the LLM itself to generate con-
text, an effect that is further amplified when employing a much larger model like GPT-40. However,
when we fine-tuned a dedicated LLaMA3-8B-Instruct model on 400 curated examples to specialize
in context generation, its performance paradoxically fell below that of the base LLM context genera-
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Model IFEval MultilF FollowBench LiveBench
PL) ILL) PS) IS) Avg. Turnl Turn2 Turn3 SSR Score
LLaMA3-8B-Instruct 77.02 84.05 69.44 77.94 77.11 63.83 52.24 4392 62.90 46.70
+ zeroshot 75.42 82.73 72.58 80.14 77.72 68.37 55.82 46.25 63.12 48.40
+ select-context 74.31 82.37 71.35 79.86 76.97 61.23 51.14 42.21 60.43 43.70
+ LLM-context 78.87 85.17 76.52 83.33 80.97 70.82 57.51 49.63 65.25 50.50
+ tuneLLM-context 78.27 84.49 75.97 82.61 80.34 69.85 57.26 49.43 64.37 50.30
+ GPT4o0-context  82.44 88.13 76.71 83.81 82.77 73.75 61.94 52.13 67.38 57.40
ContextIF-8B 83.54 88.72 77.07 84.05 83.35 74.32 62.58 53.51 69.37 59.90

Table 2: Performance comparison of ContextIF against various ICL strategies on the LLaMA3-8B-
Instruct model.

tor. A closer analysis reveals overfitting on specific constraint types and a lower quality of generated
demonstrations, highlighting the inherent limitations of a purely supervised approach for this task.

In contrast, ContextIF-8B establishes a new state-of-the-art across all benchmarks. By leverag-
ing a policy trained directly with our context reward signal, ContextIF-8B surpasses all other ICL
strategies, including those powered by the significantly larger GPT-40. For example, it achieves the
highest scores across all four metrics on IFEval, outperforms all methods on the challenging multi-
turn MultilF benchmark with a score of 53.51 on Turn3, and sets the top score on both FollowBench
at 69.37 and LiveBench at 59.90. These results unequivocally demonstrate that our reinforcement
learning approach moves beyond mere context generation; it discovers a task-optimal context strat-
egy. This learned strategy proves superior even to that of larger, general-purpose models, establish-
ing a new and more effective paradigm for enhancing instruction-following.

4.6 ANALYSIS ON UNSEEN CONSTRAINTS
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Figure 3: Prompt-level strict scores across different types of constraints on IFEval.

To analyze the generalization capability of ContextIF, we investigate its performance on constraint
types that were absent or rare in our training data. Our ContextIF training set primarily consists of
three common constraint types: content-based, style/tone, and format. To validate the model’s gener-
alization capabilities, we also excluded training data corresponding to the “Length” and “Keywords”
constraint types for the SPAR-SFT-DPO baseline. We created specialized test subsets from the IFE-
val benchmark focusing on constraint types not covered in our training, such as length, Keywords,
and language. The results, illustrated in Figure [3] demonstrate ContextIF’s robust generalization ca-
pabilities. Across a wide range of these unseen constraint types, ContextIF consistently outperforms
the baseline. For instance, on “Language”, it achieves a near-perfect score of 99. On “Keywords”
and “Length”, it leads by 8 points respectively, even though neither model was explicitly trained
on these specific constraints. This indicates that through its RL process of deconstructing and re-
constructing instructions, ContextIF acquires a more fundamental and transferable understanding of
instruction-following, rather than merely memorizing patterns. As expected, this strong performance
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Method Knowledge  Reasoning Math Coding Average
MMLU BBH GSMSK HumanEval [All]
LLaMA3-8B-Instruct 68.40 66.50 79.60 62.20 69.18
SPAR-SFT 67.80 (-0.6)  66.10 (-0.4)  78.60 (-1.0)  62.00(-0.2)  68.63 (-0.55)
ContextIF-8B 70.10 (+1.7)  68.10 (+1.6) 80.40 (+0.8)  63.30 (+1.1)  70.48 (+1.3)

Table 3: Performance comparison on general capability benchmarks. We report 5-shot accuracy
on MMLU, 3-shot accuracy on BBH, and Pass@1 on GSM8K and HumanEval. The numbers in
parentheses indicate the performance change relative to the base model. Our ContextIF model not
only preserves but enhances general capabilities, while the SFT baseline shows degradation.

is also evident on constraint types directly related to our RL training categories, such as “D. Content”
and “D. Format”. Notably, on the “D. Content” constraint, which aligns with our “content-based”
training, ContextIF achieves a score of 97, surpassing the baseline by 10 points. This demonstrates
the precision of the guidance provided by our Context Reward when the task is within the scope of
its training. This dual finding—strong performance on both a wide array of unseen constraints and
on seen constraint types—suggests that while incorporating richer constraint types into the training
data could further boost performance, the ContextIF framework itself fosters a robust, generaliz-
able instruction-following ability. We encourage the community to further explore how dynamically
generated context can serve as a powerful tool for enhancing generalization in LLMs.

4.7 ANALYSIS ON GENERAL CAPABILITIES

A crucial aspect of our investigation is to determine whether enhancing instruction-following capa-
bilities via ContextIF compromises the model’s foundational general abilities, a common drawback
of SFT. To verify this, we evaluate our models across four diverse and challenging domains: gen-
eral knowledge (MMLU), reasoning (BBH), mathematical problem solving (GSM8K), and coding
(HumanEval). Table [3| presents the performance of our ContextIF-trained model in comparison to
the original LLaMA3-8B-Instruct and the SFT baseline (SPAR). As hypothesized, the SPAR model
exhibits a consistent performance degradation across all four general benchmarks, underscoring the
risk of catastrophic forgetting associated with standard fine-tuning. The most significant drop is
observed in GSM8K, with a decline of 1.0 point. In stark contrast, the ContextIF model not only
preserves but demonstrates performance gains across every evaluated domain. Notably, it achieves
its most significant improvements in knowledge and reasoning, with a 1.7-point increase on MMLU
and a 1.6-point gain on BBH over the base model. These results strongly suggest that the underly-
ing process of our RL framework—Iearning to deconstruct instructions, summarize constraints, and
generate logically consistent examples—does not merely teach a narrow skill. Instead, it appears to
refine the model’s meta-learning and reasoning pathways. We believe that empowering a model to
generate its own context for learning acts as a form of self-distillation, which reinforces its core ca-
pabilities, facilitating the development of a more general and versatile agent. To assess the necessity
of each component in our reward design, we conduct a detailed ablation study in Section

5 CONCLUSION

In this study, we introduce ContextIF, a novel RL framework that enhances the instruction-following
capabilities of LLMs by dynamically generating high-quality context via Context Reward. We re-
veal that, unlike traditional SFT and ICL methods that depend on complex and labor-intensive data
curation, guiding an LLM to generate key constraints and high-quality parallel demonstrations as
context through multi-faceted reward mechanism leads to significant improvements on instruction-
following tasks. Critically, extensive experiments demonstrate that ContextIF not only excels in
generalizing to unseen constraints but also bypasses the risk of catastrophic forgetting typically
associated with SFT, preserving and even enhancing the model’s general capabilities. This work
showcases the immense potential of combining In-Context Learning with Reinforcement Learning
for instruction-following, and we believe empowering models to craft their own context represents
a scalable and effective path toward more generalizable and aligned language agents.
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personal queries. We have made efforts to filter any potentially harmful or personally identifiable
information during our data processing stage.
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able benchmarks. The implementation details of our ContextIF framework, including the reward
functions and the GRPO training algorithm, are described in Section Methodology. Our ContextIF
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A USE OF LLMs

In the preparation of this manuscript, LLMs were utilized as a general-purpose writing assistance
tool. Specifically, we employed LLM-based services to aid in proofreading, grammar correction,
and rephrasing of sentences to improve clarity and style. The core scientific contributions, including
the research ideation, experimental design, data analysis, and the formulation of conclusions, were
conceived and executed entirely by the human authors. The LLMs’ role was strictly limited to that
of a language polishing tool. All content, including any text modified with the assistance of an LLM,
was carefully reviewed, edited, and validated by the authors, who take full responsibility for the final
version of this paper.

B DESCRIPTION OF BASELINES

Conifer (Sun et al.l 2024) method generates a 13k instruction-following dataset through a three-
stage synthesis pipeline. This process begins with seed instructions sourced from ShareGPT and
applies query reframing, constraint generation, and recombination to create the final data. We di-
rectly utilize the full set as the baseline.

AutolF (Dong et al.,[2024) framework is its methodology for evaluating model responses using cus-
tom Python functions. These functions automatically verify adherence to a wide variety of manually
designed constraints. For this baseline, we replicate their methodology on our base model to obtain
the performance results.

UltralF (An et al.| [2025) is a framework for creating large-scale instruction-following data. It
trains a specialized model, the UltraComposer, on a corpus of existing documents and datasets.
This composer model is then used to synthesize the final instruction data. We reproduce their data
generation and training pipeline to establish the baseline performance for this method.

SPAR (Cheng et al.l [2025) is a self-play framework designed to generate high-quality preference
data for instruction-following tasks. It addresses the issue of irrelevant content variations in standard
preference pairs by using a tree-search self-refinement process. In this approach, an LLM iteratively
refines its own responses to minimize distractions, creating cleaner and more comparable preference
pairs for training. For our baseline, we fine-tune our base model using their officially released SFT
and DPO datasets.

C EVALUATION BENCHMARKS

IFEval (Zhou et al.|[2023)) provides a benchmark for assessing the instruction-following capabilities
of LLMs through verifiable prompts. It is composed of approximately 500 prompts that cover 25
distinct types of machine-verifiable instructions. In our evaluation, we report performance using
both loose and strict accuracy metrics at both the prompt and instruction levels, adhering to the
benchmark’s standard protocol.

Multi-IF (He et al.| |2024) extends the evaluation of instruction-following to more complex multi-
turn and multilingual scenarios. Building upon IFEval, the benchmark contains 4,501 conversational
dialogues across various languages, each structured into three turns. For our experiments, we report
the average accuracy for each of the three conversational turns.

FollowBench (Jiang et al.,|2024) is a benchmark designed to evaluate adherence to multi-level, fine-
grained constraints. It is organized around five distinct constraint categories (Content, Situation,
Style, Format, and Example) and emphasizes a compositional instruction design. We adopt the
official evaluation protocol, which employs GPT-4-0125-preview as an automated judge to assess
whether model outputs satisfy each individual constraint.

LiveBench (White et al.,|2024) is a comprehensive benchmark featuring a diverse set of challenging
tasks, including a dedicated subset for instruction-following. A key characteristic of the bench-
mark is its automated scoring system, which evaluates model outputs against objective ground-truth
values. In our work, we utilize this specific instruction-following subset to assess the alignment
capabilities of the models.
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GSMSK (Cobbe et al.| 2021b) is a benchmark composed of 8,500 high-quality grade school math
word problems. It is specifically designed to challenge the multi-step mathematical reasoning ca-
pabilities of language models. For our evaluation, we report the model’s overall accuracy on this
dataset. the experiment.

HumanEval (Chen et al.,[2021a)) is a code generation benchmark consisting of 164 handcrafted pro-
gramming problems. Each problem includes a function signature, a docstring, and a set of unit tests
(averaging 7.7 per problem) for evaluation. The benchmark assesses a model’s ability to synthe-
size functional code from natural language descriptions, thereby testing a combination of language
comprehension, reasoning, and algorithmic skills. We report the Pass@ 1 metric in our experiments.

BBH (Suzgun et al., [2022) is a challenging subset of the Big-Bench benchmark, curated to include
23 tasks that current language models find difficult. The benchmark contains a total of 6,511 ex-
amples and is designed to rigorously evaluate a model’s multi-step reasoning and problem-solving
abilities. We report the average accuracy across all tasks in our experiments. In the experiment we
report the accuracy metrics on BBH.

MMLU (Hendrycks et al.l 2021)) serves as a key benchmark for assessing the breadth of a language
model’s world knowledge and problem-solving abilities. The benchmark is composed of approx-
imately 15,908 multiple-choice questions that span 57 distinct tasks. These tasks cover a wide
spectrum of subjects, ranging from humanities like U.S. history to professional fields such as law
and medicine. In the experiments, we report the average accuracy across all tasks.

D EXPERIMENTAL DETAILS

D.1 PROMPTS OF CONETXTIF

For the Actor Model, we use the following template during inference to incorporate either a zero-
shot or a one-shot context:

Prompt Template for Response Generation Zero-shot

You are an expert tasked with answering the given query. Please provide a clear and concise
response directly, without introductory phrases such as “What a great question”, “Here is the
answer”’, or similar expressions.

Focus solely on addressing the query. Now please answer the given query while strictly
following its inside constraints.

Query: {query}

\ J

Prompt Template for Response Generation One-shot

You are an expert tasked with answering the given query. Please provide a clear and concise
response directly, without introductory phrases such as “What a great question”, “Here is
the answer”, or similar expressions.

Focus solely on addressing the query. Now please answer the given query while strictly
following its inside constraints.

Here is an example of the constraints contained therein and one that contains constraints of
the same type.

Constraints: {constraint}
Example: {Example}

Here is the Query:
Query: {query}

\ J

For the Policy Model, we use the following prompt template to generate constraint summaries and
corresponding demonstrations for given queries:
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Prompt Template for Context Generation

You are an expert in identifying constraints in instructions and constructing high-quality,
parallel examples. Your objective is to analyze a given user query, identify its constraints,
and then generate a new, similar example. Your final output MUST be a single, valid XML
block and nothing else.

The required XML format is: <constraint>Summary of constraints</constraint>
<question>Newly generated question with similar constraints</question>
<answer>Answer that follows the new question’s constraints</answer>

Here are the examples of correct execution you must follow:

Example 1:

Input: Generate a five-sentence story using the following words, need, money, computer,
bought, happy.

Output:

<constraint>Generate a five-sentence story using the specified words</constraint>
<question>Generate a five-sentence story using the following words, cat, garden, sunshine,
play, joy</question>

<answer>The cat wandered into the garden on a sunny day. It began to play among the
flowers with great joy. The warm sunshine made the garden feel magical. Birds chirped
happily as the cat chased butterflies. At the end of the day, the cat rested peacefully, content
and joyful. </answer>

Example 2:

Input: Write an extravagant session plan to learn about java. Make sure to include a
postscript starting with P.P.S.

Output:

<constraint>Include a postscript starting with P.P.S in the session plan</constraint>
<question>Write a detailed study plan to learn Python. Make sure to include a postscript
starting with PP.S.</question>

<answer>Study Plan to Learn Python:\n\nl. Introduction to Python: Understand the
basics of Python syntax and data types.\n2. Control Structures: Learn about loops, condi-
tionals, and functions.\n3. Data Structures: Explore lists, dictionaries, sets, and tuples.\n4.
Object-Oriented Programming: Understand classes, objects, and inheritance.\n5. Modules
and Packages: Learn how to organize code and use libraries.\n6. Practical Projects: Build
small projects like a calculator or a to-do app to apply knowledge.\n\nP.P.S. Remember to
practice coding daily and explore online resources to deepen your understanding. </answer>

Example 3:

Input: List the pros and cons of using two different names for the same thing. Make sure
the word synonyms appears at least 3 time.

Output:

<constraint>The word ‘“synonyms” must appear at least 3 times in the re-
sponse</constraint>

<question>List the advantages and disadvantages of using multiple terms for the same con-
cept. Make sure the word synonyms appears at least 3 times.</question>

<answer>Using multiple terms as synonyms for the same concept can have both pros and
cons. On the positive side, synonyms can enrich communication by providing variety and
preventing repetition, making the text more engaging. Additionally, synonyms can help
clarify meaning by offering alternative expressions that might resonate better with different
audiences. However, the use of synonyms can also lead to confusion if the terms are not
perfectly interchangeable or if the audience is unfamiliar with some of the synonyms used.
Moreover, excessive reliance on synonyms might dilute the precision of the message. Over-
all, while synonyms enhance language flexibility, careful consideration is needed to maintain
clarity.</answer>
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Prompt Template for Context Generation

Example 4:

Input: Answer must be in lowercase letters only throughout the entire response.

Output:

<constraint>Answer must be in lowercase letters only throughout the entire re-
sponse</constraint>

<question>What is another word for paintings? Answer in lowercase letters only, through-
out your entire answer.</question>

<answer>artworks </answer>

You will now be given a user query. Your task is to process this query according to the rules
and examples above.

CRITICAL INSTRUCTION: Do NOT use generic placeholder text like “Constraint de-
scription goes here”, “Question description goes here”, or any similar variations in your
output. You must generate specific, new content derived from the user query.

Query: {query}

Now, based on the user query provided above, generate your response in the specified XML
format.

D.2 IMPLEMENTATION DETAILS

For our primary experiments, both the policy model and the actor model were initialized from the
same base model. The policy model was then fine-tuned using the GRPO algorithm as described
in Section [3.4] The actor model’s weights were kept frozen during all stages of training and eval-
uation to serve as the target LLM for instruction-following. This decoupled setup ensures that our
method enhances instruction-following capabilities without degrading the model’s pre-existing gen-
eral knowledge.

E EXPERIMENT RESULTS

E.1 ABLATION STUDIES

We conduct ablation studies to investigate how each component of our context reward contributes to
the model’s instruction-following capabilities and to assess their necessity. The results are presented
in TableE} In the “w/o Format™ setting, the format reward is removed. In the “w/o Summary”, “w/o
Demoq”, and “w/o Demoa” settings, the rewards for the constraint summary, demonstration ques-
tion, and demonstration answer are respectively excluded. As shown in Table d] the demonstration
answer reward (w/o Demoa) and the constraint summary reward (w/o Summary) prove to be the
most critical components for enhancing complex instruction-following. Removing the answer faith-
fulness reward results in the most severe performance drop across all benchmarks, with the IFEval
average score plummeting from 83.75 to 78.50. The removal of the summary reward similarly leads
to significant performance degradation.

Perhaps the most insightful finding is the relative impact of the Format Reward. While its removal
(w/o Format) degrades performance, the drop is less severe than when the summary or faithfulness
signals are omitted. This highlights that while a consistent XML structure is beneficial, the core
challenge in instruction-following lies in correctly interpreting and executing the instruction’s se-
mantic intent. Our base model, already adept at structured outputs, gains the most from the rewards
that specifically target this deeper understanding. The Constraint Summary Reward teaches the
model to first accurately deconstruct an instruction into its core constraints. Subsequently, the An-
swer Faithfulness and Question Relevance rewards guide the model to faithfully reconstruct these
constraints into a new, logically coherent demonstration. It is this learned process of deconstruc-
tion and reconstruction, rather than mere structural mimicry enforced by the Format Reward alone,
that proves essential for true instruction-following. The synergy of all these reward components is
therefore critical, validating our multi-faceted approach to enhancing this core capability.
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IFEval MultilF FollowBench LiveBench
Model

Avg. Turn3 SSR Score
ContextIF-8B  83.75 53.51 69.37 59.90
w/o Format 81.13 51.21 67.48 56.10
w/o Summary  79.22 50.88 65.05 52.10
w/o Demoq 81.15 50.93 66.11 55.80
w/o Demoa 78.50 49.15 64.20 51.70

Table 4: Ablation results for the different components of our context reward.

E.2 INSTRUCTION-FOLLOWING EVALUATION RESULTS.

To further validate the model-agnostic nature and generalizability of our ContextIF framework, we
replicated our experiments on a different base model, Mistral-7B-Instruct. The results, presented in
Table 5] demonstrate that ContextIF’s superiority is not limited to the LLaMA3 architecture. Our
ContextIF-7B consistently and significantly outperforms all other 7B models across every evalu-
ated benchmark. This is particularly evident on fine-grained and multi-turn tasks; our model sets a
new state-of-the-art on both the strict instruction-level accuracy of IFEval 70.18 and the challenging
Turn3 accuracy of MultilF 44.51. Furthermore, it also achieves the top score on the comprehen-
sive LiveBench benchmark at 54.70. These findings strongly indicate that the core principle of
ContextIF—training a model to generate its own optimal context via a nuanced reward signal—is
a fundamental and transferable technique. It effectively enhances instruction-following capabilities
irrespective of the underlying model architecture, confirming the robustness and widespread appli-
cability of our proposed framework.

Model IFEval MultilF FollowBench LiveBench
PL) IL) POS) IS) Tuarnl Turn2 Turn3 SSR Score
Mistral-7B-Instruct Models
Mistral-7B-Instruct  53.30 64.19 48.49 59.31 46.16 3453 28.62 60.87 50.20
Conifer-7B 54.89 6498 50.46 6091 4620 4627 34.74 61.57 51.80
UltralF-7B 5493 6522 52.86 6223 4846 4425 42.58 61.41 50.50
AutolF-7B 5490 6523 52.87 6223 47.63 3741 32.58 59.50 51.60
SPAR-7B 58.25 68.11 56.56 66.19 5142 4846 38.13 67.13 53.70
ContextIF-7B 64.51 73.26 61.30 70.18 69.92 59.08 44.51 68.87 54.70

Table 5: Evaluation results of different models on IFEval, MultilF, FollowBench(SSR), and
LiveBench datasets. Pr. and Ins. stand for prompt and instruction levels, respectively. S and L
represent strict and loose metrics for IFEval. For LiveBench, we only report the performance on the
subset of instruction-following data.
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