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ABSTRACT

Knowledge Graphs play a pivotal role in various machine-learning tasks. How-
ever, constructing these datasets is challenging due to their semantic and structural
complexity, often resulting in limited data size. Synthetic graph generation has
been applied to augment graph datasets and has proven beneficial in domains such
as social network analysis and recommendation systems. Despite this, generating
graphs with extensive textual attributes remains underexplored. Large language
models (LLMs) possess the capability to generate text and reason about complex
data structures, including graphs. In this paper, we leverage the generative and rea-
soning abilities of LLMs to propose a novel framework for synthetic knowledge
graph generation. Our framework integrates two transformers and a text data aug-
mentation module, where prompt and fine-tuning approaches are used to generate
sentences and Mahalanobis distance is applied to measure outliers. This frame-
work offers straightforward application and high flexibility, which can effectively
generate graph datasets that have a similar triple distribution with the real one.
We combine the generated data with real data by either concatenation or mixture
way and through extensive experiments on downstream tasks, we demonstrate the
effectiveness and versatility of our approach.

1 INTRODUCTION

Generative models, such as Generative Adversarial Networks (GAN) Goodfellow et al. (2014) and
Variational Autoencoders (VAE) Kingma & Welling (2013), have gained more interest in the last
few years due to their capacity to generate synthetic data with similar distributions as real data.
In some industries, real data can be difficult to achieve because of privacy concerns or technical
barriers. For instance, patients and medical data are usually considered to be private, thus hindering
the training and applications of artificial intelligence tools in the healthcare industry. Synthetic data
could be a potential solution for this data scarcity problem and act as a great supplement for real
datasets. It could be applied to train the models for down-streaming tasks without sacrificing the
models’ efficiency and accuracy that only use real data.

Graph is a type of data structure that can efficiently store information and describe the relations
between different entities. Compared with text and numeric datasets, synthetic graph datasets are
more difficult to generate and evaluate due to their semantic and structural complexity. Before the
emergence of deep learning methodology, some algorithms were proposed to generate synthetic
graphs. In the Erdös-Rényi Model ERDdS & R&wi (1959), a graph is chosen uniformly and ran-
domly from a set of all possible graphs with a predefined number of nodes and edges. The variant
of this model was introduced in Janson et al. (2011), where a graph is generated by connecting
nodes randomly with a fixed probability p. However, it is found that it violates the power laws com-
monly existing in social networks. Barabási–Albert Method is a typical method proposed in Albert
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& Barabási (2002), which follows a preferential attachment idea where new nodes prefer to connect
with existing nodes. Another type of model is structure-driven, where structural indicators are used
to generate new graphs Leskovec et al. (2010); Mahadevan et al. (2006). However, these algorithms
are all criticized for some drawbacks, such as the inability to imitate real-world phenomena and high
computation costs, especially when the nodes and edges in the graphs have their attributes.

Deep learning-based generators were proposed in some papers You et al. (2018); Liao et al. (2019)
and they applied autoregressive models to generate graphs. Graph Neural Network was also used
in Grover et al. (2019), where the model parameterizes variational autoencoders (VAE) with graph
neural networks and uses a novel iterative graph refinement strategy inspired by low-rank approx-
imations for decoding. In Agarwal et al. (2023), the graph generator could generate a variety of
benchmark datasets accompanied by ground-truth explanations, which can be helpful for the eval-
uation of Graph Neural Network explainability. However, most methodologies lack the ability to
generate features in addition to structures, thus for some types of graphs where features conclude
extensive text information, it is still difficult to generate datasets that can be directly applied to
downstream tasks.

The development of large language models (LLM) is the most noteworthy topic in the field of natural
language processing in recent years, which brings a blowout for machine-generated text research.
Large language models are capable of generating synthetic text and also solving different types of
tasks Radford et al. (2019), such as mathematical problems solving Imani et al. (2023) and code
writing Chen et al. (2021). The interaction and reasoning capabilities of the language model em-
power itself with the potential for solving more complicated tasks, including understanding the graph
structure data Li et al. (2023).

For some graph problems, particularly those containing nodes with text attributes, the LLM can be
introduced in the task-solving procedure to improve graph learning. There are multiple ways that
Graph Neural Networks (GNN) can be integrated with LLM to capture the structural and contextual
information, which can mainly be divided into LLM as enhancers, LLM as predictors and GNN-
LLM Alignment. In the first type of design, the language models are mainly used to enhance the
quality of node embeddings that would be fed into the GNN He et al. (2023); Chen et al. (2024);
Chien et al. (2021). When the language models are used as predictors, a graph is flattened into a
sequence and then is fed into the language model as input to generate predictionsWang et al. (2024);
Zhao et al. (2023); Chai et al. (2023). GNN-LLM alignment designs ensure that each encoder’s
unique functionalities are preserved while coordinating their embedding spaces at a specific stage
Radford et al. (2021); Yang et al. (2021).

Though previous research has proved that language models are capable of understanding graph data
structures and attributes, it is still not revealed whether they can act as an important part of the syn-
thetic graph generation procedure. Motivated by this question, we explored how language models
can be utilized to assist in synthetic graph dataset generation, especially those containing relation-
ships with semantic information. The contribution of this paper can be divided into the following
aspects: (a) We proposed a novel framework to generate synthetic knowledge graph datasets,
which can be used in downstream graph tasks. This paradigm has a straightforward design, which is
simple to follow. (b) We provided a template pipeline of text augmentation, transformation and
cleaning. We use Mahalanobis distance to effectively remove textual outliers and sample synthetic
datasets with similar triple distribution to real datasets. (c) Through extensive experiments, we show
that the synthetic dataset can be introduced into down-streaming tasks, which provided a promising
application for this research.
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Figure 1: Overview for the framework of the synthetic Knowledge graph generation

2 RELATED WORK

2.1 KG-TO-TEXT GENERATION

Recent works have utilized graph neural networks (GNN) Velickovic et al. (2017) and pretrained
language models (PLM) Lewis et al. (2019); Raffel et al. (2020) to generate fluent text consistent
with KG inputs. Studies on KG-to-text generation falls into three directions: 1) Graph transformer:
traditional methods train a transformer-based model with a modified encoder module that effectively
captures a graph’s structure information Koncel-Kedziorski et al. (2019); Schmitt et al. (2021); Guo
et al. (2019); Ribeiro et al. (2020). 2) Pre-trained models: researchers have adapted and finetuned
PLMs for KG-to-text task and obtained better results than graph transformer-based approaches in
some cases Ribeiro et al. (2021); Chen et al. (2020); Kale & Rastogi (2020). 3) Integration of PLM
and Graph-aware modules: recent works further improve the performance by fusing graph-aware
modules into PLM Colas et al. (2022); Ke et al. (2021).

2.2 TEXT-TO-KG GENERATION

Earlier works addressed text-to-kg generation as multi-stage models, consisting of subtasks such as
entity extraction Martins et al. (2019) and relationship classification Zeng et al. (2014); Zhang et al.
(2017). Grapher Melnyk et al. (2022) first generates graph nodes using PLM, followed by an edge
construction head for efficient KG construction. These models require complex task-specific designs
and present poor flexibility for different domains. To overcome the limitation, another direction of
works frames the KG generation as a sequence-to-sequence (seq2seq) problem, where the PLMs
are finetuned to generate the linearized graph in an end-to-end manner Lu et al. (2022); Cabot &
Navigli (2021); Dognin et al. (2021). ReGen Dognin et al. (2021) leverages reinforcement learning
to finetune the PLM with a seq2seq generation objective, achieving state-of-the-art performance on
WebNLG+ 2020 datasets. Powered by the advances of large language models (LLMs), recent works
prompt LLMs to generate relational tripplets in a zero/few-shot setting Wei et al. (2023); Wadhwa
et al. (2023).

2.3 TEXT AUGMENTATION

Text augmentation is the technique of increasing training data diversity without directly collect-
ing more data, and most text augmentation methods deal with text input with data space, which
transforms text data by its raw form. At the character level, Belinkov and Bisk Belinkov & Bisk
(2017) add different kinds of noise to the training data, and Coulombe Coulombe (2018) imple-
ments rule-based transformations by regular expressions. At the word level, Wei and Zou Wei &
Zou (2019) propose Easy Data Augmentation, a set of token-level random perturbation operations
including insertion, deletion, and swap. Some researchers also proposed methods to replace words
by word embeddings Alzantot et al. (2018); Li et al. (2017), and language models can be utilized
to perform the substitution Hu et al. (2019); Jiao et al. (2019). In Shi et al. (2021), they provided
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an augmentation technique at the phrase level, where they substitute substructures of the sentence.
Back translation is one of the most popular methodologies when the whole sentence is taken into
consideration Sennrich et al. (2015); Xie et al. (2020). Generative models are also widely used in
the generation such as GPT-2 Liu et al. (2020); Anaby-Tavor et al. (2020).

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

We first introduce the formulated problem in this section, and then we propose our framework to
solve the problem in Section 3.2. The generated synthetic datasets will be evaluated in different
down-streaming tasks and the details for the experiments are shown in Section 4. In the end, limita-
tions and conclusions are discussed in Section 5.

Our goal is to generate some synthetic graph datasets that can be used as a supplemental or aug-
mented dataset for down-streaming tasks. In some cases, it can also be mixed with real data. Given
the previous research, language models can be used in different ways when solving graph prob-
lems with different types and features. To fully explore the language models’ capacity to generate
graphs where nodes and edges have rich textual information and such information is important in
the following tasks, we select knowledge graph as our experimental type.

Given a knowledge graph dataset G in which each data sample can be formally expressed as G0 =
(V0, E0,R0), where nodes are denoted as v ∈ V0 and labeled edges are represented as (vi, r, vj) ∈
E0, with r ∈ R0 denoting as the relation type, we expect the output to be a synthetic dataset, where
the nodes in the graph have similar complexity of text attributes and distribution of structure. It can
be used in down-streaming tasks and achieve about the same level of performance in terms of the
evaluation metrics.

3.2 GENERATION FRAMEWORK

There are three main components in the framework: Graph-to-Text (G2T) Transformer, Augmentor
and Text-to-Graph (T2G) Transformer. Those transformers will be fine-tuned at first, and when a
synthetic dataset is required, the real dataset G will be transformed into a text dataset by the G2T
module, where each sample (a sentence or a paragraph) corresponds to one graph in the real dataset.
The Augmentor can generate synthetic text by either fine-tuning or prompting, and the generated
text dataset will be cleaned, selected and evaluated by its fidelity and semantic coherence. It will
also be compared with the input text dataset. Finally, the text will be transformed into a graph in the
T2G module. The overview of the framework is shown in Figure 1.

3.2.1 G2T TRANSFORMER

In the G2T module, we followed the design of a state-of-art methodology named GAP Colas et al.
(2022). The advantage of this model is that it introduced a graph-aware attention module to effec-
tively capture the relationships between nodes and edges. A graph is first linearized into a sequence
with all the triples in the graph, divided and concatenated by tags that separate each component
in the triple. The tags include head, relation and tail. For example, a triple list {[“Harry Potter”,
“author”, “JK Rowling”], [“JK Rowling”, “country”, “UK”]} will be linearized into “<head>Harry
Potter <relation>author <tail>JK Rowling <relation>country <tail>UK”.

A transformer encoder will be used to contextualize the vector representations. The self-attention
module will be set as the first part which acts as a Global Attention to capture the semantic relation-
ships between all tokens. The l-th layer of the module can be formulated as

Xl = Attn(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

where W are the model parameters with a size of dk×dk, and the query, key, and value are computed
via Q = Xl−1W

Q
l , K = Xl−1W

K
l , and V = Xl−1W

V
l−1. Xl−1 ∈ Rn×d denotes the collection of

vectors of the graph’s tokens. The dk is the dimension of word vectors.
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Then a graph-aware attention module will be introduced as the second part, which can be formulated
as

X̃g
l = AttnM,T (Q,K, V ) = softmax

(
QKT

√
dk

+M + γ(T )

)
V. (2)

The Q,K, V in Equation (2) are constructed from Xg , where Xg = pooling(Xl), Xg ∈ Rm×d. m
is the number of graph components. This pooling layer can return a vector that is unique for each
entity for the node or relation for the edge, even if it appears several times in the linearized sequence.
M ∈ Rm×m is a masking matrix and γ(T ) is a type encoding matrix where T ∈ Rm×m encodes
the information of connection type in the matrix. And finally, the l-th layer will generate the output
as

X̃l = gather(X̃g
l ) +Xl, (3)

where the word representations from the graph representations generated by Equation(2) are gath-
ered and are added as residual to Xl. Ultimately, the encoded representations will be decoded into a
sequence by a decoder.

3.2.2 TEXT AUGMENTATION MODULE

For the augmentation module, we implemented two different ways to generate synthetic text: prompt
engineering and fine-tuning. Prompts can effectively elicit knowledge from language models Shin
et al. (2020); Jiang et al. (2020) and the design of in-context learning can also take advantage of
the few-shot learning and inference ability of the models Xie et al. (2021), thus we provide another
type of augmentation method by prompting the LLM to generate text. Given the text dataset Dr =
{di}DN

i=1, we draw a sample Ds as in-context learning examples. Denote p as the designed prompt,
we can formulate the generation procedure as

Prompting : dnew = fLLM (Ds, p). (4)

In the fine-tuning approach, for the graph dataset we owned, the validation texts corresponding to
graphs are first extracted, followed by the construction of a new dataset Dg , where Dg = {di}DN

i=1.
Each di in Dg is a sentence or a paragraph. Then we generate a list of sequences Sg = {Sj}SN

j=1
in order, and each sequence consists of a fixed number of sentences in the dataset. For example,
the first sequence can be denoted as s1 = [d1, d2, ...dα], where α is the number of sentences in
each sequence and SN = DN

α . Then an instruction I for generating samples of synthetic text is
paired with the concatenation of the sequence to form the fine-tuning sample. After the model is
fine-tuned, and given the same instruction as before, the model is capable of generating a group of
new sentences dnew. The typical pipeline is as follows:

Finetuning : F = fLLM (Sg, I)

Generation : dnew = Parse(F, I),
(5)

where F is the fine-tuned language model.

3.2.3 T2G TRANSFORMER

For the Text-to-Graph Transformer, similar to the state-of-art architecture Grapher proposed in
Melnyk et al. (2022), we selected the text-nodes-class-edges as the design of the base generator
since it has the best performance in terms of evaluation metrics including F-1 score compared with
other designs revealed by the paper. The advantage of this design is that the sparse distribution of
connection between different nodes is considered, which can more properly reflect the real situation.

Different from the G2T transformer, which considers nodes and edges at the same time, in this
transformer, input training text sequences are at first translated into a sequence of nodes, separated
with special tokens, “<PAD>node1<NODE SEP>node2 ... </S>”, where nodei represents one
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or more words. The <NODE SEP>is set as the boundary for different nodes, and then the string
corresponding to each node is greedy-decoded to generate features for the next step, the edge clas-
sifier. The classifier will predict if there is an edge connection between two different nodes based
on their features. Since in general, the number of actual edges is small, and the distribution for
the edges is imbalanced, predicting edges for all pairs of nodes can be really time-consuming and
unnecessary. Thus the Focal loss is set as the objective function,

Lf = −(1− pt)
λlog(pt), (6)

where p is a probability corresponding to a single edge and t is the target class, γ ≥ 0 is a weighting
factor, such that γ = 0 makes Equation (6) equal to traditional cross-entropy loss. The shift of
function can improve the accuracy of the edge classifier, and more details for the design are discussed
in Melnyk et al. (2022).

By setting the overall framework, our methodology is capable of generating more graphs with unseen
entities and relationships, which can be learned from downstream models. Thus this feature differs
us from CycleGTGuo et al. (2020), where they also introduced graph-to-text and text-to-graph tasks
simultaneously. Given no parallel pairs of text and graph, their work aims to jointly learn the models
in a cycle framework by iterative training, however, the goal of our work is to augment the graph
datasets.

4 EXPERIMENTS

In this section, we first introduce the fundamental settings of the model, and then we provide a
preliminary analysis of the generated text dataset, followed by a comparison of the results of the
generated graph performance on downstream tasks and an exploration of how to use the synthetic
data. We emphasize here that the goal of this paper is to generate synthetic knowledge graphs that
can be used as supplementary training data for downstream tasks that achieve comparable perfor-
mance with initial real data, and there are none of synthetic knowledge graph baselines, so we mainly
compared with existing tasks with real data.

4.1 FUNDAMENTAL SETTINGS

In the generation stage, we use the predictions on the test set of the data based on the graph-to-text
module with a sample size of 1,600. For the prompt approach, we set the size of the in-context
learning sample Ds = 20 and design different prompts, such as “Given some sentences that de-
scribe some facts as follows, generate the same number of other sentences with similar language
complexity and sentence length range to describe facts”. For the fine-tuning approach, we split three
versions and respectively set α = [1, 5, 10] as the number of sentences in each sample of sequence.
We utilized gpt-3.5-turbo provided by OpenAI for the augmentation and Figure 2 is an illustration
of the approaches.

4.2 DATA GENERATION AND SELECTION

In each setting mentioned above, we generate around 8,000 sentences, which is fivefold of number of
input sentences. To decrease the negative impact of outliers and select the sentence that has a smaller
distance to the input dataset distribution, inspired by the outlier detection in Ghorbani (2019), we
applied Mahalanobis distance as the metric to evaluate the generated texts.

The Mahalanobis distance can be used as a measure of the distance between a data point P and a
distribution D. It is a multi-dimensional generalization of the idea of measuring how many standard
deviations away P is from the mean of D, and it corresponds to standard Euclidean distance in the
transformed space if the principle axes are re-scaled to unit variance. Textual outliers can also be
detected by this measure and its variants Podolskiy et al. (2021).

The Mahalanobis distance of an observation x = (x1, x2, x3..., xn)
T from a set of observations with

mean µ = (µ1, µ2, µ3..., µn)
T and covariance matrix S is defined as:
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Figure 2: Overview of the Prompt and Fine-tuning approach for text augmentation

Figure 3: Histogram of Generated Sentence Embedding Mahalanobis Distance

DM (x) =
√
(x− µ)TS−1(x− µ) (7)

In our work, we constructed the distribution matrix of the input dataset with a shape of nl × dl,
where nl is the number of sentences in the input dataset and dl is the dimension of sentence em-
bedding of the last layer. Since we calculated the embedding by the BERT model provided by
huggingface, here dl equals 768. Then we compute the mean and covariance matrix of the distri-
bution matrix and evaluate the distance between the embedding of the generated sentence and the
distribution matrix by (7).

Figure 3 shows the histogram of the distance for the four different settings with the number of bins
equal to 100. Figure 3(a) is the distribution of distance from the generated sentence embedding to the
input dataset embedding matrix under the prompt approach, and (b), (c) and (d) are the distributions
of distance under the finetuning approach with the hyperparameter α = [1, 5, 10] respectively to
control the sequence length of the fine-tuning sample. We split the settings in this way to see if the
granularity of input will make an impact on the generated text.

The mean distances are labeled by the vertical orange lines in the graph. For the finetuning method,
as the setting of α gets larger, the mean distance becomes smaller, though they are all higher than
the mean distance under the prompt method with the smallest value of 4.37. The distributions of
distance show the same left-skewed feature with different levels, suggesting that the semantic space
is not uniformly dense and that removing outliers is a necessity. Thus we decide to remove 10% of
the generated texts with the largest distance, which are the data points distributed on the right side
in each subfigure.

In the next step, the selected texts are fed into the text-to-graph module to generate graphs. We
remove all the graphs containing edges labeled as failed to infer and for each setting, we sample a
final dataset with a size of 5,000 that can be experimented with in downstream tasks.
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Figure 4: Distributions for Number of Triples in Real and Synthetic Dataset

Table 1: F-1 Score (%) on Real Test Set for Named Entity Recognition Task Under PFN
Case #Real Data #Synthetic Data Prompt Finetune-v1 Finetune-v2 Finetune-v3

5000 0 97.39
1 5000 5000 97.35 96.51 97.20 97.30
2 4000 1000 96.64 96.61 96.60 96.44
3 3000 2000 93.75 94.15 95.01 94.83
4 2000 3000 84.83 90.56 91.40 91.24
5 1000 4000 81.59 83.11 85.34 85.44

Figure 4 shows the distributions for the number of triples in the real and synthetic training set. The
x-axis is the number of triples that can be extracted from the given sentence, which ranges from
one to seven, and the y-axis is the count of samples. The four synthetic datasets display a similar
distribution to the real dataset that the count of sentences increases as the number of triples increases,
so the structure complexity of synthetic graphs is similar to the real one.

4.3 NAMED ENTITY RECOGNITION

Given a piece of text, named entity recognition (NER) aims to extract all the entities in the text. It is a
sub-task in graph formulation and provides a supplement for other tasks such as text summarization
and question answering. We select Partition Filter Network (PFN)Yan et al. (2021) as the evaluation
method as it provides a state-of-the-art result for this task.

Table 1 shows the results of the F-1 score (%) on the real test data for this task. When we only add
the synthetic graphs as the supplement, the final score would not change radically, which means the
downstream models are capable of learning the samples newly introduced without being negatively
influenced by the noise (Case 1).

Next, we consider different ratios of real data and synthetic data when they are combined to train
the models. Controlling the size of the training set as the same, when the number of synthetic data
introduced becomes larger, the final F-1 score would gradually decrease. For different generation
approaches, the mixture ratios are different when the scores decline to some thresholds. When the
texts are generated by the fine-tuning method, related graphs could still have a score of over 90%
when the size of synthetic data is slightly larger than real data (Case 4).

The mixture proportions would affect the performance of downstream tasks because though we clean
and select the augmented text to decrease the sentence embedding distance from the real data, it still
contains semantic differences. The text-to-grapher module would infer new types of entities and
relationships, for example, text generated by the fine-tuning (v1) method is transformed into a graph
dataset with 361 types of relationships, which is larger than the original training data. Furthermore,
the synthetic graphs are only mixed into the training set, without integrating into the validation and
test set to improve model performance.

In addition, the introduction of synthetic data would help to increase the rate at which the value of
the loss function decreases, thus it will converge faster than the case when only real data is used.
Figure 5 shows the changes of loss in the first 10 epochs for Case 1. Subfigure (a) compares training
and validation loss of real data versus real data augmented by graphs generated from prompt text,
and subfigure (b) compares training and validation loss of real data versus real data augmented by
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Figure 5: Training and Validation Loss with # Epochs

graphs generated by text from the fine-tuning model. For both cases, the training and validation loss
based on the augmented dataset would converge to a lower value in the earlier epochs.

4.4 JOINT ENTITY AND RELATION EXTRACTION

In this section, we explore the impact of the introduction of the generated synthetic graphs on joint
entity and relation extraction. It differs from named entity recognition in that it aims to extract not
only the entities but all the triples from the given sentences. We use the Set Prediction Networks
(SPN) proposed by Sui, et al Sui et al. (2023) and combine the generated dataset with the real
WebNLG data to train the models. Table 2 provides the results of the F-1 score (%) on the real test
data for the entity recognition, and Table 3 provides the results of the F-1 score (%) for the relation
extraction.

Overall, the graphs generated by the finetuned models achieved higher scores on both sub-tasks
compared with those generated by prompts. If the synthetic dataset is directly combined to train
without removing any real data sample (Case 1), the indicators show a similar level. The score of
entity recognition for the data generated by the Finetune-v3 model is even higher than the baseline
by 0.64 percent. If the synthetic dataset is mixed with the real dataset for different proportions, for
the prompt method, there will be a prominent drop in the score when the ratio between real data and
synthetic data changes from 3:2 to 2:3. However, for the finetuning method, the largest decline of
score usually happens when the ratio changes from 2:3 to 1:4. It could be considered as the signal
that the graphs inferred from text generated by fine-tuned models have the better consistency with
real data than those from prompts.

Table 2: F-1 Score (%) on Real Test Set for Entity Recognition Under SPN
Case #Real Data #Synthetic Data Prompt Finetune-v1 Finetune-v2 Finetune-v3

5000 0 96.60
1 5000 5000 96.56 96.26 96.25 97.24
2 4000 1000 95.85 96.16 96.91 97.01
3 3000 2000 92.61 95.60 97.95 96.33
4 2000 3000 88.66 93.93 96.20 95.30
5 1000 4000 86.78 93.87 92.34 92.17
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Table 3: F-1 Score (%) on Real Test Set for Relation Extraction Under SPN
Case #Real Data #Synthetic Data Prompt Finetune-v1 Finetune-v2 Finetune-v3

5000 0 87.06
1 5000 5000 86.70 86.06 86.09 85.96
2 4000 1000 86.64 87.00 85.88 85.92
3 3000 2000 82.07 83.28 82.88 82.35
4 2000 3000 69.86 78.07 79.56 79.01
5 1000 4000 65.99 71.69 71.81 72.38

5 DISCUSSIONS AND CONCLUSIONS

Due to experiment design and computation resources, some limitations are difficult to solve in this
paper. The generalization ability of the framework should be further investigated since we only use
the WebNLG dataset to fine-tune the pre-trained transformers. Datasets covering other topics should
be introduced to improve reasoning ability. For the text augmentation module, other models, such
as davinci-002, are not covered, which also might lead to different performances on the generated
graph. Another issue is the quality of the generated graph. Parameter settings, such as the numbers
of epochs for training in graph-to-text and text-to-graph models, are fixed in our experiments, and
some generated graphs cannot explicitly capture the genuine entities and relationships revealed in
some complicated and long text. Thus the quality of the generated synthetic graph still has room for
improvement. Evaluation of the quality of the synthetic graph is also a potential direction for future
research.

To summarize this paper, we utilized the large language models to generate synthetic knowledge
graph datasets. The main contributions of our work can mainly be divided into the following as-
pects. First, we propose a novel and straightforward framework to generate synthetic knowledge
graph datasets that can be used in down-streaming tasks. This framework does not involve model
architecture design and is simple to follow by leveraging the reasoning ability of large language
models. Second, in our data augmentation module, we explore two different approaches, prompt
and finetuning, and provide templates of design and data clean methods to generate synthetic text
that can be extracted to form triples. Finally, through extensive experiments and evaluations on
knowledge graph-related tasks, we show the promising of our framework for applications.

REFERENCES

Chirag Agarwal, Owen Queen, Himabindu Lakkaraju, and Marinka Zitnik. Evaluating explainability
for graph neural networks. Scientific Data, 10(1):144, 2023.
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A APPENDIX

A.1 TRAINING DETAILS

In this paper, we trained graph-to-text and text-to-graph modules locally, and fine-tuned gpt-3.5-
turbo with OpenAI API. The source codes are from the following links, and we also modified part
of the codes due to the error caused by old versions of Pytorch and transformers. Table 4 to 7 provide
details for some important hyperparameters we used in our experiments.

GAPColas et al. (2022):https://github.com/acolas1/GAP COLING2022

GrapherMelnyk et al. (2022):https://github.com/IBM/Grapher

PFNYan et al. (2021):https://github.com/Coopercoppers/PFN

SPNSui et al. (2023):https://github.com/DianboWork/SPN4RE

Table 4: Hyperparameter Details for GAP
Hyperparameter Name Settings Hyperparameter Name Settings

number of beams 5 max node length 50
train batch size 16 predict batch size 16

max input length 256 max output length 128
learning rate 2e-5 number of train epochs 40
warmup steps 1600 eval period 500

Table 5: Hyperparameter Details for Grapher
Hyperparameter Name Settings Hyperparameter Name Settings

number of epochs 50 number of nodes 1
edges as classes 1 learning rate 1e-4

batch size 11 focal loss gamma 3
dropout rate 0.5 number of layers 2
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Table 6: Hyperparameter Details for PFN
Hyperparameter Name Settings Hyperparameter Name Settings

number of epochs 20 batch size 20
learning rate 2e-5 evaluation metric macro F1
hidden size 300 clip rate 0.25
dropout rate 0.1 max sequence length 128

Table 7: Hyperparameter Details for SPN
Hyperparameter Name Settings Hyperparameter Name Settings

number of epochs 50 batch size 4
learning rate of decoder 5e-5 learning rate of encoder 2e-5

learning rate decay 0.02 max span length 10
head entity loss weight 2 tail entity loss weight 2

relation loss weight 1 optimizer AdamW

A.2 GENERATED SAMPLES

In this section, we provided some samples of the text augmentation procedure. Section A.2.1 shows
the input and initial output by the prompt approach, and Section A.2.2 provides some fine-tuning
data samples and initial output by the fine-tuning approach. We use the word “initial” here since
they are not separated, cleaned and selected by the calculated distance.

A.2.1 INPUT AND INITIAL OUTPUT BY PROMPT

Input:

Given some sentences that describe some facts as follows, generate other twenty sentences with
similar language complexity and sentence length range to them that describe other facts:

Sentence 1. Agustin Barboza was born in Asuncion, Paraguay, where the leader is Juan Afara.

Sentence 2. Cake is a dessert, as is Bionico.

Sentence 3. American Buzz Aldrin graduated from the Massachusetts Institute of Technology in
1963 with a Sc. D.. and was selected by NASA in 1963.

Sentence 4. Alberto Teisaire, who worked as the Provisional President of the Argentine Senate, was
succeeded by Isaac Rojas.

Sentence 5.103 Hera was discovered on July 7th, 1868 by James Craig Watson, a Canadian national.
His alma mater was the University of Michigan and he died in Madison, Wisconsin.

Sentence 6.John Buscema won the Eisner Award .

Sentence 7. Dunwoody is the largest city in DeKalb County, Georgia.

Sentence 8. The AWH Engineering College in Kerala, India has 250 academic staff.

Sentence 9. Adare Manor is located in County Limerick which is part of Munster.

Sentence 10. American William Anders was born in British Hong Kong. He was a crew member
of NASA’s Apollo 8 along with Frank Borman and Buzz Aldrin as backup pilot. He retired on
September 1st, 1969.

Sentence 11.Ace Wilder was born in Sweden in 1982. He is a solo singer and songwriter.

Sentence 12. The comic character Blockbuster, also known as Mark Desmond, was created by
Carmine Infantino and Gardner Fox.

Sentence 13. Buzz Aldrin was selected by NASA in 1963.
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Sentence 14. The runway length of Andrews County Airport is 896.0.

Sentence 15. The largest city in Oregon is Portland.

Sentence 16. Anders Osborne’s genre is Rhythm and blues.

Sentence 17. Christian Panucci plays for Inter Milan.

Sentence 18.Christian Panucci plays for Chelsea F.C .

Sentence 19. Alan Shepard was born in New Hampshire and died in California. He was awarded the
Distinguished Service Medal by the United States Navy which ranks higher than the Department of
Commerce Gold Medal.

Sentence 20. Aaron Hunt played for SV Werder Bremen II and now plays for VfL Wolfsburg, which
is managed by Dieter Hecking .

Initial Output:

Sentence 1. Maria Lopez was born in Madrid, Spain, where the mayor is Manuel Garcia.

Sentence 2. Ice cream is a popular dessert, as are macarons.

Sentence 3. English geneticist Gregor Mendel graduated from the University of Hohenheim in 1853
with a Ph.D. and conducted his famous pea plant experiments in the 1860s.

Sentence 4. Juan Martinez, who served as the Chief Justice of the Supreme Court in Peru, was
succeeded by Maria Ramirez.

Sentence 5. Asteroid 209 Dido was discovered on March 6th, 1879, by Johann Palisa, an Austrian
astronomer. He studied at the University of Vienna and passed away in Graz, Austria.

Sentence 6. Frank Miller won the Harvey Award.

Sentence 7. Marietta is the largest city in Cobb County, Georgia.

Sentence 8. The University of Engineering and Technology in Lima, Peru, has 300 academic staff
members.

Sentence 9. Adare Castle is located in County Tipperary, which is part of Munster.

Sentence 10. Canadian astronaut Chris Hadfield was born in Sarnia, Ontario, and was the first
Canadian to walk in space during Mission STS-74. He retired from the Canadian Space Agency in
2013.

Sentence 11. Sofia Lindgren was born in Norway in 1990. She is a professional dancer and chore-
ographer.

Sentence 12. The superhero character Nightwing, also known as Dick Grayson, was created by Bob
Kane and Bill Finger.

Sentence 13. Buzz Aldrin was initially chosen by NASA in 1963.

Sentence 14. The runway length of London Luton Airport is 878.0 meters.

Sentence 15. The capital of South Dakota is Pierre.

Sentence 16. John Smith’s genre is Country music.

Sentence 17. Cristiano Ronaldo plays for Real Madrid.

Sentence 18. Cristiano Ronaldo plays for Juventus F.C.

Sentence 19. Ellen Ochoa was born in California and died in Arizona. She was the first Hispanic
woman to go to space.

Sentence 20. Marco Reus played for Borussia Mönchengladbach and now plays for Borussia Dort-
mund, which is managed by Lucien Favre.
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A.2.2 INPUT AND INITIAL OUTPUT BY FINETUNING

The following provides two input samples for fine-tuning and two output samples when α = 5. All
input samples are stored in a jsonl file. For different values of α, the only difference is the number
of sentences in the assistant’s content.

Input Sample 1: {”messages”: [{”role”: ”system”, ”content”: ”This is a factual and objective
chatbot.”}, {”role”: ”user”, ”content”: ”Generate some sentences that describe facts.”}, {”role”:
”assistant”, ”content”: ” Sentence 1. Allama Iqbal International Airport is located in Pakistan and
operated by the Pakistan Civil Aviation Authority. The airport serves the city of Lahore and has a
runway length of 2900.0. Sentence 2. Bakewell pudding is a dessert from the Derbyshire Dales
region. The main ingredients are ground almonds, jam, butter and eggs. Sentence 3. The United
States House of Representatives is located in the U.S. and leads Anaheim, California. Sentence 4.
Beef kway teow is a popular dish in Singapore and Indonesia. Oyster sauce is an ingredient in Beef
Kway Teow. Sentence 5. Athens International Airport serves the city of Athens in Greece where
the Greek language is spoken. Two of the leaders of the country are Alexis Tsipras and Prokopis
Pavlopoulos .”}]}
Input Sample 2: {”messages”: [{”role”: ”system”, ”content”: ”This is a factual and objective
chatbot.”}, {”role”: ”user”, ”content”: ”Generate some sentences that describe facts.”}, {”role”:
”assistant”, ”content”: ” Sentence 1. Ashgabat International Airport is 211 metres above sea level
and its 1st runway is 12467 feet in length. Sentence 2. Rock and roll originated from blues music.
Sentence 3. Andrew White started his musical career in 2003 and is associated with the musical
artist Marry Banilow. He is signed to the now-defunct Universal Records label and plays for the
band Kaiser Chiefs. Sentence 4. Andra is a rhythm and blues singer. Rhythm and blues originated
from blues music and disco and funk are derivatives of it. Sentence 5. The main ingredients of
Batagor are fried fish dumplings with tofu and vegetables in peanut sauce .”}]}
Output Sample 1:

Sentence 1. Bread is an ingredient of a bacon sandwich.

Sentence 2. Parachute Publishing was founded in 1986.

Sentence 3. The Aston Martin V8 is produced by Aston Martin.

Sentence 4. Bakewell tart is a variation of Bakewell pudding which has almonds as an ingredient.

Sentence 5. Bibite is an Italian word which comes from the plural of the Latin word bibo. The
singular word is bibo.

Output Sample 2:

Sentence 1. Addison County Field Days takes place in Addison, Vermont.

Sentence 2. Asam pedas is a food from Malaysia.

Sentence 3. A Fortress of Grey Ice is from the United States where the capital city is Washington
D.C . and Asian Americans are an ethnic group.

Sentence 4. The 1st School of Law in Si Sa Ket was established in 2006 and has 3500 students. It is
affiliated with Rajabhat Suan Dusit University.

Sentence 5. Adolfo Suárez Madrid–Barajas Airport is operated by ENAIRE where Benito Nardone
is the headquarters.

A.3 BROADER IMPACT

The proposed framework can contribute to augmenting knowledge graph datasets but also other
types of graphs with textual attributes. The efficiency of our method depends on the text augmenta-
tion module design. If the fine-tuned model possesses knowledge from different domains, it might
be capable of generating graph datasets with different topics. The performance of models related
to graphs can also potentially benefit from the increasing size of training data, such as graph neural
networks.
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