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Abstract

Participating in efforts to endow generative AI with the 3D physical world percep-
tion, we propose I2-NeRF, a novel neural radiance field framework that enhances
isometric and isotropic metric perception under media degradation. While existing
NeRF models predominantly rely on object-centric sampling, I2-NeRF introduces
a reverse-stratified upsampling strategy to achieve near-uniform sampling across
3D space, thereby preserving isometry. We further present a general radiative
formulation for media degradation that unifies emission, absorption, and scattering
into a particle model governed by the Beer–Lambert attenuation law. By com-
posing the direct and media-induced in-scatter radiance, this formulation extends
naturally to complex media environments such as underwater, haze, and even
low-light scenes. By treating light propagation uniformly in both vertical and
horizontal directions, I2-NeRF enables isotropic metric perception and can even es-
timate medium properties such as water depth. Experiments on real-world datasets
demonstrate that our method significantly improves both reconstruction fidelity and
physical plausibility compared to existing approaches. The source code is available
at https://github.com/ShuhongLL/I2-NeRF.

1 Introduction

Recent breakthroughs in generative models [20, 12, 59] have sparked growing belief that Artificial
General Intelligence (AGI) may be within reach. However, these models primarily operate on virtual
data and often lack a grounded understanding of space, time, and causality [24, 1, 28, 50], limiting
their applicability to real-world tasks [62]. To bridge this gap, World Models [30, 29, 65, 31] have
been introduced in navigation [5], multi-task control [32], long-horizon planning [73, 47], and robot
embodiment [78]. Incorporating physical constraints has also been shown to enhance continuous-time
prediction [37], enable physically-consistent generation [9, 53], and facilitate the development of
foundation models for simulation, education, entertainment, and embodied AI [19].

In this work, we focus on integrating two fundamental physical principles—isometry and
isotropy—into Neural Radiance Fields (NeRF), particularly for modeling volumetric media outside
the object. Classical NeRF [56] and its variants [6, 8] assume a clear-air medium, where no radiance is
sampled or accumulated between the camera and the object surface. While this assumption simplifies
computation, it discards nearly 93.36%1 of the 3D volume, thereby failing to capture the full metric
structure of the space. Recent efforts [16, 81] relax this assumption by introducing virtual attenuation
in the surrounding air to simulate illumination effects, enabling robustness under low-light and
overexposed conditions. In parallel, [45, 63] address non-air media by incorporating absorption and

†Corresponding author.
1Average space occupancy ratio across eight synthetic indoor scenes from the Replica dataset [67]. The ratio

is computed as ground-truth meshes divided by the total grid size.
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Figure 1: The proposed general radiative formulation accommodates diverse media conditions,
including underwater, hazy, and low-light environments. The scene shown here was captured in the
Pacific Ocean near Okinawa. As a result of isometric and isotropic metric perception, the estimated
depth closely matches the actual depth of the scene.

scattering based on the Beer–Lambert Law and Henyey–Greenstein phase functions. However, they
do not explicitly disentangle object geometry from volumetric media, limiting interpretability and
physical fidelity.

Existing NeRF-based methods predominantly rely on object-centric sampling, which places most
sampling points near high-density object surfaces. As shown in the bottom row of Figure 1, SeaThru-
NeRF [45] concentrates samples around rock surfaces while leaving large portions of the surrounding
medium undersampled. This imbalance limits the representation of the full 3D volume and compro-
mises spatial consistency. To address this, we propose a reverse-stratified upsampling strategy that
explicitly allocates samples within the medium. Our method adopts a two-phase process: we first
perform standard sampling in high-density regions, such as the rocks illustrated in orange. We then
compute a reverse weight of the object density to guide stratified sampling in low-density regions,
placing additional points in the semi-transparent medium, shown as blue points. This enforces the
isometric property of the radiance field by ensuring that spatial sampling reflects the actual spatial
extent of the scene geometry. By treating the medium as an equal component of the radiance field, our
approach enables a more faithful mapping between the physical real-world and the radiance space.

Building on the isometry-preserving particle sampling, we further introduce a general radiative
formulation. This formulation models the observation I as the composition of attenuated direct
radiance J and backscattered ambient radiance B, as illustrated at the top of Figure 1. It unifies
emission, absorption, and scattering in a direction-independent manner and generalizes naturally to a
variety of degradation conditions. In underwater scenes, the coefficients σattn

λ and σscat
λ governing

direct and backscattered radiance differ and exhibit wavelength dependence reflecting the spectral
sensitivity of the camera. When absorption and scattering share a common coefficient σ, the
formulation reduces to classical atmospheric scattering models [60]. Remarkably, this formulation
can even explain low-light conditions by introducing a virtual absorption medium, where darkness
emerges from radiance attenuation along the viewing direction.

Moreover, existing scattering-aware NeRFs [45, 63, 14, 83] perform radiative modeling only along
the horizontal line of sight (LoS), neglecting downwelling attenuation from ambient illumination.
This effect is particularly important in media, where the radiance at each point physically depends on
its vertical depth relative to the medium surface. We address this by explicitly modeling downwelling
attenuation at vertical depth zΦ for each ray. This allows the Beer–Lambert Law to apply uniformly
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in both horizontal and vertical directions, forming an isotropic radiative model. As a result, our
method enables metric perception across the full 3D space. For instance, with a known scale, our
model estimates the water depth in Figure 1 as 7.2 meters, closely matching the real depth, 7.5 meters,
shown on the diving watch.

With the general radiative formulation established, we apply our model to various media-degraded
applications, including low-light, hazy, and underwater scenes. On the low-light benchmark [16],
our method achieves state-of-the-art (SOTA) performance, outperforming Gaussian Splatting–based
approaches [17, 84] by approximately 2 dB in PSNR. For haze and underwater datasets [45], we
deliver competitive results that closely match current SOTA methods. These improvements stem
directly from the integration of isometry and isotropy as core physical principles within the radiance
field. Unlike previous methods that rely on heuristic tuning or pixel-wise manipulation, our model
ensures high-fidelity reconstruction while preserving physical plausibility.

Overall, we make the following contributions:

• We propose a general radiative formulation that unifies the modeling of underwater, hazy,
and low-light environments through an isotropic modeling.

• We introduce a novel reverse-stratified upsampling strategy that enables metric-preserving
sampling in NeRF space. Combined with absorption modeling, our method extends spatial
representation beyond the one-dimensional line of sight to recover real-world scene structure.

• Experiments on real-world datasets demonstrate that I2-NeRF substantially improves both
reconstruction fidelity and physical plausibility compared to existing approaches.

2 Related Works

Neural Radiance Field Neural Radiance Fields (NeRF) [56] and 3D Gaussian Splatting (3DGS)
[40] have achieved remarkable performance in novel-view synthesis (NVS). Building on this, physi-
cally grounded formulations have been introduced to improve fidelity and robustness under real-world
conditions. For realistic image formation, [64] reinterprets neural fields probabilistically to simulate
lens effects, while PAC-NeRF [49] adopts a hybrid Eulerian-Lagrangian framework for dynamic
media. Mip-NeRF and its successors [6–8] reduce aliasing via conical frustum sampling. Ref-NeRF
[72] and PBR-NeRF [79] model view-dependent reflectance using BRDFs. DP-NeRF [43] and
Deblurring-GS [42] address motion and defocus blur. Atmospheric scattering models are used in
[63, 70, 14, 83] to dehaze scenes. RawNeRF [57] handles low-light inputs in linear space, while
LL-NeRF [74] and LL-GS [68] apply Retinex-based decomposition. Aleth-NeRF [16] introduces
a concealing field, and Luminance-GS [17] and LITA-GS [84] leverage illumination-adaptive pri-
ors. In underwater settings, SeaThru-NeRF [3], Proposed-T [69], and Watersplatting [46] model
wavelength-dependent attenuation and backscatter. NeuroPump [27] accounts for lens refraction to
improve realism.

Single-Image Restoration Recent progress in single image restoration tackles the challenges of
low-light, haze, and underwater conditions through deep learning architectures and novel learning
strategies. Low-light enhancement has shifted toward end-to-end learning [77, 71, 38, 21], utilizing
techniques such as direct curve estimation [26, 15] and self-calibration [54] to improve visibility in
darkness. Haze removal has evolved from prior-based methods [33] to data-driven approaches with a
focus on handling complex atmospheric degradations [13, 10, 48, 18]. Underwater image restoration
addresses unique optical distortions using generalized priors [23, 11, 51], physics-based modeling
[61, 3], and unsupervised techniques [22, 52, 34].

3 Isometry and Isotropy NeRF

Preliminaries NeRF [56] implicitly represents a scene with a continuous function fΘ : (x,d) →
(c, σ) that encodes the 3D position x ∈ R3 and viewing direction d to predict the density σ and
view-dependent color c = (r, g, b). This color c is interpreted as the radiance emitted by the
objects along direction d. For a ray r(t) = o + td emitted from the center of a camera o and
range t ∈ R+, NeRF uses numerical quadrature to approximate the integral of volume rendering as
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Ĉ(r) =
∑N

i=1 Ĉi(r) =
∑N

i=1 T (ri)(1−exp(−σ(ri)δi)c(ri), where T (ri) = exp(−
∑i−1

j=1 σ(rj)δj)
is the cumulative transmittance, and δi is the distance between two points.

3.1 General Radiative Formulation via Matting

Traditional image matting [44] refers to the process of compositing a target image I from a foreground
J and a background component B, using a blending coefficient α ∈ [0, 1]. In this classical problem,
α is typically estimated empirically and determines the mixing ratio between J and B at each pixel.

In participating media such as fog, haze, or water, light is subject to volumetric scattering, blur, and
exponential attenuation. These effects result in an observed view that also arises from the combination
of two components: the direct scene radiance J and the ambient backscatter light B. This similarity
in structure allows us to reinterpret media-induced degradation as a physically grounded extension of
matting. In our isotropic radiative formulation, the blending coefficient α is no longer an abstract
mixing weight but a transmittance function derived from the Beer–Lambert Law, relative to the scene
depth z. This yields a general radiative formulation as:

I = J · α+B · (1− α) → I = J · exp(−σattnz) +B · (1− exp(−σscatz)). (1)

The coefficients σattn and σscat respectively encode the medium’s direct extinction and in-scattering
properties under the single-scattering assumption.

Haze Condition Haze arises from aerosol particles in the atmosphere, causing both scattering and
absorption. Koschmieder’s Law [41] introduces a single extinction coefficient, implicitly assuming
equal scattering and absorption contributions. In our general formulation, setting σattn = σscat

regresses Equation (1) to the classical Atmospheric Scattering Model (ASM).

Underwater Condition In underwater scattering, scattering and absorption differ due to distinct
optical mechanisms. Scattering depends on particle size and concentration, while absorption is
influenced by molecular composition and the inherent optical properties of water [36, 58]. Therefore,
we define σattn ̸= σscat and generalize Equation (1) to the Revised Underwater Image Formation
(RUIF) model [2].

Low-Light Condition Underexposed images can be interpreted through a simplified pixel-scaling
model I = K · J , where J represents the signal of well-lit scenes and K is a per-pixel scaling factor.
To incorporate this model into our radiative formulation, we introduce a virtual absorption medium
that attenuates the photon flux reaching the sensor. This corresponds to a special case of Equation (1),
where the backscatter component B = 0 and the scaling factor K = exp(−σattnz) gains a physical
interpretation as the transmittance through the medium. Further details are provided in Appendix A.3.

3.2 Proposed General Particle Model

In our neural radiance model, we explicitly represent both the objects and the intervening medium as
volumetric particles characterized by two separate spatial density fields. As shown in Figure 2, these
particles may emit, absorb, or scatter light according to the same radiative transfer rules [39].

Emission Under clear-air conditions, only object particles of density σobj
j emit radiance directly

toward the camera. Therefore, the volume rendering formation of direct clear randiance J is identical
to the vanilla NeRF:

Ĵ =

N∑
i=1

Ĉobj
i =

N∑
i=1

Ti(1− exp(−σobj
i δi))c

obj
i , where Ti = exp(−

i−1∑
j=1

σobj
j δj). (2)

Absorption Absorption reduces transmitted radiance without re-emitting energy. The received
degraded radiance I at the camera is attenuated by the absorption density σattn:

Î =

N∑
i=1

Ĉobj
i =

N∑
i=1

TD
i (1− exp(−σobj

i δi))c
obj
i , where TD

i = exp(−
i−1∑
j=1

(σobj
j + σattn

j )δj). (3)
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Figure 2: Illustration of our particle model and pipeline. (a) depicts three types of particles in
the media field that emit, absorb, or scatter radiance. (b) presents the media upsampling strategy
designed to prevent media field collapse. (c) shows the model architecture, in which the object and
the upsampled media points are processed by hash encoders followed by separate MLPs to predict
density, color, and downwelling depth (in the case of scattering).

Scattering Particles such as suspended aerosols in haze or colloidal particles in water can contribute
additional backscattering radiance Ĉmed by scattering ambient illumination into the viewing direction.
Under single-scattering approximation, the scattered radiance from each sampled point i along the
ray is:

Ĉmed
i = TB

i (1− exp(−σscat
i δi))c

med
i , where TB

i = exp(−
i−1∑
j=1

(σobj
j + σscat

j )δj) (4)

Here, σscat represents the scattering coefficient, cmed denotes the backscattered color contributed
by ambient illumination, and TB is the accumulated backscatter transmittance. Building upon our
isotropic radiative formulation, we further model the backscatter color cmed

i via Beer–Lambert
attenuation of sunlight traveling vertically from the media surface. This approach reflects empirical
observations, such as the progressive darkening with increasing water depth. At a sampled point i,
the in-scattered medium color can be modeled as:

cmed
i = Φ · exp

(
−(σattn

i + σscat
i ) zϕi

)
, (5)

where Φ is a learnable sunlight constant 2, zϕ denotes the downwelling distance to the medium
surface, and σattn + σscat represents the diffuse attenuation coefficient [66]. This formulation
further disentangles the formerly view-dependent medium color into an explicit vertical attenuation
model, enabling our radiance field to perceive the scene geometry both horizontally through LoS and
vertically. Because zϕ is expressed in the same metric units as the NeRF sampling space, our model
maintains an isometric relationship to real-world distances through a global scale factor. Although
this scattering model allows per-sample specification of σattn

i , σscat
i , and zϕi , such fine-grained

parameterization significantly enlarges the optimization space. To make the problem tractable while
preserving physical interpretability, we adopt the simplified RUIF model [2] that assumes horizontal
rays with constant scattering coefficients and downwelling depth along each ray, as further described
in Section 4. The detailed derivation of Equation (5) is shown in Appendix C.

2Equal to the empirical measurement of irradiance E(z, λ) at the medium surface (z = 0).
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Final Model Considering all particle behaviors, the total radiance I received by the camera
comprises the sum of direct radiance and potential in-scattered components:

Î =

N∑
i=1

Ĉobj
i +

N∑
i=1

Ĉmed
i =

N∑
i=1

TD
i (1−exp(−σobj

i δi))c
obj
i +

N∑
i=1

TB
i (1−exp(−σscat

i δi))c
med
i . (6)

In Appendix B, we demonstrate that our volume rendering formulation in Equation (6) is equivalent
to the generalized image formation in Equation (1) across all degradation scenarios.

3.3 Reverse-Stratified Upsampling

Original NeRF [56] and its variants [63, 45, 16] employ a hierarchical coarse-to-fine sampling scheme
[56, 6, 7] designed to capture object densities in clear-air conditions. In real-world scenes, however,
media particles reside exclusively along the LoS in front of objects, absorbing or scattering incoming
light before it reaches the camera. This object-centric sampling thus under-samples the medium
volume, which can cause the medium field to collapse into the object color during decomposition.

To realize the surrounding media in the NeRF model, we propose a novel reverse-stratified upsampling
(RSU) strategy. As illustrated in Figure 2, our method upsamples media particles near-uniformly in
regions where the object density is low or zero. Specifically, to sample media positions outside the
solid object, we perform an additional sampling phase tailored specifically for media points. In this
phase, each current interval tobji is assigned a reverse weight derived from the object density σobj

that favors low-density gaps:

wmed
i = ∆i

(
max

1≤j≤N
σ̂obj
j − σ̂obj

i

)
+ ϵ, σ̂obj

i =
1

∆i

∫ tobj
i+1

tobj
i

σobj(t) dt, (7)

where ∆i = tobji+1 − tobji is the interval length, and ϵ is a small constant to prevent zero weight.
Next, we normalize {wmed

i } into a cumulative distribution function (CDF) F and perform stratified
sampling over [0, 1] to draw Nadd new media points:

uj ∼ U
(

j−1
Nadd

, j
Nadd

)
, tmed

j ∼ U
(
tobji , tobji+1

)
whenever F (i− 1) < uj ≤ F (i), (8)

where U denotes uniform distribution. Finally, we merge these new media samples with the original
object samples {tobji }, sort the union {tk}, and obtain the upsampled set of ray-marching positions.

3.4 Objective Functions

We employ the reconstruction loss Lrecon proposed by RawNeRF [57], which integrates inherent
tone-mapping to reduce sensitivity to scale variations during loss computation as:

Lrecon =
1

M

M∑
k=1

(
Îk − Ik

sg(̂Ik) + ϵ

)2

, (9)

where sg(·) denotes the stop-gradient operator, M is the number of pixels, and ϵ = 10−3 to avoid
division by zero. To ensure geometric consistency, we introduce a geometry loss Lgeo between the
normalized rendered depth D̂k and pseudo-depth map D̃k obtained from a pretrained model [82]
using:

Lgeo =
1

M

M∑
k=1

∥∥∥D̂k − D̃k

∥∥∥2 , (10)

To effectively recover the clean radiance structure Ĵ from the degraded observation I , we utilize a
compensated structure similarity loss Lcomp that accounts for ideal illuminance ν̃J and contrast
factor κ̃J . This loss is calculated over H stochastic ray sub-patches following [80], expressed as:

Lcomp =
1

H

H∑
h=1

LSSIM(Ph(Ĵ),Ph(I); ν̃J , κ̃J), (11)
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where Ph denotes the h-th randomly extracted patch. Each patch-wise loss employs the SSIM index
[76], adjusted for the desired mean and variance.

Considering the physical constraint that space is occupied either by objects or media, we apply a
mutual exclusion loss Lmutex to prevent simultaneous high densities of object and media at the same
spatial location:

Lmutex =
1

N

N∑
i=1

(max(0, σobj
i − η)× σmed

i ), (12)

where N is the number of sampled points in a ray, and the threshold η = 0.1 helps avoid the trivial
solution of zero media. Moreover, if a media transmittance prior T̃ is available, we define the media
transmittance loss Lmedia to constrain media density at the object’s surface depth z:

Lmedia =
1

M

M∑
k=1

|Tk − T̃k|2 =
1

M

M∑
k=1

| exp(−
zk∑
j

(σobj
j + σmed

j )δj)− T̃k|2. (13)

Additionally, to ensure a physically plausible monotonic decay in media density, which is par-
ticularly critical in nonhomogeneous media, we introduce a monotonic decay loss Lmono =
1

MN

∑M
k=1

∑N
i=1 ReLU(σmed

k,i − σmed
k,i−1). Thus, the total media transmittance regularization

loss is defined as Ltrans = Lmedia+Lmono. The complete optimization objective is thereby expressed
as:

L = Lrecon + λcompLcomp + λgeoLgeo + λmutexLmutex + λtransLtrans, (14)
where the hyperparameters λcomp, λgeo, λmutex, and λtrans are specific to application scenarios.
Media density σmed in the above context subject to σattn or σscat, as applicable. Detailed derivations
and justifications for the loss components are provided in Appendix E.

4 Applications

Underwater Scene To reflect the near-homogeneous distribution of water particles and make
the computation of scattering radiance tractable, we adopt the RUIF model [2] which assumes
horizontally propagating rays (i.e., an inclination angle of 90◦ in the nadir direction) in Equation (4).
Under this simplification, the attenuation and scattering coefficients are treated as constant along
each ray r, i.e., σattn

j (r) = σattn(r) and σscat
j (r) = σscat(r). Consequently, each point along the

ray is approximated as having an identical downwelling depth zϕi (r) = zϕ(r) and media color
cmed
i (r) = cmed(r). The clean radiance J is obtained by rendering the scene with the scattering field

removed. The model is optimized by minimizing Equation (14), with the λ hyperparameters set to 0,
10−2, 10−4, and 0, respectively.

Figure 3: Visualization of virtual ab-
sorption fields on the LOM dataset
[16]: (a) restored clean radiance J ; (b)
illumination map TP estimated unsu-
pervisedly via the BCP; (c,d) Particle
density profiles along the rays, corre-
sponding to the green and red points
illustrated in (a).

Hazy Scene We apply the identical settings and assump-
tions used for underwater scattering to the case of air-based
scattering. The model is optimized using Equation (14),
with the λ hyperparameters set to 0, 10−2, 10−4, and 0,
respectively.

Low-light Scene In low-light conditions, spatially varying
illumination necessitates modeling the absorption medium
as nonhomogeneous along each ray. To regularize this inher-
ently ill-posed setting, we incorporate an external supervi-
sion signal TP derived from the Bright Channel Prior (BCP)
[75]. BCP estimates a 2D illumination map TP from the
bright channel of each local patch P ⊆ I , and models the
low-light image as:

I = TP · J, and TP = 1− max
c∈(r,g,b)

(
max
q∈P

(
1− Icq
1−Bc

))
.

(15)
Within our volumetric framework, where attenuation is
solely attributed to the absorption field, this illumination
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Figure 4: Visualization of NVS and media decomposition on the SeaThru-NeRF dataset [45]. Our
method precisely estimates the vertical water depth, which is inaccessible in baseline methods. Top-
right corner displays the mean RGB values of the medium color cmed from test views, alongside the
real-world ranges simulated in [4] across various Jerlov water types [35] within depths 1-20 meters.

Table 1: Quantitative comparison of hazy and underwater scenes on SeaThru-NeRF dataset [45].
“Hazy Fern” “Curaçao” “IUI3 Red Sea” “J.G. Red Sea” “Panama”

Model PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

MipNeRF360 [7] 30.23 0.880 0.150 28.23 0.683 0.571 19.55 0.510 0.520 19.62 0.624 0.492 18.32 0.556 0.595
ZipNeRF [8] 30.34 0.875 0.142 19.96 0.442 0.421 16.94 0.474 0.412 19.02 0.349 0.483 19.01 0.349 0.482
3DGS [40] 25.96 0.782 0.303 28.31 0.873 0.221 22.98 0.843 0.249 21.49 0.854 0.216 29.20 0.893 0.152

SeaTh.NeRF [45] 30.75 0.870 0.160 30.96 0.915 0.133 26.76 0.826 0.168 23.28 0.876 0.111 31.28 0.937 0.071
Proposed-T [69] - - - 30.03 0.828 0.238 22.70 0.624 0.348 25.81 0.853 0.183 23.75 0.687 0.263
Watersplat. [46] 29.35 0.880 0.181 32.20 0.948 0.116 29.84 0.889 0.203 24.74 0.892 0.116 31.62 0.942 0.080
Ours 30.59 0.862 0.139 32.70 0.947 0.144 27.33 0.870 0.269 24.11 0.884 0.168 31.55 0.938 0.096

map acquires a concrete physical interpretation as the accumulated transmittance of each ray through
the medium up to the object surface. This allows the BCP-derived illumination map TP to serve as a
physically grounded transmittance prior T̃ in Equation (13) that constrains the transmittance at object
surfaces. Leveraging this BCP-derived supervision, the media density converges toward a physically
plausible distribution that maintains clear spatial separation from the object geometry, as shown in
Figure 3. To incorporate this constraint during training, the model is optimized using Equation (14)
with λ hyperparameters set to 1, 10−2, 10−4, and 10−3, respectively.

5 Experiments

5.1 Implementation Details

Our model is built upon the ZipNeRF codebase [8], leveraging its hash-based encoding for efficient
training. For NeRF sampling, we use 64 points for the object and 32 additional points for upsampling
the media field. The global sunlight constant is initialized to CIE D65. Additional hyperparameter
details and visualizations of experimental results are provided in Appendices G and I.

Datasets For underwater environments, we use the SeaThru-NeRF dataset [45]. For low-light
conditions, we conduct evaluations on the LOM dataset [16]. Both datasets follow the original
train-test split. In addition, we captured two real-world underwater scenes in Okinawa, Pacific Ocean,
using an OLYMPUS Tough TG-6 underwater camera and recorded the corresponding water depths.

Metrics To assess reconstruction quality, we adhere to common metrics including PSNR, SSIM,
and LPIPS. The best results are shaded as first , second , and third for each metric.
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Figure 5: Qualitative comparison of NVS on the LOM dataset [16].

Table 2: Quantitative comparisons of low-light restoration performance on the LOM dataset [16].
“bike” “buu” “chair” “shrub” “sofa”

Model PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

ZipNeRF [8] 6.64 0.083 0.611 7.72 0.291 0.445 6.19 0.151 0.590 8.48 0.037 0.658 6.30 0.212 0.553
3DGS [40] 6.38 0.071 0.822 7.74 0.292 0.459 6.26 0.146 0.761 8.74 0.039 0.604 6.21 0.201 0.918

SCI[54]+NeRF 13.44 0.658 0.435 7.76 0.692 0.525 19.77 0.802 0.674 18.16 0.503 0.475 10.08 0.772 0.520
IAT[15]+NeRF 13.65 0.616 0.528 14.46 0.705 0.386 18.70 0.780 0.665 13.87 0.317 0.536 17.88 0.829 0.547
SCI[54]+GS 13.67 0.677 0.324 7.95 0.695 0.501 21.77 0.866 0.350 18.67 0.657 0.153 9.99 0.750 0.452
IAT[15]+GS 11.55 0.570 0.593 14.23 0.727 0.207 17.59 0.858 0.344 14.26 0.517 0.366 16.96 0.841 0.347

Aleth-NeRF [16] 20.46 0.727 0.499 20.22 0.859 0.315 20.93 0.818 0.468 18.24 0.511 0.448 19.52 0.857 0.354
Lumin-GS [17] 18.27 0.749 0.412 18.09 0.878 0.193 19.83 0.836 0.367 15.41 0.666 0.242 20.12 0.871 0.259
LITA-GS [84] 22.75 0.819 0.282 20.59 0.897 0.175 22.60 0.873 0.223 19.35 0.659 0.217 20.43 0.895 0.268
Ours 22.87 0.803 0.278 22.35 0.845 0.203 23.82 0.847 0.280 19.44 0.674 0.249 25.89 0.859 0.234

Baselines For underwater scenes, we compare against SeaThru-NeRF [45], Proposed-T [69], and
Watersplatting [46]. For low-light scenarios, we compare our method with end-to-end reconstruction
approaches, including Aleth-NeRF [16], Luminance-GS [17], and LITA-GS [84]. We also evaluate
hybrid pipelines that incorporate 2D low-light enhancement models [15, 54].

5.2 Evaluation of Underwater Scenes

Table 1 reports quantitative results of NVS on the SeaThru-NeRF dataset [45], where our method
achieves competitive performance. Figure 4 illustrates both NVS and scattering decomposition
results. While Watersplatting [46] produces visually compelling scene reconstructions, it struggles to
capture volumetric scattering effects and erroneously attributes object radiance and shadows to the
scattered media component. Compared to SeaThru-NeRF [45], our method additionally estimates
downwelling water depth. By incorporating downwelling attenuation modeling that accounts for
water depth, our predicted medium color more accurately reproduces the spectral characteristics of
natural oceanic water, where red light attenuates more rapidly than green and blue [4].

To evaluate the accuracy of the predicted downwelling depth, we applied our model to scenes captured
in the Kerama Islands National Park, northwestern Pacific Ocean. As shown in Figure 1, the subsea
anchor has an approximate scene footprint of six meters. Using this as a reference, we compute a
scaling factor that maps the NeRF sampling space [0, 1] to real-world metric units. Multiplying the
predicted depth value in the region of the vanishing line by this factor yields an estimated downwelling
distance of 7.2 meters. This result closely matches the recorded water depth of 7.5 meters as measured
by the diving computer, demonstrating the accuracy and physical consistency of our model.

9



5.3 Evaluation of Low-light Scenes

For low-light restoration, we conduct experiments on the LOM dataset [16]. As shown in Table 2,
our method achieves state-of-the-art PSNR performance across all scenes, outperforming both
NeRF-based and GS-based approaches [16, 17, 84]. Figure 5 presents qualitative results on three
representative scenes. Our physically grounded volumetric model enables consistent and balanced
color restoration across views by explicitly modeling media degradation. In contrast, pixel-scaling-
based baselines exhibit noticeable color inconsistencies. In Appendix G.4, we include a low-light
underwater case study where our physically grounded model decomposes multiple media components
and reconstructs clean radiance under hybrid conditions

5.4 Ablation Study

Figure 6: Ablation study of RSU upsampling strategy.

Effect of RSU We demon-
strate the effectiveness of our
upsampling strategy. Figure 6
shows two views from low-
light and underwater scenes,
displaying the restored radi-
ance and corresponding den-
sity distributions in terms of
sampling positions. Our strat-
egy recovers the space-filling media in front of objects by explicitly allocating samples, in contrast to
object-centric methods that neglect these regions and cause media field collapse to near-zero densities.

Table 3: Ablation of absorp-
tion field on the “bike” [16].

Method PSNRSSIMLPIPS

w/o upsampling 20.92 0.792 0.284
w/o Lgeo 20.66 0.776 0.297
w/o Lcomp 6.55 0.078 0.712
w/o Lmutex 22.71 0.793 0.281
w/o Ltrans 21.87 0.790 0.285

Full model 22.87 0.803 0.278

Table 4: Ablation of under-
water field on our captured
scene in Okinawa.

Method PSNRSSIMLPIPS

inconstant media 33.970.9130.172
w/o upsampling 32.080.8850.215
w/o Lgeo 29.950.8520.319
w/o Lmutex 33.110.9020.178

Full model 31.250.8870.201

Effect of Loss Terms We present
ablation analyses for each loss term
under low-light or underwater scenar-
ios in Table 3 and Table 4. Due to the
inherent ill-posedness of reconstruct-
ing scenes through media, our pro-
posed loss terms are specifically de-
signed to enforce physical plausibility.
While omitting Lmutex or permitting
a non-homogeneous scattering field
may enhance the rendering quality of
the observation I , it hinders the accurate recovery of the clean radiance J due to the lack of explicit
density regulation, leading to media field collapse. More analysis and visualizations are provided in
Appendix F.

6 Conclusion

We propose I2-NeRF, a physically grounded volumetric model for radiative interactions in par-
ticipating media. The model preserves isometry and isotropy through explicit sampling of dense
objects and semi-transparent media, and with a unified attenuation model applied consistently across
viewing and vertical axes. This design enables metric-preserving scene reconstruction that faithfully
reflects real-world spatial structure. Experiments across diverse media conditions demonstrate the
effectiveness of our approach in achieving high reconstruction quality and physical plausibility.

Limitations While I2-NeRF demonstrates competitive performance in various degraded media
conditions, it has several limitations. First, compared to rasterization-based methods [40, 17, 46],
our NeRF model requires longer training time due to its neural implicit representation. Second, our
model assumes static media with fixed optical properties, limiting its applicability to dynamic scenes
such as moving water or drifting fog. Moreover, under scattering conditions, media properties such
as downwelling depth have dependency on the encoded viewing directions, leading to variations that
may not be strictly tied to spatial position. In low-light settings, varying light across views can also
degrade performance, as our static virtual absorption medium cannot adapt to dynamic illumination.
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A Image Formation Under Media Degradation

In Section 3.2, we introduced a radiative model describing image formation under media degradation
conditions. Here, we provide a detailed explanation of the typical image formation process in such
environments. Specifically, we show that image formation under media degradation can be simplified
and described clearly as a matting process, which combines direct radiance from objects and ambient
illumination scattered by particles present in the medium.

A.1 Degenerated Atmosphere Scattering Model (ASM)

In a hazy atmosphere, airborne particles such as water droplets, dust, and aerosols scatter and absorb
incident light. These effects form a veil that reduces contrast and desaturates color [55]. Under the
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single-scattering assumption of the Atmospheric Scattering Model (ASM), the intensity observed
at each pixel of observation I is composed of two components: direct radiance from the object
attenuated exponentially with distance, and ambient illumination scattered toward the camera by
airborne particles. This is formulated as:

I︸︷︷︸
observed radiance

=

direct︷ ︸︸ ︷
J︸︷︷︸

object radiance

· (e−σ·z)︸ ︷︷ ︸
attenuation

+

backscatter︷ ︸︸ ︷
B∞︸︷︷︸

airlight

· (1− e−σ·z)︸ ︷︷ ︸
accumulation

, (16)

where z denotes the horizontal distance from the object surface to the camera. J represents the
radiance of a clean image without media degradation, and B∞ indicates the ambient airlight origi-
nating from distant illumination sources. In ASM, a single attenuation coefficient σ characterizes
both direct transmission and backscatter. This shared attenuation coefficient exhibits wavelength
independence due to the dominance of Mie scattering. Mie scattering occurs when particle sizes in
haze significantly exceed the wavelengths of visible light, resulting in nearly equal scattering across
all wavelengths.

A.2 Revised Underwater Image Formation (RUIF) Model

Unlike in air, image formation underwater is strongly dependent on wavelength λ. This occurs
because water molecules and suspended particles selectively absorb and scatter different wavelengths
of visible light. Define the beam absorption coefficient as a(λ), the beam scattering coefficient as b(λ),
and the beam attenuation coefficient as β(λ) = a(λ) + b(λ). Assuming a horizontal line-of-sight
(LoS), the narrow-sense underwater image formation model can be expressed as:

I︸︷︷︸
observed radiance

=

direct︷ ︸︸ ︷
J︸︷︷︸

object radiance

· (e−(a(λ)+b(λ))·z)︸ ︷︷ ︸
attenuation

+

backscatter︷ ︸︸ ︷
E(z, λ)︸ ︷︷ ︸
irradiance

· b(λ)

a(λ) + b(λ)︸ ︷︷ ︸
albedo

· (1− e−(a(λ)+b(λ))·z)︸ ︷︷ ︸
accumulation

.

(17)
where E(z, λ) denotes the ambient irradiance at distance z along horizontal viewing directions.
Moreover, due to differences in optical pathways and directional sensitivity of the imaging system,
the camera response to direct and scattered radiance signals differs significantly. As a result, two
distinct coefficients, σattn(λ) for direct signal attenuation and σscat(λ) for backscattered signal
accumulation, are introduced. Incorporating these separate coefficients simplifies Equation (17)) into
the Revised Underwater Image Formation (RUIF) model proposed by [2]:

I︸︷︷︸
observed radiance

=

direct︷ ︸︸ ︷
J︸︷︷︸

object radiance

· (e−σattn(λ)·z)︸ ︷︷ ︸
attenuation

+

backscatter︷ ︸︸ ︷
B∞(λ)︸ ︷︷ ︸

ambient light

· (1− e−σscat(λ)·z)︸ ︷︷ ︸
accumulation

, (18)

In this context, B∞(λ) denotes the veiling light originating from ambient illumination at an infinite
viewing distance, defined as:

B∞(λ) = E(zΦ, λ) · b(λ)

a(λ) + b(λ)
, (19)

where zΦ represents the vertical downwelling distance from the water surface. Although similar in
form to the ASM, this underwater model differs in two critical ways. First, the direct attenuation
coefficient σattn(λ) and the scattering accumulation coefficient σscat(λ) are distinct values. Second,
both coefficients exhibit wavelength-dependent values, accurately reflecting the selective absorption
and scattering characteristics of underwater media across different color channels.

A.3 Simple Low-light Scaling Model

As shown in Section 3.1, under low-light conditions, the image formation can be effectively approxi-
mated using a simple scaling model. This simplification is valid because, in low-light conditions,
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veiling light is negligible relative to the significantly reduced direct radiance. The simplified scaling
model can thus be expressed as:

I︸︷︷︸
observed color

=

direct︷ ︸︸ ︷
J︸︷︷︸

object color

· K︸︷︷︸
scaling factor

+

backscatter︷︸︸︷
0 (20)

where K denotes a scaling factor and the backscatter component is set to zero (B∞ = 0). In
the general radiative formulation, this simplified scaling scenario can be physically interpreted by
introducing an absorbing medium positioned between the camera and the object, attenuating the
photon flux along the viewing ray. Given the attenuation coefficient σattn and the object depth z, the
low-light image formation can then be represented explicitly as:

I︸︷︷︸
observed radiance

=

direct︷ ︸︸ ︷
J︸︷︷︸

object radiance

· (e−σattn·z)︸ ︷︷ ︸
attenuation

+

backscatter︷︸︸︷
0 (21)

A.4 Low-light Bright Channel Prior (BCP) Model

Inspired by the Dark Channel Prior (DCP) model [33], which was originally developed for modeling
hazy environments, the Bright Channel Prior (BCP) model [75] was introduced to characterize
illumination degradation in low-light images and to support local exposure correction. BCP formulates
low-light image formation using an image matting approach. Specifically, the observed low-light
image I is modeled as:

I︸︷︷︸
observed color

=

direct︷ ︸︸ ︷
J︸︷︷︸

object color

· TP︸︷︷︸
illumination intensity

+

compensation︷ ︸︸ ︷
B︸︷︷︸

ambient color

· (1− TP)︸ ︷︷ ︸
illumination compensation

(22)

Here, TP represents the local illumination intensity computed over a patch P centered at each pixel.
Compared to the simple scaling model introduced in Equation (20), this formulation additionally
includes a global ambient term B that accounts for veiling light in underexposed regions.

BCP is based on the assumption that in well-lit images, the bright channel—defined as the maximum
intensity value across color channels within a local patch—approaches one. Formally, for a clean
image J , the bright channel is:

JBC = max
c∈{r,g,b}

(
max
q∈P

Jc
q

)
(23)

Empirically, JBC ≈ 1 for well-lit images. In contrast, for a low-light image I , the corresponding
bright channel IBC ≪ 1 due to suppressed illumination.

To derive the illumination map TP from low-light observation I , we first express Equation (22) in
channel-wise as:

Ic = Jc · TP +Bc · (1− TP), c ∈ {r, g, b} (24)

Solving for TP yields:

TP =
Ic −Bc

Jc −Bc
(25)

To estimate TP , a maximum operator is applied over the patch P ⊆ I:

TP = max
c∈{r,g,b}

(
max
q∈P

(
Icq −Bc

Jc −Bc

))
(26)

Assuming JBC = 1 and that TP is constant within the patch, this simplifies to:

TP = max
c∈{r,g,b}

(
max
q∈P

(
Icq −Bc

1−Bc

))
(27)
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Rewriting this expression leads to the final BCP formulation:

TP = 1− max
c∈{r,g,b}

(
max
q∈P

(
1− Icq
1−Bc

))
(28)

The ambient constant B can be estimated empirically as the average of the darkest 0.1% pixels in the
bright channel IBC [75]. Since B is typically small, we can approximate B ≈ 0, which simplifies
Equation (22) to:

I = J · TP (29)

This simplified form is equivalent to our low-light radiative formulation in Equation (21) with veiling
light B = 0. Consequently, the BCP-derived local illumination map TP acquires a physical interpre-
tation as the transmittance through a virtual absorption medium. We leverage this transmittance map
to supervise the estimation of the medium density in our training process, as described in Section 4.

B Relation of Radiative Formulation and Particle Model

In Sections 3.2 and 3.3, we introduced a general radiative formulation for modeling image degra-
dation in participating media, along with a volumetric particle model that incorporates emission,
absorption, and scattering processes. In this section, we establish the equivalence between the two by
demonstrating how our particle-based volumetric rendering aligns with the radiative formulation.

Using isometric sampling for the participating medium, we discretize the volume along each camera
ray into intervals [si, si+1], and assume uniform spacing where si = i · δ and δ denotes the constant
sampling step. Suppose a single opaque object lies along the ray at the end of the interval [sk, sk+1],
the object depth is then given by z = k · δ. The ray terminates at index i = k when it intersects the
object surface, and the transmittance drops to zero beyond this point.

Under this setting, we define the object density σobj to be nonzero only at index i = k, and zero for
all i < k. Conversely, the medium densities, such as the absorption coefficient σattn or the scattering
coefficient σscat, are defined only for intervals prior to the object surface, i.e., σattn, σscat = 0
for i ≥ k. This setup reflects a spatial separation between the opaque object and the participating
medium, capturing the physical intuition that dense objects and sparse media do not occupy the same
space along the ray.

B.1 Low-light Conditions

Under low-light conditions, we simulate reduced visibility by introducing a virtual absorption medium.
In this case, Equation (3) simplifies to:

Ĉ =
N∑
i=1

Ĉobj
i = Ĉobj

k = TD
k ·

(
1− exp(−σobj

k δk)
)
cobjk︸ ︷︷ ︸

direct radiance

(30)

= exp

−
k∑

j=1

(σobj
j + σattn

j )δj

 ·
(
1− exp(−σobj

k δk)
)
cobjk (31)

Assuming σobj
j = 0 for all j < k, and taking both the interval length δj = δ and the attenuation

coefficient σattn
j ≈ σattn as roughly constants, the expression simplifies to:

Ĉ = exp(−σattn · kδ) ·
(
1− exp(−σobj

k δ)
)
cobjk (32)

In typical low-light scenarios, the object density σobj
k is sufficiently large that the ray terminates at

the object surface, resulting in exp(−σobj
k δ) ≈ 0. Therefore, we further simplify the expression to:

Ĉ = cobjk · exp(−σattn · kδ) (33)

= cobjk · exp(−σattn · z) (34)
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This result corresponds to a special case of our general radiative formulation under low-light con-
ditions, as presented in Section 3.2, where the observed color is modeled as the attenuated object
radiance with J = cobjk and no ambient component (B = 0).

B.2 Haze and Underwater Conditions

In scattering-dominant environments, where backscattered radiance contributes significantly to the
observed signal, we follow the derivation approach of [45] to formulate Equation (6) as:

Ĉ =

N∑
i=1

Ĉobj
i +

N∑
i=1

Ĉmed
i = Ĉobj

k +

N∑
i=1

Ĉmed
i (35)

= TD
k

(
1− exp(−σobj

k δk)
)
cobjk︸ ︷︷ ︸

direct radiance

+

k∑
i=1

TB
i

(
1− exp(−σscat

i δi)
)
cmed
i︸ ︷︷ ︸

backscatter radiance

(36)

The direct radiance term in Equation (36) is identical to the expression derived in (30), and can be
simplified using the result in (34). We now focus on the backscatter term:

k∑
i=1

Ĉmed
i =

k∑
i=1

exp

−
i∑

j=1

(σobj
j + σscat

j )δj

(1− exp(−σscat
i δi)

)
cmed
i (37)

=

k∑
i=1

exp(−σscat · iδ)
(
1− exp(−σscatδ)

)
cmed
i (38)

Assuming the single scattering approximation holds and that the medium properties are approximately
uniform along the ray, we treat cmed

i as a constant value cmed, and obtain:

k∑
i=1

Ĉmed
i =

(
1− exp(−σscatδ)

)
cmed

k∑
i=1

exp(−σscat · iδ) (39)

=
(
1− exp(−σscatδ)

)
cmed ·

(
1− exp(−σscat · kδ)
1− exp(−σscatδ)

)
(40)

= 1− exp(−σscat · kδ)cmed (41)

Substituting (41) back into (36) gives:

Ĉ = cobjk · exp(−σattn · kδ)︸ ︷︷ ︸
direct

+cmed(1− exp(−σscat · kδ))︸ ︷︷ ︸
backscatter

(42)

= cobjk · exp(−σattn · z) + cmed(1− exp(−σscat · z)) (43)

This expression is consistent with our general radiative formulation, where J = cobjk and B = cmed.
In atmospheric environments, the absorption and scattering components are often combined into
a single extinction coefficient, such that σattn = σscat, due to the relatively uniform interaction
between light and small airborne particles. In contrast, underwater environments exhibit distinct
optical behaviors, where σattn ̸= σscat.

C Downwelling Attenuation Model

In Equation (19), the ambient light at infinity B∞(λ) is proportional to the irradiance E(zΦ, λ),
which models the downwelling light reaching the medium along vertical paths. This irradiance
accounts for the cumulative attenuation of sunlight as it travels downward through the medium.
According to [66], the downwelling irradiance at a vertical distance zΦ can be modeled as:

E(zΦ, λ) = E(0, λ) · exp(−KΦ(λ) · zΦ) (44)
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Here, E(0, λ) denotes the ambient light at the surface of the medium, and KΦ(λ) is the diffuse
downwelling attenuation coefficient. As derived in Equation (43), we can establish a connection
between the medium radiance cmed(λ) in our volume rendering framework and the downwelling
irradiance at depth via:

cmed(λ) = B∞(λ) =
b(λ)E(zΦ)

a(λ) + b(λ)
=

b(λ)E(0)

a(λ) + b(λ)
· exp(−KΦ(λ) · zΦ). (45)

According to [25], the diffuse downwelling attenuation coefficient KΦ(λ) can be approximated as a
function of the beam attenuation coefficients and the solar incident angle θΦ:

KΦ(λ) ≈ (a(λ) + b(λ)) · cos θΦ (46)

In practical scenarios, the beam absorption coefficient a(λ) and scattering coefficient b(λ) are difficult
to estimate directly due to their dependence on local environmental and optical conditions. As an
alternative, we approximate them using the learned attenuation coefficients σattn(λ) and σscat(λ)
obtained from our neural radiance field. Assuming direct overhead sunlight with cos θΦ = 1,
substituting Equation (46) into Equation (45) yields:

cmed(λ) ≈ b(λ)E(0, λ)

a(λ) + b(λ)
· exp(−(σattn(λ) + σscat(λ)) · zΦ) (47)

= Φ · exp(−(σattn(λ) + σscat(λ)) · zΦ) (48)

Here, Φ denotes an ambient light coefficient at the medium surface. Following the setup in [2],
where E(0, λ) is empirically initialized to solar illumination, we similarly initialize Φ to the CIE D65
daylight spectrum. This per-scene constant is then optimized jointly with the parameters of our NeRF
model during training.

D Reverse-Stratified Upsampling

In Section 3.4, we introduce a media upsampling strategy designed to explicitly model the media field
as spatially separate from the object geometry. In this section, we provide a detailed explanation of the
subsequent stratified sampling and merging procedure. Specifically, given the reverse weights wmed

i
over the original N intervals derived from Equation (7), we compute their cumulative distribution
function (CDF) as:

Γi =

i∑
k=1

wmed
k , F (i) =

Γi

ΓN
, i = 1, . . . , N. (49)

We then draw Nadd stratified uniform samples:

uj ∼ U
(

j−1
Nadd

, j
Nadd

)
, j = 1, . . . , Nadd, (50)

Invert the CDF by identifying the unique index i such that F (i− 1) < uj ≤ F (i), and sample within
that interval as:

tmed
j ∼ U

(
tobji , tobji+1

)
. (51)

The complete set of sampled positions is formed by merging and sorting the object-centric and
media-centric samples:

{tk} = sort
(
{tobji }Ni=1 ∪ {tmed

j }Nadd
j=1

)
. (52)

The resulting sorted set {tk} is then forwarded to our neural radiance model.

E Objective Functions

In this section, we provide detailed formulations of the reconstruction loss Lrecon, the geometry loss
Lgeo, and the revisited structural similarity loss Lstruct, which were introduced in Section 3.4.
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E.1 Reconstruction Loss Lrecon

In degraded images exhibiting low contrast, the standard L2 reconstruction loss employed in vanilla
NeRF [56] often fails to emphasize differences in low-intensity regions. To address this limitation, we
follow [57] to incorporate a tone curve linearization that places greater emphasis on reconstruction
fidelity in low-intensity pixels. Specifically, we use the loss:

Lrecon =
1

M

M∑
k=1

(
Îk − Ik

sg(Ĉk) + ϵ

)2

, (53)

where sg(·) denotes the stop-gradient operator, M is the number of pixels in the batch, and ϵ = 10−3

to avoid division by zero. This loss implicitly applies a gradient supervision of the tone-mapping
curve log(x+ ϵ) and produces high reconstruction quality in degraded conditions.

E.2 Geometry Loss Lgeo

To regularize scene geometry under visually degraded conditions, we utilize the pretrained
DeepAnything-V2 model [82] to generate pseudo depth maps as a geometric prior. Since the
predicted depth is the relative depth map, we normalize the rendered depth to the range [0, 1]. The
geometry loss is then defined as

Lgeo =
1

M

M∑
k=1

∥∥∥D̂k − D̃k

∥∥∥2 , (54)

where D̂k denotes the normalized depth rendered from our NeRF model, D̃k is the corresponding
depth prior from the pretrained model, and M is the number of pixels in the batch.

E.3 Compensated Structural Similarity Loss Lcomp

The Structural Similarity Index (SSIM) is a perceptual metric that evaluates image quality by
comparing local patterns of pixel intensities. It decomposes similarity into three components:
luminance, contrast, and structure. Formally, SSIM measures local means to assess luminance
consistency, variances for contrast similarity, and normalized covariance to evaluate structural
alignment.

However, in severely degraded conditions, especially under low-light environments where the ob-
served radiance is strongly attenuated by the absorption medium, the observed image I often deviates
significantly in luminance and contrast from the rendered object radiance Ĵ . To mitigate this dis-
crepancy, we propose a revised structural similarity loss that compensates SSIM using the ideal
luminance ν̃J and contrast scaling factor κ̃J . Such prior information can be derived from common
well-lit images or tuned as hyperparameters during experiments. Specifically, let G be a Gaussian
kernel. We first compute local means of the rendered object radiance Ĵ and the observation I:

ν̂J = G ∗ Ĵ , νI = G ∗ I, (55)
along with the global mean of the observation I as:

mI =
1

M

M∑
pi

Ipi
. (56)

Here, M denotes the number of pixels within the batch. We then compensate the observation’s
luminance and contrast using the prior ν̃J and κ̃J as follows:

νcomp
I = (νI −mI) κ̃J + ν̃J , (σcomp

I )2 = κ̃2
J

(
G ∗ I2 − ν2I

)
. (57)

For the rendered radiance Ĵ , we compute local contrast and cross-correlation as:

σ2
J = G ∗ Ĵ2 − ν̂2J , σJI = G ∗ (Ĵ · I)− ν̂J · νI , σcomp

JI = κ̃J · σJI . (58)

With constants C1 = (0.01)2 and C2 = (0.03)2, the compensated SSIM index is then derived as:

SSIMcomp =
2 ν̂J νcomp

I + C1

ν̂2J + (νcomp
I )2 + C1︸ ︷︷ ︸

luminance

×
2σcomp

JI + C2

σ2
J + (σcomp

I )2 + C2︸ ︷︷ ︸
contrast–structure

. (59)

22



And the SSIM loss is given by:

LSSIM = 1− SSIMcomp(Ĵ , I, ν̃J , κ̃J). (60)

Since NeRF training randomizes ray sampling and disrupts spatial correlations, we adopt the strategy
from [80] and apply our revised SSIM loss over stochastic image patches. Specifically, we define the
final structural similarity loss as

Lcomp =
1

H

H∑
h=1

LSSIM(Ph(Ĵ),Ph(I); ν̃J , κ̃J), (61)

where P extracts the h-th randomly partitioned ray patch, and repeat H times to obtain averaged loss.

F Additional Ablation Study

F.1 Underwater Scene

In Section 5.4, we present a quantitative ablation study on each component of our NeRF model.
Specifically, for the LOM dataset [16], the evaluation was performed by comparing the restored object
radiance against the ground-truth well-illuminated images. In contrast, for the SeaThru-NeRF dataset
[45], the evaluation was based on the rendering quality of degraded novel-view images, since obtaining
clean object radiance free from scattering is infeasible in real-world underwater conditions. Due
to this unavoidable difference in evaluation protocols between low-light and underwater scattering
settings, the quantitative results reported in Table 4 do not fully capture the model’s ability to
disentangle and reconstruct scene components.

In this section, we elaborate on the ablation study for underwater scattering scenes and provide more
intuitive qualitative and quantitative evaluations. As shown in Figure 7, we visualize novel-view
synthesis results on an underwater scene captured by ourselves in Okinawa to highlight performance
differences under well-illuminated yet challenging conditions, where backscattering is intensive.
In such environments, backscattered radiance tends to collapse into object radiance, making the
separation between the two more difficult. This radiance blending may superficially improve novel-
view synthesis quality from the observed image perspective, as it effectively ignores the backscatter
component and simplifies the task to resemble a clear-air scenario. However, doing so leads to
inaccurate estimation of the media field, undermining the physical plausibility of the model.

We observe that omitting reverse-stratified upsampling (RSU), the geometry loss Lgeo, or the mutual
exclusivity loss Lmutex results in the collapse of scattered radiance into the object radiance, as evident
in the rendered object and backscatter components. Furthermore, this collapse leads to erroneous
depth estimations in both horizontal and vertical directions, making the recovered scene geometry
physically unreliable.

We also examine the case where spatially varying scattering coefficients σattn and σscat are used
along each ray. In Section 4, we discuss that, to accommodate the near-homogeneous nature of
the scattering medium and simplify the problem, we follow [45, 63] to assume constant media
densities along the ray. While allowing inconstant scattering coefficients offers greater flexibility,
it introduces extreme ill-posedness in the absence of prior knowledge about the water medium. In
practice, real-world underwater conditions are highly complex, and acquiring reliable priors for water
properties is challenging. Without such constraints, the decomposition of scene radiance becomes
physically inconsistent and results in severely degraded reconstruction quality.

Table 5: Mean Chromatic Dissimilarity Metric (MCDM) between the restored object radiance J and
the original underwater observation I for each ablation component of our model. Higher MCDM
values indicate a greater chromatic separation from the original scatter-degraded image.

Ablation w/o RSU w/o Lmutex w/o Lgeo full model inconstant σ

Object 6.06 11.64 13.94 15.88 24.22

To quantitatively assess the discrepancy between the recovered object radiance Ĵ and the observed
image I , we employ the Mean Chromatic Dissimilarity Metric (MCDM). MCDM measures the
average perceptual difference in chromaticity between two images, where higher values indicate
greater deviation in color. Importantly, MCDM is not designed to reflect reconstruction fidelity;
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Figure 7: Visualization of the ablation study on an underwater scene captured in Okinawa. In this
well-illuminated environment, stronger backscattering occurs due to the increased ambient light being
scattered by suspended particles. As a result, distinguishing between the object radiance and the
backscattered radiance becomes more challenging, especially when foreground objects exhibit colors
similar to the background water body.

rather, it provides an objective measure of chromatic separation. As shown in Table 5, in the ablated
components, lower MCDM values indicate that the recovered object radiance closely resembles
the observed image, suggesting a collapse of the media field in which backscattered radiance is
incorrectly absorbed into the object signal. On the other hand, excessively high MCDM values, such
as using inconstant scattering coefficients, reflect a failure case in scene decomposition.

F.2 Low-light Scene

In Table 3, we present an ablation study on the application of our model in low-light environments. In
this section, we further investigate the effect of two critical hyperparameters: the ideal illumination
ν̃J and the contrast factor κ̃J , both of which are used in the compensated structural similarity loss
Lcomp as defined in Equation (61).
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Figure 8: Ablation study on the hyperparameters for ideal illumination ν̃J and contrast factor κ̃J in
our model, conducted on the “bike” scene from the LOM dataset [16].

As shown in Figure 8, ν̃J primarily controls the brightness of the restored clean object radiance Ĵ ,
with higher values leading to increased pixel intensities. κ̃J governs the contrast of Ĵ , with higher
values enhancing edge sharpness. The yellow pentagram indicates the selected hyperparameter values
used in our final model, which are close to the appearance of naturally well-lit images.

G More Experimental Results

G.1 Underwater Scene

As shown in Figure 9, we compare our method against SeaThru-NeRF [45] and Watersplatting
[46] on the SeaThru-NeRF dataset [45]. In the case of SeaThru-NeRF, the horizontal depth maps
are truncated at regions with low accumulated radiance weights, and the oceanic background is
removed during depth map rendering. Compared to the baseline methods, our model produces more
accurate depth estimation along LoS and enables spatial perception that extends beyond the typical
one-dimensional ray to incorporate vertical distance.

While Watersplatting [46] achieves state-of-the-art performance in full-image rendering, it struggles
to accurately decompose scene radiance. Consequently, its backscatter component often contains
erroneous elements from the object signal, such as shadows or textures. In contrast, our approach
yields more physically faithful geometry and radiance decomposition, leading to superior scene
reconstruction under media degradation.

G.2 Hazy Scene

For the hazy environment, we conduct experiments on the synthetic hazy Fern scene provided in
the SeaThru-NeRF dataset [45], as capturing real-world multi-view hazy scenes is challenging.
The synthetic scene is generated by first estimating the depth along the LoS and then applying the
ASM to synthesize haze-induced degradation. Such hazy conditions present notable challenges for
degradation removal, as the additional backscattered radiance significantly increases pixel intensity.
As a result, the strong backscatter signal is often misinterpreted by models as part of the scene
geometry, leading to inaccurate estimation of the medium properties.
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Figure 9: Visualization of our method and baseline approaches on the SeaThru-NeRF dataset [45].

As shown in Figure 10, SeaThru-NeRF [45] exhibits media field collapse, where the estimated
backscattered radiance is nearly zero and the restored image fails to remove haze-induced degradation.
In contrast, Watersplatting [46] suffers from an opposite failure case, which overestimates backscatter
and erroneously attributes object radiance to the medium component. This results in underexposed
restorations with blurred boundaries and degraded structural fidelity, as shadows and fine edges are
inaccurately absorbed into the backscattered signal.

In contrast, our model achieves a well-balanced decomposition by incorporating physically grounded
constraints and a metric-preserving perception strategy, producing sharper restorations and more
accurate scattering estimation. Furthermore, our isotropic attenuation model with downwelling
distance enables more realistic prediction of medium color, better capturing the color pattern of haze
compared to SeaThru-NeRF [45].

It is worth noting that the synthetic scene is constructed using a globally constant scattering coefficient
σ, which differs from real-world scattering environments where the scattering varies spatially with
medium depth and thickness. Consequently, our model predicts a uniform vertical depth map, which
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Figure 10: Visualization of our method and baseline approaches on a synthetic hazy scene from the
SeaThru-NeRF dataset [45]. The top row shows the restored clean object radiance, while the bottom
row compares full image rendering, backscattered radiance, estimated medium color cmed, and depth
maps.

Figure 11: Low-light restoration results of our method compared to baseline approaches on the LOM
dataset [16].

actually reflects the characteristics of this synthetic setup. This outcome also serves as a sanity check,
reinforcing that our model provides a physically plausible interpretation of the scene.
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Figure 12: Visualization of a real-world low-light underwater scene captured in Okinawa. We also
present the decomposed radiance components, such as removing the virtual absorption medium used
to model low-light conditions, the direct object radiance, and backscattered ambient light.

G.3 Low-light Scene

As shown in Figure 11, we present visual results on the remaining two scenes from the LOM dataset
[16]. Our method achieves more color-consistent restoration compared to both NeRF-based and
Gaussian Splatting-based approaches.

G.4 Low-light and Underwater Hybrid Scene

Benefiting from our general radiative formulation, the proposed model supports the simultaneous
incorporation of multiple types of media, making it adaptable to complex real-world environments.
As a case study, we captured low-light underwater scenes using an OLYMPUS Tough TG-6 camera
under short-exposure settings. Within our particle-based neural radiance framework, we jointly model
both low-light and scattering effects. As shown in Figure 12, our method effectively decomposes
the scene and reconstructs clean object radiance under hybrid low-light and scattering conditions,
demonstrating its robustness in real-world physical settings. Although the vertical depth estimation
becomes less precise due to interference from multiple interacting media, it still faithfully reflects the
depth property of the scene.

H Downstream Applications

[45] demonstrates that modeling both the object and the participating medium in 3D space enables a
range of downstream applications, such as scene geometry reconstruction, clear radiance restoration,
and medium property estimation. Building on this foundation, we explore several physically grounded
applications enabled by our I2-NeRF framework, particularly in underwater environments.

H.1 Single-Image Volume Estimation

Benefiting from our metric-preserving framework, our model enables the estimation of real-world
physical quantities. In this section, we demonstrate how the volume of subsurface water can be
estimated from a single underwater image, based on certain valid approximations and simplified
geometric assumptions.

We begin by assuming an orthographic camera model, where all rays emitted from image pixels
are parallel to the horizontal axis. For each pixel pi,j in an image of size HI ×WI , the emitted ray
travels horizontally until it intersects with an object surface. The horizontal distance from the camera
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Figure 13: Illustration of subsurface water volume estimation under an orthographic projection
assumption. Left: Each image pixel corresponds to a non-overlapping 3D cuboid, defined by its
horizontal extent zi,j , vertical height ∆zΦi,j , and pixel-aligned width ∆w. Right: All rays are assumed
to be parallel and aligned along the horizontal axis, consistent with an orthographic camera model.

is denoted as zi,j . Meanwhile, the downwelling attenuation module estimates the vertical distance
from the ray to the water surface, denoted as zΦi,j .

To convert image coordinates into real-world dimensions, we assume that a physical scale prior is
available—that is, the real-world width corresponding to the image field of view is known or can be
estimated. In our case, for the underwater scene captured in Okinawa, we set the real-world width to
six meters based on a rough field measurement of a subsea anchor present in the scene. As illustrated
in Figure 13, each pixel is thus associated with a unique cuboid in 3D space, defined by its horizontal
extent zi,j , vertical height ∆zΦi,j , and lateral span ∆w, where ∆w = Wreal/WI is the real-world
width per pixel assuming uniform spacing. Since adjacent rays may penetrate to different depths,
we compute the ∆zΦi,j of each vertical water column by taking the difference in downwelling depth
between vertical neighboring pixels:

∆zΦi,j =

{
zΦi,j , if i = 0

max(0, zΦi,j − zΦi−1,j), otherwise
(62)

The resulting per-pixel water volume is given by:

Vi,j = zi,j ·∆zΦi,j ·∆w (63)

Summing over all pixels across the image yields the total visible subsurface water volume:

Vtotal =

HI∑
i=1

WI∑
j=1

zi,j ·∆zΦi,j ·∆w (64)

Applying this formulation to our underwater scene, and using the anchor-based scale prior of six
meters image width, we estimate the total traversed water volume visible in the field of view to be
approximately 330.68 cubic meters.

Although we introduce certain approximations and simplified assumptions, our method retains the
ability to recover physically interpretable quantities. Unlike previous approaches that operate entirely
within virtual space, I2-NeRF incorporates geometric alignment with physical measurements. This
enables the estimation of real-world metrics, such as volumetric quantities, in a manner consistent
with the physical structure of the environment.
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Figure 14: Physically-grounded synthesis under varying water depths. By modifying the downwelling
depth estimated in our model, we simulate the same scene under shallower (left) and deeper (right)
water conditions.

H.2 Physically-Grounded Synthesis

Our framework reveals interpretable physical properties such as attenuation and scattering coefficients,
sunlight parameters, and distances in the 3D volume, which enables controllable and physically
grounded scene synthesis. In this example, we simulate the same scene under shallower and deeper
water by scaling the downwelling depth by a factor of one-third and three, respectively. These changes
affect scattering and ambient illumination, resulting in noticeable variations in color tone, contrast,
and visibility. As shown in Figure 14, our model enables realistic appearance modulation that reflects
physically plausible modulation in underwater conditions. This supports the potential of our approach
not only for geometry-aware rendering but also for physically grounded scene editing aligned with
underwater optics.

I Implementation Details

In our implementation based on the Zip-NeRF codebase [8], we set the number of proposal sampling
points to 128, the number of NeRF sampling points to 32, and the number of media upsampling
points to 32, treating them equally to object samples. The sampling hierarchy level is set to 2. We
employ two separate hash grid encoders for object and media components, which introduces a slight
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increase in training time but is necessary to preserve their distinct geometry and spatial distributions.
The output dimensionality of both hash encoders is set to 256.

Under scattering conditions, to enforce per-ray constant medium properties (i.e. σattn, σscat, and
zΦ) as in the RUIF simplification [2], we pool the per-sample predictions along each ray and use the
pooled values in subsequent volume rendering. For low-light conditions that favor spatially varying
medium distribution, we instead preserve the per-sample media densities, allowing each sampled
point to maintain its distinct value during volume rendering.

For the LOM dataset [16], we use a batch size of 4096. For the SeaThru-NeRF dataset [45], the
batch size is set to 2048, and for our captured underwater scenes, it is set to 1024. Each batch size is
scaled proportionally to the total number of pixels in the respective dataset. The maximum number of
training steps is set to 25,000. We use the Adam optimizer with an initial learning rate of 10−2 and a
final learning rate of 10−4.

Input images are loaded into the NeRF model at their original resolutions. We follow the same
train-test splits provided by the datasets. For the SeaThru-NeRF dataset [45], we adopt the common
practice in previous studies by assigning every 8th view as the test view. All experiments are
conducted on a single NVIDIA RTX A6000 Ada GPU. Training time are provided in Appendix L.

J Sanity Check

(a) ZipNeRF [8] (b) Our direct radiance (c) Our backscatter radiance

Figure 15: Sanity check on clear-air Fern scene from NeRF dataset [56].

(a) ZipNeRF [8] (b) Our direct radiance (c) Our backscatter radiance

Figure 16: Sanity check on clear-air bike scene from LOM dataset [16].
Following SeaThru-NeRF [45], we conduct a similar sanity check by applying our model to clear-air
scenes while enabling the media branch. As shown in Figure 15 and Figure 16, we compare the
novel-view synthesis of direct radiance and backscatter radiance of our method with the ZipNeRF [8]
baseline. Our approach produces no backscatter component when scattering is absent in clear-air
scenes.

K Multiple Running

Table 6: Multiple running statistics on the bike and Curasao scenes.
Metrics PSNR SSIM LPIPS

bike 22.82 ± 0.05 0.798 ± 0.01 0.279 ± 0.00
Curasao 30.55 ± 0.04 0.860 ± 0.01 0.142 ± 0.00
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Due to computational costs, we present statistical results based on multiple runs for two scenes:
the low-light bike scene from the LOM dataset [16], and the underwater Curasao scene from the
SeaThru-NeRF dataset [45]. As shown in Table 6, we report the mean and standard deviation of
PSNR, SSIM, and LPIPS metrics across five independent runs.

L Training Time Analysis

In this section, we present a training time analysis of our method and baseline approaches on the
low-light [16] and underwater [45] datasets. As shown in Figure 17, our method achieves fair training
efficiency, benefiting from hash encoding to accelerate convergence. Gaussian Splatting-based
approaches demonstrate significantly faster training times due to their rasterization-based rendering
process.

Figure 17: Training time analysis of our method and baseline approaches on low-light and underwater
scenes. For each model, the training time is recorded using a single NVIDIA RTX A6000 Ada GPU.

M Dataset Diversity

In this study, we evaluate our method on benchmarks that encompass various types of media
degradation. For low-light scenes, we use the LOM dataset [16], which contains five real-world
scenes captured as underexposed multi-view images, along with corresponding ground-truth well-lit
images. For underwater scenes, we employ the SeaThru-NeRF dataset [45], which includes four
real-world underwater scenes without ground-truth clean object radiance. Additionally, we capture
two underwater scenes ourselves—one under well-illuminated conditions and another exhibiting a
hybrid of low-light and underwater scattering. For hazy environments, we utilize the synthetic hazy
Fern scene provided in [45].

The datasets used in our evaluation cover a wide range of degradation scenarios, allowing for a
fair comparison and clearly demonstrating the superior performance of our method over baseline
approaches. Nonetheless, evaluating on a larger number of scenes would further strengthen the
generality of our conclusions. Given the limited availability of multi-view datasets with media
degradation, collecting more real-world data, especially with paired degraded and ground-truth
images, is considered as future work.

N Future Works

Apart from real-world paired datasets that facilitate the study of 3D reconstruction under degraded
conditions, several key directions deserve further investigation. First, integrating physically grounded
3D representations into large-scale foundation models offers a promising path toward spatially
and physically aware reasoning. Such integration could enhance the model’s ability to understand
geometry, material properties, and environmental interactions in complex scenes.

Second, there remains a lack of evaluation metrics that reflect physical correctness. Existing image-
based metrics such as PSNR and SSIM are limited to appearance similarity and fail to capture
geometric fidelity or physical plausibility. While comparisons based on point cloud or mesh complete-
ness are more suitable for geometric evaluation, they require high-quality ground-truth data and are
not applicable to implicit volumetric representations, which do not produce point- or surface-based
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outputs. Developing evaluation metrics that account for radiometric consistency, media-aware realism,
and structural integrity is increasingly important as scene representations move toward physically
based modeling.

Finally, most reconstruction pipelines assume access to accurate camera poses. However, in real-world
degraded environments, such priors are often unavailable. Traditional structure-from-motion methods
and deep learning-based pose estimators struggle under strong scattering, blur, and noise. Recent
advances in pose-free methods alleviate this dependency by learning jointly from unposed images,
but their performance remains limited in heavily degraded conditions. Improving the robustness of
such methods under physical degradation is critical for real-world deployment.
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