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Abstract

The ability to perceive and reason about individual objects and their interactions is a goal to
be achieved for building intelligent artificial systems. State-of-the-art approaches use a feed-
forward encoder to extract object embeddings and a latent graph neural network to model
the interaction between these object embeddings. However, the feedforward encoder can not
extract object-centric representations, nor can it disentangle multiple objects with similar
appearance. To solve these issues, we introduce Slot Structured World Models (SSWM),
a class of world models that combines an object-centric encoder (based on Slot Attention)
with a latent graph-based dynamics model. We evaluate our method in the Spriteworld
benchmark with simple rules of physical interaction, where Slot Structured World Models
consistently outperform baselines on a range of (multi-step) prediction tasks with action-
conditional object interactions. All code to reproduce paper experiments is available from
https://github.com/Anonymous/Slot-Structured-World-Models.

1 Introduction

The ability to distinguish individual components of a visual scene and reason about their interaction is a
key aspect of human cognition (Spelke & Kinzler, 2007). It allows us to build a solid comprehension of
our environment and is therefore also considered an important requirement for artificially intelligent systems
(Battaglia et al., 2018). Ideally, we obtain models that take in raw images, flexibly represent the objects in the
scene, and can predict the effect of actions on individual objects and their interactions (Ha & Schmidhuber,
2018; Moerland et al., 2023). Several papers have indeed addressed this challenge (Van Steenkiste et al., 2018;
Kipf et al., 2019; Watters et al., 2019b). A particularly successful idea is to extract the objects in the scene
and use graph neural networks (GNN) (Wu et al., 2020) to model the pairwise interaction between objects,
which achieved state-of-the-art results as ‘Contrastively Learned Structured World Models’ (C-SWM) (Kipf
et al., 2019).

The current GNN-based approach does however have remaining challenges, as noted by the authors of C-
SWM as well (Kipf et al., 2019). The method uses a feedforward encoder to embed the scene into a fixed
set of embeddings for the latent GNN model, an approach that has several limitations. First of all, the fixed
feedforward encoder cannot disambiguate multiple objects with the (approximate) same appearance: they
will be detected in the same feature map (see Fig. 1 for an illustration of this problem). Moreover, the
number of discoverable objects is fixed in the architecture and cannot therefore vary at inference time.

To overcome the above limitations, we propose to instead feed the latent GNN-based transition model with
an object-centric encoder (Engelcke et al., 2019; Greff et al., 2019; Burgess et al., 2019; Locatello et al., 2020;
Biza et al., 2023). Such encoders learn to return a set of embeddings that each represent information about an
individual object in the scene. One successful approach is Slot Attention (SA) (Locatello et al., 2020), which
utilizes an (iterative) competitive attention mechanism between the object-specific slots to force individual
objects into distinct slots. These methods repeatedly apply the same encoder to extract each object (sharing
information), can disentangle similar objects due to the competitive attention, and can adjust the number of
initialized slots at inference time. As such, object-centric encoders such as Slot Attention provide the exact
characteristics we desire for downstream use in GNN-based dynamics models.

This paper therefore proposes a new type of dynamics model that embeds an object-centric encoder and
a GNN-based world model. In particular, we use Slot Attention to generate embeddings for a latent GNN
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Figure 1: Comparison of object masks learned by C-SWM (baseline, top row) (Kipf et al., 2019) on Shapes
2D and SSWM (our method, bottom row) on Interactive Spriteworld. The left image of each row shows the
input image, while the five images next to it show the learned object masks (encoder output) that enter
the GNN. Top: The input image contains two duplicate objects (red circles and red triangles), which the
C-SWM encoder cannot disentangle and instead conflates in a single embedding (for example, the two red
circles end up in both the first and fourth embedding). These embeddings will make modeling of pairwise
object interactions in the downstream GNN less effective. Bottom: In contrast, our SSWM method can
disentangle the duplicate items in the input image (orange circles) into distinct slots, due to the object-centric
competitive attention mechanism in the Slot Attention encoder. This allows for more effective modeling of
object interaction in the downstream GNN, as we show in the Results section and in B. We made the
comparison on different environments as C-SWM could not learn any useful representation in Interactive
Spriteworld. This does not affect the significance of the figure as its purpose is to exhibit the behaviors of
the two methods when dealing with visually identical objects.

dynamics model (inspired by C-SWM), which we call Slot Structured World Models (SSWM). The high-level
architecture of SSWM is shown in Fig. 2. However, note that the idea to combine object-centric encoders and
GNN-based dynamics models is more general, and one can easily swap Slot Attention for any other object-
centric embedding method (as long as the method produces a set of feature vectors that bind individual
objects).

To test our approach we extend the well-known Spriteworld benchmark (Watters et al., 2019a), introduced
for object-centric learning in COBRA (Watters et al., 2019b), with physical rules of interaction. While in
the original Spriteworld an object pushed into another object would start to overlap, in our new Interactive
Spriteworld environment the second object will be pushed away. This ensures objects actually interact with
each other, and also demands richer representations (since the exact shape of an object starts to matter,
while in the previous setting their location and velocity would suffice). Experimental evaluation on a range
of Interactive Spriteworld tasks shows that SSWM consistently outperforms the state-of-the-art baseline
C-SWM in 1-step, 5-step, and 10-step predictive accuracy. Quantitative evaluation indicates that SSWM
indeed makes accurate predictions, although slight deviations do start to accumulate over longer prediction
horizons.

In summary, this paper proposes SSWM, the first learned dynamics model that:

• can isolate individual objects and reason about their (action-conditional) interactions from raw pixel
input

• can disambiguate between multiple objects with similar appearance

• numerically outperforms the state-of-the-art object-centric dynamics model C-SWM on (multi-step)
prediction tasks
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Figure 2: Architectural design of Slot Structured World Models. Given an input image (left), we use
a pretrained Slot Attention encoder to produce a set of object-centric embeddings (zt) that capture the
objects (and background) in the scene. These latent embeddings are then fed together with the chosen
action into an iterative GNN transition module (defined in Algorithm 1) to predict the change in the next
latent state (∆zt). The graph-based transition model is trained to minimize the (object-wise) L2-norm
between the latent prediction (zt +∆zt) and the Slot Attention embedding of the true next state (zt+1). The
slot attention encoder used to obtain the targets for our loss is the same exact encoder we use to produce
the state embeddings.

2 Background

The architecture presented by (Kipf et al., 2019) in C-SWM, is structured in three different sub-modules:
object extractor, object encoder, and relational transition model. The object extractor is a function
Eext(st) = {m1, ..., mk} mapping an RGB image st into a set of K feature maps meant to represent a
mask binding to one of the K objects (K is fixed). It is implemented as a fully convolutional network whose
last layer produces at least K feature maps (at least one per object) and is activated by sigmoid (to obtain
feature maps interpretable as masks). The object encoder shares parameters across the objects and is a
function Eenc(mi) = zi embedding each of the K masks to a latent vector zi ∈ RD. The relational transition
model is a function T (zk

t , ak
t ) = ∆zk

t computing the update for each of the abstract representation zk
t given

an action ak
t associated. It is implemented as a Graph Neural Network (GNN) (Scarselli et al., 2008) using

the following message-passing updates:

e
(i,j)
t = fedge([zi

t, zj
t ]) (1)

where e
(i,j)
t is the edge (the relationship) between the nodes zi

t and zj
t , and fedge([zi

t, zj
t ]) is a simple MLP

taking as input the concatenation of the vectors zi
t and zj

t .

∆zj
t = fnode([zj

t , aj
t ,

∑
i ̸=j

e
(i,j)
t ]) (2)

where ∆zj
t is the update of the object zj

t given the application of action aj
t and the sum of its incoming

edges. The entire architecture is trained to minimize the loss function:

L = H + max(0, γ − H̃) (3)

H = 1
K

K∑
k=1

d(zk
t + ∆zk

t , zk
t+1), H̃ = 1

K

K∑
k=1

d(z̃k
t , zk

t+1) (4)

with H being the average Euclidean distance between the predicted next states (factorized) zk
t + ∆zk

t and
the encoding of the real next states zk

t+1. This part of the objective is used to optimize the performance
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of the transition model. H̃ is the average Euclidean distance between the encoding of a state s̃t randomly
sampled from the experience replay. This part of the objective is meant to prevent the encoder from similarly
representing different states. In other words, the first part of the objective moves the target towards positive
examples while the second distances it from negative ones.

3 Related Work

Object-centric representation learning Several lines of work in this field proposed successful unsuper-
vised approaches in tasks such as object discovery. Some examples of these approaches are Engelcke et al.
(2019); Greff et al. (2019); Burgess et al. (2019); Locatello et al. (2020), which learn to represent raw images
as a set of latent vectors binding to individual objects. Different from the other works mentioned (that use
multiple encode-decode steps), Slot Attention (Locatello et al., 2020) manages to perform just one encoding
step thanks to a simple yet effective iterative attention module. This characteristic makes Slot Attention
much more computationally efficient than its precursors. For this and other reasons (such as data and train-
ing efficiency), we chose this model for the scope of our work. For the same reasons, this approach has been
further extended by more recent works. In particular, works such as Chang et al. (2022); Jia et al. (2022)
propose extensions to improve the slot optimization process, while the more recent Invariant Slot Attention
(Biza et al., 2023) introduces a method to make Slot Attention’s representations invariant to features such
as position, scale, and rotation.

Object-based Models of Environments Given the structured nature of many environments where
multiple entities (agents and objects) interact, learning a robust and accurate model of such environments
requires specific architectural biases. In line with this premise, numerous previous approaches such as
(Sukhbaatar et al., 2016; Chang et al., 2016; Battaglia et al., 2016; Watters et al., 2017; Hoshen, 2017;
Wang et al., 2018; Van Steenkiste et al., 2018; Kipf et al., 2018; Sanchez-Gonzalez et al., 2018; Xu et al.,
2019; Kipf et al., 2019) adopted solutions based on graph neural networks to build structured world models.
Among these methods, C-SWM stands out for the ability to learn states’ representations and a transition
model simultaneously and without relying on any pixel-based loss. Yet this method presents an encoder that
cannot separate the information of objects with identical appearances. Another relevant approach in this
field is COBRA (Watters et al., 2019b), which, similarly to our approach, adopts a pretrained object-centric
model (MONet (Burgess et al., 2019)) to obtain structured representations. Unlike C-SWM and this work,
COBRA does not model relationships between objects, as its transition model is not implemented as a graph
neural network.

4 Environment

The Spriteworld environment (Watters et al., 2019a), introduced in COBRA (Watters et al., 2019b), is a
visual benchmark task where objects of varying shapes and colors can be moved around. However, when
two of these objects are pushed against each other, they start to overlap (instead of pushing against each
other). This lack of physical object interaction makes that the dynamics of Spriteworld can be encoded by
just the object positions (Watters et al., 2019b). To challenge our models in a more complex environment
that requires richer object representations, we therefore extend Spriteworld with simple rules of physics: In-
teractive Spriteworld (available at https://github.com/Anonymous/Interactive-Spriteworld), in which
an embodied agent can move objects around (Fig. 3).

The environment consists of a square arena with a black background and five objects. At the beginning of
every episode, the shape of each object is sampled from a discrete and uniform distribution of three shapes
(circle, square, and triangle), the position is sampled from a continuous distribution covering the entire space,
and the (plain) color is sampled from a continuous distribution along three channels (HSV). The agent is
represented by a white sprite of smaller size. This agent can take one of four possible actions (move down,
up, left, or right) and moves other objects by colliding with them.

The first row of Figure 3 shows some example observations from Interactive Spriteworld. We can clearly
observe scenes with objects of similar or identical appearance, which we expect the C-SWM encoder to
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Figure 3: Example states from Interactive Spriteworld. The top row shows five samples from different
episodes. The bottom row shows five consecutive timesteps of a particular episode where the agent (white
circle) keeps moving down, carrying all objects in the scene down as well (since they push against each
other).

struggle with (see Fig. 1). The second row illustrates the implemented simple rules of physics: if a moving
sprite/object A hits a static object B, B acquires A’s motion, and so on until the chain stops. To model
these dynamics, a learned transition model needs representations containing information about each object’s
position, shape, and size, to determine the exact moment of contact between two objects.

5 Methodology

The overall architecture of Slot Structured World Models is shown in Fig. 2. We first encode the input
image (left part of the figure) with the object-centric Slot Attention encoder (Locatello et al., 2020). This
Slot Attention encoder is pretrained separately, with full details provided in Appendix A.1. The output of
the encoder is a set of object-centric representations (zt = {z1

t , .., zK
t }), where K denotes the number of

slots. These slot vectors are then fed into the graph neural network to model the interaction between these
objects (left-middle part of the figure). The output of the GNN is a set of object-centric delta vectors (∆zt)
that predict the change in each object’s latent representation given the chosen action. We train the GNN
on an object-wise L2 loss (right-middle of the figure) between the predicted next states (zt + ∆zt) and the
encoding of the true next states (zt+1) (right-part of the figure), similar to the first term of the loss in Eq.
3. We drop the second term of the contrastive loss since the pretrained SA encoder already provides us with
a well-structured latent representation space. Note that our Slot Attention encoder is pretrained, but the
whole architecture could also be trained on the same loss in an end-to-end fashion.

SA design Since the loss of the transition model compares the predicted slot vectors with the ones resulting
from the encoding of the next state in a pair-wise fashion, we prefer to maintain their ordering constant.
This prevents computationally expensive sorting based on similarity metrics. For this reason, we learn fixed
slot initializations instead of sampling them from a (learned) normal distribution. However, note that this
choice does fix the number of slots at inference time in our experiments.

GNN design We need to further adapted the C-SWM transition model to be suitable for a more complex
environment such as Interactive Spriteworld. As mentioned in Section 4, colliding objects may cause a chain
of movement in several objects. For this reason, a single round of message passing is not sufficient to model the
dynamics of the environment, and we need to iterate this process multiple times. To allow the GNN to take
into account previous node updates, the edge function in Equation 1 is turned into fedge([zi

t+1, zj
t+1, ∆zi

t]).
The intuition is that the update ∆zi

t contains information about the direction of the transition of zi
t into

zi
t+1. Therefore, in case of collision between zi

t+1 and zj
t+1, the edge function can predict a relation vector
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Algorithm 1 Iterative GNN Module
Require: S = {z1, ..., zK} ∈ RK×D Slots vectors, at action

zi
0 ← {0}D

i, j ← get_inds_from_adj_matrix(K)
e

(i,j)
0 ← fedge([zi

0, zj
0, ∆zi

0])
∆zj

1 ← fnode([zj
0, at,

∑
i̸=j e

(i,j)
0 ])

zi
1 ← zi

0 + ∆zi
1

for n = 1→ K do
e

(i,j)
n ← fedge([zi

n, zj
n, ∆zi

n])
∆zj

n+1 ← fnode([zj
n, {0}D,

∑
i ̸=j e

(i,j)
n ])

zi
n+1 ← zi

n + ∆zi
n+1

end for

e(i,j) that can be interpreted as the force applied by zi
t+1 on zj

t+1 given ∆zi
t. Finally, the node function then

predicts a node update based on the associated action and the sum of all its incoming edges.

Iterative GNN procedure The full iterative GNN procedure of SSWM is shown in Algorithm 1. The
module takes as input a set of K vectors zi

t ∈ RD and an action at (one-hot vector). Before starting the loop,
the algorithm builds a K × K adjacency matrix with the diagonal set to zero (to avoid relations between
an object and itself) representing a fully connected graph, and initializes the per-object updates ∆zi

0 to zero
(since no object has moved yet). At this point, the edge function is fed with a set of K × (K − 1) vectors
obtained as the concatenation of zi

0, zj
0, and ∆zi

0 with the auxiliary of the adjacency matrix. Then the node
updates ∆zj

1 are obtained as in Equation 2 and the nodes zi
1 are obtained by summing all the nodes zi

0 with
the corresponding updates ∆zi

1. This first phase before the loop is meant to predict the position of the agent
after it takes action at, while the iterative part is meant to predict the transition of every other object based
on the forces they apply to each other. For this reason, the actions to be fed to the node function are set to
zero.

At every iteration n > 0 the edges are computed as e
(i,j)
t = fedge([zi

n, zj
n, ∆zi

n]), the node transitions as
∆zj

n+1 = fnode([zj
n, 0,

∑
i ̸=j e

(i,j)
t ]), and the nodes as zi

n+1 = zi
n + ∆zi

n+1. Finally, since in the worst case,
the agent motion causes movement of all the other objects, the number of iterations is set to K − 1 where
K is the number of discoverable objects.

6 Experiments

6.1 Metrics

We adopt the same metric as used by Kipf et al. (2019), namely: Hits at rank k (H@k) and Mean Reciprocal
Rank (MMR). These metrics allow direct evaluation in latent space instead of having to train a separate
decoder.

• Hits at rank k: We first rank each predicted object vector based on its distance with the full set of
ground-truth encoded object vectors in the entire dataset (similar to Kipf et al. (2019)). The H@k
score per object vector is 1 when the rank of the inferred vector does not exceed k, and 0 otherwise.
We report the percentage of ‘Hits at rank 1’ over the entire dataset.

• Mean Reciprocal Rank: The MRR is an aggregate of the above ranking, defined as the average
of the inverse rank of all the n samples present in the evaluation dataset: MRR = 1

N

∑N
n=1

1
rankn

,
where rankn is the rank of the n-th sample.

Note that latent space evaluation metrics do have some edge cases, about which we further report in Appendix
A.2.
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Table 1: Quantitative performance of SSWM and C-SWM on Interactive Spriteworld. Results are reported
over three prediction horizons (1, 5, and 10 steps) and over three test sets (collision-free, single collision,
chain of collisions). The best scores are highlighted in bold. We observe that SSWM outperforms C-SWM
on all test scenarios and prediction horizons, with a difference that becomes more pronounced over longer
horizons. Standard deviations over four runs are added in grey.

1 Step 5 Steps 10 Steps
Model H@1 MRR H@1 MRR H@1 MRR

te
st

1 SSWM 98.2±1.3 98.8±0.8 93.5±1.1 95.3±0.8 88.0±2.1 92.4±1.1

C-SWM 72.0±18.5 82.2±11.9 36.0±23.4 53.5±19.5 23.7±18.6 42.7±17.7

te
st

2 SSWM 97.5±1.1 97.9±0.9 86.8±0.8 90.2±1.0 73.8±1.6 81.2±0.5

C-SWM 89.7±7.4 94.2±4.1 50.0±14.9 69.6±10.0 20.3±13.2 48.0±10.0

te
st

3 SSWM 97.2±0.4 98.0±0.3 89.0±0.6 93.5±0.7 68.3±3.5 79.6±2.0

C-SWM 86.3±9.0 92.3±5.2 59.3±10.5 75.5±7.5 19.3±12.6 48.2±10.5

tr
ai

n SSWM 100±0.0 100±0.0 99.0±0.2 99.1±0.2 95.7±0.7 96.4±0.5

C-SWM 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

6.2 Experimental Setup

All results are averaged over four independent repetitions, with hyperparameters reported in Appendix
Table 5. As a baseline we use C-SWM with default feedforward encoder, augmented with the iterative
GNN module described Algorithm 1. We further augment the number of feature maps from one to four
per object to model the positional information (as in the original paper) as other relevant information. The
training dataset consists of 6 · 104 samples, one-third of which were collected with a random policy acting
in the environment, and the remaining part from human demonstration to collect a diverse set of complex
interactions (which does not occur with random action selection). The test set is divided into three disjointed
subsets sorted in ascending order of difficulty, each containing 103 unseen samples structured in 10 episodes
of 100 timesteps. The first set contains 10 "collision-free" trajectories where the agent is the only sprite
moving, the second set includes several sequences of steps (per episode) where the agent carries one sprite
at once, and the last contains complex trajectories where the agent can carry multiple sprites at once or in
a chain. This division is meant to highlight the strengths and limits of both classes of models and help to
individuate and interpret their behaviors under different settings.

6.3 Quantitative Analysis

Table 1 shows quantitative performance measures for both SSWM and C-SWM on the three types of predic-
tion tasks in Interactive Spriteworld, split up into 1-step, 5-step, and 10-step prediction horizons. We first
of all observe an increase in performance of SSWM over C-SWM for all studied settings. The first column
shows the 1-step prediction accuracy, which achieves a score close to 100% on unseen instances of Interactive
Spriteworld. Interestingly, the accuracy in scenarios where the action only affects the agent (Test 1) is almost
equal to the accuracy in scenarios where the agent moves one object (Test 2) or multiple objects (Test 3).
This suggests SSWM is able to accurately generalize over object interactions.

When we increase the prediction horizon to 5 (second column) and 10 (third column) steps, we see that
the prediction accuracy starts to decrease for both SSWM and C-SWM. This phenomenon is probably due
to compounding errors, a well-known phenomenon when unrolling multi-step prediction models (Talvitie,
2014). We also see that SSWM starts to more strongly outperform C-SWM, especially on the longest
prediction horizon. This indicates SSWM has better generalization performance about object interactions.
Interestingly, C-SWM did manage to minimize the loss function on the training data (bottom row), but
did so without encoding indispensable information such as the object shape (a topic to which we return in
the next section). This should not be surprising as the contrastive objective of C-SWM does not explicitly
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Figure 4: Pixel space decoding of the learned latent space predictions of SSWM. The top-left 3x4 images
show predictions when only the agent/sprite is moving, the top-right 3x4 images show predictions when
the agent carries one object, and the bottom 3x4 images show predictions when the agent moves multiple
objects (that push against each other). For each 3x4 block, the three rows show 1, 5, and 10-step predictions,
respectively. The four images in each of these rows show the true source state (‘State’), the decoded state
predicted by SSWM (‘Pred. Next State’), the true state reached after taking the actions (‘Next State’), and
the prediction error between the latter two (‘Next state - Pred’), where full black indicates no error.

lead the encoder in that direction, and the network can find many solutions to uniquely identify objects. In
contrast, SSWM appears to better encode all object properties, and as such is able to achieve more accurate
long-range predictions.

6.4 Qualitative Analysis

We also want to qualitatively evaluate the predictions of our models, ideally in the original pixel space
(for interpretability). Therefore, we use the decoder obtained during the Slot Attention pretraining phase
to show the predictions SSWM makes. For these visualizations, we use the best model obtained out of
the four repetitions. Do note that the dynamics model was never explicitly trained for these pixel space
reconstructions, but only received a loss in latent space. For C-SWM, we, of course, do not have this decoder,
and instead show the masks produced by the object extractor to evaluate the quality of the embeddings.

SSWM predictions Fig. 4 shows examples of predictions made by SSWM in the three test scenarios:
only the agent moves (top-left 3x4 block), the agent moves a single object (top-right 3x4 block) or the agent
moves multiple objects (bottom 3x4 block). In each block, the three rows show an example of a 1-step (top
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Figure 5: Visualization of the object masks produced by the C-SWM object extractor, for the input images
labeled as ‘State’ (left). We have six slots that each contain four feature maps, which we display above
each other. Ideally, each slot uniquely identifies an object and represents its shape, which we need in
the downstream prediction task. Instead, we see the model cannot detect exact shapes, nor can it isolate
objects per slot (in contrast to the Slot Attention encoder of SSWM, as shown in Fig. 1). This suggests
C-SWM learned a solution that does optimize the contrastive objective of 3, but does not encode all relevant
information.

row), 5-step (middle row), and 10-step (bottom row) prediction. The four images next to each other for each
setting display the start state, the predicted next state, the true next state, and the error between both.

When only the agent moves (top left block of the figure), we see the model predictions are accurate, with a
small difference between the predicted and observed next state. In accordance with the quantitative results
of the previous paragraph, the prediction does become less accurate as the number of steps increases (due to
accumulating errors). The top-right block shows cases in which the agent carriers a sprite in its movement.
Again, we see how the model accurately captures the desired movement of both the agent and the object it
touches, but deviations accumulate over time. For the 10-step prediction, the model has slightly mispredicted
the point of contact between the agent and object (green triangle), and therefore the object ends up too high
in the prediction.

The bottom block of the figure shows a scenario where the agent moves multiple objects, pushing against
the blue triangle which itself pushes the purple triangle. We can clearly see that SSWM can model such
multi-object interactions, since the purple triangle is indeed predicted to move in a coherent fashion with the
chosen action. We do again see some slight prediction error, in accordance with earlier observations, that
accumulates over time. In agreement with the quantitative results, the compounding error increases faster
when multiple objects interact (mostly since more objects can be mispredicted).

C-SWM representations We hypothesized that the lack of generalization exhibited by the baseline
(C-SWM) is due to the poor quality of the learned embeddings. To investigate this hypothesis, Fig. 7
shows the feature maps obtained per slot by the C-SWM encoder output. Note that each slot consists of
four feature maps, which we plot above each other. Clearly, the Interactive Spriteworld tasks require the
encoding to represent the exact shape of an object (to determine the point of contact). However, from the
visualization, we can clearly see that the C-SWM representations do not represent their exact shape, nor
do they even represent them individually. This suggests the CNN-object extractor of C-SWM did not learn
filters that isolate objects and contain the necessary features for this task. This observation, together with
the quantitative results reported in Table 1, confirms the hypothesis that C-SWM learned a solution that
does optimize the objective in Eq. 3 without encoding all relevant information. In contrast, the features
learned by the Slot Attention encoder of SSWM do isolate objects and capture their exact shape, as was
already shown in the bottom row of Fig. 1. This likely explains the better quantitative performance of
SSWM visible in Table 1.
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7 Conclusion

This paper introduced Slot Structured World Models, a simple and flexible framework that combines an
object-centric encoder with a GNN-based latent transition model. The full SSWM architecture outperforms
the state-of-the-art object-centric dynamics model C-SWM by learning more informative representations,
while it is also able to disambiguate multiple objects with similar appearances in a scene. Qualitative analysis
indicates that C-SWM overfits the training data without learning meaningful latent representations, whereas
SSWM learns better representations through Slot Attention which strongly improves prediction performance.

There are several directions for future work. First, we currently learn a fixed number of slot initializations,
since this allows us to directly construct the pairwise latent loss. However, object-centric encoders such as
Slot Attention naturally allow a change in the number of latent slots (discoverable objects), by training a
slot initialization distribution. We would then of course need to construct the pairwise latent object loss
based on similarity metrics, which might make optimization more unstable. Another solution would be to
train the whole architecture in an end-to-end fashion. This might also improve the qualitative pixel space
predictions: we currently fully rely on the representations learned by SA auto-encoding, but a dynamics loss
on the change between frames might put more emphasis on agent and object behavior. A third direction
would be to improve multi-step prediction performance, for which we could for example train on a multi-
step objective (Abbeel & Ng, 2004). Finally, it would also be interesting to test these models in downstream
decision-making tasks, i.e., model-based reinforcement learning.
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A Appendix

A.1 Slot Attention

The Slot Attention module proposed in Slot Attention Locatello et al. (2020) takes as input a set X ∈
RN ×Dinput of N feature vectors augmented with positional embeddings, and produces a set S̃ ∈ RK×D of
K slots. The feature vectors are projected in a D-dimensional space through learned linear transformations
k and v (respectively keys and values), while the slots (queries) are independently sampled from a Normal
distribution defined by learnable parameters µ, σ ∈ RD. The slots are then refined through an iterative
mechanism involving multiple steps per iteration.

The first step consists of computing the attention matrix

A = Softmax(k(x) · q(s)T

√
Dslot

) (5)

where x are the input feature vectors and s the sampled slots. The dot product between the input features
and the slots relates each slot with parts of the image, then the resultant coefficients are normalized by
softmax over the queries to ensure competition between the slots for explaining part of the image. At this
point, the updates are obtained by combining the input values with the attention matrix normalized over
the slots:

U = W T · v(x), Wi,j = Ai,j∑N
l=1Al,j

(6)

The final updates of each iteration are obtained by a passage of Gated-recurrent-Unit GRU followed by an
MLP with a residual connection.

In order to perform object discovery, the slots are decoded into images and masks that are then combined
and summed up to obtain a single image. The training objective is therefore to minimize the mean squared
error between the input image and the reconstructed one.

A.2 Additional Experiments

This section shows some additional experiments initially meant to solve the multi-step prediction issue.
Hence, in the first instance, we attributed the difficulty of SSWM in making predictions over longer horizons
to Slot Attention’s embeddings. We thought that having representations where all the features are entangled
(as those of Slot Attention) could be a limit for the latent transition model accuracy (and generalization).
Even though disentanglement is certainly a desired property, the next experiments highlighted that the
causes of the multi-step prediction issue reside somewhere else. In addition, the next experiments show some
limit cases where the metrics involved in our experiments can lead to improper interpretations.

A.2.1 SSWM

The results shown in this subsection are obtained by replacing Slot Attention with DISA (?) which ensures
disentangling features such as position, scale, shape, and texture.

The results observable in Table 2 may create the illusion that the disentangled representations provided
by DISA suffice to solve the multi-step prediction problem. Unfortunately, Figure A.2.1 shows some visual
examples highlighting a huge divergence with the quantitative measures. We care to explain that we observed
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Table 2: Results obtained by SSWM by replacing Slot Attention with DISA.
1 Step 5 Steps 10 Steps

Test Split H@1 MRR H@1 MRR H@1 MRR
test 1 100±0.0 100±0.0 90.0±0.0 95.0±0.0 100±0.0 100±0.0

test 2 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

test 3 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

also very good qualitative examples using this Encoder, however, we preferred showing our experiments with
slot attention as the quantitative results are more in accordance with what we observe in pixel space.

Figure 6: Different visualizations of the behavior of SSWM under the configuration that achieved the results
in table 2.

As briefly mentioned in Section 6.3, the metrics used to evaluate the models’ performances in latent space can
be far from representing the true quality of the transition model. This can be explained by the fact that the
transition model is trained to minimize the distance between its predictions and the true next state in latent
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space and if it generalizes well in this, it is likely to obtain optimal H@1 and MRR scores during evaluation.
However, even if the distances between predictions and target are insignificant for the metrics involved, in
compact latent space (where the distance between different states has a small order of magnitude), small
perturbations may lead to drastic mispredictions in pixel space as we observe in Figure

A.2.2 C-SWM

We replicated a similar outcome with the baseline using the same configuration in Table 5 and just 2 feature
maps per object.

Table 3: Results obtained by C-SWM using the same configuration in Table 5 made an exception for the
number of feature maps per object that in this case is set to 2.

1 Step 5 Steps 10 Steps
Test Split H@1 MRR H@1 MRR H@1 MRR
test 1 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

test 2 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

test 3 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

We observed similar qualitative results with respect to the baseline used in the main experiments. We
can indeed notice that the C-SWM encoder did not manage to represent useful information and it fails in
assigning each object to a single slot. In this configuration, we observed distances in latent space between a
state and its next with an average order of magnitude of 10−5.

B The Importance of Instance Disambiguation

To highlight the importance of disambiguating identical objects, we investigated the performances of C-SWM
in Shapes 2D (where C-SWM performs perfectly even after 10 steps). By modifying the dataset to have a
unique color (red) for all the shapes (as in figure 1) we forced C-SWM to deal with a situation in which it
cannot learn to separate all the shapes in the scene.

Table 4: Results obtained by C-SWM using the same configuration used in Kipf et al. (2019) on the dataset
Shapes 2D over a single run.

1 Step 5 Steps 10 Steps
Dataset H@1 MRR H@1 MRR H@1 MRR
shapes 2d 64.3±0.0 75.0±0.0 16.9±0.0 30.2±0.0 6.8±0.0 15.6±0.0

The results in Table 4 show that considering couples of similar entities as a single node vector drastically
impacts the performances of the transition model. In this way, one object embedding has a single pair of
spatial coordinates (in this environment the encoder learns to represent only the position) to describe the
location of multiple objects. This makes it difficult for the GNN to generalize as it has to update the vector
in such a way that only the object affected by the action is moved. Furthermore, if an action is coupled with
a slot containing more objects, there is no information to understand which object is supposed to move. As
expected this effect increases in prominence over longer prediction horizons, according to Table 4. It is not
possible to show qualitative results in a similar fashion as SSWM as C-SWM was trained without a decoder.

B.1 Hyperparameters
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Figure 7: Visualization of the representations produced by C-SWM on different states under the configuration
that achieved the results in table 3
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Table 5: Hyperparameters for SSWM and C-SWM
Configurations SA-SWM C-SWM

Learning

lr 0.0005 0.0005
batch size 512 512

epochs 600 600
num objects (w/bg) 6 6

hinge margin - 1

CNN
Encoder

layer1 activation - leaky relu
layer1 filter size - 9× 9 (zero padding)

layer1 features maps - 16
layer2 activations - sigmoid
layer2 filter sizes - 1× 1

layer2 features maps - 6× 4
MLP
Encoder

hidden dim - 512
embedding dim - 64

Slot
Attention
Encoder

slots 6 -
iterations 3 -

embedding dim 64 -
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