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Abstract

Recent Large-Language Models (LLMs) prun-001
ing methods typically operate at the post-002
training phase without the expensive weight003
finetuning, however, their pruning criteria often004
rely on heuristically hand-crafted metrics,005
potentially leading to suboptimal performance.006
We instead propose a novel optimization-007
based structural pruning that learns the prun-008
ing masks in a probabilistic space directly by009
optimizing the loss of the pruned model. To010
preserve the efficiency, our method eliminates011
the back-propagation through the LLM per012
se during the optimization, requiring only the013
forward pass of the LLM. We achieve this014
by learning an underlying Bernoulli distribu-015
tion to sample binary pruning masks, where016
we decouple the Bernoulli parameters from017
the LLM loss, thus facilitating an efficient opti-018
mization via policy gradient estimator without019
back-propagation. As a result, our method is020
able to 1) support global and heterogeneous021
pruning (i.e., our method automatically deter-022
mines different redundancy for different layers),023
and 2) optionally initialize with a metric-based024
method (for our Bernoulli distributions). Ex-025
tensive experiments conducted on LLaMA,026
LLaMA-2, LLaMA-3, Vicuna, and Mistral027
models using the C4 and WikiText2 datasets028
demonstrate the promising performance of our029
method in efficiency and effectiveness.030

1 Introduction031

With the rapid development of Large Language032

Models (Brown et al., 2020; Achiam et al., 2023)033

(LLMs) and their expanding across various appli-034

cations, the efficiency of LLMs with vast param-035

eters and complex architectures becomes crucial036

for practical deployment. In this paper, we aim037

to compress the LLM through structural pruning,038

which removes certain structural components such039

as channels and attention heads, i.e., Width Pruning040

(Ma et al., 2023; Muralidharan et al., 2024), which041

is also our main concern, to reduce the model size 042

with hardware-friendly acceleration. 043

Early structural pruning methods in the pre-LLM 044

era prune channels or layers via optimization, using 045

task loss back-propagation to determine pruning 046

structures (Liu et al., 2018b; Blalock et al., 2020). 047

These methods operate during training (Huang and 048

Wang, 2018; Evci et al., 2020) or post-training 049

(Molchanov et al., 2019; Wang et al., 2021), with 050

the latter being more efficient as they avoid weight 051

updates. We thus focus on post-training pruning 052

for efficiency. 053

However, the heavy computational and mem- 054

ory demands of LLMs make existing optimization- 055

based pruning methods less appropriate in terms 056

of efficiency. Metric-based pruning is introduced 057

to alleviate this issue, which directly prunes spe- 058

cific network components based on carefully de- 059

signed criteria (Sun et al., 2023; Das et al., 2023). 060

Nonetheless, those criteria are often hand-crafted 061

heuristically. As a result, metric-based pruning 062

methods often face challenges in achieving promis- 063

ing performance and generalizability, particularly 064

at high pruning rates. 065

Moreover, most metric-based pruning methods 066

typically prune the networks by manually-designed 067

thresholds (Li et al., 2023; Zhang et al., 2023). Al- 068

though different layers of LLMs may have varying 069

levels of redundancy (Yin et al., 2023; Xu et al., 070

2024), achieving a global and heterogeneous prun- 071

ing strategy is challenging with metric-based ap- 072

proaches. This is due to the significantly vary- 073

ing magnitudes of the manually designed metrics 074

across layers, making it laborious or even impossi- 075

ble to set proper pruning threshold for each layer1. 076

The above analysis leads to a natural question: 077

Can we attain the performance of optimization- 078

1As a practical compromise, most metric-based methods
conduct a homogeneous/uniform pruning rate for all the layers,
which violates the fact that different layers could possess the
different amount of redundancy.
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LLM
Pruning
Methods

w/ Weight Update

Metric-based

Only Forward

Struct: (An et al., 2024; van der Ouderaa et al.,
2023; Yang et al., 2024; Shen et al., 2024)

Unstruct: (Boža, 2024; Frantar and Alistarh, 2023;
van der Ouderaa et al., 2023; Zeng et al., 2024; Zhang

et al., 2024b; Meng et al., 2024; Tan et al., 2024)

Need Backward
Struct: (Chen et al., 2024; Wei
et al., 2024; Zhang et al., 2024a)

Unstruct: N/A

Optim-based

Only Forward Struct: N/A
Unstruct: (Bai et al., 2024)

Need Backward

Struct: (Chen et al., 2023; Guo et al., 2023; Ko
et al., 2023; Li et al., 2024b; Zhao et al., 2024;

Xia et al., 2023; Muralidharan et al., 2024)
Unstruct: N/A

w/o Weight Update

Metric-based

Only Forward

♠ Struct: (Ashkboos et al., 2024; Kim et al.,
2024; Dery et al., 2024; Song et al., 2024)

Unstruct: (Li et al., 2023; Shao et al., 2024; Sun
et al., 2023; Xu et al., 2024; Yin et al., 2023;

Zhang et al., 2023; Lu et al., 2024; Li et al., 2024a)

Need Backward
♠ Struct: (Ma et al., 2023)
Unstruct: (Das et al., 2023)

Optim-based

Only Forward Struct: Our Method
Unstruct: N/A

Need Backward
Struct: N/A

Unstruct: (Fang et al., 2024)

Figure 1: The taxonomy of our method among the LLM Pruning. Methods without weight update are used for
comparison in our experiments (highlighted with ♠), due to the constraints on time and memory efficiency, as well
as the accessibility of large-scale finetuning datasets.

based methods that facilities global and hetero-079

geneous pruning without relying on hand-crafted080

heuristics, while preserving a similar cost with the081

metrics-based methods that is affordable on a sin-082

gle commercial GPU?083

In view of the above analysis, our pro-084

posed method is essentially a novel lightweight085

optimization-based method, where it 1) efficiently086

avoids the back-propagation through the heavy087

LLM, 2) optionally can be initialized by an arbi-088

trary metric-based approach. Particularly, our prun-089

ing efficiency is ensured via a policy gradient esti-090

mator (Williams, 1992), requiring only the LLM091

forward pass without back-propagation, which is092

analogous to many efficient metric-based methods093

and requires the same memory overhead, such as094

(Sun et al., 2023; An et al., 2024). Moreover, our095

method unifies the pruning of the entire LLM into096

a probabilistic space (optionally initialized by an097

arbitrary metric-based approach), eliminating the098

magnitude difference issue of most metric-based099

methods and therefore directly facilitating global100

and heterogeneous pruning across the entire LLM.101

Specifically, we formulate our pruning as a bi-102

nary mask learning/optimization problem (Srinivas103

et al., 2017), where the binary masks determine104

whether to prune the corresponding structures by105

element-product of them. To efficiently learn those106

binary masks, we construct an underlying proba- 107

bilistic space of Bernoulli distributions to sample 108

those binary masks. By decoupling the Bernoulli 109

parameters from sampled masks, our method dis- 110

entangles these parameters from the LLM loss, en- 111

abling efficient optimization via policy gradient es- 112

timator, bypassing back-propagation2. Moreover, 113

the probabilistic modeling of Bernoulli distribu- 114

tion facilitates global and heterogeneous pruning 115

across the entire LLM. 116

The taxonomy of our methods is illustrated in 117

Fig. 1. In the experiments, our method is com- 118

pared with SOTA structural pruning methods that 119

do not update the model weight simultaneously, 120

due to the constraints on time and memory ef- 121

ficiency3. We extensively validate our methods 122

using the C4 (Raffel et al., 2020) and WikiText2 123

(Merity et al., 2016) datasets on popular LLaMA 124

(Touvron et al., 2023a), LLaMA-2 (Touvron et al., 125

2023b), LLaMA-3 (Dubey et al., 2024), Vicuna 126

(Chiang et al., 2023), and Mistral (Jiang et al., 127

2023) models with various parameter sizes, prun- 128

2We note that our formulation can also be interpreted from
a reinforcement learning (with dense rewards) perspective in
terms of Markov Decision Process (MDP), please refer to
Appendix A.3 for details.

3After pruning is performed, it becomes affordable to fine-
tune the weights of the pruned smaller model on a single
commercial GPU, we include this “final” performance with
pruning then finetuning in our experiments.
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ing rates, and initializations, showing the promis-129

ing performance and efficiency. For example, our130

method clearly outperforms the SOTA methods re-131

garding both perplexity and zero-shot performance132

and operates only 2.7 hours with about 35GB mem-133

ory on a single A100 GPU to prune the LLaMA-134

2-13B model. Our method exhibits the following135

features simultaneously:136
• Accuracy, ensured by 1) our optimization-137

based pruning without heuristically hand-138

crafted metrics, which optionally take metric-139

based pruning as initialization for a better140

convergence, and 2) the global and hetero-141

geneous pruning, as supported by our proba-142

bilistic modeling of the pruning masks.143

• Efficiency (regarding both computations and144

memory), achieved by the policy gradient esti-145

mator for back-propagation-free and forward-146

only optimization w.r.t. the heavy LLMs.147

2 Related Work148

Pruning has proven effective in traditional deep149

neural networks (Han et al., 2015; Frankle and150

Carbin, 2018; Kurtic et al., 2022; Liu et al.,151

2019; He et al., 2018), and extensive research152

has been conducted on this topic. Typically,153

post-pruning performance is restored or even en-154

hanced through full-parameter fine-tuning (Liu155

et al., 2018b; Blalock et al., 2020). However, for156

large language models (LLMs) with vast parame-157

ters, full-parameter fine-tuning is computationally158

expensive and often impractical. To overcome this159

challenge, various pruning strategies (Ma et al.,160

2023; Zhang et al., 2024a; Sun et al., 2023; Ashk-161

boos et al., 2024; Frantar and Alistarh, 2023) have162

been developed for LLMs in recent years. These163

strategies can be categorized into metric-based164

pruning and optimization-based pruning.165

Metric-based Pruning. Metric-based pruning166

methods focus on designing importance metrics for167

model weights or modules. (Sun et al., 2023) in-168

troduces a pruning metric by considering both the169

magnitude of weights and activations. LLM-Pruner170

(Ma et al., 2023) eliminates coupled structures with171

low weight importance via loss change. These172

methods use pre-defined pruning metrics and of-173

ten face challenges with high pruning rates. (Dery174

et al., 2024) proposed a structured pruning method175

using only forward passes with promising perfor-176

mance. It regresses the heuristically hand-crafted177

criteria, e.g., the utility of the pruned sub-networks,178

and makes assumptions that may not hold univer-179

sally, e.g., the network’s utility as a linear sum of180

building elements’ utilities, and their utility being 181

consistent/average-able across sub-networks. 182

Metric-based pruning methods use predefined 183

criteria, potentially leading to suboptimal perfor- 184

mance. Our optimization-based pruning frame- 185

work, inspired by Neural Architecture Search 186

(NAS) (Liu et al., 2018a), directly optimizes the 187

loss function to identify the optimal pruned archi- 188

tectures while achieving higher efficiency through 189

policy gradient optimization compared to conven- 190

tional NAS that rely on back-propagation. 191

Optimization-based Pruning. Optimization- 192

based pruning methods focus on determining the 193

model mask in an optimized manner and also in- 194

volve model weight updating. Sheared LLaMA 195

(Xia et al., 2023) learns pruning masks to find a 196

subnetwork that fits a target architecture with full- 197

parameters updating. (Guo et al., 2023; Chen et al., 198

2023; Zhao et al., 2024) utilize LoRA (Hu et al., 199

2022) in the pruning process with weight updating. 200

However, these methods rely on costly back- 201

propagation for the optimization process and 202

weight updating. Instead, we propose using pol- 203

icy gradient estimation in the optimization process 204

as an alternative, thus significantly reducing the 205

computational demands. 206

3 Methodology 207

We introduce our optimization-based pruning for 208

LLMs, which is efficient without back-propagation 209

through the LLM, illustrated in Fig. 2. 210

3.1 Pruning via Probabilistic Mask Modeling 211

We formulate the network pruning as seeking bi- 212

nary masks (Srinivas et al., 2017) to determine 213

whether the corresponding structure should be 214

pruned or not. Those binary masks are further mod- 215

eled by/sampled from the Bernoulli distributions 216

stochastically. Such formulation possesses several 217

merits: 1) the probabilistic Bernoulli modeling 218

facilitates global and heterogeneous pruning across 219

the entire LLM; 2) our stochastical sampling de- 220

couples Bernoulli parameters and the sampled 221

masks from LLM loss empowering an efficient pol- 222

icy gradient optimization without back-propagate 223

through the LLM (see Sect. 3.2); and 3) the mask 224

formulation enables flexible pruning at channels, 225

heads (of Multi-Head Attention, MHA), and layers. 226

We denote the calibration dataset with N i.i.d. 227

samples as D={(xi,yi)}Ni=1, w={wi}ni=1 as the 228

complete and non-overlapped modules of a LLM 229

with model size n, and m = {mi}ni=1 ∈ {0, 1}n 230

as the corresponding binary masks, where mi=0 231
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Figure 2: The overview of our method. We formulate LLM pruning as optimizing underlying Bernoulli distri-
butions that sample binary masks. Being different from the conventional back-propagation method (e.g., through
Gumbel Softmax as shown by the red-dashed-arrows), our formulation decouples the masks and the Bernoulli
parameters from the LLM loss (see Eq. (4) and Remark 3), facilitating efficient and unbiased policy gradient (the
blue-dashed-arrow) without back-propagation through the LLM (see Eq. (5) and Remark 4).

implies wi is pruned and otherwise retained. Note232

that wi and mi can be defined at various granulari-233

ties such as channels, heads, and layers4. Then, our234

structural pruning of LLMs can be formulated as a235

binary optimization with constraints:236

min
m
L(D;w⊙m) :=

1

N

N∑
i=1

ℓ(f(xi;w⊙m),yi),237

s.t. ∥m∥1 ≤ rn and m ∈ {0, 1}n. (1)238

where f(·;w⊙m) is the pruned network, ℓ(·, ·)239

is the loss function, e.g., the cross-entropy loss, and240

r is the target pruning rate. We note that the binary241

optimization problem Eq. (1), i.e., finding opti-242

mal masks m from the discrete and exponentially243

growing solution space, is typically NP-hard.244

Therefore, we relax the discrete optimization us-245

ing a probabilistic approach, by treating n masks246

as binary random variables sampled from n un-247

derlying Bernoulli distributions with parameters248

s = {si}ni=1 ∈ [0, 1]n. This yields the conditional249

distribution of m over s:250

p(m|s) =
n∏

i=1

(si)
mi(1− si)

1−mi . (2)251

By relaxing the ℓ1 norm in Eq. (1) by its expec-252

tation, i.e., ∥m∥1≈Em∼p(m|s)∥m∥1=
∑n

i=1si =253

1⊤s, we have the following expected loss minimiza-254

tion problem:255

min
s

Ep(m|s)L(D;w⊙m),

s.t. 1⊤s ≤ rn and s ∈ [0, 1]n.
(3)256

Remark 1 Problem (3) is a continuous relaxation257

4For the channel and head granularity, we prune the dimen-
sions of the hidden states following (Ma et al., 2023) while
preserving output channels of each block to maintain residue
connections(see Appendix A.2).

of the discrete Problem (1). The feasible region of 258

(3) is the intersection of the cube [0, 1]n and the 259

half-space 1⊤s ≤ rn. Moreover, the parameteri- 260

zation of (3) in the probabilistic space facilitates 261

automatically learning the redundancy across dif- 262

ferent layers for global and heterogeneous pruning. 263

3.2 Policy Gradient Optimization 264

Conventional neural network training paradigm 265

usually adopts back-propagation to estimate the 266

gradient of Eq. (3), e.g., through Gumbel Softmax 267

(Maddison et al., 2016; Dupont et al., 2022) which 268

reparameterizes the mask m as a function of s, 269

i.e., mi=ϕ(si) or mi=ϕ(si, ϵ) with ϵ∼N (0, 1). 270

However, the back-propagation has the following 271

intrinsic issues in LLM pruning. 272

Remark 2 Intrinsic issues of back-propagation 273

in LLM pruning: 1) the back-propagation is com- 274

putationally expensive and memory-intensive; 2) 275

the computation of gradients can not be satisfied 276

by using the sparsity in m, i.e., ∂mi
∂si
̸= 0 even if 277

mi = 0. In other words, one has to go through the 278

full model for back-propagation even when lots of 279

the LLM modules have been masked. 280

Now we present our efficient (back-propagation- 281

free) and unbiased optimization for Problem (3). 282

We propose using Policy Gradient Estimator (PGE) 283

for the gradient estimation with only forward pass, 284

avoiding the pathology of the chain-rule estima- 285

tor. Specifically, in order to update the Bernoulli 286

parameters s, we have the objective Φ(s): 287

Φ(s) = Ep(m|s)L(D;w⊙m)

=

∫
p(m|s)L(D;w⊙m)dm,

s.t. 1⊤s ≤ rn and s ∈ [0, 1]n.

(4) 288

289
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Our key idea is that in Eq. (4), the score vec-290

tor s only appears in the conditional probability291

p(m|s) for sampling m, which is decoupled from292

the network loss term L(D;w⊙m).293

Remark 3 Differences with Gumbel Softmax: 1)294

As shown in Eq. (4), our PGE formulates the mask295

m as a random variable which is only related to296

the distribution s through the conditional proba-297

bility p(m|s) of probabilistic sampling. Thus, the298

expensive back-propagation through the LLM can299

be omitted in gradient estimation using the PGE.300

In contrast, for the Gumbel Softmax estimator, m301

is a function of s, requiring the back-propagation302

through the whole networks (see the blue and red303

gradient flows in Fig. 2). 2) As a result, Gumbel304

Softmax is challenged by the back-propagation is-305

sues discussed in Remark 2. 3) Gumbel Softmax is306

known to be biased especially when the tempera-307

ture is high (Huijben et al., 2022). 4) The vanilla308

PGE might suffer from large variance (Liu et al.,309

2020), so we exploit a variance-reduced PGE dis-310

cussed later in Eq. (7) with theoretical analysis and311

empirical ablations in Appendices A.4 and A.14.312

Specifically, the optimization of Eq. (4) via the313

policy gradient estimator holds that:314

∇sΦ(s)=

∫
L(m)∇sp(m|s)+p(m|s)∇sL(m)︸ ︷︷ ︸

= 0

dm315

=

∫
L(m)p(m|s)∇s log(p(m|s))dm316

=Ep(m|s)L(m)∇s log(p(m|s)). (5)317

The final equality provides conclusive proof318

that L(m)∇s log(p(m|s)) is an unbiased stochas-319

tic gradient for Φ(s).320

Remark 4 The efficiency of Eq. (5): 1) Equation321

(5) can be computed purely with forward propaga-322

tion. 2) The computation cost for the gradients, i.e.,323

∇s log(p(m|s)) = m−s
s(1−s) , is negligible. There-324

fore, our PGE is much efficient compared to the325

backward-propagation-based estimators.326

The stochastic gradient descent algorithm in the327

batch-training paradigm is:328

s← projC(z),
z := s− ηL(DB;w⊙m)∇s log(p(m|s)).

(6)329

whereDB={(xi,yi)}Bi=1 is batch samples fromD330

with batch size B, and L(DB;w⊙m) is the loss on331

DB with the pruned model by masks m. The pro-332

jection operator projC(·) is to ensure the updated333

scores s to be constrained in the feasible domain334

C that satisfies C =
{
1⊤s ≤ K

}⋂
{s ∈ [0, 1]n}.335

We implement the projection operator from (Wang336

and Carreira-Perpinán, 2013), the details of which 337

can be found in Appendix A.1. 338

Policy gradient might suffer from large variance 339

(Liu et al., 2020). To reduce the variance for fast 340

and stable training, we minus a moving average 341

baseline (Zhao et al., 2011) which is calculated by 342

1) obtaining the averaged loss of multiple sampling 343

trials, then 2) taking the moving average of the 344

current and the previous losses given a window size. 345

Denote the baseline as δ, given window size T (set 346

to 5), and mask sampling times Ns (set to 2), we 347

update s in each training step via Eqs. (7) and (8). 348

The theoretical analysis and empirical ablations 349

can be found in Appendices A.4 and A.14. 350

s← projC(z) with z := s− η

[
1

Ns
(7) 351

Ns∑
i=1

(
L(DB;w⊙m(i))−δ

)
∇s log(p(m

(i)|s))
]
. 352

δ ← T − 1

T
δ +

1

NsT

Ns∑
i=1

L(DB;w⊙m(i)). (8) 353

Our efficient pruning algorithm is summarized in 354

Appendix A.1. Note that our formulation can also 355

be interpreted as a dense rewards reinforcement 356

learning problem, as discussed in Appendix A.3. 357

Initialization. Algorithms based on policy gra- 358

dient usually require an effective initialization to 359

get enhanced results. In this context, previous hand- 360

crafted pruning metric can be applied to initialize 361

the probability of each module: s0 ← σ(x), in 362

which x can be any pruning metric derived from 363

existing method, s0 represents the initial probabil- 364

ity assigned to each module, and σ symbolizes a 365

non-linear transformation. We note that initial- 366

izing from a prior metric-based method is only 367

an option, while a random initialization strategy 368

can already produce good performance. Please 369

refer to different initializations x and transforma- 370

tions σ discussed in Appendices A.16 and A.15. 371

Applicability of PGE in Learning Pruning 372

Masks. We note that the precision of PGE may 373

not match that of conventional back-propagation. 374

Given that we are learning the binary masks m 375

(distinct from the float weights), it is expected 376

that the precision requirement of s can be mod- 377

est. Moreover, our PGE is unbiased (compared to 378

the biased Gumbel Softmax). These factors make 379

the PGE suitable for learning the masks, which is 380

empirically validated with extensive experiments. 381

We also compared the results of using PGE and 382

Gumbel Softmax respectively in Sect. 5.2. 383
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Method PruneRate LLaMA LLaMA-2 LLaMA-3 Vicuna
7B 13B 7B 13B 8B 7B 13B

LLM-Pruner

30%

38.41 24.56 38.94 25.54 40.18 48.46 31.29
SliceGPT - - 40.40 30.38 183.94 52.23 57.75
Bonsai 30.49 26.24 39.01 24.23 80.89 44.28 54.16
Wanda-sp 98.24 25.62 49.13 41.57 92.14 57.60 80.74
Ours 25.61 19.70 28.18 21.99 38.99 34.51 26.42
LLM-Pruner

40%

72.61 36.22 68.48 37.89 70.60 88.96 46.88
SliceGPT - - 73.76 52.31 353.09 89.79 130.86
Bonsai 60.65 58.17 69.18 50.97 204.61 95.32 272.10
Wanda-sp 110.10 165.43 78.45 162.50 213.47 85.51 264.22
Ours 42.96 28.12 39.81 31.52 63.85 51.86 43.59
LLM-Pruner

50%

147.83 67.94 190.56 72.89 145.66 195.85 91.07
SliceGPT - - 136.33 87.27 841.20 160.04 279.33
Bonsai 275.63 148.92 216.85 146.38 440.86 180.75 424.33
Wanda-sp 446.91 406.60 206.94 183.75 413.86 242.41 373.95
Ours 72.02 49.08 65.21 52.23 119.75 71.18 68.13

Table 1: Results (perplexity) on channels and heads pruning. Our method is initialized by Wanda-sp (please also
refer to Sect. 5.1 and Appendix A.16 for a detailed discussion about initializations). All the methods are calibrated
using the C4 dataset and validated on the WikiText2 dataset w.r.t. perplexity.

4 Experiments384

We conduct extensive experiments to validate the385

promising performance of the proposed method,386

across different LLM models with various sizes,387

pruning rates, and initializations (in the ablation388

analysis). First, we detail our experimental setups389

in Sect. 4.1. After that, our main results against the390

state-of-the-art methods for channels and heads391

pruning are shown in Sect. 4.2. We illustrate392

the zero-shot performance in Sect. 4.3, Appen-393

dices A.6 and A.8. Our method runs 2.7 hours for394

LLaMA-2-13B with a similar GPU memory (i.e.,395

∼35GB) as Wanda-sp (An et al., 2024) as shown396

in Appendix A.5. Considering the constraints on397

computations and memory, we compare with the398

state-of-the-art methods without in-pruning weight399

update, and report the pruning then finetuning per-400

formance in Appendix A.6, as it becomes afford-401

able to finetune a smaller pruned model. We also402

show multiple-run statistics of our method in Ap-403

pendix A.12 and generated samples of the pruned404

models in Table A16 of Appendix A.13.405

4.1 Experimental Setups406

Structural Granularities for Pruning. We vali-407

date our method on Head and Channel Granularity408

for pruning, i.e., Width Pruning. For the effects of409

different initializations, we extensively investigated410

them in Sect. 5 and Appendices A.16 and A.15.411

Head and Channel Granularity: We follow (Ma412

et al., 2023; An et al., 2024) to prune the heads413

of the multi-head attention (MHA) modules and414

the channels of the MLP modules in Sect. 4.2.415

We initialize our methods with an efficient metric-416

based structural pruning method, i.e., Wanda-sp417

(An et al., 2024). Our method is compared to the418

state-of-the-art Wanda-sp (An et al., 2024), LLM-419

Pruner (Ma et al., 2023), SliceGPT (Frantar and420

Alistarh, 2023), and Bosai (Dery et al., 2024).421

Additionally, we also validate our method on422

Layer Granularity, i.e., Depth Pruning (Kim et al., 423

2024; Song et al., 2024), by pruning the entire 424

transformer layer, shown in Appendix A.7. 425

LLM Models and Sizes. LLaMA-{7B, 13B} 426

(Touvron et al., 2023a), LLaMA-2-{7B, 13B} (Tou- 427

vron et al., 2023b), LLaMA-3-8B (Dubey et al., 428

2024), Vicuna-{7B, 13B} (Chiang et al., 2023), 429

and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) 430

are used as the source models in our experiments. 431

Pruning Rate. Promising performance with a 432

high pruning rate could be challenging to obtain 433

when employing metric-based pruning, owing to 434

the heuristically designed metrics. To validate the 435

superior performance of our optimization-based 436

pruning under this situation, we select high pruning 437

rates ranging from 30% to 50%, i.e., structurally 438

removing 30% to 50% model parameters. We fur- 439

ther validate the method for pruning rates from 10% 440

to 20%, as detailed in Appendix A.9. 441

Datasets. We perform the experiments follow- 442

ing the cross-dataset settings in (Sun et al., 2023), 443

where the C4 dataset (Raffel et al., 2020) is used for 444

training and the WikiText2 dataset (Merity et al., 445

2016) is used for evaluation. This challenging 446

cross-dataset setup potentially better reflects the 447

generalization of the pruned model. 448

Training and Evaluation Details. We update 449

the underlying Bernoulli distributions (for mask 450

sampling) simply using SGD with a learning rate 451

of 6e-3 for LLaMA-3 experiments and 2e-3 for 452

the remaining. The batch size is fixed to 8 and we 453

train our lightweight policy gradient estimator for 454

1 epoch on the C4 dataset with 120K segments, in 455

which each segment has a sequence length of 128. 456

To reduce the evaluation variance, we determinis- 457

tically generate the pruned evaluation architecture, 458

i.e., given a pruning rate r, we first rank all the 459

s, then deterministically set m corresponding to 460

the minimal r of s as 0 (otherwise 1). We report 461

the perplexity on the WikiText2 dataset using a se- 462
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Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
LLM-Pruner

30%

40.18 71.38 37.84 55.64 57.78 27.21 49.97
SliceGPT 183.94 68.34 53.92 57.22 49.41 28.07 51.39
Bonsai 80.89 64.53 36.10 55.09 47.64 22.52 45.18
Wanda-sp 92.14 59.74 31.46 52.64 44.02 19.88 41.55
Ours 38.99 72.25 43.56 59.04 59.85 29.44 52.83
LLM-Pruner

40%

70.60 66.26 31.90 54.06 49.74 22.52 44.90
SliceGPT 353.09 61.53 39.98 52.80 36.66 25.17 43.23
Bonsai 204.61 58.81 29.43 48.93 33.21 18.15 37.71
Wanda-sp 213.47 56.58 27.46 50.35 32.07 17.06 36.70
Ours 63.85 67.63 37.36 56.91 50.67 24.91 47.50
LLM-Pruner

50%

145.65 61.15 29.10 51.93 39.98 19.36 40.30
SliceGPT 841.20 56.37 32.66 48.38 32.45 22.10 38.39
Bonsai 440.86 55.66 26.94 50.51 30.64 17.83 36.32
Wanda-sp 413.86 55.39 27.07 49.72 29.59 18.26 36.01
Ours 119.75 62.51 30.89 51.85 41.12 20.65 41.40

Table 2: Perplexity (PPL) and zero-shot accuracies (%) of LLaMA-3-8B for 5 tasks.

quence length of 128. Given a tokenized sequence463

X = (x0, x1, . . . , xt), the perplexity of X is:464

Perplexity(X) = exp

{
−1

t

t∑
i

log pθ(xi|x<i)

}
,465

where log pθ(xi|x<i) is the log-likelihood of token466

xi conditioned on the preceding tokens x<i.467

4.2 Results on Channels and Heads Pruning468

The results of channels and heads pruning fol-469

lowing (Ma et al., 2023; Zhang et al., 2024a) are470

shown in Table 1. Our method achieves the low-471

est perplexity scores. It verifies the superiority472

of optimization-based global and heterogeneous473

pruning. Especially, such outperformance is more474

significant at larger pruning rates over 40%. The475

results on Mistral-7B-Instruct-v0.3 (Jiang et al.,476

2023) are shown in Table A10 of Appendix A.11.477

Additionally, we provide a comparison between our478

method and existing approaches that incorporate479

weight update, detailed in Appendix A.10.480

4.3 Performance on Zero-shot Tasks481

We follow SliceGPT (Ashkboos et al., 2024) to482

assess our pruned LLM using EleutherAI LM Har-483

ness (Gao et al., 2023) on five zero-shot tasks:484

PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi485

et al., 2021), HellaSwag (Zellers et al., 2019), ARC-486

e and ARC-c (Clark et al., 2018). We also report the487

average scores across the five tasks. Our results on488

LLaMA-3-8B and LLaMA-2-7B, shown in Tables489

2 and A7 of Appendix A.8, demonstrate overall su-490

perior performance to the baselines, though using491

only the C4 dataset for pruning might negatively492

impact on some particular cross-dataset zero-shot493

tasks such as Hellaswag (Zellers et al., 2019).494

5 Ablation Analysis495

We investigate 1) the effect of various initializa-496

tion of our method in Sect. 5.1, Appendices A.16497

and A.15, 2) comparison with Gumbel Softmax, 3)498

performance of global and heterogeneous pruning499

versus that of local and homogenous pruning in500

Sect. 5.3, 4) the remaining modules after pruning 501

in Appendix A.17, and 5) the effect of the variance- 502

reduced policy gradient in Appendix A.14. 503

5.1 Different Initializations 504

Our Bernoulli policy requires initialization to per- 505

form policy gradient optimization and to sample 506

pruning masks. In this section, we investigate the 507

effect and the necessity of using different metric- 508

based methods as initializations. Moreover, the ini- 509

tialization of the Bernoulli policy should be prob- 510

abilistic values between 0 and 1, but the metrics 511

calculated by the metric-based methods (Sun et al., 512

2023; Ma et al., 2023) may not hold this range. We 513

thus discuss different projection strategies that 514

transform those metrics to [0, 1] in Appendix A.15. 515

To address the practical case when a metric- 516

based pruning is not apriori, we propose progres- 517

sive pruning with random initialization (Random- 518

Progressive), trained progressively with increasing 519

pruning rates (each for only 1/3 epoch). Details 520

can be found in Appendix A.16. 521

Different initializations are tested on LLaMA- 522

2-7B. The baselines include simple random ini- 523

tialization with the target pruning rate (Random) 524

and progressive pruning with random initialization 525

(Random-Progressive). For channels and heads 526

pruning, we investigate the initializations from 527

Wanda-sp (An et al., 2024) and LLM-Pruner5 (Ma 528

et al., 2023), as shown in Table 3. 529

Our results in Tables 3 demonstrate that 1) differ- 530

ent initializations lead to different results, 2) com- 531

pared to the state-of-the-art methods, our method 532

with most initializations except the random one 533

exhibit new state-of-the-art results, and 3) The 534

proposed Random-Progressive initialization ranks 535

the second place in most cases, surpassing previ- 536

ous state-of-the-art methods, which suggests less 537

necessity for employing a prior metric-based 538

method to initiate our algorithm. 539

5We follow LLM-Pruner (Ma et al., 2023) to fix the first
four and the last two layers from pruning.
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Method PruneRate Perplexity PruneRate Perplexity PruneRate Perplexity
LLM-Pruner

30%

38.94

40%

68.48

50%

190.56
SliceGPT 40.40 73.76 136.33
Bonsai 39.01 69.18 216.85
Wanda-sp 49.13 78.45 206.94

Ours (Random Init) 30% 37.24 40% 60.16 50% 160.75
Ours (Random-Prog. Init) 31.43 49.86 86.55
Ours (LLM-Pruner Init) 30% 35.75 40% 65.32 50% 116.80
Ours (Wanda-sp Init) 28.18 39.81 65.21

Table 3: Channels and heads pruning results with different initializations on LLaMA-2-7B. Bold and Underscored
denote the first and second best results, respectively.
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Figure 3: Comparison of Policy Gradient and Gumbel Softmax.

30% 35% 40% 45% 50%
Prune Rate

20

30

40

50

60

70

Pe
rle

xi
ty

LLaMA-2-13B

Local & Homogeneous Pruning
Global & Heterogeneous Pruning

Figure 4: Global vs. local pruning.

5.2 Comparision with Gumbel Softmax540

As highlighted in Remark 3, our proposed PGE by-541

passes the costly back-propagation process through542

the LLM required by Gumbel Softmax, while main-543

taining comparable gradient estimation accuracy.544

To substantiate this advantage, we conduct em-545

pirical ablation studies comparing different gradi-546

ent estimators. The performance on LLaMA-2-7B547

and LLaMA-3-8B, measured by both perplexity548

and mean accuracy of 5 zero-shot tasks, of our549

PGE approach and back-propagation/Gumbel Soft-550

max approach in Figure 3. The performance of551

PGE is generally comparable to that of the Gumbel552

Softmax, except that PGE exhibits slightly higher553

perplexity at a 50% pruning rate. This discrep-554

ancy may be attributed to the increased variance555

observed at this pruning level, which consequently556

amplifies the gradient estimation error.557

We also illustrate the training time and mem-558

ory usage in Table 4, which demonstrates that our559

method achieves comparable performance with sig-560

nificantly reduced training time and memory usage.561

5.3 Merits of Global Pruning562

Our method is able to perform global and hetero-563

geneous pruning throughout the entire network,564

which is difficult for metric-based pruning methods565

(Sun et al., 2023; Ma et al., 2023), as the metrics566

Method Memory (GiB) Time (h)Min Max
Gumbel Softmax 19.93 23.97 3.47
Policy Gradient 17.23 17.39 1.56

Table 4: Memory and Time Consumption Comparison
between Gumbel Softmax and Policy Gradient.

across different layers often exhibit different magni- 567

tudes. As a compromise, those metric-based meth- 568

ods prune each layer locally and homogeneously. 569

We validate the merits of global and heteroge- 570

neous pruning over local and homogeneous prun- 571

ing, where we compare our method with a variant 572

in which we prune each layer homogeneously. The 573

channels and heads pruning results on LLaMA-2- 574

13B are shown in Fig. 4, demonstrating that the 575

global and heterogeneous pruning significantly out- 576

performs its local and homogeneous counterpart. 577

6 Conclusion 578

We propose an efficient optimization-based struc- 579

tural pruning method for LLMs, which 1) does 580

not need back-propagation through the LLM per 581

se, 2) enables global and heterogeneous pruning 582

throughout the LLM. Our method can take a metric- 583

based pruning as initialization to achieve a fur- 584

ther improved performance. We implement our 585

method by learning an underlying Bernoulli dis- 586

tribution of binary pruning mask. As we decouple 587

the Bernoulli parameter and the sampled masks 588

from the LLM loss, the Bernoulli distribution can 589

thus be optimized by a policy gradient estimator 590

without back-propagation through the LLM. Our 591

method operates for 2.7 hours with approximately 592

35GB of memory on a single A100 GPU. Extensive 593

experiments on various LLM models and sizes with 594

detailed ablation analysis validate the promising 595

performance of the proposed method. 596
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7 Limitations597

Firstly, as an optimization-based pruning, though598

our method exhibits improved performance over599

the (heuristic) metric-based methods, and a simi-600

lar memory complexity (approximately 35GB, as601

only LLM forward is required), it simultaneously602

requires more training time for optimization (e.g.,603

2.7 hours for LLaMA-2-13B) than the metric-based604

pruning methods.605

Secondly, there exist advanced policy gradient606

algorithms with potentially lower variance from the607

reinforcement learning community. As 1) the pri-608

mary focus of this paper is on the back-propagation-609

free formulation of the LLM pruning problem, and610

2) our formulation ensures dense rewards at each611

step, we thus use a basic policy gradient algo-612

rithm similar to REINFORCE with simple vari-613

ance reduction using a moving average baseline.614

We leave exploiting more powerful policy gradient615

algorithms as our future work.616

Lastly, the performance of the proposed method617

on specific domains/tasks can rely heavily on the618

availability of domain-specific datasets. Though619

the cross-dataset evaluation is verified w.r.t. per-620

plexity, using only the C4 dataset for pruning might621

introduce a negative influence on some particular622

cross-dataset zero-shot tasks such as WinoGrande623

and Hellaswag.624

8 Ethical Considerations625

We have introduced an efficient pruning method626

tailored for LLMs, which aims to accelerate the627

inference time of LLMs. Given the frequent calls628

to online-deployed LLMs such as ChatGPT, our629

approach offers an energy-efficient positive impact,630

which also helps to enhance user experience. While631

this advancement supports environmental sustain-632

ability by lowering the carbon footprint of AI sys-633

tems, it also inherits the dual-edged ethical impli-634

cations inherent to LLM technologies.635
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Table A1: Summary of the Appendix materials.

A Appendix974

We discuss the following additional analysis, re-975

sults, and ablations in the appendices. The catalogs976

are in Table A1.977

A.1 Projection Operator for Sparsity978

Constraint and the Overall Algorithm979

Details of the Projection Operator. In our980

proposed probabilistic framework, the sparsity981

constraint manifests itself in a feasible domain982

on the probability space defined in Problem983

(3). We denote the feasible domain as C =984 {
1⊤s ≤ K

}⋂
{s ∈ [0, 1]n}. The theorem (Wang985

and Carreira-Perpinán, 2013) below shows that the986

projection of a vector onto C can be calculated987

efficiently.988

Theorem 1. For each vector z , its projection989

projC(z) in the set C can be calculated as follows:990

projC(z) = min(1,max(0, z− v∗21)) (A1)991

where v∗2 = max(0, v∗1) with v∗1 being the solu-992

tion of the following equation993

1T [min(1,max(0, z− v∗11))]−K = 0 (A2)994

Equation (A2) can be solved by the bisection995

method efficiently.996

The theorem above as well as its proof is stan-997

dard and it is a special case of the problem stated998

in (Wang and Carreira-Perpinán, 2013). This com-999

ponent, though not the highlight of our work, is1000

included for the reader’s convenience and com-1001

pleteness.1002

Algorithm. The pseudo-code of our overall al-1003

gorithm is detailed below.1004

Algorithm 1 Pseudo-code of PG pruning

Input: target remaining ratio r > 0, a dense pre-
trained network w, the step size η > 0, mini-
batch size B > 0, moving average window
size T , and calibration dataset D

Initialize: Init probability s from any pruning met-
ric x, ans set moving average δ = 0

1: while until convergence do
2: Sample a mini-batch from the entire cali-

bration dataset: DB = {(xi,yi)}Bi=1 ∼ D

3: Sample m(i) from p(m|s), i = 1, 2, . . . , Ns

4: Update the moving average baseline δ via
Eq. (8)

5: Uptate s via Eqs. (7), (A1), and (A2).
6: end while

A.2 Details on Hidden States Pruning for 1005

Channel and Head Granularities 1006

We note that for pruning on the channel and head 1007

granularities, it must be guaranteed that the final 1008

output dimension for each block (e.g., multi-head 1009

attention, MLP) should remain, so as to facili- 1010

tate the residue connections (e.g., additions) across 1011

blocks. We thus follow (Ma et al., 2023; An et al., 1012

2024) to prune the dimensions of the hidden states, 1013

while keeping the final output channels unchanged, 1014

ensuring that they can be added to the input through 1015

the residual connections. A conceptual figure illus- 1016

trating this procedure is shown in Fig. A1. 1017

A.3 A Reinforcement Learning Perspective 1018

Our formulation can also be interpreted from the 1019

dense-reward model-free reinforcement learning 1020

perspective. Particularly, the heavy LLM can be 1021

viewed as the agnostic and fixed environment. 1022

In terms of the Markov Decision Process 1023

(MDP) (action a, states s, state transition prob- 1024

ability p, reward r, discount factor γ), the 1025
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Figure A1: Output dimension is invariant for each block that might be used for residual connections, but instead
prune the dimension of the intermediate hidden state.

environment takes the action a sampled from the1026

current Bernoulli policy π to insert the binary1027

masks for pruning, produces the states s as the1028

masked/pruned network deterministically (i.e., the1029

state transition probability p is constantly 1), and1030

generate the stepwise dense reward r as the perfor-1031

mance (e.g., the cross-entropy loss) of the pruned1032

LLM. Since our problem exhibits dense rewards,1033

therefore the discount factor γ is 1.1034

As a result, our policy to take actions, i.e., the1035

Bernoulli distribution to sample the binary masks,1036

can be learned efficiently exploiting the policy gra-1037

dient estimator (similar to REINFORCE), without1038

back-propagating through the agnostic and fixed1039

environment of the heavy LLM.1040

A.4 Theoretical Analysis of Moving Average1041

Baseline for Policy Gradient1042

We give the theoretical analysis on the variance re-1043

duction technique by considering a general-purpose1044

technique for reducing the variance of Monte Carlo1045

method with the general problem Ep(x;θ)[f(x)].1046

We take a strategy that replacing the function f(x)1047

in the expectation by a substitute function f̃(x)1048

whose expectation Ep(x;θ)[f̃(x)] is the same, but1049

whose variance is lower. Given a function h(x)1050

with a known expectation Ep(x;θ)[h(x)], we can1051

easily construct such a substitute function along1052

with the corresponding estimator as follows:1053

f̃(x)=f(x)−β(h(x)−Ep(x;θ)[h(x)]), (A3)1054

η̄N =
1

N

N∑
n=1

f̃(x̂n)= f̄−β(h̄−Ep(x;θ)[h(x)]).1055

where x̂n ∼ p(x; θ) and f̄ and h̄ are the sample1056

averages. β is a control coefficient and h(x) is1057

considered as control variate. We can show that if1058

the variance of h(x) is finite, the unbiasedness the1059

estimator Eq. A3 is maintained, e.g., 1060

Ep(x;θ)[(x;β)] =E[f̄ − β(h̄− Eh(x))]

=E[f̄ ] = Ep(x;θ)[f(x)].
(A4) 1061

For the variance of the estimator (for N = 1), we 1062

have 1063

V[f̃ ] =V[f(x)−β(h(x)−Ep(x;θ)[h(x)])] 1064

=V[f ]−2βCov[f, h]+β2V[h]. (A5) 1065

By minimizing Eq. A5 we can find that the 1066

optimal value of the coefficient is 1067

β∗ =
Cov[f, h]
V[h]

=

√
V[f ]
V[h]

Corr(f, h), (A6) 1068

where we expressed the optimal coefficient in 1069

terms of the variance of f and h and the correlation 1070

coefficient Corr(f, h). The effectiveness of a con- 1071

trol variate can be measured by the variance ratio 1072

between its estimator and the original estimator: it 1073

is effective if the ratio is substantially less than 1. 1074

Using the optimal control coefficient in Eq. A6, the 1075

potential variance reduction is 1076

V[f̃(x)]
V[f(x)]

=
V[f(x− β(h(x)− Ep(x;θ)[h(x)])]

V[f(x)]
1077

=1− Corr(f(x), h(x))2. (A7) 1078

Therefore, as long as f(x) and h(x) are not un- 1079

correlated, we can always obtain a reduction in 1080

variance using control variables. In practice, the 1081

optimal β∗ will not be known and so we will usu- 1082

ally need to estimate it empirically. 1083

In our problem formulation of structured pruning 1084

for LLMs, Ep(m|s)L(D;w ⊙m)∇s log(p(m|s)), 1085

is a score-function gradient estimator [1], in which 1086

p(m|s) is the Bernoulli distribution of each mod- 1087

ule of LLMs with s corresponds the θ, m corre- 1088

sponds the θ and L(D;w ⊙ m)∇s log(p(m|s)) 1089

corresponds f(x) in the preliminary. To reduce 1090

the variance of a score-function gradient estima- 1091
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tor, one simple and general way is to use the1092

score function itself as a control variate, that is1093

h(m) = δ∇θlogp(m|s) and δ is an independent1094

estimation of L(D;w ⊙m), since its expectation1095

under the measure is zero, as1096

Ep(m|s)[δ∇slogp(m|s)]

=δ

∫
p(m|s)∇sp(m|s)

p(m|s)
dm

=δ∇s

∫
p(m|s)dm = δ∇s1 = 0.

(A8)1097

Therefore, the estimator in Eq. A3 format is:1098

η̄N =
1

N

N∑
n=1

(L(D;w ⊙m(n)) (A9)1099

− βδ)∇s log(p(m
(n)|s)); m(n) ∼ p(m|s),1100

where m(n) is the sampled mask of modules. In1101

reinforcement learning, the term βδ is called a base-1102

line (Williams, 1992) and has historically been esti-1103

mated with a running average of the cost. Note that1104

δ needs to be estimated, we choose moving average1105

baseline in our method, which is a commonly used1106

baseline in policy gradient estimation (Zhao et al.,1107

2011; Sehnke et al., 2010).1108

A.5 Statistics of the Training Time &1109

Memory, and the Inference Latency1110

Method 7B 13B
Min Max Min Max

Wanda-sp 17.5 20.3 29.5 36.9
Ours 17.2 17.4 34.1 35.8

Table A2: Memory requirements (GB) for channel and
head pruning on LLaMA-2-7B/13B.

Our training times for channel and head pruning1111

on LLaMA-2-7B and LLaMA-2-13B are 1.76 and1112

2.72 hours, respectively. Although our method is1113

slower than metric-based methods such as Wanda-1114

sp (An et al., 2024), the trade-off is justified by the1115

substantial performance enhancements delivered1116

by our optimization-based approach.1117

The GPU memory requirements for channel1118

and head pruning on LLaMA-2-7B and LLaMA-1119

2-13B for our method, as well as the representa-1120

tive metric-based method, e.g., Wanda-sp, are illus-1121

trated in Table A2. We do not compare it to LLM-1122

Pruner and SliceGPT because 1) the LLM-Pruner1123

requires much more memory for back-propagation1124

(therefore the authors also used the CPU memory),1125

2) the original implementation of SliceGPT also1126

used both CPU and GPU memory for computa-1127

tions. Table A2 shows that our method exhibits a1128

similar GPU memory requirement to the efficient1129

Method P.R #Params Memory Latency PPL
LLM-Pruner

30%
4.837 9290.54 53.53 27.13

SliceGPT 5.293 10181.81 50.24 22.29
Ours 4.796 9338.24 46.94 12.68
LLM-Pruner

40%
4.197 8069.55 36.75 53.21

SliceGPT 4.501 8826.01 46.84 39.21
Ours 4.149 8096.25 42.85 15.95
LLM-Pruner

50%
3.539 6815.05 31.49 171.57

SliceGPT 3.730 7274.01 41.73 65.92
Ours 3.500 6880.92 34.62 27.63

Table A3: #Params (B), memory requirements (MiB),
latency (s) and perplexity (i.e.PPL) on WikiText2
dataset of LLaMA-2-7B. Experiments are conducted
on NVIDIA A100 40G, with 2048 sequence length and
4 batch size for full GPU utilization. P.R. is short for
pruning rate.

Wanda-sp, as we only need the forward pass of 1130

the LLM. The slight additional memory required 1131

by our method comes from the need to store the 1132

Bernoulli parameters s and sampled masks m. 1133

We note that for the same pruning rate (i.e., sim- 1134

ilar remaining #Params), the inference latencies of 1135

pruned models from different structural pruning 1136

methods are expected to be comparable, as the in- 1137

ference latency is mainly affected by the #Params 1138

given the same architecture. We validate this in Ta- 1139

ble A3. Table A3 demonstrates that, given the same 1140

pruning rates, our pruned model has very much 1141

close #Params, memory, and inference latencies to 1142

that pruned by LLM-Pruner, while our perplexity 1143

significantly outperformed all the counterparts. We 1144

note that under the same pruning rates, SliceGPT 1145

often possesses different (higher) #Params, mem- 1146

ory, and inference latencies than our method and 1147

LLM-Pruner, potentially because SliceGPT alters 1148

the network structure during the pruning. 1149

A.6 Performance after Pruning and (Then) 1150

Finetuning 1151

We note that after pruning, it becomes affordable 1152

to finetune a smaller pruned model. Therefore, 1153

following the idea from (Ma et al., 2023), we fine- 1154

tune the post-pruning model w.r.t. the perplexity 1155

with LoRA (Hu et al., 2022). Specifically, We 1156

utilize 4k samples from the Alpaca (Taori et al., 1157

2023) dataset, which has a sequence length of 1158

1024. For all weight fine-tuning experiments, we 1159

use lora_r=16, lora_alpha=10, and use default 1160

values for all other hyperparameters in the Hug- 1161

gingFace PEFT package (Mangrulkar et al., 2022). 1162

The cross-dataset performance on WikiText of 1163

the post-pruning fine-tuned model for LLaMA- 1164

2-7B and LLaMA-3-8B is illustrated in Tables 1165

A4 and A5, which demonstrate that our method 1166
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Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
LLM-Pruner

30%

33.45 74.10 46.61 58.17 64.31 33.62 55.36
SliceGPT 78.59 74.70 64.29 61.96 57.49 36.69 59.03
Bonsai 33.23 75.03 49.69 62.19 67.34 32.25 57.30
Wanda-sp 32.01 73.88 50.08 62.19 67.09 34.47 57.54
Ours 25.34 76.01 51.80 64.33 67.93 36.86 59.39
LLM-Pruner

40%

40.21 70.29 40.45 53.04 53.03 27.30 48.82
SliceGPT 175.67 65.29 56.77 60.06 42.68 31.74 51.31
Bonsai 44.71 72.36 45.10 58.80 59.64 30.03 53.19
Wanda-sp 43.71 70.40 42.73 52.72 57.24 29.95 50.61
Ours 29.43 72.74 45.75 55.72 61.36 31.06 53.33
LLM-Pruner

50%

44.83 67.30 35.47 51.93 48.23 21.84 44.95
SliceGPT 296.97 58.65 46.83 55.09 36.99 28.33 45.18
Bonsai 62.95 66.70 40.16 54.30 49.83 26.53 47.50
Wanda-sp 110.12 63.27 32.71 52.72 43.48 20.73 42.58
Ours 39.46 67.03 36.42 52.41 50.17 24.15 46.04

Table A4: Perplexity (PPL) and Accuracies (%) of LLaMA-2-7B for 5 zero-shot tasks with pruning rates from 30%
to 50% after weight fine-tuning on Alapca dataset.

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
LLM-Pruner

30%

35.11 74.64 46.93 60.22 66.16 34.13 56.42
SliceGPT 226.39 70.29 56.47 60.06 53.20 34.81 54.97
Bonsai 42.59 71.87 45.17 59.51 66.50 36.52 55.91
Wanda-sp 38.04 70.84 44.11 59.43 62.96 34.04 54.28
Ours 33.91 74.48 46.62 63.69 65.70 34.30 56.96
LLM-Pruner

40%

47.83 71.54 40.71 55.40 62.16 28.92 51.75
SliceGPT 523.05 63.66 42.75 53.12 41.88 27.65 45.81
Bonsai 57.31 69.58 39.47 53.98 57.24 28.67 49.79
Wanda-sp 56.32 65.18 36.33 54.77 51.56 24.32 46.43
Ours 47.28 70.56 41.09 59.98 59.97 29.01 52.12
LLM-Pruner

50%

68.14 67.95 35.81 53.12 53.91 26.36 47.43
SliceGPT 963.42 60.83 37.04 52.25 37.21 25.26 42.52
Bonsai 88.72 62.89 34.84 52.80 47.73 24.15 44.48
Wanda-sp 84.53 61.42 32.12 52.72 41.83 21.07 41.83
Ours 67.48 67.08 35.84 54.38 53.54 26.45 47.46

Table A5: Perplexity (PPL) and Accuracies (%) of LLaMA-3-8B for 5 zero-shot tasks with pruning rates from 30%
to 50% after weight fine-tuning on Alapca dataset.

achieves consistently superior performance before1167

and after fine-tuning. Compared with the pre-1168

finetuned model, the performance of most post-1169

finetuned models shows significant improvements,1170

and our models remain the best for most cases after1171

finetuning, which validates our potential for nar-1172

rowing the performance gap after pruning and for1173

being applicable in practical use.1174

A.7 Results on Layer Pruning1175

We also validate the layer granularity by pruning1176

the entire transformer layer, which consists of an1177

MHA module and an MLP module. Note that prun-1178

ing on the structural granularity of layers is less1179

exploited for LLMs, thus in this experiment, we1180

use the lightweight Layerwise-PPL (Kim et al.,1181

2024) for initialization, and compare our method1182

with Layerwise-PPL (Kim et al., 2024) and SLEB1183

(Song et al., 2024).1184

We illustrate the results on layer pruning in Table1185

A6, which show that our method generally achieves1186

better performance than the baseline methods, es-1187

pecially at pruning rates above 40%. For LLaMA- 1188

13B and LLaMA-2-13B with a moderate pruning 1189

rate of 30%, our method performs comparably to 1190

Layerwise-PPL. This suggests that with coarser 1191

layer granularity, the search space may be limited, 1192

and larger 13B models with more redundancy ben- 1193

efit from metric-based pruning at lower rates. 1194

A.8 Zero-shot Performance on LLaMA-2-7B 1195

We validate the zero-shot performance of LLaMA- 1196

2-7B with pruning rates from 30% to 50%, shown 1197

in Table A7. We note that the overall performance 1198

is in general superior to the baselines, though using 1199

only the C4 dataset for pruning might introduce a 1200

negative influence on some particular cross-dataset 1201

zero-shot tasks such as WinoGrande (Sakaguchi 1202

et al., 2021) and Hellaswag (Zellers et al., 2019). 1203

A.9 Pruning Results on Low Pruning Rate 1204

For a more comprehensive validation of the pro- 1205

posed method, we conduct experiments on LLaMA- 1206

3-8B with a lower pruning rate, from 10% to 20%, 1207

following the same settings of the main results. Be- 1208
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Method PruneRate LLaMA LLaMA-2 LLaMA-3 Vicuna
7B 13B 7B 13B 8B 7B 13B

Layerwise-PPL
30%

31.65 24.23 24.83 20.52 45.47 37.99 29.85
SLEB 27.36 20.45 23.43 19.97 37.92 29.40 26.37
Ours 24.45 24.44 23.20 21.93 36.42 29.16 24.68
Layerwise-PPL

40%
54.97 50.57 41.45 32.48 75.12 64.96 54.12

SLEB 44.65 32.79 40.26 30.16 73.61 48.99 43.12
Ours 42.73 39.07 38.26 30.99 63.70 54.37 35.73
Layerwise-PPL

50%
107.12 183.93 126.08 78.04 393.18 517.46 153.53

SLEB 108.87 77.38 131.49 55.23 303.03 146.12 92.32
Ours 94.97 66.38 104.37 69.92 295.39 126.24 84.90

Table A6: Results on layers pruning. Our method is initialized by Layerwise-PPL (please also refer to Appendix
A.16 for detailed discussion about initializations). All the methods are calibrated using the C4 dataset and validated
on the WikiText2 dataset w.r.t. perplexity.

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
LLM-Pruner

30%

38.94 71.81 43.64 54.06 63.42 30.30 52.64
SliceGPT 40.40 72.31 60.11 63.22 53.10 32.00 56.15
Bonsai 39.01 73.94 47.05 60.93 59.93 30.37 54.44
Wanda-sp 49.13 71.60 46.62 60.30 63.01 34.04 55.11
Ours 28.18 75.41 50.34 61.60 66.03 35.58 57.79
LLM-Pruner

40%

68.48 67.52 35.76 51.70 48.31 24.65 45.59
SliceGPT 73.76 65.40 48.91 60.38 42.13 26.88 48.74
Bonsai 69.18 68.44 40.63 55.41 48.11 26.19 47.75
Wanda-sp 78.45 64.63 35.61 52.17 48.11 25.51 45.21
Ours 39.81 71.11 42.44 55.72 56.94 28.50 50.94
LLM-Pruner

50%

190.56 59.52 29.74 50.11 36.48 21.84 39.54
SliceGPT 136.33 59.47 37.96 56.27 33.63 22.78 42.02
Bonsai 216.85 59.52 32.63 53.12 33.54 22.61 40.28
Wanda-sp 206.94 54.30 26.81 52.80 29.12 19.20 36.45
Ours 65.21 61.80 30.94 52.64 40.11 20.47 41.19

Table A7: Perplexity (PPL) and accuracies (%) of LLaMA-2-7B for 5 zero-shot tasks with 30% - 50% pruning rates.

sides perplexity on the WikiText2 dataset and 51209

zero-shot tasks, the comparison on MMLU bench-1210

mark (Hendrycks et al., 2020) for five-shot is also1211

included. The results shown in Table A8 emon-1212

strate the consistent superiority of our method1213

across a wide range of sparsity levels.1214

A.10 Comparision with Approaches with1215

Weight Update1216

We additionally conduct experiments of perfor-1217

mance comparison with approaches that involve1218

weight update (Shen et al., 2024; An et al., 2024).1219

We follow the pruning settings of (Shen et al.,1220

2024), in which we calibrate on WikiText2 dataset1221

and evaluate perplexity on it with a sequence length1222

of 2048. For zero-shot tasks performance evalua-1223

tion, we follow the procedure applied in (Ma et al.,1224

2023; Shen et al., 2024). We compared our vanilla1225

method (pruning only, without weight update) with1226

(Shen et al., 2024; An et al., 2024), denoted as ours1227

(prune-only) in the results in Table A9. The ex-1228

periments are performed on LLaMA-7B consistent1229

with (Shen et al., 2024).1230

Additionally, since fine-tuning becomes feasible1231

after pruning smaller models, we also included re-1232

sults for our prune-then-finetune approach for com-1233

parison. The results demonstrate that our pruning-1234

only method achieves comparable performance to 1235

(Shen et al., 2024), while the prune-then-finetune 1236

approach, involving weight update, outperforms 1237

(Shen et al., 2024) in the majority of cases. 1238

A.11 Pruning Results on 1239

Mistral-7B-Instruct-v0.3 1240

To further validate the performance of the pro- 1241

posed method on more LLMs, we additionally 1242

perform experiments on Mistral-7B-Instruct-v0.3 1243

(Jiang et al., 2023), which takes the C4 dataset as 1244

calibration and evaluates on the WikiText2 dataset 1245

(e.g., cross-dataset setting, the same as those in 1246

our Table 1). We note that the original implemen- 1247

tations of SliceGPT (Ashkboos et al., 2024) and 1248

Bonsai (Dery et al., 2024) were based on LLaMA- 1249

2, which do not trivially adapt to the Mistral model 1250

directly, therefore we exclude SliceGPT and Bon- 1251

sai for comparison. 1252

The results, including both perplexity and the 1253

zero-shot performance, on Mistral-7B-Instruct- 1254

v0.3 in Table A10 demonstrate the consistent supe- 1255

riority of our method across various LLMs. 1256

A.12 Random Error-Bar Statistic 1257

The standard deviation statistics of our method are 1258

shown in Table A11. Theoretically, the variance is 1259
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Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c 0-shot Avg. MMLU
Dense 0% 14.14 79.71 60.19 72.61 80.09 50.34 68.59 66.58
LLM-Pruner

10%

19.25 77.04 52.93 68.11 73.44 39.5 62.20 48.37
SliceGPT 39.14 75.57 54.78 68.35 72.56 40.87 62.43 55.38
Bonsai 20.43 77.64 54.96 70.32 75.92 43.00 64.37 39.56
Wanda-sp 35.94 69.64 42.86 64.64 65.07 32.68 54.98 29.00
Ours 18.73 78.94 56.88 69.45 76.18 41.55 64.60 56.38
LLM-Pruner

20%

28.62 74.92 42.94 59.19 65.57 32.51 55.03 26.78
SliceGPT 84.99 73.23 48.24 63.69 64.77 34.13 56.81 33.55
Bonsai 29.05 75.46 47.00 67.01 65.61 35.41 58.10 29.60
Wanda-sp 47.43 67.9 39.27 60.38 58.50 29.01 51.01 27.96
Ours 26.92 76.28 51.00 67.64 69.15 35.41 59.90 44.99

Table A8: Perplexity (PPL) and accuracies (%) of LLaMA-3-8B for 5 zero-shot tasks and MMLU benchmark in
five-shot with pruning rates from 10% to 20%.

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
Dense 0% 5.68 78.35 72.99 67.01 67.45 41.38 65.44
FLAP

10%

6.34 75.41 68.68 67.01 65.78 38.48 63.07
search-llm 6.10 76.88 70.71 67.56 68.39 40.10 64.73
ours (prune-only) 6.17 77.53 71.85 66.14 69.23 40.87 65.12
ours (prune-then-finetune) 7.03 77.64 71.53 67.32 69.49 41.98 65.59
FLAP

20%

7.40 74.21 64.98 64.40 59.89 37.80 60.26
search-llm 6.89 74.92 67.29 64.64 64.23 36.52 61.52
ours (prune-only) 7.07 74.92 68.32 61.56 62.63 37.20 60.93
ours (prune-then-finetune) 6.29 76.11 68.19 63.38 66.24 38.99 62.58

Table A9: Perplexity (PPL) and accuracies (%) of LLaMA-7B for 5 zero-shot tasks with pruning rates from 10% to
20%, compared with approaches with weight update, FLAP (An et al., 2024) and search-llm (Shen et al., 2024).

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
LLM-Pruner

30%
30.32 69.58 41.52 57.77 53.99 28.58 50.29

Wanda-sp 47.30 75.68 49.94 62.35 64.90 36.60 57.89
Ours 31.87 76.49 52.69 64.48 67.76 36.77 59.64
LLM-Pruner

40%
49.30 65.18 34.79 52.80 46.42 23.89 44.62

Wanda-sp 76.45 68.01 38.75 52.64 52.36 26.28 47.61
Ours 43.02 68.61 40.80 56.67 54.80 27.82 49.74
LLM-Pruner

50%
86.24 61.31 30.64 49.64 37.67 22.52 40.36

Wanda-sp 407.33 56.69 29.08 49.25 32.36 21.59 37.79
Ours 74.25 65.18 35.02 51.06 48.15 22.61 44.40

Table A10: Perplexity (PPL) and accuracies (%) of Mistral-7B-Instruct-v0.3 for 5 zero-shot tasks with 30% - 50%
pruning rates.

induced by stochastic sampling from Bernoulli1260

distribution in the policy gradient optimization if1261

the initialization is fixed. Therefore, we fixed the1262

initialization as Wanda-sp to calculate the standard1263

deviation of the proposed method. Experiments of1264

head and channel pruning, along with layer prun-1265

ing, are executed using LLaMA-2-7B for 10 run1266

trials. Table A11 shows that our method possesses1267

a reasonable standard deviation.

Granularity PruneRate
30% 40% 50%

Head & Channel 28.18±1.83 39.81±1.41 65.21±2.52
Layer 23.20±0.67 38.26±2.68 104.37±1.05

Table A11: Mean and standard deviation of our method
for LLaMA-2-7B.

1268

A.13 Generated Samples of the Pruned Model1269

We provide some generated sentences of the pruned1270

models. Table A16 illustrates the generated sen-1271

tences of LLaMA-2-7B with the pruning rate of1272

30%, from different pruning methods, where the 1273

input prompts are adopted from (Ma et al., 2023). 1274

We observe that the generated content from our 1275

method not only maintains superior coherence and 1276

innovation but also is more factual and professional 1277

despite a high pruning rate (30%). It demonstrates 1278

that our method optimizes the balance between 1279

knowledge retention and performance in the com- 1280

pression process, ensuring the quality and diversity 1281

of the generated text. 1282

A.14 Ablations on the Moving Average 1283

Baseline for Policy Gradient 1284

We conduct experiments on pruning channels and 1285

heads of LLaMA-2-7B/13B with/without the Mov- 1286

ing Average Baseline in policy gradient. Table A12 1287

illustrates the effectiveness of the moving average 1288

baseline in the policy gradient estimator for our 1289

proposed pruning method. 1290

Moreover, we also tested all the hyper- 1291
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Method PruneRate LLaMA-2-7B LLaMA-2-13B
w/o MAB 30% 32.53 24.73
with MAB 28.18 21.99
w/o MAB 40% 60.99 64.34
with MAB 39.81 31.52
w/o MAB 50% 69.47 185.87
with MAB 65.21 52.23

Table A12: Ablations on the proposed Moving Average
Baseline (MAB) in the policy gradient estimator for
Channels and heads pruning on LLaMA-2-7B/13B.

parameters, e.g., the window size and mask sam-1292

pling times (T and Ns in Eq. (8)). The results in1293

Table A13 demonstrate that being different from1294

with vs. without moving average baseline, small T1295

and Ns can already offer promising performance,1296

further increasing them only produces marginal im-1297

provement. In other words, our method is robust1298

to those hyper-parameter values. Considering com-1299

putational overhead, we choose small T = 5 and1300

Ns = 2 throughout our entire experiments.1301

Hyper-params T Ns

3 5⋆ 7 2⋆ 3 4
Perplexity 21.23 21.99 20.08 21.99 21.71 21.37

Table A13: Ablation on the hyperparameters of the
moving average baseline, i.e., different window sizes T
and mask sampling times Ns. Perplexity is tested on the
WikiText2 dataset of LLaMA-2-13B with 30% pruning
rate. The hyper-parameter values used by main results
are denoted with ⋆.

A.15 Ablations on Projection Strategy for1302

Initialization: From Metric to1303

Probability1304

As the initialization of our Bernoulli policy1305

should be probabilistic values between 0 and 1, but1306

the metrics calculated by the metric-based methods1307

(Sun et al., 2023; An et al., 2024; Ma et al., 2023)1308

may not hold this range, we thus need to project1309

those metric values to [0, 1] as our initialization.1310

We introduce two projection strategies from met-1311

ric values m to probabilities s. The first is called1312

Sigmoid-Norm strategy, which is applied in our1313

main experiments:1314

s = sigmoid(Norm(x)) (A10)1315

where Norm(·) is used to linearly normalize the1316

input to a Gaussian distribution with 0 mean and1317

unit variance, then sigmoid(·) is used to transform1318

the input to [0, 1].1319

An alternative second strategy is named Score-1320

Const. It straightforwardly sets mask 1 from metric-1321

based methods as a constant c, and mask 0 as 1− c:1322

si =

{
c, if mi = 1,

1− c, if mi = 0,
(A11)1323

The constant c is set to 0.8 in the following exper- 1324

iments, indicating that the initialized Bernoulli 1325

probability of the remaining modules is 0.8 and 1326

those to be pruned is 0.2. 1327

The results of different projection strategies 1328

on LLaMA-2-7B/13B are detailed in Table A14, 1329

which shows that the Sigmoid-Norm projection 1330

outperforms its Score-Const counterpart for most 1331

cases. It may be because the order-preserving pro- 1332

jection strategy of Sigmoid-Norm preserves more 1333

information about relative importance among mod- 1334

ules, and therefore benefits the optimization. 1335

A.16 More Ablations with Different 1336

Initializations 1337

Progressive Pruning with Random (Random- 1338

Progressive) Initialization. Our progressive prun- 1339

ing with random initialization is inspired by the 1340

facts that 1) the continous Bernoulli probability 1341

learned by our method indicates the importance 1342

of the corresponding module, therefore the conti- 1343

nous probability scores from a low pruning rate 1344

(e.g., 10%) encodes fatal information and can be 1345

naturally used as the initialization for a higher prun- 1346

ing rate (e.g., 15%); and 2) the LLMs is likely to 1347

exhibit large redundancy when the pruning rate is 1348

extremely low (e.g., 5%), thus random initializa- 1349

tion will not significantly degrade the pruning per- 1350

formance (compared to a carefully chosen metric- 1351

based pruning initialization) given an extremely 1352

low pruning rate such as 5%. Therefore, to validate 1353

our method without a prior metric-based initializa- 1354

tion, we propose a progressive pruning strategy, by 1355

starting from 5% pruning rate with random initial- 1356

ization and progressively pruning rate to 50% by 1357

a step size of 5%. We train this strategy with each 1358

pruning rate for 1/3 epoch to maintain efficiency. 1359

Moreover, Table A15 shows layer pruning re- 1360

sults with different initializations on LLaMA-2-7B. 1361

A.17 Analysis of the Post-Pruning Modules 1362

As global and heterogeneous pruning is performed 1363

through our optimization, it is interesting to inves- 1364

tigate the pruned modules in each layer. We show 1365

the channels, heads, and layers sparsity (i.e., the 1366

pruned portion of the corresponding granularity) 1367

on LLaMA-2-{7B, 13B} with channels and heads 1368

pruning at 40% in Fig. A2. 1369

Figures A2 demonstrate that the pruned LLM 1370

exhibits low sparsity in the first and last layers, 1371

which is consistent with the previous studies that 1372

these layers have a profound impact on the perfor- 1373
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(a) Channels and Heads Pruning.

Method Sparsity 7B 13B
Sigmoid-Norm 30% 28.18 21.99
Score-Const 32.25 25.38
Sigmoid-Norm 35% 32.52 26.27
Score-Const 40.61 40.51
Sigmoid-Norm 40% 39.81 31.52
Score-Const 44.46 52.10
Sigmoid-Norm 45% 52.07 40.99
Score-Const 65.31 61.04
Sigmoid-Norm 50% 65.21 52.23
Score-Const 77.07 88.72

(b) Layer Pruning.

Method Sparsity 7B 13B
Sigmoid-Norm 30% 23.20 21.93
Score-Const 25.32 19.31
Sigmoid-Norm 35% 33.27 26.46
Score-Const 31.37 23.40
Sigmoid-Norm 40% 38.26 30.99
Score-Const 42.30 29.25
Sigmoid-Norm 45% 69.23 39.26
Score-Const 63.91 39.50
Sigmoid-Norm 50% 104.37 69.92
Score-Const 135.51 54.37

Table A14: Results with different projection strategies for pruning heads, channels, and layers on LLaMA-2-7B/13B.
Initialization metrics are from Wanda-sp for heads/channels and Layerwise-PPL for layers.

Method PruneRate Perplexity PruneRate Perplexity PruneRate Perplexity
Layerwise-PPL 30% 24.83 40% 41.45 50% 126.08
SLEB 23.43 40.26 131.49
Ours (Random Init) 30% 26.65 40% 42.76 50% 125.20
Ours (Random-Prog. Init) 30.05 38.28 111.87
Ours (Layerwise-PPL Init) 30% 23.20 40% 38.26 50% 104.37

Table A15: Layer pruning results with different initializations using LLaMA-2-7B. Bold and Underscored denote
the first and second best results, respectively.

mance of LLMs (Ma et al., 2023). Moreover, it can1374

be observed that the heads (of MHA) granularity1375

exhibits lower sparsity in the shallow layers (es-1376

pecially in the first layer), while such observation1377

does not hold for the channels (of MLP) granularity.1378

In other words, the pruned sparsity of the channel1379

granularity is more evenly distributed whereas the1380

deeper layers have a slightly less sparsity. This1381

might imply that the shallow layers focus more on1382

attention, while the deeper layer imposes slightly1383

more responsibility for lifting the feature dimen-1384

sions through MLP.1385
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Figure A2: Channels, heads, and layers sparsities of
LLaMA-2-{7B, 13B} with 40% pruning rate.
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LLM-Pruner

Neural Sequential Model, especially transformers, use a lot of data. We have built a team of experts to help
companies reduce the time to develop AI solutions. We can help you from the initial stages in the development
of algorithms. We work in close cooperation with clients to build machine learning and artificial intelligence
solutions on a wide spectrum of services, leveraging their own teams or by providing skilled specialists for
development and maintenance.
AI can create a logo in seconds, saving business owners the time, cost, and stress of trying to find a logo. If
your logo needs a little refreshing or you’re looking for a whole brand identity design, Artificial Solutions can
help you reach that goal. All projects are completed on time and within budget. Call now! Clients who want
a logo for a family, or non-profit charity, are given a brief description of who they are and what they want and
our team of professionals will come up with the logo for you! A logo design is typically
What’s great about the holiday season is it can be enjoyed with so many of our favorite foods and beverages.
I like the idea of coming up with a drink that is special for the holidays and toasts those celebrating and
visiting. The holiday cocktail is a great time to express your individuality and get friends together in one
place to mingle and enjoy delicious cocktails. I asked the cocktail geniuses over at Flaver Liquor Bar what
their favorite cocktail is and one that got me excited was The Pink Lemon

SliceGPT

Neural Sequential Model, especially transformers, provides one of the best ways of creating an attractive,
clean, and appealing image of your body. Using 2.0 mHz and 20mhZ transomters on the face can be very
effective. Here we use the VAS 2.0, 20 mhc, and VAS 20 with Slim for extra definition and volume. The
model is a 19mm tube that is about the size of an 5mm tube. The tube is 1.72mm
AI can create a logo in seconds and a logo is a valuable marketing asset for your business. In general, all the
digital devices are not a good option for those who are a bit low on budget. A basic website design and the
creation of a logo can be affordable for the business. Most of the businesses offer the services, especially to
the small companies. The website design is a significant matter to develop a business image for the companies.
A logo or logo design helps in this process to create the image. There is a good number of companies and
designers who can build a logo within hours.
What’s great about the holiday season? Well, there are many things: the holidays in the U.S are celebrated in
many ways, which is wonderful for the family. Besides the festivities, there are also plenty of goodies and
delicious foods to enjoy. We can all enjoy our favorite foods in celebration of Christmas. What do we really
enjoy the most during the holidays? There are definitely more interesting things to celebrate in the season of
holidays, but we also look forward to the holiday time because the holiday means the delicious food that you
can enjoy.

Ours

Neural Sequential Model, especially transformers, have been shown to be efficient in time and space com-
plexity as well as delivering great recognition results on a single machine. These are used frequently in
many domains of computer vision, including human body detection, motion capture and autonomous driving.
Although they achieve relatively high performance, their performance is bounded by the dimension space
they can operate on. In this paper, we describe the novel concept of a compact transformer based on a neural
sequence that combines the advantages of transformers and neural networks. Our analysis shows that the
compact transformer can process the images in their entirety while inc
AI can create a logo in seconds – at a lower cost than ever. What’s the problem with this? Well, you don’t
get that perfect custom logo you have always wanted. Not the way it will work in your business, anyway.
In-house logo creation, however, can be a bit time-consuming. You’ll need a designer to help you out. You
will also need to know the font and design you like most. You may have some logo ideas in your head, but
without tools and expertise at your fingertips, you’ll have to work hard for them
What’s great about the holiday season is that it’s a time for us all to relax and spend some time with our
friends and families. At this time of year, we all like to share stories that bring us closer together. One way to
do this is through gifts. Here are a few suggestions that we hope you’ll take with you into the new year. You
can give your best loved something in the form of memories or you can get them a gift that will have lasting
impact, like this new watch. We’re thrilled to introduce the new Seiko 6, an

Table A16: Generated samples of the pruned LLaMA-2-7B model with 30% pruning rate by different methods.
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