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Abstract
Constrained Markov Decision Processes (CMDPs) are one of the common ways
to model safe reinforcement learning problems, where constraint functions model
the safety objectives. Lagrangian-based dual or primal-dual algorithms provide
efficient methods for learning in CMDPs. For these algorithms, the currently
known regret bounds in the finite-horizon setting allow for a cancellation of errors;
one can compensate for a constraint violation in one episode with a strict constraint
satisfaction in another. However, we do not consider such a behavior safe in
practical applications.

In this paper, we overcome this weakness by proposing a novel model-based dual
algorithm OPTAUG-CMDP for tabular finite-horizon CMDPs. Our algorithm is
motivated by the augmented Lagrangian method and can be performed efficiently.
We show that during K episodes of exploring the CMDP, our algorithm obtains
a regret of Õ(

√
K) for both the objective and the constraint violation. Unlike

existing Lagrangian approaches, our algorithm achieves this regret without the
need for the cancellation of errors.

1 Introduction
In classical reinforcement learning (RL, Sutton and Barto, 2018), the goal is to learn an optimal
policy when interacting with an unknown Markov decision process (MDP, Bellman, 1957). In MDPs,
an agent aims to minimize the expected cumulative cost incurred during an episode. However, the
learned policy must often adhere to certain safety constraints in practical scenarios. For example,
when navigating a car on a race track, one would want to avoid crossing the boundaries of the
track too often. Such safety requirements are commonly modeled via constrained Markov decision
processes (CMDPs, Altman, 1999). We consider the problem of learning an optimal feasible policy
in a CMDP. That is, the goal of the agent is to minimize the cost while satisfying the constraints1.
Since the CMDP is unknown, we formalize these desiderata by considering the regret with respect to
an optimal feasible solution for the cost and the constraint violation, respectively.

Importantly, we do not consider it sufficient to provide an agent whose cumulative cost suboptimality
and cumulative constraint violation are sublinear. This is because an agent can have a negative
constraint violation (by being very safe but incurring a higher cost than an optimal safe policy) or a
positive constraint violation (by being unsafe but incurring a lower cost than an optimal safe policy).

1i.e., being feasible for the CMDP, which we also refer to as being safe
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Thus, terms from these two cases can cancel each other out, which we refer to as the so-called
cancellation of errors (Efroni et al., 2020). An agent for which these cumulative terms are sublinear
may violate the safety constraints heavily during learning by oscillating around an optimal safe policy.
While such a method converges on average to an optimal safe policy2, it neither allows for directly
extracting an optimal feasible policy nor does it guarantee safety during learning. We consider a
stronger notion of regret, which overcomes this issue by considering the sum of the positive parts
of the error terms instead. As pointed out by Efroni et al. (2020), it is of major theoretical interest
whether Lagrangian approaches can achieve sublinear bounds for this notion of regret.

The approaches to learning CMDPs are split into linear programming (LP) and Lagrangian ap-
proaches3 (Altman, 1999; Efroni et al., 2020). While LP-based algorithms generally allow for sublin-
ear regret bounds without the need for cancellations (Efroni et al., 2020), they can be expensive when
dealing with large state-action spaces. In contrast, in Lagrangian methods, we can solve the optimiza-
tion problem arising in each episode using dynamic programming (DP), offering a computational ben-
efit over solving LPs. However, the currently known bounds for Lagrangian approaches only concern a
weaker form of regret that allows for the aforementioned cancellation of errors. As Efroni et al. (2020)
pointed out, this is due to the underlying optimization methods rather than a weakness of the analysis.
The main goal of this paper is to provide a Lagrangian-based algorithm that guarantees sublinear
regret without the cancellation of errors. To achieve this, the key problem we solve is stopping the
agent from oscillating around an optimal safe policy. Our contributions can be summarized as follows:

• We propose a novel model-based dual algorithm, OPTAUG-CMDP, for learning an optimal feasible
policy in an unknown CMDP (Section 3). The algorithm is split into a model pre-training phase
and an optimistic exploration phase motivated by the augmented Lagrangian method.

• We show that a sub-problem required for OPTAUG-CMDP can be reformulated as a convex
optimization problem. We provide an efficient algorithm to solve it (Section 3) despite the non-
linearity introduced by considering the augmented Lagrangian.

• We prove that with high probability, during K episodes OPTAUG-CMDP achieves regrets for
the cost and the constraint violations of Õ(

√
K) when only highlighting the dependency on K.

Notably, we achieve this bound for the stronger notion of regret, which does not allow for the
cancellation of errors. This partly settles the open problem posed by Efroni et al. (2020).

1.1 Related Work
The most relevant foundation for our work is the work by Efroni et al. (2020), which reviews
model-based algorithms for CMDPs and establishes regret bounds for them. The authors analyze
the LP-based algorithms OPTCMDP and OPTCMDP-BONUS that achieve sublinear regret without
cancellations. However, the Lagrangian-based algorithms they analyze, OPTDUAL-CMDP and
OPTPRIMALDUAL-CMDP, only achieve sublinear regret with cancellations. This is because the
oscillatory behavior of dual and primal-dual descent methods prevents the individual iterates from
being approximately feasible. Therefore, the authors pose the open question of whether one can
devise Lagrangian-based algorithms that do not suffer from this issue.

The majority of relevant work providing guarantees for Lagrangian approaches to CMDPs is con-
cerned with model-free primal-dual algorithms (Ding et al., 2020; Bai et al., 2022; Ding et al.,
2022a,b) or model-based dual algorithms (Liu et al., 2021b; Efroni et al., 2020). However, in both
cases, the existing literature does not address the issue of the cancellation of errors when exploring
the CMDP and thus does not provide a method for safely finding an optimal feasible policy.4 While
there is work on analyzing different forms of regularization to the Lagrangian-based algorithms, their
guarantees either require the cancellation of errors (Liu et al., 2021a; Li et al., 2021b) or assume
access to exact value functions (Ying et al., 2022). Moskovitz et al. (2023) propose a first approach to
address the cancellation of errors by replacing gradients with their optimistic gradient counterparts in
well-known Lagrangian-based RL algorithms. While they show the empirical success of their meth-
ods, their theoretical analysis only covers a hypothetical algorithm with implicit updates and requires
full knowledge of the CMDP. Stooke et al. (2020) address the underlying problem of oscillations of
Lagrangian methods for CMDPs via PID control in the context of deep RL, providing experimental

2Here, we refer to the value functions for the underlying CMDP.
3i.e., dual and primal-dual algorithms
4That is, there are no guarantees on the constraint violations of the individual iterates for these methods.
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successes but no guarantees. Thus, to the best of our knowledge, none of the existing works address
the open question of Efroni et al. (2020) in the setup of an unknown CMDP.

While there are mentions of using the augmented Lagrangian method for CMDPs (Li et al., 2021a;
Lu, 2022; Krishnamurthy, 2003; Krishnamurthy and Abad, 2011, 2012), all such works are concerned
with research questions rather different from ours. The only one similar to ours is that of Li et al.
(2021a). The authors propose a surrogate reward inspired by the augmented Lagrangian to promote
safety during learning. However, their method significantly differs from ours as it is concerned with
instantaneous constraints in an infinite-horizon CMDP. Moreover, their analysis only shows that an
optimal policy for their surrogate MDP is optimal for the original CMDP (under certain assumptions).

2 Background and Problem Formulation
Notation: For any n ∈ N, we use the short-hand notation [n] to refer to the set of integers {1, . . . , n}.
For any finite set X , we denote by ∆(X) the probability simplex over X , i.e., ∆(X) = {v ∈
[0, 1]X |

∑
x∈X v(x) = 1}. For a ∈ R, we set [a]+ := max{0, a} to be the positive part of a. For a

vector b ∈ Rn, we write [b]+ for the vector whose entries are the positive parts of the corresponding
entries of b. Similarly, for two vectors a, b ∈ Rn, we write a ≤ b as a short-hand for ai ≤ bi, for all
i ∈ [n]. Throughout the paper, we denote the Euclidean norm by ∥ · ∥.

We define a finite-horizon CMDP as a tuple M = (S,A, H, p, c, (di)i∈[I], (αi)i∈[I], s1) with the
following components. S and A are the state and action space, respectively, and H > 0 denotes
the horizon. Every episode consists of H steps, starting from the initial state s1 ∈ S. At every
step h ∈ [H], ph(s′|s, a) denotes the probability of transitioning to state s′ if the current state and
action are s and a. Moreover, ch : S × A → [0, 1] denotes the objective cost function at step h.
For i ∈ [I], di,h : S × A → [0, 1] refers to the cost function of the i-th constraint at step h, and
αi ∈ [0, H] denotes the threshold for the i-th constraint. We assume the state and action space are
finite, with cardinalities S and A, respectively. Furthermore, we assume the agent does not know
the transition probabilities, objective costs, or constraint costs beforehand. Whenever the agent takes
an action a in state s at time h, it observes costs sampled from random variables Ch(s, a) ∈ [0, 1]
and (Di,h(s, a))i∈[I] ∈ [0, 1]I such that E[Ch(s, a)] = ch(s, a) and E[Di,h(s, a)] = di,h(s, a), for
all i ∈ [I]. The agent interacts with the CMDP by playing a policy π = (πh)h∈[H], meaning that
if in state s at step h ∈ [H], the agent samples its next action from πh(·|s) ∈ ∆(A). For an arbitrary
cost function l = (lh)h∈[H] and transition probabilities p′ = (p′h)h∈[H], the expected cumulative
cost under policy π is measured by the value function defined as follows:

V π(l, p′) :=E
[ H∑
h=1

lh(sh, ah) | s1, π, p′
]
,

where (sh, ah) denotes the state-action pair at step h under transitions p′ and policy π. We fix an
optimal solution of the CMDP, given by a policy π∗, defined as follows:

π∗ ∈ argmin
π∈Π

V π(c, p) s.t. V π(di, p) ≤ αi (∀i ∈ [I]). (1)

For brevity, we write V π((li)i∈[I], p
′) := (V π(l1, p

′), . . . , V π(lI , p
′))T ∈ RI in the presence of I

different cost functions li = (li,h)h∈[H] (i ∈ [I]), and α := (α1, . . . , αI)
T ∈ RI . Furthermore, we

denote by Π := {π = (πh)h∈[H]|πh : S → ∆(A)} the entire policy space.

Strong duality and dual methods: Altman (1999); Paternain et al. (2019) proved that CMDPs
possess the strong duality property; i.e., given a feasible CMDP M, the following relation holds:

V π∗
(c, p) = min

π∈Π
max
λ∈RI

+

L(π, λ)︸ ︷︷ ︸
Primal problem

= max
λ∈RI

+

min
π∈Π

L(π, λ)︸ ︷︷ ︸
Dual problem

, (2)

where L(π, λ) := V π(c, p) + λT
(
V π((di)i∈[I], p)− α

)
denotes the Lagrangian. The strong duality

property gives theoretical justification to dual methods (Altman, 1999; Efroni et al., 2020; Paternain
et al., 2019). These methods are popular, as the dual problem can be solved via a sequence of
(extended5) unconstrained MDPs, each of which can be solved efficiently via DP (as opposed to

5If the CMDP is unknown, backward induction involves an extra optimization step over the possible
transitions (Jin et al., 2019).
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using LPs for solving a sequence of CMDPs, for which the Bellman optimality principle does not
hold).

In this work, we solve the min-max problem in Eq. (2) using the augmented Lagrangian method.
This is beneficial since the analysis of the augmented Lagrangian method allows for convergence
guarantees concerning the last iterate and not just the averaged iterates. Since the occurring sub-
problems are not MDPs anymore, we justify in Section 3 how they can still be solved efficiently by
leveraging a Frank-Wolfe scheme and DP. We are now ready to state the main problem formulation
of our work.

Problem formulation: In our setting, the agent interacts with the unknown CMDP over a fixed
number of K > 0 episodes. In every episode k ∈ [K], the agent plays a policy πk ∈ Π and its goal is
to (simultaneously) minimize its regrets, defined as follows:

R(K; c) :=
∑

k∈[K]

[V πk(c, p)− V π∗
(c, p)]+, (Objective strong regret)

R(K; d) := max
i∈[I]

∑
k∈[K]

[V πk(di, p)− αi]+ . (Constraint strong regret)

For simplicity, we will write regret when referring to the strong regret throughout the paper. As we
pointed out, existing works on Lagrangian-based algorithms (Liu et al., 2021b; Efroni et al., 2020;
Bai et al., 2022; Ding et al., 2022a,b) only prove sublinear guarantees on a weaker notion of regret,
defined as follows:

R±(K; c) :=
∑

k∈[K]

(V πk(c, p)− V π∗
(c, p)), (Objective weak regret)

R±(K; d) := max
i∈[I]

∑
k∈[K]

(V πk(di, p)− αi) . (Constraint weak regret)

The weak regrets allow for the aforementioned cancellation of errors; i.e., even if they are sublinear
in K, the agent can continue compensating for a constraint violation in one episode with strict
constraint satisfaction in another. On the other hand, a sublinear bound on the stronger notion of
regret guarantees that the agent achieves a low constraint violation in most episodes.6 While this is
crucial for practical applications, providing a bound for the strong regrets is strictly more challenging
than for the weaker notion.

3 Algorithm and Main Result

In this section, we introduce our algorithm OPTAUG-CMDP (see Algorithm 1) and state its regret
guarantees in Theorem 1. In OPTAUG-CMDP, the agent interacts with the unknown CMDP over
a fixed number of K > 0 episodes. To encourage exploration of the CMDP, the agent follows the
well-known optimism in the face of uncertainty principle (Auer et al., 2008) and builds an optimistic
estimate of the CMDP in every episode k ∈ [K]. That is, in every episode k ∈ [K], the agent builds
optimistic estimates c̃k for the objective cost c, optimistic estimates d̃i,k for the constraint costs di,
and a set of plausible transition probabilities Bp

k , which we specify in the following paragraph.

Optimistic estimates: Let nk−1
h (s, a) :=

∑k−1
l=1 1{slh=s, al

h=a} count the number of times that the
state-action pair (s, a) is visited at step h before episode k. Here, (slh, alh) denotes the state-action
pair visited at step h in episode l. First, we compute the empirical averages of the cost and transition

6Indeed, fix ϵ > 0 and suppose R(K; d) ≤ Õ(
√
K). Then there exist at most Õ(

√
K/ϵ) episodes with a

constraint violation of at least ϵ. In other words, only a small fraction Õ(1/(ϵ
√
K)) of the iterates is not ϵ-safe.

In comparison, this is by no means guaranteed by a sublinear bound on R±(K; d).
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probabilities as follows:

c̄k−1
h (s, a) :=

∑k−1
l=1 Cl

h(s, a)1{slh=s, al
h=a}

nk−1
h (s, a) ∨ 1

,

d̄k−1
i,h (s, a) :=

∑k−1
l=1 Dl

i,h(s, a)1{slh=s, al
h=a}

nk−1
h (s, a) ∨ 1

(∀i ∈ [I]),

p̄k−1
h (s′|s, a) :=

∑k−1
l=1 ,1{slh=s, al

h=a, slh+1=s′}

nk−1
h (s, a) ∨ 1

,

where a∨ b := max{a, b}. With this, we define the optimistic costs and the set of plausible transition
probabilities as

c̃k,h(s, a) := c̄k−1
h (s, a)− βc

k,h(s, a),

d̃i,k,h(s, a) := d̄k−1
i,h (s, a)− βd

i,k,h(s, a) (∀i ∈ [I]), (3)

Bp
k,h(s, a) := {p̃h(·|s, a) ∈ ∆(S) | ∀s′ ∈ S : |p̃h(s′|s, a)− p̄k−1

h (s′|s, a)| ≤ βp
k,h(s, a, s

′)},
Bp

k := {p̃ | ∀s, a, h : p̃h(·|s, a) ∈ Bp
k,h(s, a)}.

Here, βc
k,h(s, a) = βd

i,k,h(s, a) > 0 denote the exploration bonus for the costs and βp
k,h(s, a, s

′) > 0

denotes the confidence threshold for the transitions. For any δ ∈ (0, 1), we specify the correct values
for those quantities in Appendix E.1 to obtain our regret guarantees with probability at least 1− δ. In
the next paragraph, we describe how the agent computes its policy in episode k.

Policy update: Given the optimistic CMDP at episode k, we derive the next policy πk using a scheme
motivated by the augmented Lagrangian method (cf. Eqs. (4) and (5)). At the end of this section, we
explain how we can perform the optimization step in Eq. (4) efficiently, up to a specified accuracy ϵk.
For now, we treat this part of the algorithm as a black-box subroutine.

Optimistic exploration alone with the augmented Lagrangian, however, is insufficient to obtain
sublinear regret guarantees for our algorithm. For technical reasons, our analysis also requires
the optimistic CMDPs with costs c̃k, (d̃i,k)i∈[I] and transitions p̃k ∈ Bp

k (cf. Eq. (4)) to be strictly
feasible, in every episode k ∈ [K]. Our analysis in Section 4.2 explains the need for this technical
assumption. To address this issue, we propose a pre-training phase before the optimistic exploration
phase, which we describe in the following paragraph.

Pre-training phase: In this phase, the agent repeatedly executes a fixed policy π̄ for K ′ ≤ K
episodes. The policy π̄ must be strictly feasible for the true CMDP, which we formally state in the
following assumption.

Assumption 1 (Strictly feasible policy). We have access to a policy π̄ such that V π̄(di, p) < αi for
all i ∈ [I]. Furthermore, we assume that the slack γ, defined below, is known7:

γ := min
i∈[I]

(αi − V π̄(di, p)) ∈ (0, H].

Note that this is stronger than only assuming the existence of a strictly feasible policy. However,
making this assumption is realistic in many practical setups (Liu et al., 2021b; Bura et al., 2022).
For example, in the case of a race car that should not exceed the boundary of a track, it would be
sufficient to have access to the policy of a car that strictly stays within the boundaries but may be
arbitrarily slow. To address the technical issue mentioned earlier, we need to set K ′ such that the
following condition holds for some ν ∈ (0, 1), with high probability:

V π̄(d̃i,k, p̃k) ≤ αi − νγ (∀i ∈ [I] ∀k ∈ {K ′, . . . ,K}),

where p̃k is defined by the update in Eq. (4).8 In particular, the fixed policy π̄ is strictly feasible for
the optimistic CMDP at every episode k ≥ K ′. Indeed, if the agent plays π̄ for the first K ′ episodes

7In other words, there is a Slater point for the constraint set of the true CMDP. Note that knowing a lower
bound instead of the exact slack γ is sufficient as well.

8For k = K′, we just take any p̃K′ ∈ Bp
K′
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of the algorithm with a large enough constant K ′, then for all future episodes, the constraint value
function of π̄ under the estimated model is close to the constraint value function of π̄ under the true
model. Thus, we can ensure the above condition. Leveraging an adaption of an on-policy error bound
(see Appendix C), we prove that it is sufficient to set K ′ as follows:

Lemma 1. Suppose that Assumption 1 holds, i.e., the agent has access to a strictly feasible
π̄ and its slack γ > 0. Fix any ν ∈ (0, 1), and suppose the agent executes π̄ for K ′ =

Õ
(
max

{
S2AH3

(1−ν)γ ,
NSAH4

(1−ν)2γ2

})
episodes, where N := maxs,a,h |{s′ | ph(s′|s, a) > 0}| denotes

the maximum number of transitions. Then, if the agent updates the optimistic CMDP based on the
observations from those episodes (cf. Eq. (3)), with probability at least 1− δ the following condition
is satisfied for every k ∈ {K ′, . . . ,K}:

V π̄(d̃i,k, p̃k) ≤ αi − νγ (∀i ∈ [I]).

We present the resulting OPTAUG-CMDP algorithm in Algorithm 1.

Algorithm 1 OPTAUG-CMDP
Require: K (total number of episodes), K ′ ≤ K (number of pre-training episodes), (ηk)k≥K′+1

(step sizes), (ϵk)k≥K′+1 (accuracies), π̄ (strictly feasible policy), α (constraint thresholds),
λK′+1 := 0 ∈ RI

// Phase 1: Pre-training the model
for k = 1, . . . ,K ′ do

Play policy πk = π̄, update estimates of the costs c̃k+1, (d̃i,k+1)i∈[I] and transitions Bp
k+1

(Eq. (3)).

// Phase 2: Optimistic exploration with pre-trained model
for k = K ′ + 1, . . . ,K do

Update policy (by finding πk, p̃k such that the objective is ϵk-close to the minimum):

πk, p̃k := arg min
π∈Π
p′∈Bp

k

(
V π(c̃k, p

′) +
1

2ηk
∥[λk + ηk(V

π((d̃i,k)i∈[I], p
′)− α)]+∥2

)
(4)

Update dual variables:

λk+1 := [λk + ηk(V
πk((d̃i,k)i∈[I], p̃k)− α)]+ (5)

Play πk, update estimates of the costs c̃k+1, (d̃i,k+1)i∈[I] and transitions Bp
k+1 (Eq. (3)).

We are now ready to state the regret guarantees for OPTAUG-CMDP.

Theorem 1. Suppose that Assumption 1 holds, let δ ∈ (0, 1) and ν > 0. Then there exist

K ′ = Õ
(
max

{
S2AH3

(1−ν)γ ,
NSAH4

(1−ν)2γ2

})
and ηk, ϵk such that with probability at least 1− δ, OPTAUG-

CMDP achieves a total regret of

R(K; c) = Õ
(√

NSAH4K + S2AH3 +K ′H
)
,

R(K; d) = Õ
(√

NSAH4K + S2AH3
)
.

We remark that to achieve this bound, using step sizes ηK′+k = Θ(k2.5) and accuracies ϵK′+k =
Θ(1/ηK′+k) (when only highlighting the dependency on k) is sufficient, as we discuss in Ap-
pendix D.3.

Comparison with OPTDUAL-CMDP: Crucially, our bound holds for the stronger notion of regret.
In contrast, the one for the related OPTDUAL-CMDP algorithm (see Appendix A.2) by Efroni et al.
(2020) only concerns the weak regret, which allows for the cancellation of errors. Apart from this, the
bound we obtain is similar in spirit. However, our regret bound does not depend on the number I of
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constraints up to polylogarithmic factors. Moreover, we get slightly different (but not worse) constants
and the constant extra term K ′H due to the model pre-training phase. In addition, it is important to
note that we can choose ηk, ϵk in terms of γ (Assumption 1) such that in the leading term of the regret
bound, there is no dependency on mini∈[I](αi − V π̄(di, p)), as opposed to OPTDUAL-CMDP.

Solving the inner problem: We now elaborate on the subroutine for solving the optimization problem
in Eq. (4) that defines the policy update in Algorithm 1. Importantly, we can reformulate Eq. (4) as
a constrained optimization problem that is convex in the state-action-state occupancy measure (see
Appendix B.1). However, the resulting problem is neither an LP nor an extended MDP (due to the
nonlinear objective), which prevents solving it with a single DP or LP solver call. Albeit related, it is
not a standard convex RL problem either (due to the additional optimization over the constraint set
Bp

k). Moreover, computing projections onto the high-dimensional domain is prohibitive, making it
impossible to run projected gradient descent.

The projection-free method we propose in Appendix B.2 overcomes this difficulty by combining
a Frank-Wolfe scheme with DP in a sequence of (extended) MDPs. In every iteration of this inner
method, we consider the linear minimization step needed for a Frank-Wolfe iteration. When switching
back to optimization over Π and Bp

k , we can then perform this minimization step by solving an
extended but unconstrained MDP via DP.9 The smoothness properties of the objective of Eq. (4) then
determine the iteration complexity of the Frank-Wolfe scheme. Formally, we have the following.

Proposition 1. In episode k, fix any accuracy of ϵk > 0. There exists an algorithm for solving
Eq. (4) such that the objective at its output (πk, p̃k) is ϵk-close to the optimum of Eq. (4), by solving

O
(

ηkIS
2AH

ϵk

)
(extended) MDPs via DP.

4 Sketch of the Regret Analysis

In this section, we outline the key steps in our proof of Theorem 1 and defer the detailed proofs to
Appendix E. We will condition our regret analysis on a success event G, which we formally define in
Appendix E.1. G ensures that (a) the optimistic cost estimates in Eq. (3) are, in fact, optimistic and
(b) the true transitions are contained in the set of plausible models from Eq. (3), i.e.:

c̃k ≤ c, d̃i,k ≤ di (∀i ∈ [I]), p ∈ Bp
k ,

for every episode k ∈ [K]. In the following lemma, we prove that G occurs with high probability.

Lemma 2. Fix δ ∈ (0, 1) and define the optimistic model in Eq. (3) accordingly. Then, the success
event G occurs with probability at least 1− δ, i.e., P [G] ≥ 1− δ.

We proceed with the regret analysis and first split the regrets between the two phases of the algorithm:

R(K; c) =

K′∑
k=1

[V πk(c, p)− V π∗
(c, p)]+︸ ︷︷ ︸

Pre-Training

+

K∑
k=K′+1

[V πk(c, p)− V π∗
(c, p)]+︸ ︷︷ ︸

Optimistic Exploration

,

R(K; d) ≤ max
i∈[I]

K′∑
k=1

[V πk(di, p)− αi]+︸ ︷︷ ︸
Pre-Training

+max
i∈[I]

K∑
k=K′+1

[V πk(di, p)− αi]+︸ ︷︷ ︸
Optimistic Exploration

.

Then, applying Lemma 1, we can trivially bound the objective regret during the pre-training phase by
K ′H . Since π̄ is strictly feasible, there is no constraint regret during pre-training. We now focus on
the regrets incurred in the optimistic exploration phase. For this, we further decompose the regrets as

9Formally, this is because a version of the Bellman optimality principle applies after dualizing the constraints,
even if we need to optimize over the confidence intervals for the transitions during backward induction.
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follows (see Appendix E.1):

R(K; c) ≤ K ′H+

K∑
k=K′+1

[V πk(c, p)−V πk(c̃k, p̃k)]+︸ ︷︷ ︸
Estimation Error

+

K∑
k=K′+1

[V πk(c̃k, p̃k)−V π∗
(c, p)]+︸ ︷︷ ︸

Optimization Error

,

R(K; d) ≤ max
i∈[I]

K∑
k=K′+1

[V πk(di, p)−V πk(d̃i,k, p̃k)]+︸ ︷︷ ︸
Estimation Error

+max
i∈[I]

K∑
k=K′+1

[V πk(d̃i,k, p̃k)−αi]+︸ ︷︷ ︸
Optimization Error

.

We have thus decomposed the regrets into

(A) estimation errors that are due to the estimated model, and

(B) optimization errors that we can analyze via the underlying optimization method.

Conditioning on the success event G, we will obtain bounds sublinear in K for both parts of the
decomposition. Note that we cannot adapt the analysis by Efroni et al. (2020) to achieve this goal
since it only allows for bounds on the averages of the signed optimization errors. We proceed with
bounding the estimation errors in the next section.

4.1 Estimation Errors (Optimistic Exploration)
Leveraging on-policy error bounds for optimistic exploration in MDPs (Appendix C), we establish
the desired bound on the estimation errors.

Lemma 3 (Estimation errors). Let (πk)
K
k=K′+1 be the sequence of policies obtained by OPTAUG-

CMDP. Then, conditioned on G, we can bound the estimation errors as follows:

K∑
k=K′+1

[V πk(c, p)− V πk(c̃k, p̃k)]+ ≤Õ
(√

NSAH4K + S2AH3
)
,

max
i∈[I]

K∑
k=K′+1

[V πk(di, p)− V πk(d̃i,k, p̃k)]+ ≤Õ
(√

NSAH4K + S2AH3
)
.

We refer to Appendix E.2 for the proof. Lemma 3 proves that the estimation errors for both the
objective and constraints can indeed be bounded by a term that is sublinear in K. In the next section,
we provide a bound for the optimization errors.

4.2 Optimization Errors (Optimistic Exploration)
Recall that by Proposition 1, our solver for the inner problem (Eq. (4)) has the following guarantee,
for every episode k ≥ K ′ + 1:

Lk(πk, p̃k) ≤ min
π∈Π
p′∈Bp

k

Lk(π, p
′) + ϵk,

where Lk(π, p
′) := V π(c̃k, p

′) + 1
2ηk

∥[λk + ηk(V
π((d̃i,k)i∈[I], p

′)− α)]+∥2 denotes the objective
at episode k. If the true CMDP is known, i.e., no exploration is required, then Xu (2021) proves a
sublinear regret bound for the optimization error if the step sizes ηk and accuracies ϵk are chosen
suitably.10 They obtain this result by bounding the dual variables λk across the iterations k. In our
setting, however, since the objective and constraint set of the optimization problem (Eq. (4)) change
in every episode, we require a novel type of analysis.

As a first step, we show that we can bound the optimization errors in episode k by expressions that
depend on the dual variables λk and λk+1.

10That is, such that
∑K

k=K′+1 1/ηk = o(K) and
∑K

k=K′+1 ϵk = o(K), see Xu (2021, Remark 7).
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Lemma 4. Conditioned on G, for each k ∈ {K ′ + 1, . . . ,K}, in OPTAUG-CMDP we have

V πk(c̃k, p̃k)− V π∗
(c, p) ≤ ϵk +

∥λk∥2 − ∥λk+1∥2

2ηk
,

V πk(d̃i,k, p̃k)− αi ≤
λk+1(i)− λk(i)

ηk
(∀i ∈ [I]).

To further bound the norm of the dual iterates, for each episode k ≥ K ′, we consider the k-th
optimistic CMDP, which we define as follows:

min
π∈Π

V π(c̃k, p̃k) s.t. V π(d̃i,k, p̃k) ≤ αi (∀i ∈ [I]). (6)

Note that Eq. (6) indeed is a CMDP. By Lemma 1, π̄ is strictly feasible for Eq. (6) for all k ≥ K ′,
with a slack of ≥ νγ uniformly bounded away from zero. By strong duality (Paternain et al., 2019),
there exist primal-dual pairs (π∗

k, λ
∗
k) satisfying

V π∗
k(c̃k, p̃k) = min

π∈Π

(
V π(c̃k, p̃k) + (λ∗

k)
T (V π((d̃i,k)i∈[I], p̃k)− α)

)
.

We formalize this with Lemma 18 in Appendix E.3.2 by using the fact that we can formulate Eq. (6)
as a convex optimization problem using the LP formulation of CMDPs (Appendices A.3 and A.4).
With this, we can establish the following bound on the dual iterates.

Lemma 5. Let k ∈ {K ′ + 1, . . . ,K} and suppose Eq. (6) is strictly feasible for every k′ ∈
{K ′, . . . ,K}. Let (π∗

k′ , λ∗
k′) be pairs of primal-optimal and dual-optimal solutions for Eq. (6). Then

the iterates of OPTAUG-CMDP satisfy

∥λk+1∥ ≤ 2

k∑
t=K′

∥λ∗
t ∥+

k∑
t=K′+1

√
2ηtϵt.

Having achieved a bound on the dual iterates λk+1 in terms of the dual maximizers λ∗
k′

(k′ ∈ {K ′, . . . , k}), we can now aim to provide bounds for the latter. Indeed, we can leverage results
from constrained convex optimization (Appendix A.4) to arrive at the following lemma.

Lemma 6. Suppose Assumption 1 holds. Let ν ∈ (0, 1) and choose K ′ as in Lemma 1. Let
k ∈ {K ′, . . . ,K}, and let (π∗

k, λ
∗
k) be a pair of primal-optimal and dual-optimal solutions for

Eq. (6). Then, conditioned on G, we have

∥λ∗
k∥ ≤ ∥λ∗

k∥1 ≤ H

νγ
.

Plugging Lemma 5 into the bounds from Lemma 4 and replacing the norms of the λ∗
k using the

bound from Lemma 6, we obtain sublinear optimization errors when choosing ηk, ϵk correctly:

Lemma 7 (Optimization errors). Suppose Assumption 1 holds. Let ν ∈ (0, 1) and choose K ′

as in Lemma 1. Suppose that the event G occurs. When using step sizes ηK′+k = Θ(k2.5) and
ϵK′+k = Θ(1/ηK′+k), we have

K∑
k=K′+1

[V πk(c̃k, p̃k)− V π∗
(c, p)]+ ≤

K∑
k=K′+1

(
(O(σk) +

∑k
t=K′+1

√
2ηtϵt)

2

2ηk
+ ϵk

)
≤ O(

√
K),

max
i∈[I]

K∑
k=K′+1

[V πk(d̃i,k, p̃k)− αi]+ ≤
K∑

k=K′+1

O(σk) +
∑k

t=K′+1

√
2ηtϵk

ηk
≤ O(

√
K),

where σ = H
νγ and in fact O(σk) can be replaced by (2 + 2(k −K ′))σ.

Remark: We need to choose ηk large enough (increasing) and ϵk small enough (decreasing) to ensure
a sublinear error bound. At the same time, we do not want to choose ηk larger than necessary or ϵk
smaller than necessary for computational reasons (see Proposition 1). We refer to Appendix D.3 for a
discussion. In the case of an exact subroutine, we can plug in ϵk = 0 to achieve an analogous result.

According to our regret decomposition, by adding up the errors of the pre-training phase, the
estimation errors in the second phase, and the optimization errors in the second phase, we can indeed
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deduce our main result (Theorem 1). We showed how to bound the estimation errors using the
optimism paradigm (Lemma 3). For the analysis of the optimization errors, we had to generalize the
convergence analysis of the inexact augmented Lagrangian method (Lemma 7). We showed that if
we have access to a safe baseline policy, the pre-training phase guarantees all assumptions required
for this and adds a constant term to the regret (Lemma 1).

5 Conclusion
In this work, we showed how to overcome the problem of the cancellation of errors, i.e., the
oscillation of standard Lagrangian-based algorithms for CMDPs around an optimal safe policy. We
leveraged the augmented Lagrangian method to design our algorithm OPTAUG-CMDP. Unlike the
related OPTDUAL-CMDP algorithm of Efroni et al. (2020), this requires a subroutine that solves a
non-linear optimization problem in each episode. We devised an efficient algorithm for this, avoiding
projections or LP. We then provided a regret analysis that, unlike previous works, does not require the
cancellation of errors to arrive at sublinear regret guarantees. This means that in contrast to existing
Lagrangian-based algorithms, our algorithm is provably safe while exploring the unknown CMDP.

This first partial answer to the open problem posed by Efroni et al. (2020) leads to several further
questions: Can we obtain tighter bounds for the inner sub-routine and the regret, as our problem
has a richer structure than the general convex optimization setup? While OPTAUG-CMDP enjoys
stronger regret guarantees, the proposed inner subroutine has a higher computational cost than the
one in OPTDUAL-CMDP, which may be possible to improve. Moreover, it remains open whether
one can remove the requirement of access to a strictly feasible policy. Finally, we aim to extend
our approach to the more practical function approximation setup.
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of policy gradient primal-dual method for constrained markov decision processes. In 2022
American Control Conference (ACC), pages 2851–2856. IEEE, 2022a.

Dongsheng Ding, Kaiqing Zhang, Jiali Duan, Tamer Başar, and Mihailo R Jovanović. Convergence
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A Background
A.1 Review of the Augmented Lagrangian Method
In this section, we review the fundamentals of the augmented Lagrangian method (Rockafellar, 1976;
Bertsekas, 2014), which was first introduced by Hestenes (1969); Powell (1969). Our review is partly
inspired by the review by Yan and He (2020).

Consider a closed and convex set X ⊂ Rn and a closed convex function f : X → R. Furthermore,
let A ∈ Rm×n and b ∈ Rm. With this, consider the constrained problem

min
x∈X

f(x) (7)

s.t. Ax ≤ b.

After initializing x0 ∈ X and λ0 ∈ Rm
≥0, the augmented Lagrangian method performs the following

updates in step k ≥ 0:

xk+1 ∈ argmin
x∈X

(
f(x) +

1

2ηk
∥[λk + ηk(Ax− b)]+∥2

)
, (8)

λk+1 =[λk + ηk(Axk+1 − b)]+. (9)

It can easily be verified that the augmented Lagrangian method is the proximal point method applied
to the Lagrangian dual. Thus, with the Lagrangian L(x, λ) := f(x) + λT (Ax− b), we have

(xk+1, λk+1) ∈ argmax
λ≥0

min
x∈X

(
L(x, λ)− 1

2ηk
∥λ− λk∥2

)
.

Xu (2021) shows a non-asymptotic convergence result for the augmented Lagrangian method,
including the case of an inexact subroutine for solving Eq. (8). Notably, the convergence result
concerns the last iterate of the method. That is if f∗ is the optimal value of Eq. (7), then f(xk) → f∗

as k → ∞ and the convergence rate is determined by the step sizes ηk (and, in the case of an inexact
subroutine, by the accuracy parameter ϵk).
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Alternatively, we could apply the dual projected gradient method to Eq. (7). The updates would then
read

x̃k+1 ∈ argmin
x∈X

(
f(x) + λ̃T

k (Ax− b)
)
, (10)

λ̃k+1 =[λ̃k + η̃k(Ax̃k+1 − b)]+. (11)

While Eq. (11) coincides with Eq. (9), the update of the primal variable differs from the one in the
augmented Lagrangian method. We can view the dual projected gradient method as iterative play
between a primal player xk and a dual player λk in a min-max setup, where the objective is the
Lagrangian L(x, λ). The primal player here plays best response, while the dual player plays online
projected gradient ascent. While this is similar in spirit to applying the proximal point method to the
Lagrangian dual, the known non-asymptotic convergence guarantees for this method are ergodic, i.e.,
they only concern convergence of the averaged iterates. Indeed, simple simulations show that this is
not a weakness in the analysis but that the primal and dual iterates indeed oscillate around an optimal
solution pair. This is illustrated by Beck (2017, Chapter 8). The iterates of the dual projected gradient
method may alternate between satisfying f(xk) > f∗ and Axk < b for a couple of iterations and then
f(xk) < f∗ and Axk > b for a couple of iterations. While the average objective value converges to
f∗ and the average constraint violation to 0, this is not true for the individual iterates. Note that these
oscillations are not due to estimating the problem but are present even if the optimization problem is
fixed, as in the setup above. Apart from the augmented Lagrangian method, other methods, such as
extra gradient or optimistic gradient descent-ascent, offer solutions to this issue.

A.2 Review of OPTDUAL-CMDP
In this section, we review the related OPTDUAL-CMDP algorithm of Efroni et al. (2020). This
model-based dual algorithm is based on the dual projected gradient method (see Appendix A.1) rather
than on the augmented Lagrangian method (but builds the model with the same notion of optimism).

Algorithm 2 OPTDUAL-CMDP

Set ηk :=
√

ρ2

H2IK and λ1 := 0 ∈ RI

for k = 1, . . . ,K do
Update policy:

πk, p̃k := arg min
π∈Π
p′∈Bp

k

(
V π(c̃k, p

′) + λT
k (V

π((d̃i,k)i∈[I], p
′)− α)

)
(12)

Update dual variables:

λk+1 := [λk + ηk(V
πk((d̃i,k)i∈[I], p̃k)− α)]+ (13)

Play πk, update estimates of the costs c̃k+1, (d̃i,k+1)i∈[I] and transitions Bp
k+1 (Eq. (3)).

Dual approaches like the algorithm above turn the CMDP into a series of linearly regularized,
(extended) unconstrained MDPs (here with objective V π(c̃k, p

′) + λT
k (V

π((d̃i,k)i∈[I], p
′) − α)),

that can be solved efficiently with DP. With the augmented Lagrangian approach, the inner problem
(Eq. (4)) has a more complicated structure. In Appendix B, we show that the inner problem can be
reformulated as a convex optimization problem and provide an efficient method based on Frank-Wolfe
and DP.

For OPTDUAL-CMDP, we have the following guarantee (Efroni et al., 2020, Theorem 5).

Theorem 2. Suppose there exists a strictly feasible policy π such that for all i ∈ [I] we have
V π(di, p) < αi. Set

ρ :=
V π(c, p)− V π∗

(c, p)

mini∈[I](αi − V π(di, p))
.
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Then, for any δ ∈ (0, 1), with probability at least 1− δ, OPTDUAL-CMDP achieves the following
regret bounds:

R±(K; c) = Õ

(√
SNH4K + ρ

√
H2IK + (

√
N +H)H2SA

)
,

R±(K; d) = Õ

(
(1 +

1

ρ
)(
√
ISNH4K + (H

√
N + S)

√
IH2SA)

)
.

Notably, this bound only covers the weak regret. This is because the dual projected gradient method
does not allow for a non-ergodic convergence analysis, and its iterates will generally oscillate around
an optimal feasible solution. It is worth mentioning that unlike LP-based approaches (OPTCMDP
and OPTCMDP-BONUS of Efroni et al. (2020)), the related primal-dual method OPTPRIMALDUAL-
CMDP of Efroni et al. (2020) suffers from the same problem as OPTDUAL-CMDP. Moreover, we
remark that this is not just a hypothetical issue but that Lagrangian-based algorithms indeed suffer
from the mentioned oscillations in practical applications (Stooke et al., 2020; Moskovitz et al., 2023).

A.3 CMDPs and Occupancy Measures
We summarize the relevant quantities of the CMDP M as follows.

Discrete state space S, with cardinality S

Discrete action space A, with cardinality A

# of constraints I

Initial state s1, same for each episode

Time horizon H , same for each episode

Transition probability ph(s
′|s, a) = P [sh+1 = s′ | sh = s, ah = a]

Max. # transitions N = maxs,a,h |{s′ | ph(s′|s, a) > 0}|
Objective cost Random variable Ch(s, a) ∈ [0, 1], with E[Ch(s, a)] = ch(s, a)

Constraint cost (i ∈ [I]) Random variable Di,h(s, a) with E[Di,h(s, a)] = di,h(s, a)

Constraint encoding (di, αi)i∈[I], with di = (di,h)h∈[H] and αi ∈ [0, H]

Policy π = (π1, . . . , πH) ∈ Π with πh : S → ∆(A) (non-stationary)

Value function V π(c, p) = E[
∑H

h=1 ch(sh, ah) | s1, p, π]
Constraint value function (i ∈ [I]) V π(di, p) = E[

∑H
h=1 di,h(sh, ah) | s1, p, π]

Table 1: Summary of CMDP notation

To view the CMDP as a convex optimization problem, we will express it via the common notion of
occupancy measures (Borkar, 1988).

Definition 1. The state-action occupancy measure qπ of a policy π for a CMDP M is defined as
qπh(s, a; p) := E

[
1{sh=s,ah=a} | s1, p, π

]
= P [sh = s, ah = a | s1, p, π],

for s ∈ S , a ∈ A, h ∈ [H]. We denote the stacked vector of these values as qπ(p) ∈ RSAH , with the
element at index (s, a, h) being qπh(s, a; p).

For transition probabilities p′, we can now define
Q(p′) :=

{
qπ(p′) ∈ RSAH | π ∈ Π

}
as the state-action occupancy measure polytope. Note that Q(p′) is indeed a polytope (Altman,
1999; Efroni et al., 2020). Moreover, for any p′ we have a surjective map π 7→ qπ(p′) between
Π and Q(p′), for which we can explicitly compute an element in the pre-image of q ∈ Q(p′) via
πh(a|s) = qh(s, a)/(

∑
a′ qh(s, a

′)).

We can stack the expected costs ch(s, a) and constraint costs dih(s, a) in the same way as
qh(s, a) to obtain vectors c ∈ RSAH and di ∈ RSAH . Note that we then have V π(c, p) =∑

h,s,a q
π
h(s, a; p)ch(s, a) = cT qπ(p) by linearity of expectation. Similarly, for all i ∈ [I], we have

V π(di, p) = dTi q
π(p). Moreover, if we stack D = (di)i∈[I] ∈ RI×SAH and α = (αi)i∈[I] ∈ RI as

D :=

dT1
...
dTI

 , α :=

α1

...
αI

 ,
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we obtain V π(D, p) = Dqπ(p) ∈ [0, H]I for the vector of the constraint value functions. We can
thus write

π∗ ∈ argmin
π∈Π

V π(c, p) s.t. V π(di, p) ≤ αi (∀i ∈ [I])

equivalently as

qπ
∗
∈ arg min

qπ∈Q(p)
cT qπ(p) s.t. Dqπ(p) ≤ α,

which is an LP. In particular, if we assume feasibility, then by compactness of the state-action
occupancy polytope and continuity of the objective, there is an optimal solution π∗.

A.4 Convex Optimization Preliminaries
We state some well-known results from constrained convex optimization that will be useful to bound
the dual iterates λk appearing in Lemma 4. The results are standard, and we refer, for example, to the
work by Beck (2017).

Consider the (primal) optimization problem

f∗ := min f(x)

s.t. g(x) ≤ 0 (14)
x ∈ X

with the following assumptions.

Assumption 2 (Assumption 8.41, Beck (2017)). In Eq. (14),

(a) X ⊂ Rn is convex

(b) f : Rn → R is convex

(c) g(·) := (g1(·), . . . , gm(·))T with gi : Rn → R convex

(d) Eq. (14) has a finite optimal value f∗, which is attained by exactly the elements of X∗ ̸= ∅
(e) There exists x̄ ∈ X such that g(x̄) < 0

(f) For all λ ∈ Rm
≥0, minx∈X(f(x) + λT g(x)) has an optimal solution

In this setup, we define the dual objective as

q(λ) := min
x∈X

(
f(x) + λT g(x)

)
,

where L : Rn × Rm → R, L(x;λ) := f(x) + λT g(x) is the Lagrangian of the problem in Eq. (14).
The dual problem is then defined as

q∗ := max q(λ)

s.t. λ ≥ 0.

In this setup, we have the following results connecting the primal and the dual problem.

Theorem 3 (Theorem A.1, Beck (2017)). Under Assumption 2, strong duality holds in the following
sense: We have

f∗ = q∗

and the optimal solution of the dual problem is attained, with the set of optimal solutions Λ∗ ̸= ∅.

Proof. Proposition 6.4.4 of Bertsekas et al. (2003) proves the more general Theorem A.1 of Beck
(2017). We remark that if we assume affine constraints g and X being a polytope, then we can drop
assumption (e) (Beck, 2017, Theorem A.1).

Theorem 4. Suppose Assumption 2 holds. Let x∗ ∈ X∗, λ∗ ∈ Λ∗ and x ∈ X . Then

f(x)− f(x∗) + (λ∗)T g(x) ≥ 0.
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Proof. We have

f(x) =f(x) + (λ∗)T g(x)− (λ∗)T g(x)

≥q(λ∗)− (λ∗)T g(x) (definition of q(·))
=f(x∗)− (λ∗)T g(x), (since by Theorem 3, q∗ = f∗)

and rearranging this proves the claim. Again, we can drop assumption (e) if we consider affine
constraints g and a polytope X .

Theorem 5. Under Assumption 2, for all λ∗ ∈ Λ∗ and x̄ as in (e), we have

∥λ∗∥ ≤ ∥λ∗∥1 ≤ f(x̄)− f∗

mini∈[m](−gi(x̄))
.

Proof. The first relation holds since λ∗ ≥ 0. We show the second relation as follows (cf. Beck (2017,
Theorem 8.42)). We have

f(x∗) =q(λ∗) (Theorem 3)

≤f(x̄) + (λ∗)T g(x̄) (definition of q(·))
≤f(x̄) + ∥λ∗∥1 max

i∈[m]
gi(x̄) (since λ∗ ≥ 0)

=f(x̄)− ∥λ∗∥1 min
i∈[m]

(−gi(x̄))

and rearranging this proves the claim. We remark that this theorem needs assumption (e), even in the
affine case.

B Solving the Inner Optimization Problem
There are numerous works leveraging Frank-Wolfe schemes for RL (including planning) with convex
objectives, most commonly in the context of pure/active exploration (Hazan et al., 2019; Tarbouriech
and Lazaric, 2019; Tarbouriech et al., 2020; Mutny et al., 2023).

To the best of our knowledge, only Tarbouriech and Lazaric (2019, Appendix A.3) remark that a
combination of Frank-Wolfe UCB and planning in extended MDPs would be possible with a convex
objective and plausible transitions. Tarbouriech et al. (2020) follow this approach but solve an
extended LP rather than an extended MDP in each Frank-Wolfe iteration. Therefore, we make the
former idea explicit and show how we can devise an efficient algorithm for our case.

B.1 Derivation of the Policy Update via Frank-Wolfe
In the following, we provide an efficient algorithm for solving the inner optimization problem in
Eq. (4) based on the extended LP formulation of CMDPs, Frank-Wolfe, and DP. Recall the first
update in OPTAUG-CMDPwhile rewriting the value functions in terms of occupancy measures (see
Appendix A.3):

πk, p̃k := arg min
π∈Π
p′∈Bp

k

(
c̃Tk q

π(p′) +
1

2ηk

∥∥∥[λk + ηk(D̃kq
π(p′)− α)]+

∥∥∥2) , (15)

where qπ(p′) ∈ RSAH , D̃k ∈ RI×SAH and c̃k ∈ RSAH are defined as in Appendix A.3.

We first use the extended LP trick (Rosenberg and Mansour, 2019; Efroni et al., 2020) to switch to a
convex optimization problem in the state-action-state occupancy measure. That is, in the problem
above, substitute

zh(s, a, s
′) := zπh (s, a, s

′; p′) :=p′h(s
′|s, a)qπh(s, a; p′) (16)

and note that

qπh(s, a; p
′) =

∑
s′

zπh (s, a, s
′; p′). (17)
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Stacked across (s, a, h) ∈ S ×A× [H], this simply reads

qπ(p′) =
∑
s′

zπ(s′; p′) ∈ RSAH ,

for all s′ ∈ S. The objective of Eq. (15) then reads

f(z) :=
∑
s′

c̃Tk z(s
′) +

1

2ηk
∥[λk + ηk(

∑
s′

D̃kz(s
′)− α)]+∥2,

and we need to minimize it over the set Z ⊂ RS2AH which is given by the constraints

∑
a,s′ zh(s, a, s

′) =
∑

s′,a′ zh−1(s
′, a′, s) (∀h > 1, s)∑

a,s′ z1(s, a, s
′) = µ(s) (∀s)

zh(s, a, s
′) ≥ 0 (∀s, a, s′, h)

zh(s, a, s
′)− (p̄k−1

h (s′|s, a) + βp
k,h(s, a, s

′))
∑

s′′ zh(s, a, s
′′) ≤ 0 (∀s, a, s′, h)

−zh(s, a, s
′) + (p̄k−1

h (s′|s, a)− βp
k,h(s, a, s

′))
∑

s′′ zh(s, a, s
′′) ≤ 0 (∀s, a, s′, h),

where µ(s) = 1 if s = s1 and 0 otherwise. Note that Z is a bounded polytope and thus compact and
convex. We can thus equivalently solve

min
z∈Z

f(z), (18)

which is a standard convex optimization problem. Note that, due to the nonlinear objective, even
with the convex formulation in Eq. (18), Eq. (4) cannot be written as an LP. It cannot be rewritten
as a standard convex RL problem (Zahavy et al., 2021; Geist et al., 2021) either since the transition
probabilities are part of the optimization, and we thus had to switch to the extended convex program
in the state-action-state occupancy measure z. Note that for efficiency reasons, we aim to avoid
LP (which is needed for solving CMDPs due to the lack of the Bellman optimality principle) and
projections onto the high-dimensional constraint set Z. Instead, we will make use of DP and
gradient-based methods.

If we can approximately solve Eq. (18), we can later retrieve transitions and policy via

p̃k,h(s
′|s, a) := zh(s, a, s

′)∑
s′′ zh(s, a, s

′′)
, (19)

πk,h(a|s) :=
∑

s′ zh(s, a, s
′)∑

a′,s′ zh(s, a
′, s′)

. (20)

We use Frank-Wolfe to solve Eq. (18). Frank-Wolfe is a well-known iterative method for constrained
nonlinear optimization, which minimizes a smooth convex function over a convex domain and avoids
projections. To apply it to Eq. (18), we need a linear minimization oracle (LMO) that, in step t (of
episode k), solves

min
g∈Z

gT∇f(zt) (21)

and then, after finding a minimizer g, updates

zt+1 := (1− γt)z
t + γtg,

where γt := 2/(t + 2). It is well known that Frank-Wolfe converges with a rate of O(1/T ) for
smooth objectives. This is given here, but the smoothness parameter depends on ηk. We refer to
Abernethy and Wang (2017); Jaggi (2013); Frank and Wolfe (1956) for the relevant background.

It remains to show that we can provide an efficient LMO that uses DP instead of LP and avoids
projections onto Z. Let (∇f(z))(s, a, s′, h) := ∂f

∂zh(s,a,s′)
(z) be the gradient of f with respect to z

at index (s, a, s′, h). Then the s′-th component of the gradient of f with respect to z is

(∇f(z))(·, ·, s′, ·) = c̃k + D̃T
k [λk + ηk(D̃k

∑
s′′

z(s′′)− α)]+ ∈ RSAH , (22)
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which we can compute explicitly and efficiently. We note that this gradient does not depend on s′,
and thus the gradient of f with respect to the whole vector z ∈ RS2AH is simply the vector above,
repeatedly stacked S times.

We now show how switching back to the optimization over Π×Bp
k allows for an efficient LMO via

DP. For g ∈ Z, there are π, p′ such that

gh(s, a, s
′) = gπh(s, a, s

′; p′) = ph(s
′|a, s)qπh(s, a; p),

via Eqs. (19) and (20). The LMO then needs to minimize

gT∇f(zt) =
∑

s,a,s′,h

gh(s, a, s
′)(∇f(zt))(s, a, 1, h)

=
∑

s,a,s′,h

p′h(s
′|a, s)qπh(s, a; p′)(∇f(zt))(s, a, 1, h)

=
∑
s,a,h

qπh(s, a; p
′)(∇f(zt))(s, a, 1, h) (23)

over π ∈ Π and p′ ∈ Bp
k . This corresponds to solving the extended MDP M+ := {(M =

(S,A, r+, p+)) | ∀s, a, h : r+h (s, a) := ∇f(zt)(s, a, 1, h), p+h (·|s, a) ∈ Bp
k,h(s, a)}. We can do so

via backward induction (i.e., DP) that optimizes

Qk
h(s, a) := r+h (s, a) + min

p′(·|s,a)∈Bp
k,h(s,a)

∑
s′

p′(s′|s, a)min
a′

Qk
h+1(s

′, a′) (24)

and starts with Qk
H+1(s, a) = 0. We can retrieve the transitions and the policy by storing the

minimizers in each step of the DP. To compute the solution g of the LMO from π, p′, one can then
use a simple and efficient DP scheme to compute qπh(p

′), which is explained in Appendix B.2. We
can use this, in turn, to retrieve g using the substitution in Eq. (16). Then, we perform the second step
of Frank-Wolfe to get a convex combination of g and zt, which concludes the Frank-Wolfe iteration.

We can already see that the computational complexity of the k-th step of OPTAUG-CMDP is larger
than the one of OPTDUAL-CMDP by a factor of O(1/ϵk) (and a dependency on ηk) because we
need this many Frank-Wolfe iterations, which is the price we pay for the stronger regret bound. We
provide a complete analysis of the iteration complexity in Appendix D.2.

B.2 Pseudocode for the Inner Problem
More formally, the algorithm for solving the inner problem (Eq. (4)) reads as follows.

Algorithm 3 INNEROPT-FW

Input: Current estimates c̃k, D̃k, Bp
k , and λk

Output: Next policy πk and p̃k according to Eq. (15)

Set T = 2ηkIS
2AH

ϵk
, γt = 2/(2 + t)

Initialize z0 ∈ Z arbitrarily
for t = 0, . . . , T − 1 do

Compute ∇f(zt) according to Eq. (22)
Minimize Eq. (23) via DP algorithm from Eq. (24) to find πt, pt
Retrieve minimizer gt from πt, pt via DP algorithm from Eq. (26) and Eq. (16)
Set zt+1 := γtg

t + (1− γt)z
t

Construct πk, p̃k from zT via Eqs. (19) and (20)
return πk, p̃k

As a final step, we now describe how to retrieve q := qπ(p′) from π and p′ in Line 6 (Jin et al., 2019).
For s ∈ S, set qh(s) := P [sh = s|s1; p′, π] =

∑
a′∈A qh(s, a

′). Given a policy π and transition
probabilities p′, we need to compute

qh(s, a) = qh(s) · πh(a|s), (25)
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for every h ∈ [H], s ∈ S and a ∈ A. This is easily achieved via DP. Indeed, we have

q1(s) =

{
1 (s = s1)

0 (else),

and for h > 1

qh(s) =P [sh = s|s1; p′, π]

=
∑
s′∈S

P [sh = s|sh−1 = s′; s1, p
′, π]P [sh−1 = s′|s1; p′, π]

=
∑
s′∈S

∑
a∈A

πh−1(a|s′)ph−1(s|s′, a)P [sh−1 = s′|s1, ; p′, π]

=
∑
s′∈S

∑
a∈A

πh−1(a|s′)ph−1(s|s′, a)qh−1(s
′), (26)

which together with Eq. (25) enables us to retrieve the state-action occupancy measure. Clearly, we
can perform the above DP scheme efficiently.

C On-Policy Error Bounds
We consider arbitrary polices (πk)k∈[K]. We suppose that in the CMDP M, the agent plays πk in
episode k ∈ [K] and uses it to update the optimistic model according to Eq. (3), with some fixed
δ = 3δ′ > 0.

We first establish Lemmas 8 to 10, which will allow us to bound the estimation errors (Lemma 3). For
a definition of the occupancy measure qπ(s, a; p), see Appendix A.3. We write ≲ for an inequality
up to polylogarithmic factors.

Note that in the following two lemmas, the exponent of H differs from the one in the referenced
proofs. This is because the referenced works consider the case of stationary transition probabilities,
whereas we consider non-stationary dynamics. See Shani et al. (2020, Lemmas 18, 19).

Lemma 8 (Lemma 36, Efroni et al. (2020)). Suppose for all s, a, h, k ∈ [K] we have

nk−1
h (s, a) >

1

2

∑
j<k

q
πj

h (s, a; p)−H log

(
SAH

δ′

)
.

Then for all K ′ ≤ K

K′∑
k′=1

H∑
h=1

E

 1√
nk′−1
h (sk

′
h , ak

′
h )

| Fk′−1

 ≤ Õ(
√
SAH2K ′ + SAH),

where Fk′−1 is the σ-algebra induced by all random variables up to and including episode k′ − 1.

Proof. We refer to Efroni et al. (2019, Lemma 38) for a proof of the statement.

Lemma 9 (Lemma 37, Efroni et al. (2020)). Suppose for all s, a, h, k ∈ [K] we have

nk−1
h (s, a) >

1

2

∑
j<k

q
πj

h (s, a; p)−H log

(
SAH

δ′

)
.

Then for all K ′ ≤ K

K′∑
k′=1

H∑
h=1

E

[
1

nk′−1
h (sk

′
h , ak

′
h )

| Fk′−1

]
≤ Õ(SAH2),

where Fk′−1 is the σ-algebra induced by all random variables up to and including episode k′ − 1.

Proof. We refer to Zanette and Brunskill (2019, Lemma 13) for a proof of the statement.
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The following lemma provides an on-policy error bound based on the value difference lemma.
Together with the preliminaries from Appendix E.1, it allows us to bound the estimation error.

Lemma 10 (On-policy errors; Lemma 29, Efroni et al. (2020)). Consider an MDP with transition
dynamics p and arbitrary estimated transition dynamics p̂k (for k ∈ [K], each forming a conditional
probability measure). Consider policy iterates (πk)k∈[K] and suppose πk is played in episode k ∈ [K]

and used to update the counters. Let lh(s, a), l̃k,h(s, a) be the cost and corresponding optimistic
cost with l = c or l = di as discussed in Eq. (3). For a policy π, let V π

h (s; l, p), V π
h (s; l̃k, p̂k) be the

values of π according to the true resp. estimated model. Assume that for all s, a, h, k, we have

nk−1
h (s, a) >

1

2

∑
j<k

q
πj

h (s, a; p)−H log

(
SAH

δ′

)
, (a)

|l̃k,h(s, a)− lh(s, a)| ≤ Õ

 1√
nk−1
h (s, a) ∨ 1

 , (b)

|p̂k,h(s′|s, a)− ph(s
′|s, a)| ≤ Õ

(√
ph(s′|s, a)Lp

δ

nk−1
h (s, a) ∨ 1

+
Lp
δ

nk−1
h (s, a) ∨ 1

)
. (c)

Then we have

K∑
k=1

|V πk(l, p)− V πk(l̃k, p̂k)| ≤ Õ
(√

NSAH4K + S2AH3
)
. (27)

Proof. From the value difference lemma (Dann et al., 2017, Lemma E.15), we get

K∑
k=1

|V πk(l, p)− V πk(l̃k, p̂k)|

≤
K∑

k=1

H∑
h=1

E[|lh(sh, ah)− l̃k,h(sh, ah)| | s1, p, πk]

+

K∑
k=1

H∑
h=1

E
[∑

s′

|ph(s′|sh, ah)− p̂k(s
′|sh, ah)|V πk

h+1(s
′; l̃k, p̂k) | s1, p, πk

]
.

We can bound the first of the two terms as follows.

K∑
k=1

H∑
h=1

E[|lh(sh, ah)− l̃k,h(sh, ah)| | s1, p, πk]

(b)

≲
K∑

k=1

H∑
h=1

E
[

1√
nk−1
h (sh, ah) ∨ 1

| s1, p, πk

]

=

K∑
k=1

H∑
h=1

E
[

1√
nk−1
h (skh, a

k
h) ∨ 1

| Fk−1

]
Lemma 8
≤ Õ

(√
SAH2K + SAH

)
,

where the second to last inequality holds since πk is played in episode k, and Lemma 8 applies due
to assertion (a). For the second term, we first note that |V πk

h+1(s
′; l̃k, p̂k)| ≲ H since |l̃k,h(s, a)| ≤
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lh(s, a) +
1√

nk−1
h (s,a)∨1

by (b). Hence

K∑
k=1

H∑
h=1

E
[∑

s′

|ph(s′|sh, ah)− p̂k(s
′|sh, ah)|V πk

h+1(s
′; l̃k, p̂k) | s1, p, πk

]
(c)

≲H

K∑
k=1

H∑
h=1

E
[

1√
nk−1
h (sh, ah) ∨ 1

(∑
s′

√
ph(s′|sh, ah)

)
+

S

nk−1
h (sh, ah) ∨ 1

| s1, p, πk

]
Jensen
≤ H

K∑
k=1

H∑
h=1

E
[

1√
nk−1
h (sh, ah) ∨ 1

√
N
√∑

s′

ph(s′|sh, ah) +
S

nk−1
h (sh, ah) ∨ 1

| s1, p, πk

]

=H

K∑
k=1

H∑
h=1

E
[ √

N√
nk−1
h (skh, a

k
h) ∨ 1

+
S

nk−1
h (skh, a

k
h) ∨ 1

| Fk−1

]
≲H

√
N ·

√
SAH2K +H

√
N · SAH +HS · SAH2

≲
√
NSAH4K + S2AH3,

where the second to last relation holds due to Lemma 8 and Lemma 9 (which in turn apply due to
assertion (a)), and the one before holds since πk is played in episode k.

Next, we prove Lemma 13, which is a variation of Lemma 10 and will allow us to establish the bound
on the pre-training duration in Lemma 1. For this, we first need to establish Lemmas 11 and 12,
which are a consequence of Lemmas 8 and 9, respectively.

Lemma 11. Let K ′ ∈ [K]. Assume that for all s, a, h, k ∈ [K] we have

nk−1
h (s, a) >

1

2

∑
j<k

q
πj

h (s, a; p)−H log

(
SAH

δ′

)
.

Let π be any fixed policy and suppose that in episode k ∈ [K], policy πk is played, with πk′ = π for
all k′ ∈ [K ′]. Then, for all k ≥ K ′, we have

H∑
h=1

E

 1√
nk−1
h (sh, ah) ∨ 1

| s1, π, p

 ≤ Õ
(√

SAH2(K ′)−1/2 + SAH(K ′)−1
)
.

Proof. Note that for any realization of all random variables up to and including episode K, we have
(for k ∈ {0, . . . ,K − 1})

nk+1
h (s, a) ≥ nk

h(s, a),

since the counters can only increase across episodes, and thus, for all k′ ≤ K ′ < k, we have
1√

nk−1
h (sh, ah) ∨ 1

≤ 1√
nk′−1
h (sh, ah) ∨ 1

.

For k ≥ K ′, we thus find
H∑

h=1

E
[

1√
nk−1
h (skh, a

k
h)

| s1, π, p
]
≤ 1

K ′

K′∑
k′=1

H∑
h=1

E
[

1√
nk′−1
h (sh, ah)

| s1, π, p
]

=
1

K ′

K′∑
k′=1

H∑
h=1

E
[

1√
nk′−1
h (sk

′
h , ak

′
h )

| Fk′−1

]

≤ 1

K ′ Õ(
√
SAH2K ′ + SAH),

where Fk′−1 is the σ-algebra induced by all random variables up to and including episode k′ − 1 and
where the first relation holds by monotonicity of the counters, the second relation holds since π is
played in the k′-th episode. The final relation holds by Lemma 8.
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Lemma 12. Let K ′ ∈ [K]. Assume that for all s, a, h, k ∈ [K] we have

nk−1
h (s, a) >

1

2

∑
j<k

q
πj

h (s, a; p)−H log

(
SAH

δ′

)
.

Let π be any fixed policy and suppose that in episode k ∈ [K], policy πk is played, with πk′ = π for
all k′ ∈ [K ′]. Then, for all k ≥ K ′, we have

H∑
h=1

E

[
1

nk−1
h (sh, ah) ∨ 1

| s1, π, p

]
≤ Õ

(
SAH2(K ′)−1

)
.

Proof. Note that for any realization of all random variables up to and including episode K, we have
(for k ∈ {0, . . . ,K − 1})

nk+1
h (s, a) ≥ nk

h(s, a),

since the counters can only increase across episodes, and thus, for all k′ ≤ K ′ < k, we have

1

nk−1
h (sh, ah) ∨ 1

≤ 1

nk′−1
h (sh, ah) ∨ 1

.

For k ≥ K ′, we thus find

H∑
h=1

E
[

1

nk−1
h (sh, ah)

| s1, π, p
]
≤ 1

K ′

K′∑
k′=1

H∑
h=1

E
[

1

nk′−1
h (sh, ah)

| s1, π, p
]

=
1

K ′

K′∑
k′=1

H∑
h=1

E
[

1

nk′−1
h (sk

′
h , ak

′
h )

| Fk′−1

]
≤ 1

K ′ Õ(SAH2),

where Fk′−1 is the σ-algebra induced by all random variables up to and including episode k′ − 1 and
where the first relation holds by monotonicity of the counters, the second relation holds since π is
played in the k′-th episode. The final relation holds by Lemma 9.

We are now ready to prove the needed variation of Lemma 10.

Lemma 13. (Last-iterate fixed policy errors) Consider an MDP with transition dynamics p and
arbitrary estimated transition dynamics p̂k (for k ∈ [K], each forming a probability measure).
Consider policy iterates (πk)k∈[K] and suppose πk is played in episode k ∈ [K] and used to update
the counters. Let lh(s, a), l̃k,h(s, a) be cost and corresponding optimistic cost with l = c or l = di as
discussed in Eq. (3). Consider K ′ ∈ [K] and a policy π. Suppose that for all k′ ∈ [K ′], πk′ = π. Let
V π
h (s; l, p), V π

h (s; l̃k, p̂k) be the values of π according to the true and estimated model, respectively.
Assume that for all s, a, h, k we have

nk−1
h (s, a) >

1

2

∑
j<k

q
πj

h (s, a; p)−H log

(
SAH

δ′

)
, (a)

|l̃k,h(s, a)− lh(s, a)| ≤ Õ

 1√
nk−1
h (s, a) ∨ 1

 , (b)

|p̂k,h(s′|s, a)− ph(s
′|s, a)| ≤ Õ

(√
ph(s′|s, a)Lp

δ

nk−1
h (s, a) ∨ 1

+
Lp
δ

nk−1
h (s, a) ∨ 1

)
. (c)

Then, for all k ≥ K ′, we have

|V π(l, p)− V π(l̃k, p̂k)| ≤ Õ
(√

NSAH4(K ′)−1/2 + S2AH3(K ′)−1
)
.
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In other words, if the agent plays π for the first K ′ episodes, then for all future episodes, the value
differences for π are upper bounded by the value on the RHS.

Proof. From the value difference lemma (Dann et al., 2017, Lemma E.15) we get

|V π(l, p)− V π(l̃k, p̂k)|

≤
H∑

h=1

E[|lh(sh, ah)− l̃h(sh, ah)| | s1, p, π]

+

H∑
h=1

E
[∑

s′

|ph(s′|sh, ah)− p̂k(s
′|sh, ah)|V π

h+1(s
′; l̃k, p̂k) | s1, p, π

]
.

We can bound the first of the two terms as follows.
H∑

h=1

E[|lh(sh, ah)− l̃h(sh, ah)| | s1, p, π]

(b)

≲
H∑

h=1

E
[

1√
nk−1
h (sh, ah) ∨ 1

| s1, p, π
]

Lemma 11
≤ Õ

(√
SAH2(K ′)−1/2 + SAH(K ′)−1

)
,

where Lemma 11 applies due to assertion (a). For the second term, we first note that
|V π

h+1(s
′; l̃k, p̂k)| ≲ H since |l̃k,h(s, a)| ≤ lh(s, a) +

1√
nk−1
h (s,a)∨1

by (b). Hence

H∑
h=1

E
[∑

s′

|ph(s|sh, ah)− p̂k(s|sh, ah)|V π
h+1(s

′; l̃k, p̂k) | s1, p, π
]

(c)

≲H

H∑
h=1

E
[

1√
nk−1
h (sh, ah) ∨ 1

(∑
s′

√
ph(s′|sh, ah)

)
+

S

nk−1
h (sh, ah) ∨ 1

| s1, p, π
]

Jensen
≤ H

H∑
h=1

E
[

1√
nk−1
h (sh, ah) ∨ 1

√
N
√∑

s′

ph(s′|sh, ah) +
S

nk−1
h (sh, ah) ∨ 1

| s1, p, π
]

≲H
√
N ·

√
SAH2(K ′)−1/2 +H

√
N · SAH(K ′)−1 +HS · SAH2(K ′)−1

≲
√
NSAH4(K ′)−1/2 + S2AH3(K ′)−1,

where the second to last relation holds due to Lemma 11 and Lemma 12 (which in turn apply due to
assertion (a)).

D Omitted Proofs for Section 3
D.1 Pre-Training Phase
We now establish which constant duration K ′ of playing π̄ is sufficient to guarantee the desired
strict feasibility of Eq. (6) (with the choice of K ′ favoring readability over tightness). Note that the
conclusion holds conditioned on the success event G.

Lemma 1. Suppose that Assumption 1 holds, i.e., the agent has access to a strictly feasible
π̄ and its slack γ > 0. Fix any ν ∈ (0, 1), and suppose the agent executes π̄ for K ′ =

Õ
(
max

{
S2AH3

(1−ν)γ ,
NSAH4

(1−ν)2γ2

})
episodes, where N := maxs,a,h |{s′ | ph(s′|s, a) > 0}| denotes

the maximum number of transitions. Then, if the agent updates the optimistic CMDP based on the
observations from those episodes (cf. Eq. (3)), with probability at least 1− δ the following condition
is satisfied for every k ∈ {K ′, . . . ,K}:

V π̄(d̃i,k, p̃k) ≤ αi − νγ (∀i ∈ [I]).
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Proof. Condition on the success event G, which by Lemma 2 happens with probability ≥ 1−δ. Then
by construction of G, the assumptions (a) and (b) in Lemma 13 are met for l = di for all constraints
i. By Lemma 14 also the assumption (c) in Lemma 13 is met with p̂k := p̃k from the k-th iteration of
OPTAUG-CMDP. Thus, the conclusion from Lemma 13 holds for π = π̄ and lh(s, a) = di,h(s, a)
(for all i ∈ [I]) and we have for all i ∈ [I] and k ≥ K ′

|V π(di, p)− V π(d̃i,k, p̃k)| ≤ b(K ′)−1/2 + a(K ′)−1,

where

b = Õ
(√

NSAH4
)
, a = Õ

(
S2AH3

)
.

Thus, if K ′ ≥ max
{

2S2AH3

(1−ν)γ , 4NSAH4

(1−ν)2γ2

}
, we have

|V π̄(di, p)− V π̄(d̃i,k, p̃k)| ≤ Õ((1− ν)γ).

By further correcting for the missing polylogarithmic terms, this shows that there exists K ′ =

Õ
(
max

{
S2AH3

(1−ν)γ ,
NSAH4

(1−ν)2γ2

})
such that for all i ∈ [I] and k ≥ K ′, we have

|V π̄(di, p)− V π̄(d̃i,k, p̃k)| ≤ (1− ν)γ.

At the same time, Assumption 1 guarantees

V π̄(di, p) ≤ αi − γ.

Hence

V π̄(d̃i,k, p̃k) =V π̄(d̃i,k, p̃k)− V π̄(di, p) + V π̄(di, p)

≤(1− ν)γ + αi − γ

=αi − νγ,

which proves the claim.

Remark 1. Notice that we chose K ′ such that both the terms b(K ′)−1/2 and a(K ′)−1 are less than
1/2, which is sufficient. For a tighter but less concise bound, we can alternatively solve the quadratic
equation

b(K ′)−1/2 + a(K ′)−1 ≤ (1− ν)γ (28)

for K ′ to obtain the smallest possible pre-training time, up to polylogarithmic factors. Furthermore,
since a and b are only specified in Õ-notation, we only have an asymptotic bound up to polylog-
arithmic factors on how large to choose K ′. An exact bound could be established by carrying
along all factors dropped in the Õ-notation, but for brevity, we only specify how large to choose K ′

asymptotically. In practice, one can take the bound above and choose K ′ slightly larger.

D.2 Iteration Complexity of the Inner Method
Recall Proposition 1:

Proposition 1. In episode k, fix any accuracy of ϵk > 0. There exists an algorithm for solving
Eq. (4) such that the objective at its output (πk, p̃k) is ϵk-close to the optimum of Eq. (4), by solving

O
(

ηkIS
2AH

ϵk

)
(extended) MDPs via DP.

In Corollary 1, we prove Proposition 1 by showing that the method proposed in Appendix B achieves
the desired iteration complexity for solving Eq. (4). As seen in Appendix B.1, every iteration of the
Frank-Wolfe scheme INNEROPT-FW (Appendix B.2) above can be performed efficiently via DP, i.e.,
in (low-degree) polynomial time in the parameters defining the CMDP. To analyze the number of
such Frank-Wolfe iterations needed to reach an ϵk-close solution, we recall the following result due
to Jaggi (2013).

Theorem 6. The iterates (zk)k≥0 of the Frank-Wolfe algorithm with an exact LMO applied to a
convex objective f : D → R (with closed, convex and bounded domain D ⊂ Rd) satisfy

f(zk)− f(z∗) ≤ 2Cf

k + 2
, (29)
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where z∗ is a minimizer of f over D and Cf is the curvature constant of f .
Moreover, if ∇f is L-Lipschitz continuous w.r.t. an arbitrary norm ∥ · ∥c on Rd, then

Cf ≤ diam∥·∥c
(D)2L. (30)

In our case, this yields the following bound on the iteration complexity of the inner optimization
procedure.

Corollary 1. After T = 2ηkIS
2AH

ϵk
Frank-Wolfe steps, INNEROPT-FW returns an ϵk-close solution

to the inner problem (Eq. (4)).

Proof. Consider the problem of minimizing f over Z, as defined in Appendix B.1. Let y, z ∈ Z.
With respect to ∥ · ∥c = ∥ · ∥∞ we have, using the expression of the gradients from Eq. (22),

∥∇f(y)−∇f(z)∥∞
=∥(∇f(y))(·, ·, 1, ·)− (∇f(z))(·, ·, 1, ·)∥∞
=∥D̃T

k [λk + ηk(D̃k

∑
s′′

y(s′′)− α)]+ − D̃T
k [λk + ηk(D̃k

∑
s′′

z(s′′)− α)]+∥∞

≤∥D̃T
k ∥∞ · ∥[λk + ηk(D̃k

∑
s′′

y(s′′)− α)]+ − [λk + ηk(D̃k

∑
s′′

z(s′′)− α)]+∥∞

and using[a]+ − [b]+ ≤ [a− b]+ ≤ |a− b|

≤∥D̃T
k ∥1 · ∥[λk + ηk(D̃k

∑
s′′

y(s′′)− α)]− [λk + ηk(D̃k

∑
s′′

z(s′′)− α)]∥∞

=∥D̃T
k ∥∞ · ηk∥D̃k

∑
s′′

(y(s′′)− z(s′′))∥∞

≤∥D̃T
k ∥∞ · ηk∥D̃k∥∞

∑
s′′

∥y(s′′)− z(s′′)∥∞

≤SAH · ηk · I · S∥y − z∥∞,

where the final bound holds since the entries of D̃k are in [0, 1]. Thus, ∇f(·) is (S2AH · ηk ·
I)-Lipschitz continuous and thus f is (S2AH · ηk · I)-smooth. Moreover, for all z ∈ Z we
have 0 ≤ zh(s, a, s

′) ≤ 1 in every component, so for y, z ∈ Z we have ∥z − y∥∞ ≤ 1. Thus
diam∥·∥∞(Z)2 ≤ 1. Plugging both into Theorem 6 yields the result.

It may be possible to improve this bound using a norm different from ∥ · ∥c = ∥ · ∥∞ for the analysis.

D.3 Main Result

Our main result shows that with probability 1− δ, OPTAUG-CMDP achieves a sublinear regret in
the number of episodes K and polylogarithmic in 1/δ.

Theorem 1. Suppose that Assumption 1 holds, let δ ∈ (0, 1) and ν > 0. Then there exist

K ′ = Õ
(
max

{
S2AH3

(1−ν)γ ,
NSAH4

(1−ν)2γ2

})
and ηk, ϵk such that with probability at least 1− δ, OPTAUG-

CMDP achieves a total regret of

R(K; c) = Õ
(√

NSAH4K + S2AH3 +K ′H
)
,

R(K; d) = Õ
(√

NSAH4K + S2AH3
)
.
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Proof. According to our regret decomposition (Observation 2), we have

R(K; c) ≤ K ′H+

K∑
k=K′+1

[V πk(c, p)−V πk(c̃k, p̃k)]+︸ ︷︷ ︸
Estimation Error

+

K∑
k=K′+1

[V πk(c̃k, p̃k)−V π∗
(c, p)]+︸ ︷︷ ︸

Optimization Error

,

R(K; d) ≤ max
i∈[I]

K∑
k=K′+1

[V πk(di, p)−V πk(d̃i,k, p̃k)]+︸ ︷︷ ︸
Estimation Error

+max
i∈[I]

K∑
k=K′+1

[V πk(d̃i,k, p̃k)−αi]+︸ ︷︷ ︸
Optimization Error

.

Suppose the success event G occurs, which happens with probability at least 1 − δ as shown in
Lemma 2. By Lemma 3, the estimation errors satisfy

K∑
k=K′+1

[V πk(c, p)− V πk(c̃k, p̃k)]+ ≤Õ
(√

NSAH4K + S2AH3
)
,

max
i∈[I]

K∑
k=K′+1

[
V πk(di, p)− V πk(d̃i,k, p̃k)

]
+
≤Õ

(√
NSAH4K + S2AH3

)
.

By Lemma 7, the optimization errors satisfy
K∑

k=K′+1

[V πk(c̃k, p̃k)− V π∗
(c, p)]+ ≤

K∑
k=K′+1

(
(O(σk) +

∑k
t=K′+1

√
2ηtϵt)

2

2ηk
+ ϵk

)
≤ O(

√
K),

max
i∈[I]

K∑
k=K′+1

[V πk(d̃i,k, p̃k)− αi]+ ≤
K∑

k=K′+1

O(σk) +
∑k

t=K′+1

√
2ηtϵk

ηk
≤ O(

√
K),

where σ = H
νγ and the term O(σk) can be replaced by (2 + 2(k −K ′))σ. As shown in Lemma 7,

we can choose step sizes ηK′+k = Θ(k2.5) and ϵK′+k = Θ(1/ηK′+k) such that both of the above
bounds are O(

√
K) up to constant factors. Summing up concludes the proof.

Remark 2. Note that while the bound for the estimation errors does not depend on the choices for
ηk and ϵk, the one for the optimization errors does. For any such choice, the general regret bound we
obtain reads

R(K; c) ≤ Õ
(√

NSAH4K + S2AH3 +K ′H
)

+

K∑
k=K′+1

(
(O(σk) +

∑k
t=K′+1

√
2ηtϵt)

2

2ηk
+ ϵk

)
, (31)

R(K; d) ≤ Õ
(√

NSAH4K + S2AH3
)
+

K∑
k=K′+1

O(σk) +
∑k

t=K′+1

√
2ηtϵk

ηk
,

where σ = H
νγ and the term O(σk) can be replaced by (2 + 2(k −K ′))σ.

We remark that there are multiple ways to choose ηk, ϵk in the bound above that yield different
regret guarantees and complexities of the inner algorithm INNEROPT-FW. One possible way is
to choose a decreasing approximation error ϵk in every episode and ηk large enough so that the
parameter-dependent terms above are of order O(

√
K). This yields vanishing average regret for

both the objective and the constraints. One such choice is11

ϵK′+k :=
1

2ηK′+k
(k ≥ 1),

ηK′+k := ((2 + 3k)σ)2.5 (k ≥ 1),

11Note that if γ is not known, having an estimate of σ = H
νγ

that is larger than the true value is clearly
sufficient.
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as we discuss in Lemma 7.

It is worth noting that when choosing ηk very large and ϵk very small, the bound we get on the
parameter-dependent terms in Eq. (31) gets better and even becomes constant when choosing ηk,
ϵk exponential in k −K ′. However, the inner problem (Eq. (4)) we solve in every episode becomes
computationally harder. This is due to the changing smoothness of the objective (with respect to the
occupancy measure). Indeed, Proposition 1 quantifies the resulting iteration complexity, formalizing
this tradeoff between statistical guarantees and computational efficiency. Thus, in practice, it is
advised to choose ηk as large (ϵk as small) as needed to ensure sublinear regret but as small as
possible to avoid a higher computational cost.

E Omitted Proofs for Section 4
E.1 Preliminaries
E.1.1 Preliminary Confidence Bounds
Fix an arbitrary number of episodes K and 0 < δ < 1, corresponding to a confidence of 1 − δ.
Moreover, let (πk)

K
k=1 be the policies according to which the optimistic estimates are updated

(Section 3).

Define the following confidence sets

Bp
k,h(s, a) :=

{
p̃h(·|s, a) ∈ ∆(S)S | ∀s′ ∈ S : |p̃h(s′|s, a)− p̄k−1

h (s′|s, a)| ≤ βp
k,h(s, a, s

′)
}
,

Bc
k,h(s, a) :=

[
c̄k−1
h (s, a)− βc

k,h(s, a), c̄
k−1
h (s, a) + βc

k,h(s, a)
]
,

Bd
i,k,h(s, a) :=

[
d̄k−1
i,h (s, a)− βd

i,k,h(s, a), d̄
k−1
i,h (s, a) + βd

i,k,h(s, a)
]
,

where (derived using Hoeffding for the costs and empirical Bernstein for the transitions)

βp
k,h(s, a, s

′) :=2

√
p̄k−1
h (s′|s, a)(1− p̄k−1

h (s′|s, a))Lp
δ

nk−1
h (s, a) ∨ 1

+
14
3 Lp

δ

nk−1
h (s, a) ∨ 1

,

βc
k,h(s, a) := βd

i,k,h(s, a) :=

√
Lδ

nk−1
h (s, a) ∨ 1

,

with

Lp
δ := log

(
6SAHK

δ

)
Lδ := log

(
6SAH(I + 1)K

δ

)
.

We want that, with probability at least 1− δ, the true MDP is contained within these bounds across
all k ∈ [K]. This will be needed for bounding the optimization error.

With the same thresholds βp
k,h, βc

k,h, βd
i,k,h as above we define the following failure events

F p
k :=

{
∃s, a, s′, h : |ph(s′|s, a)− p̄k−1

h (·|s, a)| > βp
k,h(s, a, s

′)
}
,

F c
k :=

{
∃s, a, h : |c̄k−1

h (s, a)− ch(s, a)| > βc
k,h(s, a)

}
,

F d
k :=

{
∃s, a, i, h : |d̄k−1

i,h (s, a)− di,h(s, a)| > βd
i,k,h(s, a)

}
,

FN
k :=

∃s, a, h : nk−1
h (s, a) ≤

∑
j<k

q
πj

h (s, a; p)−H log

(
SAH

δ′

) ,

where we set δ′ := δ/3. With this notation, set F p := ∪K
k=1F

p
k , F c := ∪K

k=1F
c
k , F d := ∪K

k=1F
d
k ,

FN := ∪K
k=1F

N
k and finally denote the event that none of the failure events ever occurs by

G :=
(
F p
⋃

F c
⋃

F d
⋃

FN
)
,

which we will refer to as the success event.

We immediately have the following by construction G and the optimistic estimates.
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Observation 1. Conditioned on the success event G, for every k ∈ [K] the CMDP with cost c̃k
and constraint costs (d̃i,k)i∈[I] is optimistic and all Bp

k(s, a) contain the true respective transition
probability distribution, i.e.,

c̃k ≤ c, d̃i,k ≤ di, and p ∈ Bp
k ,

where Bp
k := {p̃ | ∀s, a, h : p̃h(·|s, a) ∈ Bp

k,h(s, a)} is the set of plausible transition probabilities.

Concentration bounds on the individual random variables and a union bound over all indices now
allow us to establish the following result. In Appendix D.3, we show that conditioned on G, the
regrets are sublinear in K and polylogarithmic in 1/δ.

Lemma 2. Fix δ ∈ (0, 1) and define the optimistic model in Eq. (3) accordingly. Then, the success
event G occurs with probability at least 1− δ, i.e., P [G] ≥ 1− δ.

Proof. Efroni et al. (2020, Appendix A.1) give a proof of this. Note that the proof does not require
any specific properties of the used policy iterates (πk)k∈[K] but only uses that the collected costs and
transitions are i.i.d. across episodes.

Moreover, we have the following result, allowing us to bound the estimation error. The absolute
constants could be specified via a short calculation, but we omit this for brevity.

Lemma 14 (Lemma 8, Jin et al. (2019)). In the setup above, conditioned on G, there exist absolute
constants C1, C2 > 0 such that for all indices k, h, s, a, s′ we have

|ph(s′|s, a)− p̄k−1
h (s′|s, a)| ≤ C1

√
ph(s′|s, a)Lp

δ

nk−1
h (s, a) ∨ 1

+ C2
Lp
δ

nk−1
h (s, a) ∨ 1

,

with Lp
δ = log

(
6SAHK

δ

)
as before.

Proof. We refer to Jin et al. (2019, Lemma 8) for a proof.

E.1.2 Regret Decomposition
The simple observation that we can decompose the regrets can be seen as follows.

Observation 2 (Regret decomposition).

R(K; c) ≤ K ′H+

K∑
k=K′+1

[V πk(c, p)−V πk(c̃k, p̃k)]+︸ ︷︷ ︸
Estimation Error

+

K∑
k=K′+1

[V πk(c̃k, p̃k)−V π∗
(c, p)]+︸ ︷︷ ︸

Optimization Error

R(K; d) ≤ max
i∈[I]

K∑
k=K′+1

[V πk(di, p)−V πk(d̃i,k, p̃k)]+︸ ︷︷ ︸
Estimation Error

+max
i∈[I]

K∑
k=K′+1

[V πk(d̃i,k, p̃k)−αi]+︸ ︷︷ ︸
Optimization Error

Proof. We first split the regrets between the two phases of the algorithm.

R(K; c) =

K′∑
k=1

[V πk(c, p)− V π∗
(c, p)]+︸ ︷︷ ︸

Pre-Training, ≤K′H

+

K∑
k=K′+1

[V πk(c, p)− V π∗
(c, p)]+︸ ︷︷ ︸

Optimistic Exploration

R(K; d) ≤ max
i∈[I]

K′∑
k=1

[V πk(di, p)− αi]+︸ ︷︷ ︸
Pre-Training, =0

+max
i∈[I]

K∑
k=K′+1

[V πk(di, p)− αi]+︸ ︷︷ ︸
Optimistic Exploration

We can trivially bound the objective regret during the pre-training phase by K ′H (since the expected
costs are in [0, 1] and the time horizon is H , so the value functions are in [0, H]). Since π̄ is strictly
feasible, there is no constraint regret during pre-training.
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We now focus on the regrets incurred in the optimistic exploration phase. We split the sum and use
that [a+ b]+ ≤ [a]+ + [b]+. For the objective, regret we have

R(K; c) =K ′H +

K∑
k=K′+1

[V πk(c, p)− V π∗
(c, p)]+

=K ′H +

K∑
k=K′+1

[V πk(c, p)− V πk(c̃k, p̃k) + V πk(c̃k, p̃k)− V π∗
(c, p)]+

≤K ′H +

K∑
k=K′+1

[V πk(c, p)− V πk(c̃k, p̃k)]+ +

K∑
k=K′+1

[V πk(c̃k, p̃k)− V π∗
(c, p)]+

and similarly, for the constraint regret, we get

R(K; d) =0 +max
i∈[I]

(
K∑

k=K′+1

[V πk(di, p)− αi]+

)

=max
i∈[I]

K∑
k=K′+1

[
V πk(di, p)− αi − (V πk(d̃i,k, p̃k)− αi) + (V πk(d̃i,k, p̃k)− αi)

]
+

≤max
i∈[I]

(
K∑

k=K′+1

[
V πk(di, p)− V πk(d̃i,k, p̃k)

]
+
+

K∑
k=K′+1

[
V πk(d̃i,k, p̃k)− αi

]
+

)

≤max
i∈[I]

K∑
k=K′+1

[
V πk(di, p)− V πk(d̃i,k, p̃k)

]
+
+max

i∈[I]

K∑
k=K′+1

[
V πk(d̃i,k, p̃k)− αi

]
+
.

E.2 Omitted Proofs for Section 4.1
We leverage the on-policy error bound from Lemma 10 and the preliminaries from Appendix E.1.1 to
establish the desired bound on the estimation errors.

Lemma 3 (Estimation errors). Let (πk)
K
k=K′+1 be the sequence of policies obtained by OPTAUG-

CMDP. Then, conditioned on G, we can bound the estimation errors as follows:

K∑
k=K′+1

[V πk(c, p)− V πk(c̃k, p̃k)]+ ≤Õ
(√

NSAH4K + S2AH3
)
,

max
i∈[I]

K∑
k=K′+1

[V πk(di, p)− V πk(d̃i,k, p̃k)]+ ≤Õ
(√

NSAH4K + S2AH3
)
.

Proof. Condition on the success event G. Then by construction of G, the assumptions (a) and (b) in
Lemma 10 are met for l = c and l = di for all constraints i ∈ [I]. By Lemma 14, also assumption (c)
in Lemma 10 is met with p̂k := p̃k from the k-th iteration of OPTAUG-CMDP.

First, consider the terms [V πk(c, p)− V πk(c̃k, p̃k)]+. For the cost l = c, the values of the true and
the estimated MDPs are V πk(c, p) and V πk(c̃k, p̃k), respectively. Thus, invoking Lemma 10 we find

K∑
k=K′+1

[V πk(c, p)− V πk(c̃k, p̃k)]+ ≤
K∑

k=K′+1

|V πk(c, p)− V πk(c̃k, p̃k)|

≤
K∑

k=1

|V πk(c, p)− V πk(c̃k, p̃k)|

≤Õ
(√

NSAH4K + S2AH3
)
.
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Similarly, let i ∈ [I] and consider the terms [V πk(di, p)− V πk(d̃i,k, p̃k)]+. For the cost l = di, the
values of the true and the estimated MDPs are V πk(di, p) and V πk(d̃i,k, p̃k), respectively. Thus,
invoking Lemma 10 we find

K∑
k=K′+1

[V πk(di, p)− V πk(d̃i,k, p̃k)]+ ≤
K∑

k=1

|V πk(di, p)− V πk(d̃i,k, p̃k)|

≤Õ
(√

NSAH4K + S2AH3
)
.

E.3 Omitted Proofs for Section 4.2
For notational convenience, we write D = (di)i∈[I] and D̃k = (d̃i,k)i∈[I] throughout this section.

E.3.1 Preliminary Bounds
Recall that in OPTAUG-CMDP, we find an ϵk-close solution to the inner problem Eq. (4) in every
episode k ∈ {K ′ + 1, . . . ,K}.

Lemma 4. Conditioned on G, for each k ∈ {K ′ + 1, . . . ,K}, in OPTAUG-CMDP we have

V πk(c̃k, p̃k)− V π∗
(c, p) ≤ ϵk +

∥λk∥2 − ∥λk+1∥2

2ηk
,

V πk(d̃i,k, p̃k)− αi ≤
λk+1(i)− λk(i)

ηk
(∀i ∈ [I]).

Proof. We first bound the error for the objective cost. Let k ∈ {K ′ + 1, . . . ,K}. Conditioned on the
success event, we have (componentwise) c ≥ c̃k, D ≥ D̃k and p ∈ Bp

k (Observation 1), and thus

V π∗
(c, p)

=

(
V π∗

(c, p) +
1

2ηk
∥[λk + ηk(V

π∗
(D, p)− α)]+∥2

)
− 1

2ηk
∥[λk + ηk(V

π∗
(D, p)− α)]+∥2

≥
(
V π∗

(c̃k, p) +
1

2ηk
∥[λk + ηk(V

π∗
(D̃k, p)− α)]+∥2

)
− 1

2ηk
∥[λk + ηk(V

π∗
(D, p)− α)]+∥2

≥ min
π∈Π
p′∈Bp

k

(
V π(c̃k, p

′) +
1

2ηk
∥[λk + ηk(V

π(D̃k, p
′)− α)]+∥2

)

− 1

2ηk
∥[λk + ηk(V

π∗
(D, p)− α)]+∥2

≥
(
V πk(c̃k, p̃k) +

1

2ηk
∥[λk + ηk(V

πk(D̃k, p̃k)− α)]+∥2 − ϵk

)
− 1

2ηk
∥[λk + ηk(V

π∗
(D, p)− α)]+∥2

=V πk(c̃k, p̃k)− ϵk +
1

2ηk
∥[λk + ηk(V

πk(D̃k, p̃k)− α)]+∥2

− 1

2ηk
∥[λk + ηk(V

π∗
(D, p)− α)]+∥2,

where the first inequality is due to optimism and monotonicity of ∥[·]+∥2, the second due to p ∈
Bp

k , and the third due to the ϵk-closeness of πk, p̃k. Now since π∗ is primal-feasible we have
V π∗

(D, p)− α ≤ 0 and thus ∥[λk + ηk(V
π∗
(D, p)− α)]+∥2 ≤ ∥λk∥2 by monotonicity of ∥[·]+∥2.
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Plugging in the update for λk+1 thus shows

1

2ηk
∥[λk + ηk(V

πk(D̃k, p̃k)− α)]+∥2 −
1

2ηk
∥[λk + ηk(V

π∗
(D, p)− α)]+∥2

≥ 1

2ηk
∥[λk + ηk(V

πk(D̃k, p̃k)− α)]+∥2 −
1

2ηk
∥λk∥2

=
1

2ηk
∥λk+1∥2 −

1

2ηk
∥λk∥2,

concluding the proof after plugging this into the previous inequality and rearranging.

We now proceed by proving the bound on the constraint cost. Let k ∈ {K ′ + 1, . . . ,K}. Let i ∈ [I]

and recall that λk+1 = [λk + ηk(V
πk(D̃k, p̃k) − α)]+. If λk+1(i) > 0, then we have λk+1(i) −

λk(i) = ηk(V
πk(d̃i,k, p̃k) − αi) with equality. On the other hand, if λk+1(i) = 0, then λk(i) +

ηk(V
πk(d̃i,k, p̃k) − αi) ≤ 0 and thus λk+1(i) − λk(i) = −λk(i) ≥ (λk(i) + ηk(V

πk(d̃i,k, p̃k) −
αi))−λk(i) = ηk(V

πk(d̃i,k, p̃k)−αi). Thus in both cases λk+1(i)−λk(i) ≥ ηk(V
πk(d̃i,k, p̃k)−αi),

which proves the claim.

E.3.2 Bounding the Dual Iterates
In order to prove Lemma 19, which implies Lemma 5, we first establish (Lemmas 15 to 17), following
the analysis of Xu (2021).

Lemma 15. Let k ∈ {K ′ + 1, . . . ,K}. In the k-th iteration of OPTAUG-CMDP we have, for all
λ ∈ RI

≥0,

1

2ηk

(
∥λk+1 − λ∥2 − ∥λk − λ∥2 + ∥λk+1 − λk∥2

)
=

I∑
i=1

(λk+1(i)− λ(i))max{−λk(i)

ηk
, (V πk(D̃k, p̃k)− α)i}.

Proof. Using 2uT v = ∥u∥2 + ∥v∥2 − ∥u − v∥2 with u = λk+1 − λk, v = λk+1 − λ we find that
the LHS in the Lemma reads

1

2ηk

(
∥λk+1 − λ∥2 − ∥λk − λ∥2 + ∥λk+1 − λk∥2

)
=

1

2ηk
2(λk+1 − λ)T (λk+1 − λk).

The update rule of for λk+1 can equivalently be written as

λk+1(i) = λk(i) + ηk max{−λk(i)

ηk
, (V πk(D̃k, p̃k)− α)i},

for all i ∈ [I], from which we obtain λk+1(i) − λk(i) = ηk max{−λk(i)
ηk

, (V πk(D̃k, p̃k) − α)i}.
Plugging this into the equation above proves the Lemma.

Lemma 16. Let k ∈ {K ′ + 1, . . . ,K}. In the k-th iteration of OPTAUG-CMDP we have for, any
λ ∈ RI

≥0,

I∑
i=1

(λk+1(i)− λ(i))max{−λk(i)

ηk
, (V πk(D̃k, p̃k)− α)i}

≤
I∑

i=1

(λk+1(i)− λ(i))(V πk(D̃k, p̃k)− α)i.

Proof. Fix k and set I+ := {i ∈ [I] | λk(i) + ηk(V
πk(D̃k, p̃k)− α)i > 0} = {i ∈ [I] | −λk(i)

ηk
<

(V πk(D̃k, p̃k)−α)i} and I− := [I] \ I+. Then subtracting the RHS from the LHS in the Lemma we
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get
I∑

i=1

(λk+1(i)− λ(i))max{−λk(i)

ηk
, (V πk(D̃k, p̃k)− α)i}

−
I∑

i=1

(λk+1(i)− λ(i))(V πk(D̃k, p̃k)− α)i

=
∑
i∈I+

(λk+1(i)− λ(i))((V πk(D̃k, p̃k)− α)i − (V πk(D̃k, p̃k)− α)i)

+
∑
i∈I−

λ(i)((V πk(D̃k, p̃k)− α)i +
λk(i)

ηk
)

=
∑
i∈I−

λ(i)((V πk(D̃k, p̃k)− α)i +
λk(i)

ηk
),

and using that λ ≥ 0 as well as (V πk(D̃k, p̃k)− α)i +
λk(i)
ηk

≤ 0 for i ∈ I− shows that this is ≤ 0,
which proves the claim.

Combining the previous two lemmas, we find the analogous result of the one-step progress inequality
of the standard inexact augmented Lagrangian method analysis:

Lemma 17 (One-step progress of iALM). Let k ∈ {K ′ + 1, . . . ,K}. In step k of OPTAUG-CMDP,
for all π ∈ Π and all λ ≥ 0 we have

V πk(c̃k, p̃k) + λT (V πk(D̃k, p̃k)− α) +
1

2ηk
∥λk+1 − λ∥2

≤ L̃k(π, λk) +
1

2ηk
∥λk − λ∥2 + ϵk,

where for notational convenience

L̃k(π, λ) := V π(c̃k, p̃k) +
1

2ηk
∥[λ+ ηk(V

π(D̃k, p̃k)− α)]+∥2 −
1

2ηk
∥λ∥2.

Proof. By ϵk-closeness, for all π ∈ Π we have

V πk(c̃k, p̃k) +
1

2ηk
∥λk+1∥ ≤V π(c̃k, p̃k) +

1

2ηk
∥
[
λk + ηk(V

π(D̃k, p̃k)− α)]+

∥∥∥2 + ϵk

=L̃k(π, λk) +
1

2ηk
∥λk∥2 + ϵk. (32)

In addition, again by distinguishing between indices in I+ and I− (see proof of Lemma 16), we see
1

2ηk
∥[λk + ηk(V

πk(D̃k, p̃k)− α)]+∥2 −
1

2ηk
∥λk∥2

−
∑
i∈[I]

[λk(i) + ηk(V
πk(D̃k, p̃k)− α)i]+(V

πk(D̃k, p̃k)− α)i

=
1

2ηk

∑
i∈I+

(
(λk(i) + ηk(V

πk(D̃k, p̃k)− α)i)
2 − λk(i)

2

− 2(λk(i) + ηk(V
πk(D̃k, p̃k)− α)i)ηk(V

πk(D̃k, p̃k)− α)i

)
− 1

2ηk

∑
i∈I−

λk(i)
2

=
1

2ηk

∑
i∈I+

−(ηk(V
πk(D̃k, p̃k)− α)i)

2 − 1

2ηk

∑
i∈I−

λk(i)
2

=
1

2ηk

∑
i∈I+

−(λk+1(i)− λk(i))
2 − 1

2ηk

∑
i∈I−

(λk+1(i)− λk(i))
2

=− 1

2ηk
∥λk+1 − λk∥2,

34



and with Eq. (32) this shows

V πk(c̃k, p̃k) +
∑
i∈[I]

[λk(i) + ηk(V
πk(D̃k, p̃k)− α)i]+(V

πk(D̃k, p̃k)− α)i

− 1

2ηk
∥λk+1 − λk∥2

=V πk(c̃k, p̃k) +
1

2ηk
∥λk+1∥2 −

1

2ηk
∥λk∥2

Eq. (32)
≤ L̃k(π, λk) + ϵk. (33)

Now combining Lemma 15 and Lemma 16, we also have

∥λk+1 − λ∥2 − ∥λk − λ∥2 + ∥λk+1 − λk∥2

2ηk

≤
∑
i∈[I]

([λk(i) + ηk(V
πk(D̃k, p̃k)− α)i]+ − λ(i))(V πk(D̃k, p̃k)− α)i.

Hence

V πk(c̃k, p̃k) +
1

2ηk
∥λk+1 − λ∥2 − 1

2ηk
∥λk − λ∥2

≤V πk(c̃k, p̃k)

+
∑
i∈[I]

([λk(i) + ηk(V
πk(D̃k, p̃k)− α)i]+ − λ(i))(V πk(D̃k, p̃k)− α)i

− 1

2ηk
∥λk+1 − λk∥2

Eq. (33)
≤ −

∑
i∈[I]

λ(i)(V πk(D̃k, p̃k)− α)i + L̃k(π, λk) + ϵk,

and rearranging this yields the desired inequality.

Before proving Lemma 5, we must finally establish Lemma 18. This result is based on standard
properties from constrained convex optimization (Appendix A.4) and the LP formulation of CMDPs
(Appendix A.3). Recall that we have V π(c̃k, p̃k) = c̃Tk q

π(p̃k) and V π(D̃k, p̃k) = D̃kq
π(p̃k), where

qπ(p̃k) ∈ RSAH , c̃k ∈ RSAH , d̃i,k ∈ RSAH , and D̃k ∈ RI×SAH are defined as in Appendix A.3.
Thus, when switching to occupancy measures, the optimistic problem (Eq. (6)) equivalently reads

min
qπ∈Q(p̃k)

c̃Tk q
π s.t. D̃kq

π − α ≤ 0, (34)

where Q(p̃k) ⊂ RSAH is defined as in Appendix A.3. This is a convex optimization problem over
the set of occupancy measures Q(p̃k).

Formally, we make the following assumption. By Lemma 1, the assumption will be guaranteed to
hold with (with π0 = π̄ and σ = H

νγ ), conditioned on G.

Assumption 3 (Slater points). There exists π0 ∈ Π such that for all k ∈ {K ′, . . . ,K} and all i ∈ [I]

we have V π0

(d̃i,k, p̃k) < αi. In particular, Eq. (6) is feasible. Let π∗
k be an optimal solution for

Eq. (6) and suppose there is a fixed constant σ > 0 such that, for all k ∈ {K ′, . . . ,K},

V π0

(c̃k, p̃k)− V π∗
k(c̃k, p̃k)

mini∈[I](αi − V π0(d̃i,k, p̃k))
≤ σ.

Remark 3. Note that, under Assumption 3, we can view Eq. (6) as the convex optimization problem
in Eq. (34) over Q(p̃k) that satisfies all parts of Assumption 2 from Appendix A.4. Indeed,

(a) X := Q(p̃k) is a polytope and thus convex
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(b) the objective f(·) := c̃Tk (·) is affine and thus convex

(c) the constraints gi(·) := d̃Ti,k(·)− αi are affine and thus convex

(d) by Assumption 3, Eq. (34) is feasible, and thus its minimum is attained (since the domain is
compact and the objective continuous)

(e) a Slater point exists by Assumption 3, namely qπ
0

(p̃k)

(f) all dual problems have an optimal solution since the domain X is compact and the objective
f(·) + λT g(·) is continuous,

where Q(p̃k) ⊂ RSAH , c̃k ∈ RSAH and d̃i,k ∈ RSAH are defined as in Appendix A.3, and the setup
is in line with the general convex optimization setup described in Appendix A.4.

Lemma 18. If Eq. (34) is stricly feasible, then there exists a point (π∗
k, λ

∗
k) with qπ

∗
k = qπ

∗
k(p̃k)

optimal for Eq. (34) and λ∗
k optimal for its dual problem. For any such pair and any π ∈ Π we have

V π(c̃k, p̃k)− V π∗
k(c̃k, p̃k) + (λ∗

k)
T (V π(D̃k, p̃k)− α) ≥ 0.

Proof. By Remark 3, we are in the setup of Eq. (14) under Assumption 2. Thus, by applying
Theorem 4, in the notation of Appendix A.3 we immediately get

c̃Tk q
π(p̃k)− c̃Tk q

π∗
k(p̃k) + (λ∗

k)
T (D̃kq

π(p̃k)− α) ≥ 0,

which proves the claim by plugging in the value functions.

The following lemma allows us to deduce Lemma 5.

Lemma 19. Let k ∈ {K ′ + 1, . . . ,K} and suppose Eq. (6) is strictly feasible. Let (π∗
k, λ

∗
k) be a

pair of primal-optimal and dual-optimal solutions for Eq. (6) (see Lemma 18). Then the iterates of
OPTAUG-CMDP satisfy

∥λk+1 − λ∗
k∥2 ≤∥λk − λ∗

k∥2 + 2ηkϵk.

Proof. Fix an arbitrary point (π∗
k, λ

∗
k) as in Lemma 18. Then Lemma 18 with π = πk (note that π

need not satisfy the constraints) we have

0 ≤V πk(c̃k, p̃k)− V π∗
k(c̃k, p̃k) + (λ∗

k)
T (V πk(D̃k, p̃k)− α),

and by feasibility of π∗
k we have L̃k(π

∗
k, λk) ≤ V π∗

k(c̃k, p̃k), with L̃k(π, λ) as defined in Lemma 17.
Thus, the above becomes

0 ≤V πk(c̃k, p̃k)− L̃k(π
∗
k, λk) + (λ∗

k)
T (V πk(D̃k, p̃k)− α). (35)

Moreover, from Lemma 17 we know that

2ηk(V
πk(c̃k, p̃k) + λT (V πk(D̃k, p̃k)− α)) + ∥λk+1 − λ∥2

≤ 2ηkL̃k(π, λk) + ∥λk − λ∥2 + 2ηkϵk,

and we can choose (π, λ) = (π∗
k, λ

∗
k) in this inequality to get

2ηk(V
πk(c̃k, p̃k) + (λ∗

k)
T (V πk(D̃k, p̃k)− α)) + ∥λk+1 − λ∗

k∥2

≤ 2ηkL̃k(π
∗
k, λk) + ∥λk − λ∗

k∥2 + 2ηkϵk.

Adding 2ηk times Eq. (35) to this and cancelling terms yields

∥λk+1 − λ∗
k∥2 ≤∥λk − λ∗

k∥2 + 2ηkϵk.

From Lemma 19, we readily obtain Lemma 5.
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Lemma 5. Let k ∈ {K ′ + 1, . . . ,K} and suppose Eq. (6) is strictly feasible for every k′ ∈
{K ′, . . . ,K}. Let (π∗

k′ , λ∗
k′) be pairs of primal-optimal and dual-optimal solutions for Eq. (6). Then

the iterates of OPTAUG-CMDP satisfy

∥λk+1∥ ≤ 2

k∑
t=K′

∥λ∗
t ∥+

k∑
t=K′+1

√
2ηtϵt.

Proof. Taking square root and using
√
a+ b ≤

√
a +

√
b in Lemma 19 yields ∥λk+1 − λ∗

k∥ ≤
∥λk − λ∗

k∥+
√
2ηkϵk. By triangle inequality we get

∥λk+1 − λ∗
k∥ ≤∥λk − λ∗

k∥+
√
2ηkϵk ≤ ∥λk − λ∗

k−1∥+ ∥λ∗
k−1 − λ∗

k∥+
√
2ηkϵk,

and thus by induction

∥λk+1 − λ∗
k∥ ≤∥λK′+1 − λ∗

K′∥+
k∑

t=K′+1

∥λ∗
t−1 − λ∗

t ∥+
k∑

t=K′+1

√
2ηtϵt

≤∥λK′+1∥+ ∥λ∗
K′∥+

k∑
t=K′+1

(∥λ∗
t−1∥+ ∥λ∗

t ∥) +
k∑

t=K′+1

√
2ηtϵt

=∥λ∗
k∥+ 2

k−1∑
t=K′

∥λ∗
t ∥+

k∑
t=K′+1

√
2ηtϵt,

again using the triangle inequality and that λK′+1 = 0. The claim now follows by invoking the
inverse triangle inequality on the LHS and rearranging.

E.3.3 Bounding the Dual Maximizers
We can now deduce Lemma 6 from the preliminaries shown in Appendix A.4 as follows. See
Lemma 18 from the previous section for a formal introduction of the primal-dual pairs (π∗

k, λ
∗
k).

Lemma 6. Suppose Assumption 1 holds. Let ν ∈ (0, 1) and choose K ′ as in Lemma 1. Let
k ∈ {K ′, . . . ,K}, and let (π∗

k, λ
∗
k) be a pair of primal-optimal and dual-optimal solutions for

Eq. (6). Then, conditioned on G, we have

∥λ∗
k∥ ≤ ∥λ∗

k∥1 ≤ H

νγ
.

Proof. Conditioned on G, the conclusion from Lemma 1 holds. That is, for every k ∈ {K ′, . . . ,K}
and every i ∈ [I] we have

V π̄(d̃i,k, p̃k) ≤ αi − νγ,

or equivalently, mini∈[I](αi − V π̄(d̃i,k, p̃k)) ≥ νγ. Moreover, since the expected costs are in [0, 1]

and the time horizon is H , the value functions are in [0, H], so we have V π̄(c̃k, p̃k)− V π∗
k(c̃k, p̃k) ≤

H . Hence Assumption 3 holds, with π0 = π̄ and σ = H
νγ .

As discussed in Remark 3, under Assumption 3, we can apply the general bound on dual maximizers
from Theorem 5. For this, we write Eq. (6) as a convex optimization problem in the occupancy
measure (see Eq. (34)), with V π(c̃k, p̃k) = c̃Tk q

π(p̃k) and V π(D̃k, p̃k) = D̃kq
π(p̃k). Then, set

X = Q(p̃k), x̄ = qπ̄(p̃k), f(·) = c̃Tk (·) and gi(·) = d̃Ti,k(·)− αi as in Remark 3. Plugging this into
Theorem 5 indeed yields the second of the claimed inequalities since we have shown that Assumption
3 holds with π0 = π̄, σ = H

νγ . The first inequality holds because λ∗
k only has non-negative

entries.
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E.3.4 Optimization Error Bound
We are now ready to prove the desired bound on the optimization errors.

Lemma 7 (Optimization errors). Suppose Assumption 1 holds. Let ν ∈ (0, 1) and choose K ′

as in Lemma 1. Suppose that the event G occurs. When using step sizes ηK′+k = Θ(k2.5) and
ϵK′+k = Θ(1/ηK′+k), we have

K∑
k=K′+1

[V πk(c̃k, p̃k)− V π∗
(c, p)]+ ≤

K∑
k=K′+1

(
(O(σk) +

∑k
t=K′+1

√
2ηtϵt)

2

2ηk
+ ϵk

)
≤ O(

√
K),

max
i∈[I]

K∑
k=K′+1

[V πk(d̃i,k, p̃k)− αi]+ ≤
K∑

k=K′+1

O(σk) +
∑k

t=K′+1

√
2ηtϵk

ηk
≤ O(

√
K),

where σ = H
νγ and in fact O(σk) can be replaced by (2 + 2(k −K ′))σ.

Proof. Recall that conditioned on G, Lemma 4 shows (k ∈ {K ′ + 1, . . . ,K})

[V πk(c̃k, p̃k)− V π∗
(c, p)]+ ≤ϵk +

∥λk∥2

2ηk
, (36)

[V πk(d̃i,k, p̃k)− αi]+ ≤∥λk+1∥
ηk

, (37)

when dropping the negative terms in Lemma 4. Moreover, from Lemma 5 and Lemma 6 we get

∥λk+1∥ ≤ 2

k∑
t=K′

∥λ∗
t ∥+

k∑
t=K′+1

√
2ηtϵt

≤ 2

k∑
t=K′

σ +

k∑
t=K′+1

√
2ηtϵt

=(2 + 2(k −K ′))σ +

k∑
t=K′+1

√
2ηtϵt, (38)

where σ = H
νγ . Note that in the bound from Eq. (36), for k = K ′ + 1 we have ∥λK′+1∥2 = 0 ≤

((2 + 2 · 1)σ +
√
2ηK′+1ϵK′+1)

2 since λK′+1 = 0. And for k ≥ K ′ + 2, by Eq. (38) we have
∥λk∥2 ≤ ((2+2((k−1)−K ′))σ+

∑k−1
t=K′+1

√
2ηtϵt)

2 ≤ ((2+2(k−K ′))σ+
∑k

t=K′+1

√
2ηtϵt)

2.
Hence, the parameter-dependent bound on the objective errors follows by plugging this into Eq. (36)
and summing up. For the constraint errors, we can directly plug in the bound from Eq. (38) into
Eq. (37), thus obtaining the second parameter-dependent bound.

From this, we now show how to obtain bounds of order O(
√
K). Note that we can always choose

ϵk := 1
2ηk

so that
∑k

t=K′+1

√
2ηtϵt = k −K ′ ≤ σ(k −K ′), since σ = H

νγ > 1. If we do so, then
we can loosely bound the term in Eq. (38) by

(2 + 2(k −K ′))σ +

k∑
t=K′+1

√
2ηtϵt ≤ (2 + 3(k −K ′))σ.

As seen above, with this, Eq. (36) and Eq. (37) become

[V πk(c̃k, p̃k)− V π∗
(c, p)]+ ≤ ϵk +

((2 + 3(k −K ′))σ)2

2ηk
, (39)

[V πk(d̃i,k, p̃k)− αi]+ ≤ (2 + 3(k −K ′))σ

ηk
. (40)

We can now choose12

ηK′+k := ((2 + 3k)σ)2.5 (k > 0)

12Note that if γ is not known, having an estimate of σ = H
νγ

that is larger than the true value is clearly
sufficient.
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and sum each of the two errors above to bound the regret due to optimization. For the objective cost,
we get (recall that we had set ϵk = 1/(2ηk))

K∑
k=K′+1

[V πk(c̃k, p̃k)− V π∗
(c, p)]+

Eq. (39)
≤

K∑
k=K′+1

ϵk +
1

2

K∑
k=K′+1

((2 + 3(k −K ′))σ)2

((2 + 3(k −K ′))σ)2.5

≤ 1

2

K∑
k=1

1

((2 + 3k)σ)2.5
+

1

2

K∑
k=1

1√
(2 + 3k)σ

= O(K1/2),

up to absolute constants, where the last step follows by considering the dominating series∑
k≥1 1/k

2 = π2/6 and using
∑K

k=1 1/
√
k = Θ(

√
K), as well as σ > 1. Similarly, for the

constraint cost, we get

K∑
k=K′+1

[V πk(d̃i,k, p̃k)− αi]+ ≤
K∑

k=K′+1

((2 + 3(k −K ′))σ)

((2 + 3k)σ)2.5

≤
K∑

k=1

1

((2 + 3k)σ)1.5

=O(K1/2),

up to absolute constants.

We remark that the choices for ηk and ϵk are not necessarily optimal, and there is a trade-off between
the regret due to the optimization error and the iteration complexity of the inner loop, as we discuss
in Remark 2.
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