
Correlation-Induced Label Prior for Semi-Supervised Multi-Label Learning

Biao Liu 1 2 Ning Xu 1 2 Xiangyu Fang 1 2 Xin Geng 1 2

Abstract
Semi-supervised multi-label learning (SSMLL)
aims to address the challenge of limited labeled
data availability in multi-label learning (MLL) by
leveraging unlabeled data to improve the model’s
performance. Due to the difficulty of estimating
the reliable label correlation on minimal multi-
labeled data, previous SSMLL methods fail to
unlash the power of the correlation among mul-
tiple labels to improve the performance of the
predictive model in SSMLL. To deal with this
problem, we propose a novel SSMLL method
named PCLP where the correlation-induced label
prior is inferred to enhance the pseudo-labeling in-
stead of directly estimating the correlation among
labels. Specifically, we construct the correlated
label prior probability distribution using structural
causal model (SCM), constraining the correlations
of generated pseudo-labels to conform to the prior,
which can be integrated into a variational label en-
hancement framework, optimized by both labeled
and unlabeled instances in a unified manner. The-
oretically, we demonstrate the accuracy of the gen-
erated pseudo-labels and guarantee the learning
consistency of the proposed method. Comprehen-
sive experiments on several benchmark datasets
have validated the superiority of the proposed
method. Source code is available at https:
//github.com/palm-biaoliu/pclp.

1. Introduction
Multi-label learning (MLL) has emerged as an effective
paradigm for handling instances associated with multiple
semantic labels, which is common in many real-world appli-
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cations. Over the past decade, with the strong representation
learning ability of deep neural networks, MLL has been suc-
cessfully applied to a variety of real-world applications such
as image annotation (Lanchantin et al., 2021), text classifi-
cation (Liu et al., 2017), and facial expression recognition
(Chen et al., 2020).

In the context of MLL, the complexity of the label space
makes the acquisition of labeled data both time-consuming
and costly, particularly for large-scale datasets that require
expert labeling. This challenge has given rise to the develop-
ment of Semi-Supervised Multi-Label Learning (SSMLL),
which aims to utilize the information in unlabeled data
to improve model generalization performance when only
limited labeled instances are available for training. Ex-
isting SSMLL methods primarily seek inspiration from
approaches within single-label semi-supervised learning
(SSL), which has made great progress in recent years (Guo
& Li, 2022; Wang et al., 2023). For instance, Zhang et al.
employed a co-training strategy, where pairwise ranking
predictions on unlabeled data are communicated between
classifiers for model refinement (Zhan & Zhang, 2017). Sim-
ilarly, Wang et al. introduced a dual-classifier framework
to align the feature distribution in a latent space while gen-
erating pseudo-labels for unlabeled instances (Wang et al.,
2020). More recently, a class-specific threshold strategy is
designed based on the estimated class prior probabilities,
which is then used to assign pseudo-labels (Xie et al., 2023).

The complex co-occurrence or mutual exclusion relation-
ships, (Zhang & Zhou, 2013) in multiple labels, i.e., la-
bel correlation, is a critical property in MLL. However,
the previous methods only directly adopt single-label semi-
supervised framework for each class or just utilize an esti-
mated unreliable label correlation matrix for propagating
relationships between labels at the output layer. As directly
estimating the reliable label correlation on the available
minimal labeled instances in SSMLL is difficult, previous
SSMLL methods fail to unlash the power of the correlation
among multiple labels to improve the performance of the
predictive model in SSMLL. In response to this challenge,
we consider implicitly constructing label correlation through
the correlated label prior probability distribution, which can
be inferred with both labeled and unlabeled data, thereby
achieving more reliable label correlation.
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In this paper, we propose a novel method named PCLP,
i.e., Pseudo-labeling with Correlation-induced Label Prior
for SSMLL. Specifically, we construct the correlated label
prior probability distribution using Structural Causal Model
(SCM) (Yu et al., 2019), which can be seamlessly integrated
into a variational label enhancement framework (Xu et al.,
2021a; 2020b; 2023), optimized by both labeled and unla-
beled data in a unified manner. Simultaneously, the prior can
be employed to guide the pseudo-labeling process, ensuring
that the correlation of the generated pseudo-labels conforms
to the prior. Finally, the predictive model is trained on both
labeled instances and unlabeled instances assigned with the
pseudo-labels. Additionally, we theoretically demonstrate
that the generated pseudo-labels will be more accurate when
considering the label correlation inherent in the label prior
distribution. Furthermore, the generalization error bound
of the proposed method is derived to guarantee the learning
consistency (Mohri et al., 2018). The main contributions of
this paper are summarized as follows:

• Practically, we propose a novel pseudo-label genera-
tion method named PCLP for SSMLL. The proposed
method leverages both labeled and unlabeled instances
to establish the correlated label prior probability dis-
tribution and generates pseudo-labels for unlabeled
instances guided by this prior, which ensures that the
correlation of the generated pseudo-labels conforms to
the learned prior.

• Theoretically, we demonstrate the enhanced accuracy
of pseudo-labels when taking into account the label
correlation inherent in the label prior distribution. Fur-
thermore, the generalization error bound is derived to
guarantee learning consistency.

We conduct extensive experiments on several benchmark
datasets to demonstrate the effectiveness of our method. The
results show that our method outperforms the state-of-the-
art methods.

2. Related Work
Multi-label learning: Multi-label learning is a supervised
machine learning technique where an instance is associated
with multiple labels simultaneously. A key research focus
has been modeling and exploiting the correlations between
different labels to improve multi-label classification perfor-
mance. Early works mainly focused on first-order label cor-
relation by adapting binary classification algorithms like sup-
port vector machines to the multi-label setting. These treat
each label as an independent binary classification problem
without considering relationships between labels (Boutell
et al., 2004; Read et al., 2011). Second-order correlation
methods aim to capture pairwise relationships between la-
bels (Elisseeff & Weston, 2001; Fürnkranz et al., 2008).

However, considering only pairs of labels limits modeling
higher-order correlations. More recent works have explored
high-order correlations that take into account complex re-
lationships between multiple labels. Examples are graph
convolutional networks that operate on a label correlation
graph (Chen et al., 2019), and recurrent neural networks like
LSTMs that can learn arbitrary label dependencies (Yazici
et al., 2020). Beyond correlations, some recent works have
explored using label-specific features tailored to each la-
bel to improve performance (Yu & Zhang, 2022; Hang &
Zhang, 2022). Building upon these advancements, there
is an increasing focus on weak supervision scenarios due
to the the complexities of the label space in MLL, such
as noisy multi-label learning (Li et al., 2022; Chen et al.,
2024), partial multi-label learning (Wang et al., 2019; Xu
et al., 2020a; Xie & Huang, 2021), multi-label learning with
missing labels (Kim et al., 2022; 2023) and single-positive
multi-label learning (Cole et al., 2021; Xu et al., 2022; Xie
et al., 2022; Liu et al., 2023).

Semi-supervised learning: The semi-supervised learning
(SSL) methods primarily rely on pseudo-labeling and con-
sistency regularization. Pseudo-Labeling utilizes pseudo-
labels derived from model predictions, often paired with
a confidence-based thresholding that retains unlabeled in-
stances only when the classifier is sufficiently confident
(Sohn et al., 2020; Xie et al., 2020; Zhang et al., 2021; Xu
et al., 2021b). For instance, Zhang et al. designed varying
thresholds for different categories, lowering thresholds for
hard-to-learn categories to alleviate class imbalance (Zhang
et al., 2021). Xu et al. progressively increased thresholds
during training to enhance the utilization of unlabeled data
(Xu et al., 2021b). Consistency regularization, another com-
mon technique in SSL, enforces the model to produce con-
sistent predictions for different perturbations of the same
instance. Techniques for generating random perturbations
include data augmentation (French et al., 2018), stochastic
regularization (Sajjadi et al., 2016; Laine & Aila, 2017),
and adversarial perturbations (Miyato et al., 2018). More
recently, it has been shown that combining these two ap-
proaches, pseudo-labeling and consistency regularization,
can lead to enhanced performance (Berthelot et al., 2020;
Sohn et al., 2020; Zheng et al., 2022; Yang et al., 2022;
Chen et al., 2022).

Semi-supervised multi-label learning: Recent work has
developed semi-supervised approaches to exploit unlabeled
data for multi-label learning. Song et al. proposed a method
for graph data that uses label embedding and label smooth-
ing to capture label correlation (Song et al., 2021). Shi et
al. introduced a deep sequential generative model that treats
labels as latent variables to reconstruct data and leverage
crowdsourced labels (Shi et al., 2020). Wang et al. proposed
a dual relation approach to align distributions with dual clas-
sifiers and capture correlations (Wang et al., 2020). More
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recently, Xie et al. developed a class-aware pseudo-labeling
method that assigns positive and negative pseudo-labels for
each class based on labeled class distributions (Xie et al.,
2023). In contrast, there are many works that train linear
models to solve SSMLL problems (Zhan & Zhang, 2017;
Zhao & Guo, 2015; Tan et al., 2017) but they are limited in
their ability to scale and capture complex nonlinear relation-
ships as the dataset size grows.

3. Preliminaries
Semi-supervised multi-label learning (SSMLL) aims to uti-
lize unlabeled instances to enhance the predictive perfor-
mance of the model, especially when labeled data is limited.
Let X = Rq be the instance space and Y = {0, 1}c repre-
sent the label space with c classes. Given a labeled dataset
with n instances DL = {(xi,yi)|1 ≤ i ≤ n} and an un-
labeled dataset with m instances DU = {xi|n + 1 ≤ i ≤
n +m}, where xi ∈ X is a q -dimensional instance and
yi ∈ Y is its corresponding labels, SSMLL seeks to utilize
the structure and distribution in DU to assist the learning
from DL. Here, yi = [y1i , y

2
i , . . . , y

c
i ] where yji = 1 indi-

cates that the j-th label is a relevant label associated with
xi and yji = 0 indicates that the j-th label is irrelevant to
xi. The goal is to find a multi-label classifier in the hypoth-
esis space f ∈ F : X 7→ Y that minimizes the following
semi-supervised classification risk:

RS(f) = E(x,y)∼p(x,y) [L(f(x),y)]
+ αEx∼p(x) [Lu(f(x))] ,

(1)

where L : X ×Y 7→ R+ is the multi-label loss function that
measures the accuracy of the model in fitting the labeled
data, Lu represents a regularization term that captures the
structure or distribution in the unlabeled data and α is a
tradeoff parameter.

In the pseudo-label-based approach for SSMLL, the regular-
ization term Lu typically involves assigning pseudo-labels
to the unlabeled data, which are then used to guide the
training of the model. It can be mathematically expressed
as:

Lu(f(x)) = L(f(x),d), (2)

where d = [d1, . . . , dc] = S(x) denotes the pseudo-label
generated for the unlabeled instance x by the pseudo-label
generator S : X → [0, 1]c.

4. The PCLP Method
To fully utilize both labeled and unlabeled instances for joint
learning of label correlation, we explicitly model the corre-
lated label prior probability distribution using a Structural
Causal Model (SCM) (Yu et al., 2019). This prior can be
seamlessly integrated into a variational inference framework

(Kingma & Welling, 2014), optimized by both labeled and
unlabeled data in a unified manner. Furthermore, this prior
can be employed to constrain the generated pseudo-labels
to adhere to the label correlation, resulting in more accurate
pseudo-labels.

4.1. The Objective Function

We consider the generative process of a sample, which is
determined partly by a low-dimensional attribute feature. In
a multi-label context, this can be viewed as a pseudo-label
d = [d1, d2, . . . , dc], representing the probability corre-
sponding to each category. Additionally, a low-dimensional
latent feature z = [z1, z2, . . . , zk] with k dimensions is
introduced to incorporate randomness into the generation
process. To recover the soft pseudo-label d, we incorpo-
rate the soft pseudo-label d and the low-dimensional feature
space z as latent variables in a variational label enhancement
framework (Xu et al., 2021a; 2020b; 2023) for inference.

The inference phase induces the conditional distribution
pS,E(d, z|x) = pS(d|x)pE(z|x) and the joint distribu-
tion pS,E(x,d, z) = p(x)pS,E(d, z|x), where S is a
pseudo-label generator as defined in section 3 and E is
a low-dimensional feature encoder E : X → Rk to infer
z = E(x). During the generation process, the generator
establishes the conditional distribution pG(x|d, z) and the
joint distribution pG(x,d, z) = p(d, z)pG(x|d, z), where
G is a generator G : [0, 1]c × Rk → X to reconstruct
samples x = G(d, z). The objective is designed to mini-
mize the discrepancy between the encoded and generated
distributions:

Lgen (S,E,G) = KL
[
pS,E (x,d, z) ∥

pG (x,d, z)
]
,

(3)

where KL is the Kullback-Leibler (KL) divergence. The ob-
jective is shown to be equivalent to maximizing the evidence
lower bound (ELBO) (Kingma & Welling, 2014):

Lgen (S,E,G) = Ex∼p(x)

[
KL [pS,E(d, z|x)∥p(d, z)]

+ Ed,z∼pS,E(d,z|x) log pG(x|d, z)
]
.

(4)
The term of KL divergence can be decomposed further:

Lgen (S,E,G) = Ex∼p(x)

[
KL [pS(d|x)∥p(d)]

+ KL [pE(z|x)∥p(z)]

+ Ed,z∼pS,E(d,z|x) log pG(x|d, z)
]
.

(5)

The decomposition allows the model to distinguish the in-
herent attributes of the data determined by d, as well as
the variable features introduced by z, thereby facilitating a
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more precise and flexible representation and generation of
data.

To further promote the label enhancement, we introduce a
supervised loss term Lsup(S) to train the pseudo-label gen-
erator S on the labeled data. The overall objective function
is:

L(S,E,G) = Lgen(S,E,G) + λLsup(S), (6)

where Lsup(S) =
∑c
j=1 y

j log dj + (1− yj) log(1− dj) is
the binary cross-entropy loss.

4.2. Correlation-Induced Label Prior

In Eq. (5), the term Ed,z∼pS,E(d,z|x) log pG(x|d, z) repre-
sents the expected log-likelihood of the generated samples
given the latent variables. This term ensures that the gener-
ated samples are closely aligned with the actual data distri-
bution. The other terms, involving the KL divergence, align
the distribution of the latent variables with a prior probability
distribution. In previous works (Yao et al., 2021; Xu et al.,
2022), these prior probabilities are often assumed to be all
factorized, i.e., p(d) = Πcj=1p(dj) and p(z) = Πkj=1p(zj),
following the typical factorized Gaussian distribution. This
assumption is appropriate for z, which is introduced to add
diversity by independent noise. However, it is inappropriate
for pseudo-labels d in scenarios of MLL, where there is
inherent correlation among the labels.

To address this limitation, we propose to use a causal model
to capture the complex dependencies between labels, where
the label correlation can be interpreted as causal relation-
ships (Zhang & Zhang, 2010). Specifically, we employ
the general nonlinear Structural Causal Model (SCM) (Yu
et al., 2019) to represent the joint prior distribution over
pseudo-labels. It is defined as:

d = g((I −A⊤)−1h(ϵ)) := Fβ(ϵ), (7)

where A is the weighted adjacency matrix of the directed
acyclic graph (DAG) upon the c classes, ϵ is the exogenous
variables following N (0, I), g and h are element-wise non-
linear transformations, and β = (g, h,A) is the learnable
parameters of SCM denoted by F , with the parameter space
B. When g is invertible, Eq. (7) can be rewritten as:

g−1(d) = A⊤g−1(d) + h(ϵ), (8)

where each node in the graph represents a label variable and
the edges encode the causal dependencies between labels.
Eq. (8) decomposes the generation of labels d into two com-
ponents. The first term in the right-hand side represents the
influence of label-correlation-based causality on the genera-
tion of labels, and the second term introduces randomness
to account for influences from external factors, such as the
influence of brightness or shooting angle from features of

Algorithm 1 The PCLP Algorithm

Input: The SSMLL training set DL and DU , initial models
Sψ, Eϕ, Gθ, Fβ , Dη, the predictive model f , the num-
ber of iteration I and the number of epoch T .

1: for t = 1 to T do
2: for k = 1 to I do
3: Fetch random mini-batch B = {x1, . . . ,xb} from

DL ∪ DU ;
4: Generate zi from N (0, I), 1 ≤ i ≤ b;
5: Generate di from the causal model di = Fβ(ϵi),

where ϵi ∼ N (0, I), 1 ≤ i ≤ b;
6: Update η by minimizing Eq. (16) with B;
7: Fetch random mini-batch BU = {x1, . . . ,xbu}

from DU and BL = {(x1,y1), . . . , (xbl ,ybl)}
from DL;

8: Generate zi and di for BU as above;
9: Update ψ by Eq. (12) with BU ;

10: Update ϕ by Eq. (13) with BU ;
11: Update θ by Eq. (14) with BU ;
12: Update β by Eq. (15) with BU ;
13: Update ψ by minimizing Lsup with BL.
14: end for
15: end for
16: Train the predictive model f by minimizing Eq. (1) and

Eq. (2) with the pseudo-labels generated by Sψ .
Output: The predictive model f .

an image. The nonlinear transformations g and h enhance
the flexibility of SCM to model complex relationships. To-
gether, Eq. (8) enables SCM to capture the complex joint
label prior distribution through structured causal dependen-
cies between labels and random exogenous influences and
allows generating pseudo-labels respecting the inter-label
relationships.

The remaining step is to ascertain the dependencies among
labels to construct the connections of DAG. In multi-label
learning, the joint class distribution can be decomposed by
the chain rule of probability (Wang et al., 2016). Specifically,
the joint label prior probability p(y) can be expressed as:

p(y) = p(y1)

c∏
j=2

p(yj |y1, . . . , yj−1). (9)

By leveraging this probabilistic structure, we can construct
the weighted adjacency matrix A, i.e., each label will have
an edge connected to all its preceding labels.

Then, the label-correlation-prior is integrated into the varia-
tional label enhancement framework to guide the generation
of pseudo-labels by capturing the dependencies among the
multiple labels. Specifically, compared with the objective
function Eq. (3), pG(x,d, z) becomes pG,F (x,d, z) =
pF (d, z)pG(x|d, z), where pF (d, z) = pF (d)p(z), F

4



Correlation-Induced Label Prior for Semi-Supervised Multi-Label Learning

denotes the SCM model with learnable parameters β =
(g, h,A), and pF (d) is the distribution of Fβ(ϵ) and p(z)
is a standard Gaussian z ∼ N (0, I). Then, the objective
function becomes:

Lgen (S,E,G, F ) =

KL[pS,E (x,d, z) ∥pG,F (x,d, z)],
(10)

By incorporating pF (d), the pseudo-label generator S is
guided to generate pseudo-labels that are consistent with the
learned joint label prior distribution.

Then, the overall objective function becomes:

L(S,E,G, F ) = Lgen(S,E,G, F ) + λLsup(S). (11)

Next, we discuss the method employed to optimize the ob-
jective function. We represent the pseudo-label generator
S, the encoder E, and the sample generator G as neural
networks, parameterized by Sψ, Eϕ, and Gθ respectively.
Aa demonstrated in (Karras et al., 2021; Mescheder et al.,
2017), implicit distributions, where the randomness is fed
into the input or intermediate layers of the neural network,
are more flexible than explicit distributions in terms of ex-
pressiveness. We inject Gaussian noises into each convolu-
tional layer of the generator G to generate samples. Then,
the label-correlation-prior pF (d) and implicit distribution
pG(x|d, z) make Eq. (11) lose an analytic form.

We adopt a GAN method to adversarially estimate the gra-
dient of Eq. (11) as in the literature (Shen et al., 2020;
2022). Specifically, we introduce a discriminator D to
present the adversarial gradient of the objective function.
Let D∗(x,d, z) = log

pS,E(x,d,z)
pG,F (x,d,z) be the discriminator.

Then, the gradient with respect to the pseudo-label generator
Sψ is derived:

∇ψLgen = Ex∼p(x)

[
∇dD

∗(x,d, z)⊤|d=Sϕ(x)

∇ψSψ(x)
]
,

(12)

where the first gradient component ∇dD
∗(x,d, z) give the

feedback that how distinguishable the pseudo-labels d make
pS,E(x,d, z) from pG,F (x,d, z), the second component
∇ψSψ(x) guides the update of towards generating more
accurate pseudo-labels.

For the encoder Eϕ, the gradient is:

∇ϕLgen = Ex∼p(x)

[
∇zD

∗(x,d, z)⊤|z=Eϕ(x)

∇ϕEϕ(x)
]
,

(13)

which shares a structural similarity with that of Sψ .

For the sample generator Gθ, the gradient is computed as:

∇θLgen = −Ed,z∼pFβ
(d,z)

[
s(x,d, z)

∇xD
∗(x,d, z)⊤|x=Gθ(d,z)∇θGθ(d, z)

]
,

(14)

which is slightly different from the the previous gradi-
ents due to the inclusion of a scaling factor s(x,d, z) =
eD

⋆(x,d,z), acting as a weight for the gradient to enhance
the stability of gradient estimation (Shen et al., 2020).

Lastly, for the SCM prior Fβ , the gradient is given by:

∇βLgen = −Eϵ,z∼N (0,I)[
s(x,d, z)

(
∇xD

∗(x,d, z)⊤∇βG (Fβ(ϵ), z)

+∇dD
∗(x,d, z)⊤∇βFβ(ϵ)

)
|x=Gθ(Fβ(ϵ),z)

d=Fβ(ϵ)

]
.

(15)

Since D⋆ depends on the unknown densities, which makes
the gradient in Eq. (12-15) intractable, we estimate hte
gradients by training a discriminator Dη via the empirical
logistic regression:

min
D′

η

1

Nd

[ ∑
i:wi=1

log
(
1 + e−D

′
η(xi,di,zi)

)
+

∑
i:wi=0

log
(
1 + eD

′
η(xi,di,zi)

)]
,

(16)

where the weights wi = 1 if (xi,di, zi) ∼ pS,E(x,d, z)
and wi = 0 if (xi,di, zi) ∼ pG,F (x,d, z) with i =
1, . . . , Nd, Nd is the total number of sampled instances
for training the discriminator.

The overall process of PCLP is shown in Algorithm 1.

5. Theoretical Analysis
In this section, we delve into the effectiveness of using the
SCM prior to guide the label generator in producing pseudo-
labels. Before delving into the analysis, we first establish a
definition of what constitutes a high-quality pseudo-label.

Definition 5.1. Bayesian-informed pseudo-label genera-
tor: Given the ground-truth label y of instance x, a pseudo-
label generator S is said to be a bayesian-informed pseudo-
label generator with respect to y if ∀j = 1 . . . c, such that
dj := [S(x)]j = p(yj |x).

Definition 5.1 indicates that a high-quality pseudo-label
should closely match the Bayesian posterior probabilities
for each class.

Following the given definition, we demonstrate that if the
correlations within the joint label prior probability distri-
bution are neglected, the learned label generator will not
qualify as a high-quality pseudo-label generator as defined.
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Theorem 5.2. Let S⋆ be any bayesian-informed pseudo-
label generator with respect to y. Let b⋆ =
Lsup(S

⋆), a = minE,G Lgen(S
⋆, E,G), and b =

min{(S,E,G):Lgen=0} Lsup(S), whereE is any encoder andG
is any samples generator. Assume that the joint label prior
probability p(d) is factorized, i.e., p(d) =

∏c
j=1 p(dj).

Then we have a > 0, and either when b⋆ ≥ b or b⋆ < b and
λ < a

b−b⋆ , there exists a solution (S′, E′, G′) so that S′ is
not a Bayesian-informed pseudo-label generator, and for
any E and G, we have L(S′, E′, G′) < L(S⋆, E,G).

The proof can be found in Appendix A.1. Theorem 5.2
reveals that if the joint label prior probability is assumed to
be factorized, then it is possible to find a pseudo-label gen-
erator S′ that does not satisfy Definition 5.1 yet achieves a
lower loss than a Bayesian-informed pseudo-label generator
S⋆, when λ is not large enough. However, in real-world
applications, when λ is too large, the model is prone to
overfitting on the labeled dataset. Therefore, if the joint
label prior probability is factorized, setting this parameter
becomes particularly challenging.
Theorem 5.3. Assume that the underlying distribution
p(y) belongs to the distribution family {pβ : β ∈ B},
where B is the parameter space of β, i.e., there exists
β0 = (g0, h0, A0) such that p(y) = pβ0

. And suppose the
infinite capacity of S,E and G. Let (S⋆, E⋆, G⋆, F ⋆) ∈
argminS,E,G,F L(S,E,G, F ) be the optimal solution.
Then S⋆ is a bayesian-informed pseudo-label generator
with respect to y.

The proof can be found in Appendix A.2. Theorem 5.3
emphasizes that when the correlations within the joint la-
bel prior probability are taken into account, a high-quality
pseudo-label generator will be learned.

Additionally, we establish an estimation error bound for Eq.
(1) to demonstrate its learning consistency (Mohri et al.,
2012). Our goal is to minimize the expective risk:

R(f) = E(x,y)∼p(x,y)L(f(x),y). (17)

However, we have no access to sufficient labeled data to
estimate the true distribution p(x,y), we can only estimate
the risk by minimizing the empirical risk R̂S(f) = R̂l(f)+

R̂u(f) on the training set DL and DU , where R̂l(f) and
R̂u(f) are the empirical risk of the labeled loss L(f(x),y)
and the unlabeled loss Lu(f(x)) in Eq. (1) respectively:

R̂l(f) =
1

n

n∑
i=1

L(f(xi),yi),

R̂u(f) =
1

m

m∑
i=1

Lu(f(xi)),
(18)

where Lu(f(xi)) = L(f(xi),di),di = S(xi). Let
f̂ = minf∈F R̂S(f) be the empirical risk minimizer and

f⋆ = minf∈F R(f) be the true risk minimizer. Besides,
we define the function space Hy for the label y ∈ 1, . . . , c
as Hy = {h : x → fy(x)|f ∈ F}. Let Rn+m(Hy) be the
expected Rademacher complexity (Mohri et al., 2012), then
we have the following theorem:

Theorem 5.4. Assume the loss function L and Lu is ρ-
Lipschitz with respect to f(x) and upper bounded by M .
Then, for any δ > 0, with probability at least 1− δ:

R(f̂)−R(f⋆) ≤ 4
√
2ρ

c∑
y=1

Rn+m(Hy)

+M

√
log 2/δ

2n
+M

√
log 2/δ

2m
.

(19)

The proof can be found in Appendix A.3. The term involv-
ing the Rademacher complexity captures the capacity of
the hypothesis space. Meanwhile, the second term provides
a convergence rate that diminishes as the total number of
instances increases. This theorem assures that with a proper
choice of hypothesis space and enough training data, the
empirical risk minimizer f̂ will converge to the true risk
minimizer f⋆ as n,m→ ∞.

6. Experiments
6.1. Experimental Configurations

Datasets We evaluate the effectiveness of the proposed
method on three large-scale multi-label image classification
datasets, including Pascal-VOC-2012 (VOC) (Ever-
ingham et al., 2010), MS-COCO-2014 (COCO) (Lin
et al., 2014), and NUS-WIDE (NUS) (Chua et al., 2009).
Detailed information about these datasets is provided in
the appendix. During the training process, a proportion
p ∈ {0.05, 0.1, 0.15, 0.2} of samples with complete labels
is selected at random, while the rest of the samples are with-
out any supervisory information. Performance is evaluated
using Mean Average Precision (mAP).

Baselines Following the experimental setting in previous
SSMLL literature (Xie et al., 2023), we compared the pro-
posed method against five groups of approaches to validate
the effectiveness:

1) Two baseline methods: BCE and ASL (Ridnik et al.,
2021) that only use the labeled data for training.

2) Three instance-based pseudo-labeling methods:

• IAT-1 (Xie et al., 2023) selects the most probable label
in model prediction as pseudo-labels one for unlabeled
training instance.

• IAT-K (Xie et al., 2023) selects the top k probable
labels as pseudo-labels for each instance.
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Table 1: Mean average precision (mAP) of each comparing method on VOC, COCO and NUS. The best performance is
highlighted in bold.

Methods VOC COCO NUS

p = 0.05 p = 0.10 p = 0.15 p = 0.20 p = 0.05 p = 0.10 p = 0.15 p = 0.20 p = 0.05 p = 0.10 p = 0.15 p = 0.20

BCE 65.40 75.48 77.87 79.00 57.09 62.34 65.55 67.31 40.12 45.04 47.04 48.29
ASL 71.41 77.81 79.12 79.84 57.87 62.95 65.73 67.43 42.04 46.07 48.04 49.55

IAT-1 75.34 80.80 82.93 83.67 59.42 63.52 65.13 66.88 39.27 46.05 47.02 46.69
IAT-K 73.62 80.20 82.17 83.03 59.83 64.02 65.21 67.45 39.18 46.15 46.98 46.70
IAT 71.88 80.18 82.87 83.99 60.76 65.60 65.31 69.29 40.10 46.45 47.39 47.15

LL-R 73.58 79.68 81.79 82.73 60.97 65.25 67.48 68.75 44.12 47.10 48.93 49.54
LL-CT 71.13 79.03 81.43 82.55 58.82 63.31 64.55 67.19 39.24 45.93 48.09 49.89
LL-CP 71.41 79.63 82.25 83.25 57.90 63.93 65.67 68.07 40.72 46.60 48.46 49.61

PLC 74.57 80.78 81.99 83.05 58.65 65.07 67.66 69.09 44.99 48.70 49.99 51.30

ADSH 75.40 80.36 82.76 83.97 60.71 65.36 67.69 69.05 43.95 47.27 49.19 49.99
FREEMATCH 75.07 80.68 82.57 83.62 59.95 64.43 66.76 68.04 43.05 46.61 48.68 49.56

DRML 61.75 70.97 72.97 74.44 53.59 57.02 58.62 59.18 30.57 35.03 37.93 40.01
CAP 75.90 81.83 83.10 84.32 62.88 67.18 68.99 70.43 44.98 47.81 49.04 51.37

PCLP 77.25 82.21 83.72 84.59 64.43 69.02 70.86 71.52 46.39 48.83 50.57 52.45
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1.00.10.010.0010.0001

62

64

66

68

70

72

m
A

P

=0.05
=0.10
=0.15
=0.20

(b) Sensitivity analysis of α on COCO.

1.00.10.010.0010.0001
44

46

48

50

52

m
A

P

=0.05
=0.10
=0.15
=0.20

(c) Sensitivity analysis of α on NUS.

Figure 1: Parameter sensitivity analysis of α ranging from {1, 10−1, 10−2, 10−3, 10−4} on VOC, COCO and NUS.

• IAT (Xie et al., 2023) adopts an instance-aware thresh-
old to assign pseudo-labels.

3) Two state-of-the-art multi-label learning with missing
labels (MLML) methods:

• LL (Kim et al., 2022) treats unobserved labels as noisy
labels and dynamically adjusts the threshold to reject
or correct samples with a large loss, in order to prevent
the model from memorizing the noisy labels. including
three variants LL-R, LL-CT and LL-CP.

• PLC (Xie et al., 2022) designs a label-aware global
consistency regularization to recover the pseudo-labels
leveraging the manifold structure information learned
by contrastive learning.

4) Two state-of-the-art semi-supervised learning methods:

• ADSH (Guo & Li, 2022) involves adaptive threshold-
ing for different classes and optimize the number of
pseudo-labels for each class.

• FREEMATCH (Wang et al., 2023) introduce a self-
adaptive class fairness regularization penalty to en-

courage the model for diverse predictions and adjust
the confidence threshold in a self-adaptive manner ac-
cording to the model’s learning status to assign pseudo-
labels.

5) Two state-of-the-art deep SSMLL methods:

• DRML (Wang et al., 2020) introduces a dual-classifier
framework to align the feature distribution in a latent
space while generating pseudo-labels for unlabeled
instances.

• CAP (Xie et al., 2023) designs a class-specific thresh-
old strategy based on the estimated class prior proba-
bilities to assign pseudo-labels.

Implementation In order to ensure the fairness of compar-
ison, for all compared method, We use ResNet-50 network
(He et al., 2016) pre-trained on ImageNet (Russakovsky
et al., 2015) for the predictive model f . The architecture of
the pseudo-label generator S and the encoder E is a ResNet-
50 followed by a 4-layers MLP and SAGAN architecture
(Zhang et al., 2019) is used for the discriminator D and the
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Table 2: Ablation Study Results.

Dataset p
VI SCM VI SCM VI SCM

× × × ✓ ✓ ✓

VOC

0.05 75.18 76.38 77.25
0.10 80.41 81.45 82.21
0.15 81.53 82.57 83.72
0.20 83.11 83.84 84.59

COCO

0.05 62.17 63.38 64.43
0.10 66.81 67.92 69.02
0.15 68.78 69.87 70.86
0.20 69.47 70.57 71.52

NUS

0.05 44.61 45.44 46.39
0.10 46.71 47.72 48.83
0.15 48.43 49.31 50.57
0.20 50.37 51.30 52.45

sample generator G. For the tradeoff parameter λ, we fix it
as 1 for all datasets. We use Adam optimizer (Loshchilov &
Hutter, 2019) with β = (0.9, 0.999), RandAugment (Cubuk
et al., 2020) and Cutout (DeVries & Taylor, 2017) for data
augmentation for all datasets in all experiments. The batch
size is 64, the learning rate is 10−4. We implement all
experiments by PyTorch on NVIDIA RTX 3090 GPUs.

6.2. Experimental Results

Table 1 summarizes the performance of PCLP and the com-
pared methods in terms of mAP on VOC, COCO and NUS.
From the results, we can observe that PCLP achieves state-
of-the-art performance on all benchmark datasets. DRML,
as an SSMLL approach, does not yield satisfactory results,
possibly due to its reliance on a limited number of labeled
instances to construct label correlation. This imprecise cor-
relation might mislead the model’s predictions, resulting in
suboptimal performance. CAP achieves the second-best re-
sults in the comparison, proving that the information of the
class prior is of great help in solving the SSMLL. However,
CAP only models the class priors separately, ignoring the de-
pendencies between class priors, which is the key to why our
PCLP can achieve better performance. These comparison re-
sults convincingly confirm that by mining the dependencies
between class prior dependencies, our method can generate
higher quality pseudo-labels to solve the SSMLL problem.

6.3. Sensitivity Analysis

Our algorithm incorporates a tradeoff parameter α in the
SSMLL risk in Eq. (1), for which we have conducted a
parameter sensitivity analysis. We chose the value of this
hyper-parameter from the set {1, 10−1, 10−2, 10−3, 10−4}.
Figure 1 reports the impact of this weight on the results
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Figure 2: Visualization of label co-occurrence matrix on
dataset VOC.

of the datasets VOC, COCO and NUS with the labeled pro-
portions p ∈ {0.05, 0.1, 0.15, 0.2}. Experimental results
demonstrate that assigning a larger weight to the regu-
larization term Lu significantly enhances model perfor-
mance. This improvement underscores the high quality
of the pseudo-labels generated by PCLP, effectively con-
tributing to the advancement of model performance.

6.4. Ablation Study

In this section, we conduct an ablation study to investigate
the significance of leveraging the joint label prior distribu-
tion learned by SCM in guiding the pseudo-labeling process.
To assess the impact of the SCM component, we removed
it from the model, relying solely on the original variational
inference method (VI) to generate pseudo-labels for train-
ing. Furthermore, we experimented with using the raw out-
puts of the network as pseudo-labels for the unlabeled data.
The first column indicates results using only the network’s
output for pseudo-label generation. The second column
shows results when only variational inference is employed
for generating pseudo-labels. The third column represents
the implementation of a SCM to construct the correlated
label prior probability distribution for pseudo-labeling. The
results demonstrate the effectiveness of our approach, which
integrates the joint label prior distribution into the label en-
hancement to guide the generation of pseudo-labels. The
ablation study confirms that this integration is crucial for
aligning the generated pseudo-labels with the learned la-
bel prior distribution and significantly contributes to the
performance of the predictive model.

6.5. Visualization of Label Correlation

Figure 2a displays the statistical label-occurrence matrix
obtained under the condition of full labeling. Figure 2b de-
picts the label-occurrence matrix obtained from the output
of the predictive model on the dataset VOC with p = 0.05.
A deeper color indicates a higher co-occurrence rate. By
comparison, it is evident that our method can learn a label-
occurrence matrix similar to that of the fully labeled sce-
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nario, even with a limited number of labeled samples, such
as between ’bus’ and ’car’, ’dining table’ and ’chair’, ’sofa’
and ’chair’, as well as ’bicycle’ and ’person’. These obser-
vations demonstrate that our method can effectively capture
the correlations between labels and generate high-quality
pseudo-labels.

7. Conclusion
In this paper, we study semi-supervised multi-label learning
(SSMLL) and propose a novel method called PCLP, which
effectively employs both labeled and unlabeled data through
a Structural Causal Model integrated with a variational la-
bel enhancement process, guaranteeing that the generated
pseudo-labels are aligned with the learned correlated prior.
The theoretical analysis provided confirms that by consid-
ering label correlation in the label prior distribution, our
method achieves more precise pseudo-labeling. Addition-
ally, the generalization error bound guarantees the learning
consistency. Extensive experiments on three large-scale
multi-label image classification datasets demonstrate that
PCLP achieves state-of-the-art performance.
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A. Proofs
A.1. Proof of Theorem 5.2

Proof. Due to the correlation between labels in the label space, there are at least two labels in the label space that are not
independent. This implies that the probability density of y cannot be factorized. Since the pseudo-label generator S⋆ aligns
with the true labels as defined in Definition 5.1, for all j = 1, . . . , c, there exists a σ such that S⋆(x)j = σ(yj). This means
that the probability density of S⋆(x) is not factorized.

Note that the family of ground-turth label prior distribution is contained in the factorized distribution family, i.e., {p(y) :
p(y) =

∏c
j=1 p(yj)}. Therefore, the intersection of the marginal distribution families of y and S⋆(x) is empty. Then, the

joint distribution families of (x, S⋆(x), E(x)) and (G(d, z),d, z) also have an empty intersection. Lgen(S
⋆, E,G) = 0

implies that pS,E (x,d, z) = pG (x,d, z), which contradicts the above. Hence, a = minE,G Lgen(S
⋆, E,G) > 0.

Let (S′, E′, G′) be the solution of the optimization problem min{(S,E,G):Lgen=0} Lsup(S). From the above analysis, S′

cannot be a ground-truth aligned pseudo-label generator with respect to y. Therefore, L′ = L(S′, E′, G′) = λb, and
L⋆ = L(S⋆, E,G) ≥ a+ λb⋆ > λb⋆ for any E and G. When b⋆ ≥ b we directly have L′ < L⋆. When b⋆ < b and λ is not
large enough, i.e., λ < a

b−b⋆ , we have L′ < L⋆.

A.2. Proof of Theorem 5.3

Proof. For each j = 1, . . . , c, we consider the binary cross-entropy loss for each label yj :

Lsup,j = E(x,y)∼p(x,y)
[
−yj logS(x)j − (1− yj) log(1− S(x)j)

]
= −

∫
p(x)p(yj |x)

[
yj logS(x)j + (1− yj) log(1− S(x)j)

]
dxdyj .

(20)

Let:
∂Lsup,j

∂S(x)j
= −

∫
p(x)p(yj |x)

(
yj

S(x)j
− 1− yj

1− S(x)j

)
dxdyj = 0. (21)

Then we have that S(x)j = p(yj |x) minimizes Lsup,j .

By the assumption that there exists β0 = (g0, h0, A0) such that p(y) = pβ0
and the infinite capacity of G, we have the

distribution family of pG,F (x,d, z) contains pS⋆,E⋆(x,d, z). Then by minimizing Eq. (11) over G, we can find G⋆ such
that pG⋆,F⋆(x,d, z) = pS⋆,E⋆(x,d, z), where F ⋆ corresponds to β⋆ = (g⋆, h⋆, A⋆).

Hence, the optimal solution S⋆ of Eq. (11) is a Bayesian-informed pseudo-label generator.

A.3. Proof of Theorem 5.4

Proof. Firstly, we define the function space:

Gl =
{
g : (x,y) 7→ L(f(x),y)|f ∈ F

}
,Gu =

{
g : (x,d) 7→ L(f(x),d)|f ∈ F

}
,

and define the denote the expected Rademacher complexity (Mohri et al., 2012) of the function space :

R̃n(Gl) = Eσ

[
sup
g∈Gl

1

n

n∑
i=1

σig(xi,yi)

]
, R̃m(Gu) = Eσ

[
sup
g∈Gu

1

m

m∑
i=1

σig(xi,di)

]
,

where σ = {σ1, σ2, · · · , σn} is n Rademacher variables with σi independently uniform variable taking value in {+1,−1}.
Then we have:

Lemma A.1. We suppose that the loss function L and Lu could be bounded by M , and for any δ > 0, with probability at
least 1− δ, we have:

sup
f∈F

|Rl(f)− R̂l(f)| ≤ 2R̃n (Gl) +
M

2

√
log 2

δ

2n
,

sup
f∈F

|Ru(f)− R̂u(f)| ≤ 2R̃m (Gu) +
M

2

√
log 2

δ

2m
,
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where Rl(f) = E(x,y)∼p(x,y) [L(f(x),y)], Ru(f) = Ex∼p(x) [L(f(x),d)] and d = S(x).

Proof. Suppose an example (x,y) is replaced by another arbitrary example (x′,y′), then the change of supf∈F Rl(f)−
R̂l(f) is no greater than M

2n . By applying McDiarmid’s inequality, for any δ > 0, with probility at least 1− δ
2 ,

sup
f∈F

Rl(f)− R̂l(f) ≤ E

[
sup
f∈F

Rl(f)− R̂l(f)

]
+
M

2

√
log 2

δ

2n
.

By symmetry, we can obtain

sup
f∈F

|Rl(f)− R̂l(f)| ≤ E

[
sup
f∈F

Rl(f)− R̂l(f)

]
+
M

2

√
log 2

δ

2n
.

Next is to bound the term E
[
supf∈F Rl(f)− R̂l(f)

]
:

E

[
sup
f∈F

Rl(f)− R̂l(f)

]
= EDL

[
sup
f∈F

Rl(f)− R̂l(f)

]

= EDL

[
sup
f∈F

ED′
L

[
R̂′
l(f)− R̂l(f)

]]

≤ EDL,D′
L

[
sup
f∈F

[
R̂′
l(f)− R̂l(f)

]]

= EDL,D′
L,σ

[
sup
f∈F

σi

(
R̂′
l(f)− R̂l(f)

)]

≤ ED′
L,σ

[
sup
f∈F

σi

(
R̂′
l(f)

)]
+ EDL,σ

[
sup
f∈F

σi

(
R̂l(f)

)]

= 2EDL,σ

[
sup
f∈F

σi

(
R̂l(f)

)]
= 2R̃n (Gl) .

Then we have:

sup
f∈F

|Rl(f)− R̂l(f)| ≤ 2R̃n (Gl) +
M

2

√
log 2

δ

2n
.

Similarly, we can obtain:

sup
f∈F

|Ru(f)− R̂u(f)| ≤ 2R̃m (Gu) +
M

2

√
log 2

δ

2m
.

Lemma A.2. Define Hy = {h : x 7→ fy(x)|f ∈ F} and Rn (Hy) = Ep(x)Eσ

[
suph∈Hy

1
n

∑n
i=1 h (xi)

]
. And suppose

that the loss function L and Lu is ρ-Lipschitz with respect to f(x) Then, we have with Rademacher vector contraction
inequality (Mohri et al., 2012):

R̃n (Gl) ≤
√
2ρ

c∑
y=1

Rn(Hy), R̃m (Gu) ≤
√
2ρ

c∑
y=1

Rm(Hy),
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Based on Lemma A.1 and Lemma A.2, we could obtain:

R(f̂)−R(f⋆) = R(f̂)− R̂(f̂) + R̂(f̂)− R̂(f⋆) + R̂(f⋆)−R(f⋆)

≤ R(f̂)− R̂(f̂) + R̂(f⋆)−R(f⋆)

= Rl(f̂)− R̂l(f̂) + R̂l(f
⋆)−Rl(f

⋆)

+Ru(f̂)− R̂u(f̂) + R̂u(f
⋆)−Ru(f

⋆)

≤ 2 sup
f∈F

|Rl(f)− R̂l(f)|+ 2 sup
f∈F

|Ru(f)− R̂u(f)|

≤ 4R̃n (Gl) +M

√
log 4

δ

2n
+ 4R̃m (Gu) +M

√
log 4

δ

2m

≤ 4
√
2

c∑
y=1

Rn(Hy) +M

√
log 4

δ

2n
+ 4

√
2

c∑
y=1

Rm(Hy) +M

√
log 4

δ

2m

≤ 4
√
2

c∑
y=1

Rn+m(Hy) +M

√
log 4

δ

2n
+M

√
log 4

δ

2m
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