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ABSTRACT

Despite exceptional capabilities, Large Language Models (LLMs) still face de-
ployment challenges due to their enormous size. Post-training structured prun-
ing is a promising solution that prunes LLMs without the need for retraining,
reducing computational overhead, and it is hardware-deployment friendly. How-
ever, the training-free nature of post-training structured pruning leads to signif-
icant performance degradation. We argue that the key to mitigating this issue
lies in accurately determining the pruning rate for each layer. Meanwhile, we
find that LLMs may have prior knowledge about their own redundancy. Based
on this insight, we introduce Self-Pruner an end-to-end automatic self-pruning
framework for LLMs, which efficiently search layer-wise pruning rates. Specif-
ically, Self-Pruner leverages LLMs to autonomously execute the entire evolu-
tionary search process to search for pruning rate configurations. In this process,
LLMs are used to generate populations, select parent solutions from the current
population, and perform crossover and mutation operations to produce offspring
solutions. In this way, LLMs automatically generate and evaluate a large num-
ber of candidate solutions, effectively converging to find the pruning rate config-
urations with minimal human intervention. Extensive experiments demonstrate
Self-Pruner’s better performance compared to existing state-of-the-art methods.
Notably, Self-Pruner prunes LLaMA-2-70B to 49B level with only 0.80% drop in
accuracy across seven commonsense reasoning tasks, achieving a 1.39× speedup
on NVIDIA A100 80GB GPU. Further pruning to 35B level resulted in only a
3.80% decrease in accuracy while obtaining a 1.70× speedup. Code is available
in the supplementary material.

1 INTRODUCTION

In recent years, with the rapid advancement of Large Language Models (LLMs) (Zhang et al., 2022;
Touvron et al., 2023a;b), these models have achieved remarkable performance in language under-
standing and generation (Brown et al., 2020; Wei et al., 2022; Lewis et al., 2020). However, the
dramatic increase in the number of parameters has led to significant rises in computational resource
consumption and deployment costs (Zhu et al., 2023). To maintain model performance while miti-
gating computational complexity, various model compression techniques such as pruning (Frantar &
Alistarh, 2023; Sun et al., 2023; Ashkboos et al., 2024; Dong et al., 2024), quantization (Egiazarian
et al., 2024; Xiao et al., 2023; Huang et al., 2024; Shao et al., 2024), and knowledge distillation
(Agarwal et al., 2024; Gu et al., 2024; Ko et al., 2024; Wan et al., 2024) have emerged. Among
these, structured pruning (Ma et al., 2023; Li et al., 2024; An et al., 2024) stands out as it not only
significantly reduces computational overhead and memory usage but also enhances inference speed
on various hardware platforms. This dual benefit of efficiency and accelerated inference has paved
the way for more widespread practical applications of LLMs (Ma et al., 2023; Muralidharan et al.,
2024b).

Traditional structured pruning methods often involve retraining the model, including but not limited
to training from random initialization (Wang et al., 2020), fine-tuning the pruned model (Hou et al.,
2020), or performing iterative pruning (Zhu & Gupta, 2017; Molchanov et al., 2019). However,
the inherent complexity of LLMs and their substantial demands for computational resources and
data make these traditional retraining-required structured pruning strategies difficult to implement
in practice (Xia et al., 2023; Muralidharan et al., 2024a). As a result, post-training pruning has
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Perform step 2 and 3  N times !

Figure 1: An overview of Self-Pruner. Self-Pruner first instructs LLMs with prompts to generate
layer-wise pruning rates as the initial population. Next, Self-Pruner uses these layer-wise pruning
rates to prune the model, evaluating the pruned model to obtain each individual’s fitness. Then, Self-
Pruner instructs LLMs to select parent individuals for crossover and mutation, generating offspring.
This process is repeated for N evolutionary iterations to obtain the final pruned model.

emerged as an increasingly important alternative. This approach is particularly advantageous when
pruning LLMs due to its minimal resource requirements (Zhang et al., 2023b; Dong et al., 2024).

However, it is precisely due to the training-free nature of post-training pruning that leads to a severe
decrease in the accuracy, especially in structured pruning. We observe that this is largely caused by
the inaccurate setting of layer-wise pruning rate. A straightforward way to set the layer-wise pruning
rate is to apply a uniform pruning rate to each layer (Sun et al., 2023; Frantar & Alistarh, 2023).
For instance, LLM-Pruner (Ma et al., 2023) applies the same pruning rate to all the pruned layers.
However, this approach is suboptimal, as the contribution of each layer to the final accuracy varies
significantly, applying a uniform pruning rate across all layers risks removing important weights
(Cheng et al., 2024; Yang et al., 2023). OWL (Yin et al., 2023) has already recognized this issue and
adopted a heuristic metric to set the pruning rate of LLMs inversely proportional to the observed
ratio of abnormal activations within each layer, thereby achieving non-uniform pruning of LLMs.
However, the OWL method relies on manually designed importance metrics, requiring human expert
involvement and tedious iterative experimentation. Additionally, it demands meticulous tuning of
hyperparameters to achieve best performance, making it inefficient.

In this paper, we propose an end-to-end automatic LLMs pruning framework named Self-Pruner,
which efficiently searches for layer-wise pruning rates, significantly enhancing the quality of post-
training pruning for LLMs. Self-Pruner is a framework that uses evolutionary algorithm (Holland,
1992; Bäck et al., 1997) to search for layer-wise pruning rates. Evolutionary algorithms have been
used to automate pruning of CNNs (Liu et al., 2019; Salehinejad & Valaee, 2021) and Transformers
(Li et al., 2022; Liu et al., 2024b). However, the above algorithm requires numerous iterations to
converge to the final solution, which is impractical for LLMs with billions of parameters, as evalu-
ating the performance of pruned LLMs is highly time-consuming (Chang et al., 2024). Meanwhile,
the success of evolutionary algorithms for automate pruning depends largely on the design of the
algorithm. For different pruning networks and compression constraints, specialized genetic opera-
tors (such as crossover and mutation) need to be customized (Liu et al., 2019; Shang et al., 2022).
Designing these evolutionary algorithms manually is often time-consuming and requires extensive
experience and knowledge (Liu et al., 2024c; Lange et al., 2024).

To accelerate the convergence of the evolutionary search and achieve automation in algorithm de-
sign, we chose to have the LLM execute the entire evolutionary algorithm process itself. The insight
behind this approach is that we found LLMs may possess prior knowledge about their own redun-
dancy (Dong et al., 2022; Zhang et al., 2023a; Zheng et al., 2023). We can take advantage of this by
having LLMs generate and evaluate feasible solutions. Therefore, Self-Pruner uses LLMs to gen-
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erate the initial population, constructs a prompt to guide LLMs to select parent solutions from the
current population and perform crossover and mutation to generate offspring solutions. These new
solutions are then evaluated and added to the population for the next round by LLMs. In this way,
LLMs can automatically generate and evaluate a large number of candidate solutions, quickly con-
verging to find the superior pruning rate configurations with minimal human intervention. Notably,
we achieved self-pruning of LLMs through evolutionary search process, marking an important step
towards the fully automated compression of LLMs.

Extensive experiments on language modeling and zero-shot tasks demonstrate that Self-Pruner
achieves better performance compared to existing post-training pruning methods. Using the Self-
Pruner method to prune the LLaMA-2-70B (Touvron et al., 2023b) model, we obtained a 49B model
that achieved only 0.80% drop in average zero-shot accuracy across seven commonsense reasoning
tasks as LLaMA-2-70B with a 1.39× increase in inference speed on GPU. Further pruning resulted
in a 35B model shows only a 3.80% decrease in accuracy compared to LLaMA-2-70B while achiev-
ing a 1.70× increase in inference speed. Both results represent state-of-the-art performance in ex-
isting post-training structured LLMs pruning. The main contributions of this paper are summarized
as follows:

• We propose a novel end-to-end automatic pruning framework that utilizes LLMs to efficiently
search for layer-wise pruning rate without human intervention, marking significant step toward
fully automated LLMs compression.

• We propose a novel method which leverages LLMs to execute the entire evolutionary search
process, including population generation, selection, crossover, and mutation, enabling the self-
pruning of LLMs.

• Extensive experiments show that Self-Pruner outperforms existing post-training pruning methods,
achieving competitive accuracy, while significantly reducing model size.

2 RELATED WORK

Post-training Structured Pruning of LLMs. Structured pruning (Ma et al., 2023) offers advan-
tages such as hardware-friendly sparsity patterns and reduced memory footprint. Traditionally,
structured pruning methods required retraining the model, which was effective for smaller net-
works (Molchanov et al., 2016; Hou et al., 2020). However, when it comes to LLMs, retraining
becomes impractical due to the enormous computational resources and time required (Xia et al.,
2023; Muralidharan et al., 2024a). This challenge has led to the development of post-training prun-
ing techniques specifically tailored for LLMs. Post-training pruning aims to reduce model size and
inference time without the need for extensive retraining (Ma et al., 2023; Sun et al., 2023). How-
ever, existing post-training structured pruning techniques can lead to a sharp drop in the accuracy
of LLMs (Ma et al., 2023; An et al., 2024). In this work, we found that the layer-wise pruning
rate configuration has a significant impact on the accuracy of post-training structured pruning for
LLMs. Through carefully searched layer-wise pruning rates, we can greatly improve the accuracy
of existing post-training structured pruning LLMs.

LLMs for Optimization. In recent years, the capabilities of LLMs have significantly improved
(Naveed et al., 2023). People can now use LLMs to help solve a wide range of problems, including
optimization tasks. For example, LLMs have been employed in heuristic algorithm design (Liu et al.,
2024a; Romera-Paredes et al., 2024), prompt optimization (Yang et al., 2024), solving black-box
optimization problems (Liu et al., 2024d; Song et al., 2024), and neural architecture search (Zheng
et al., 2023; Chen et al., 2024). LLMs have demonstrated powerful understanding and reasoning
capabilities (Brown et al., 2020; Wei et al., 2022) in the aforementioned optimization domains. Nat-
urally, this leads us to consider whether LLMs can be used to optimize the model pruning problem,
specifically by having LLMs design an excellent pruning model. Due to the extensive training of
LLMs on massive amounts of data, they encompass a wide range of domain knowledge, enabling
them to integrate knowledge from multiple related fields (Madani et al., 2023; Hong et al., 2023)
and thereby propose more comprehensive and effective pruning strategies.

LLMs meet Evolutionary Algorithms. Evolutionary algorithms are a class of optimization al-
gorithms that simulate biological evolutionary processes, solving complex optimization problems

3
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by mimicking mechanisms such as natural selection, inheritance, and mutation (Eiben et al., 2015;
Bartz-Beielstein et al., 2014). The integration of evolutionary computation into prompt engineer-
ing for LLMs has shown great potential in improving performance across multiple domains. For
example, it has been applied to code generation (Liventsev et al., 2023; Lehman et al., 2023), text
generation (Guo et al., 2023; Xu et al., 2023), and heuristic algorithm design (Liu et al., 2024a;
Romera-Paredes et al., 2024). The success in these areas have inspired our idea to apply the com-
bination of evolutionary algorithms and LLMs to automated model pruning. By allowing LLMs
to perform the evolutionary search process, we anticipate gradually optimizing pruning strategies
through iterations, thereby effectively enhancing the accuracy of existing pruning methods. This
approach not only fully utilizes the powerful reasoning capabilities of LLMs (Huang & Chang,
2022) but also leverages the advantage of evolutionary algorithms in finding solution within com-
plex search spaces (Whitley, 2001), providing a novel perspective for addressing the challenging
problem of model pruning.

3 METHODOLOGY

3.1 PRELIMINARIES

In post-training pruning of LLMs, a certain proportion of pre-trained weights needs to be removed
to obtain the pruned LLMs. Since the redundancy varies across different layers of the LLMs, the
number of parameters removed from each layer has a significant impact on the accuracy of the
pruned LLMs (Yin et al., 2023; Xu et al., 2024). Given a pre-trained LLM with n layers, we define
the layer-wise pruning rates as p = (p1, p2, ..., pn), where 0 ≤ pi ≤ 1 represents the pruning rate
of the i-th layer, i.e., the ratio of the remaining parameters after pruning to the original number of
parameters in that layer. Our goal is to find the layer-wise pruning rates p∗ such that the pruned
LLM achieves the best accuracy on the test set, while ensuring that satisfies the constraint on the
average pruning rate, i.e., 1

n

∑n
i=1 pi = β, where β is the given average pruning rate. This problem

can be formulated as an optimization problem as bellow:

(p1, p2, ...pn)
∗ = argmax

p1,p2,...pn

acc(LLM(p1, p2, ...pn))

s.t.
1

n

n∑
i=1

pi = β,
(1)

where LLM(·) denotes the pruned LLM with layer-wise pruning rate (p1, p2, ...pL), and acc(·) refers
to the accuracy of the pruned LLM on the test set. Since this optimization problem is generally
intractable, we employ evolutionary algorithm to search for p∗. Although evolutionary algorithm
have been successfully applied to optimize pruning rates in CNNs (Liu et al., 2019; Lin et al., 2020;
Shang et al., 2022) or Transformers (Li et al., 2022; Liu et al., 2024b), we improve the search process
of the evolutionary algorithm by leveraging LLMs.

3.2 SELF-PRUNER ALGORITHM

The Self-Pruner algorithm framework is illustrated in Figure 1 and detailed in Algorithm 1. Overall,
Self-Pruner uses LLMs to generate the initial population and employs model perplexity as the fitness
metric for individuals. LLMs then select parents for mutation and crossover to generate offspring.
This process is repeated for N iterations to obtain the final pruning rate configuration and model
fitness. The Self-Pruner algorithm consists of several stages, which we describe below:

Population initialization. Self-Pruner utilizes LLMs to generate the initial population for evolu-
tionary search, a process assisted by carefully constructed prompts. The prompt is shown in Figure
2. Specifically, the prompt consists of two parts:

• Problem description and task instruction: this part describes the problem that LLMs are in-
structed to solve, namely to assist in model pruning by outputting layer-wise pruning rate config-
urations.

• Solution attributes: this section specifies some fundamental attributes that the new solutions
generated by LLMs should adhere to.
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### Problem description and task instruction ###
Let’s think step by step! You are helping me prune the {model}, aiming to minimize perplexity
on the WikiText-2 dataset. The model has {number of model layers} transformer layers. Layer-
wise pruning rate measures how many parameters are pruned from each layer of the model.
Different layers may have different pruning rates based on their importance and contribution to
the performance of model. You need to generate {population size} valid layer-wise pruning rate
configurations. Each configuration should:
### Solution attributes ###
· Contain {number of model layers} decimals between 0 and 1, accurate to 5 decimal places.
· Ensure the average of these numbers equals {pruning ratio}.
· Be distinct, starting with ”[” and ending with ”]”.
Your response should only contain the {population size} configurations without any additional
text.
Note: {} is used to indicate placeholders.

Figure 2: Prompt for population initialization.

Leveraging the prior knowledge that LLMs inherently possess about model architecture can generate
a high-quality initial population. Compared to random initialization, this method accelerates the
search by providing high-quality initial solutions.

Select Individuals based on Fitness. After generating the layer-wise pruning rate configuration,
we determine the number of parameters to prune for each layer based on the layer-wise pruning rate
and use the Wanda-sp (An et al., 2024) metric to identify which neurons within the layer should be
pruned. Additionally, we evaluate the pruned LLM on the WikiText-2 (Merity et al., 2016) dataset
to obtain the perplexity of the pruned LLM, which serves as the fitness metric. In this context, a
lower perplexity score indicates higher fitness. We select individuals based on their fitness.

### Problem description and task instruction ###
Let’s think step by step! You will receive {population size} lists representing the layer-wise
pruning rates of the {model} and a fitness value for each list. The lower the fitness value, the
better. Your task is to perform the mutation/crossover operation in the evolutionary algorithm to
generate new configurations. Each new pruning rate configuration list should:
### Solution attributes ###
· Contain {number of model layers} decimals between 0 and 1, accurate to 5 decimal places.
· Ensure the average of these numbers equals {pruning ratio}.
· Be distinct, starting with ”[” and ending with ”]”.
Please provide exactly {number of mutation/crossover} new configurations based on the existing
data provided below without any additional text.
### Current Population and Fitnesses ###
Here are the existing layer-wise pruning rate configurations and their fitness values:
Configuration1: {layer-wise pruning rate}, Fitness1: {fitness}
Configuration2: {layer-wise pruning rate}, Fitness2: {fitness}
...
Note: {} is used to indicate placeholders.

Figure 3: Prompt for crossover and mutation.

Mutation and Crossover. Self-Pruner leverages LLMs to execute key steps of the evolutionary
search: parent selection, crossover, and mutation. This process is guided by a carefully crafted
prompt, as illustrated in Figure 3. The prompt consists of three critical components:

• Problem Description and Task Instructions: this part instructs the LLMs to perform parent
selection, crossover, and mutation operations to generate new offerspring.

• Solution attributes: provides detailed guidelines on the attributes and format requirements that
LLMs must adhere to when generating new solutions. This part is consistent with the prompt used
in population initialization.

5
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• Current Population and Fitnesses: provide information about the individuals in the current pop-
ulation and their corresponding fitness values, allowing LLMs to select individuals for crossover
and mutation.

The uniqueness of Self-Pruner lies in its approach of not guiding the LLM through detailed algo-
rithmic steps for precise mutation and crossover operation, but instead using high-level natural lan-
guage instructions. This approach significantly reduces the human effort and tedious trial-and-error
required for designing mutation and crossover operators, enhancing the method’s generality and flex-
ibility. Based on its understanding of the problem and the provided context, LLMs autonomously
perform selection, crossover, and mutation operations to generate new, potentially pruning configu-
ration schemes.

We present the specific algorithmic process of Self-Pruner in Algorithm 1. Self-Pruner begins by
initializing a population G0 of K layer-wise pruning rate configurations using LLMs and the indi-
viduals in the population all satisfy the constraint which the average pruning rate is equal to β (Line
1). It then proceeds through N evolutionary iterations (Line 2-8). In each iteration, the algorithm
evaluates the fitness of the individuals (Line 3) and selects the top K individuals (Line 4). Self-
Pruner utilizes LLMs to select individuals for mutation (Line 5) and crossover (Line 6) to generate
offspring. These offspring are added to the population for the next selection (Line 7). This itera-
tive process continues until the predefined number of iterations is reached. Ultimately, Self-Pruner
outputs the final layer-wise pruning rate configuration (Line 9-10).

Algorithm 1 Self-Pruner
Hyper Parameters: Population Size: K, Number of Mutation: M, Number of Crossover: S, Max
Number of Iterations: N .
Input: Pre-trained LLM: LLM, Average pruning rate: β .
Output: The best found pruning rates: p∗ with fitness Fitness∗.

1: G0 = Initialization(K), s.t. β;
2: for i = 0 : N do
3: {Gi, Fitness} = Inference(LLM(Gi));
4: Gi = Top K({Gi, Fitness});
5: Gmutation = Mutation(Gi,M), s.t. β;
6: Gcrossover = Crossover(Gi,S), s.t. β;
7: Gi+1 = Gi+Gmutation + Gcrossover;
8: end for
9: p∗, Fitness∗= Top1({GN+1, Fitness});

10: return p∗, Fitness∗.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. We implemented our method on LLaMA-1 (Touvron et al., 2023a), LLaMA-2 (Touvron
et al., 2023b), LLaMA-3 (Meta, 2024a), LLaMA-3.1 (Meta, 2024b), and Vicuna (Chiang et al.,
2023), with parameter counts ranging from 7 billion to 70 billion.

Baselines. We compared our method with two prior state-of-the-art pruning methods: LLM-
Pruner (Ma et al., 2023) and Wanda-sp (An et al., 2024), where Wanda-sp is the structured pruning
extension of the unstructured pruning method Wanda (Sun et al., 2023). All these methods applied
post-training pruning to LLMs without updating the pruned model weights.

Evaluation. We assessed the perplexity of the pruned LLMs on the WikiText-2 (Merity et al.,
2016) dataset. Additionally, we evaluated the zero-shot commonsense reasoning capability on tasks
such as Winogrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019), BoolQ (Clark et al.,
2019), ARC-Easy, ARC-Challenge (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018), and
PIQA (Bisk et al., 2020). We utilized lm-eval-harness (Gao et al., 2021) to generate commonsense
question-answering results.
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Table 1: Perplexity of pruned LLMs on WikiText-2 dataset at 20-50% pruning ratio.

LLaMA-1 LLaMA-2 LLaMA-3 LLaMA-3.1 Vicuna

Sparsity Method 7B 13B 7B 13B 70B 8B 8B 13B

0% Dense 5.68 5.09 5.12 4.57 3.12 6.05 6.18 5.94

20%
LLM-Pruner 9.87 7.72 10.48 8.00 / 12.02 12.77 9.95

Wanda-sp 13.46 7.74 12.01 7.45 4.27 12.61 11.35 9.45
Self-Pruner 9.07 7.32 9.92 6.46 4.24 10.35 10.37 7.94

30%
LLM-Pruner 18.42 11.47 17.90 11.64 / 20.94 21.17 13.97

Wanda-sp 21.02 10.74 24.53 14.01 5.10 37.46 27.00 16.10
Self-Pruner 16.64 9.92 16.25 10.26 5.00 16.80 16.79 11.08

40%
LLM-Pruner 35.82 21.73 46.32 21.68 / 39.32 44.27 26.95

Wanda-sp 40.79 27.53 38.65 69.86 6.74 71.97 58.49 144.68
Self-Pruner 30.17 14.44 28.52 16.92 5.95 33.57 41.46 18.07

50%
LLM-Pruner 111.00 51.14 253.13 55.81 / 111.90 121.54 71.18

Wanda-sp 411.06 82.87 249.18 90.90 16.78 205.21 160.49 183.44
Self-Pruner 59.11 23.24 53.63 41.95 9.08 68.40 64.56 46.47

* LLM-Pruner (Ma et al., 2023) employs the Taylor pruning (Molchanov et al., 2016) metric, which requires
expensive gradient computations. For the LLaMA-2-70B model, we did not find relevant experimental data.
Furthermore, due to the limited number of our GPU devices, we did not report its experimental results.

Implementation Details. All implementations were carried out on NVIDIA A100 80GB GPUs.
Models with up to 30 billion parameters used a single GPU, while the 70 billion parameter model
used two GPUs. The settings of all hyperparameters in evolutionary search are: population size
K = 30, number of mutation M = 10, number of crossover S = 10 and max number of iterations
N = 20. We employed the OpenAI GPT4-o model (OpenAI, 2024) to generate solutions for the
evolutionary search.

4.2 LANGUAGE MODELING

We report the perplexity of pruned LLMs with pruning rates ranging from 20% to 50% on the
WikiText-2 (Merity et al., 2016) dataset in Table 1. Self-Pruner significantly outperforms existing
post-training pruning techniques, further narrowing the accuracy gap between post-training struc-
tured pruned LLMs and the original models, especially under high pruning rate settings. Notably,
Self-Pruner is particularly beneficial for larger models, especially LLaMA-2-70B. Using the Self-
Pruner method, under the 30% pruning rate setting, the model’s perplexity only increased by 1.88
compared to the original model, and under the 50% pruning rate setting, the perplexity increased
by only 5.96. This comprehensive superiority over existing techniques once again demonstrates that
LLMs can leverage their inherent knowledge to design compressed LLMs architectures with good
accuracy, proving the feasibility of LLMs automatically performing model compression tasks.

4.3 ZERO-SHOT TASKS

To evaluate the generalization capability of Self-Pruner, we assessed the performance of pruned
LLMs in zero-shot settings across seven commonsense tasks. Table 2 shows the average perfor-
mance of pruned LLMs across all seven tasks, with detailed results for each task provided in Ap-
pendix A. The experimental results demonstrate that Self-Pruner significantly outperforms existing
post-training structured pruning techniques. For instance, for the LLaMA-2-7B model, Self-Pruner
outperforms the Wanda-sp (Sun et al., 2023) method by 3.13% at a 30% pruning rate and outper-
forms the LLM-Pruner (Ma et al., 2023) method by 14.59% at a 50% pruning rate, further narrowing
the performance gap with the original model. Additionally, we observed that as the model size in-
creases, the gap in zero-shot task accuracy between the pruned models and the original model further
reduces. Larger models, such as LLaMA-2-70B, there is only a 0.80% drop in accuracy at a 30%
pruning rate and experience only a 3.80% drop under an extreme high pruning rate of 50%. These
experimental results further validate the effectiveness of the Self-Pruner method.
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Table 2: Mean zero-shot accuracy results of pruned LLMs on the Winogrande, HellaSwag, BoolQ,
ARC-Easy, ARC-Challenge, OpenBookQA and PIQA datasets at 20-50% pruning ratio.

LLaMA-1 LLaMA-2 LLaMA-3 LLaMA-3.1 Vicuna

Sparsity Method 7B 13B 7B 13B 70B 8B 8B 13B

0% Dense 66.30 68.40 66.82 69.28 73.81 70.21 70.64 69.73

20%
LLM-Pruner 60.14 64.34 60.19 64.24 / 56.50 57.45 65.06

Wanda-sp 63.12 65.41 62.33 66.28 72.84 59.90 62.16 66.91
Self-Pruner 64.80 66.23 63.44 67.15 73.11 61.71 63.61 68.18

30%
LLM-Pruner 53.76 59.31 51.89 58.95 / 51.80 52.45 57.92

Wanda-sp 59.02 61.71 57.66 60.94 72.66 40.91 47.19 62.35
Self-Pruner 61.79 64.22 60.79 64.34 73.01 56.74 58.09 65.90

40%
LLM-Pruner 46.56 54.02 46.63 50.59 / 41.93 42.75 51.74

Wanda-sp 43.98 56.76 52.86 38.81 69.71 38.43 40.06 39.08
Self-Pruner 58.26 63.15 57.59 63.22 71.97 53.30 53.88 63.35

50%
LLM-Pruner 41.96 47.25 40.45 42.12 / 39.15 40.61 43.77

Wanda-sp 37.88 43.09 36.76 39.50 60.63 37.80 38.43 39.50
Self-Pruner 52.96 58.38 51.35 58.52 70.01 46.13 46.99 54.64

* LLM-Pruner (Ma et al., 2023) employs the Taylor pruning (Molchanov et al., 2016) metric, which requires
expensive gradient computations. For the LLaMA-2-70B model, we did not find relevant experimental data.
Furthermore, due to the limited number of our GPU devices, we did not report its experimental results.

4.4 ABLATION STUDY

Table 3: Ablation of effectiveness of
each component in Self-Pruner.

Method Perplexity Accuracy

w/o initialization 17.43 59.30
w/o mutation 17.65 58.98
w/o crossover 17.59 59.15
Self-Pruner 16.25 60.79

Ablation of each component in Self-Pruner. To
demonstrate the effectiveness of each component in Self-
Pruner, we present the final accuracy of the algorithm
when each component is removed in Table 3. Specifi-
cally, we are targeting a 30% pruning rate for LLaMA-
2-7B. First, instead of using LLMs to generate the initial
population, we replace it with a random initial population
(w/o initialization). Additionally, we remove LLMs re-
sponsible for performing mutation and crossover opera-
tions, meaning no mutation or crossover is performed dur-
ing evolutionary search (w/o mutation/crossover). The re-
sults show that each component of Self-Pruner contributes
positively to the final performance of the algorithm, and removing any component results in a drop
in final accuracy.

Different LLMs. To analyze the impact of different capabilities of LLMs on the final accuracy,
we compared four commonly used LLMs: GPT-3.5, GPT 4 and GPT 4o. From the experimental
results in Table 4, we can observe that Self-Pruner can generate high-accuracy pruning rate using
these different LLMs. However, due to the strong reasoning ability of GPT 4o, it is able to search
and obtain the best pruning rate than other LLM.

Table 4: Impact of different LLMs on final accuracy.

Model Pruning Ratio Perplexity Accuracy

LLaMA-2-7B 0% 5.12 66.82
GPT-3.5 30% 17.44 58.94
GPT 4 30% 17.13 59.87
GPT 4o 30% 16.25 60.79

Table 5: Results of Self-Pruner vs. OWL.

Model Pruning Ratio Perplexity Accuracy

LLaMA-2-7B 0% 5.12 66.82

OWL 30% 21.40 59.08
Self-Pruner 30% 16.25 60.79
OWL 50% 81.56 39.06
Self-Pruner 50% 53.63 51.35
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4.5 ANALYSIS

Self-Pruner vs. OWL. We further compared another method for determining the layer-wise prun-
ing rates of LLMs: OWL (Yin et al., 2023). We applied OWL to determine the layer-wise pruning
rates of pruned LLMs and use the Wanda-sp (Sun et al., 2023) metric to decide which components
within the layers should be pruned like Self-Pruner. Two important hyperparameters in OWL fol-
low the settings in the paper, which are λ = 0.08,M = 5. The results in Table 5 indicate that
Self-Pruner outperforms OWL across different pruning rates. This demonstrates that the manual
determination of layer importance metrics is suboptimal, whereas Self-Pruner, by utilizing LLMs to
assist in evolutionary search, minimizes the impact of manual intervention on the final accuracy and
automatically finds the good layer-wise pruning rate.

Table 6: Experimental results of restoring the ac-
curacy of pruned LLaMA-2-7B using LoRA fine-
tuning.

Method Pruning Rate Perplexity Accuracy

Self-Pruner 30% 16.25 60.79
w. LoRA 30% 11.87 63.01

Self-Pruner 50% 53.63 51.35
w. LoRA 50% 25.32 59.78

LoRA Fine-tuning. Due to the severe accu-
racy degradation caused by structured prun-
ing at high pruning rates, we further demon-
strate the potential of fine-tuning to mitigate
performance loss in pruned LLMs. Specifi-
cally, we apply the LoRA (Hu et al., 2021) (r =
8) method for to fine-tune the pruned LLaMA-
2-7B. We randomly sampled a 10K subset from
the Alpaca-GPT4 (Peng et al., 2023) dataset as
our fine-tuning dataset. The experimental re-
sults in Table 6 show that LoRA fine-tuning
can recover the performance of pruned LLMs,
further narrowing the performance gap with the
original model.

Inference Speedup and GPU Memory Usage. We report the parameter count, GPU memory
usage, and inference speedup of structural pruning LLMs in Table 7. The results were obtained
using the vLLM inference engine (Kwon et al., 2023) on NVIDIA A100 80GB GPUs. Thanks
to the hardware-friendly nature of structured pruning, it effectively reduces the number of model
parameters, lowers GPU memory usage, and achieves up to 1.82× inference speedup.

Table 7: Inference speedup and GPU memory usage statistics of structured pruning LLMs.

Model Pruning Ratio Params (B) Memory (GB) Tokens/s Speedup

LLaMA-2-7B

0% 6.74 12.55 83.77 1.00×
20% 5.47 10.20 115.39 1.23×
30% 4.77 8.88 123.66 1.48×
40% 4.13 7.80 137.11 1.64×
50% 3.50 6.55 152.24 1.82×

LLaMA-2-70B

0% 68.98 128.48 18.44 1.00×
20% 55.53 103.43 22.13 1.20×
30% 48.56 90.40 25.63 1.39×
40% 41.59 77.50 28.58 1.55×
50% 34.75 64.64 31.31 1.70×

5 LIMITATIONS AND FUTURE WORK

The limitations of existing methods mainly include two points: 1) The complete automation of
LLMs compression has not yet been achieved. In this paper, we take the first step towards LLMs self-
compression by using LLMs to generate solutions for evolutionary algorithm to search for layer-wise
pruning rate configurations. However, layer-wise pruning rates alone are not sufficient to achieve
fully compressed LLMs, indicating that our study is still some distance away from enabling LLMs to
perform compression tasks on their own. In the future, we aim to further automate the LLMs pruning
process. 2) Post-training structured pruning of LLMs still falls short of the original model’s accuracy.
Post-training pruning significantly reduces LLM accuracy. Although this study has narrowed this
gap, the accuracy of pruned LLMs remains low at high pruning rates. In the future, we will explore
efficient fine-tuning methods for LLMs to restore the accuracy of pruned models.
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6 CONCLUSION

In this paper, we propose Self-Pruner, an novel framework that automatically finds layer-wise prun-
ing rates for LLMs using an evolutionary search driven by LLMs. Self-Pruner enables LLMs to
execute the evolutionary search process themselves, capitalizing on their prior knowledge of model
redundancy to generate, evaluate, and optimize pruning rates. By integrating LLMs into the search
process, Self-Pruner accelerates the convergence of the evolutionary search, reducing the need for
extensive human intervention in evolutionary algorithm design. Extensive experimental results
demonstrate that Self-Pruner significantly enhances the accuracy of post-training structural prun-
ing for LLMs.

REPRODUCIBILITY STATEMENTS

The experimental setup is detailed in Section 4.1. We have included the code to reproduce our results
in the supplementary materials, and we plan to release the code publicly.
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A DETAILED ZERO-SHOT TASK RESULTS

To further enhance our comprehensive understanding of the performance of pruned LLMs, we
present experimental data of pruned LLMs across all seven commonsense tasks in this section.
These datasets include Winogrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019), BoolQ
(Clark et al., 2019), ARC-Easy, ARC-Challenge (Clark et al., 2018), OpenBookQA (Mihaylov et al.,
2018), and PIQA (Bisk et al., 2020). We show the experimental data for pruning rates ranging from
20% to 50% in Tables 8, 9, 10, and 11, respectively. From the experimental data, we observe that
Self-Pruner consistently enhances the capabilities of pruned LLMs, achieving higher accuracy com-
pared to existing techniques.

Table 8: Zero-shot performance of pruned LLMs with 20% pruning ratio.
Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-1-7B

Dense 76.19 69.85 75.11 44.40 78.62 75.25 44.71 66.30

LLM-Pruner 69.85 62.51 64.56 41.60 75.57 68.01 38.91 60.14
Wanda-sp 72.70 66.93 71.47 40.20 76.33 71.80 42.41 63.12
Self-Pruner 73.67 68.58 75.57 43.60 77.31 72.39 42.49 64.80

LLaMA-1-13B

Dense 79.06 72.69 77.86 44.80 79.16 77.36 47.87 68.40

LLM-Pruner 75.72 68.27 71.13 45.00 77.69 71.13 41.47 64.34
Wanda-sp 77.28 70.56 71.47 43.40 78.18 72.22 44.80 65.41
Self-Pruner 77.93 72.06 72.14 45.00 78.56 72.85 45.05 66.23

LLaMA-2-7B

Dense 75.97 69.06 77.74 44.20 78.07 76.35 46.33 66.82

LLM-Pruner 68.72 63.54 65.14 39.80 75.90 68.81 39.42 60.19
Wanda-sp 72.86 65.98 67.61 38.80 76.61 72.18 42.24 62.33
Self-Pruner 73.51 68.98 69.63 39.20 76.93 72.19 43.60 63.44

LLaMA-2-13B

Dense 79.38 72.22 80.55 45.20 79.11 79.42 49.06 69.28

LLM-Pruner 74.65 65.74 67.77 43.80 78.29 73.06 46.33 64.24
Wanda-sp 77.60 69.69 73.58 43.40 78.40 75.84 45.48 66.28
Self-Pruner 78.42 70.40 76.76 42.40 78.56 76.85 46.67 67.15

LLaMA-2-70B

Dense 83.81 77.90 83.73 48.80 82.21 82.74 57.51 73.81

Wanda-sp 83.15 77.51 83.15 47.40 82.05 81.00 55.63 72.84
Self-Pruner 83.85 77.59 83.70 47.60 81.92 81.45 55.66 73.11

LLaMA-3-8B

Dense 79.16 72.77 81.35 45.00 79.71 80.09 53.41 70.21

LLM-Pruner 62.15 58.41 59.54 37.80 75.08 66.62 35.92 56.50
Wanda-sp 65.45 66.93 64.46 39.00 76.28 68.60 38.57 59.90
Self-Pruner 71.24 68.27 61.10 41.60 78.13 71.09 40.53 61.71

LLaMA-3.1-8B

Dense 79.01 73.32 82.05 45.00 79.98 81.57 53.58 70.64

LLM-Pruner 61.02 59.27 62.45 38.40 74.81 68.90 37.29 57.45
Wanda-sp 68.91 67.64 66.91 41.00 77.31 71.72 41.64 62.16
Self-Pruner 71.04 69.22 67.46 43.00 78.13 73.06 43.34 63.61

Vicuna-13B

Dense 77.49 71.59 85.26 45.40 79.00 78.66 50.68 69.73

LLM-Pruner 72.54 66.30 71.99 45.40 77.75 75.21 46.25 65.06
Wanda-sp 75.10 68.75 79.51 44.00 77.37 76.18 47.44 66.91
Self-Pruner 76.80 69.69 82.87 44.00 78.40 77.69 47.78 68.18
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Table 9: Zero-shot performance of pruned LLMs with 30% pruning ratio.
Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-1-7B

Dense 76.19 69.85 75.11 44.40 78.62 75.25 44.71 66.30

LLM-Pruner 61.27 58.64 53.33 38.60 72.03 58.04 34.39 53.76
Wanda-sp 67.91 62.12 66.97 38.60 74.16 65.74 37.63 59.02
Self-Pruner 70.96 66.30 72.51 39.80 75.57 67.17 40.19 61.79

LLaMA-1-13B

Dense 79.06 72.69 77.86 44.80 79.16 77.36 47.87 68.40

LLM-Pruner 70.70 63.22 62.39 42.20 75.73 62.12 38.82 59.31
Wanda-sp 74.17 66.06 65.20 42.00 76.82 67.72 40.02 61.71
Self-Pruner 76.79 71.51 67.25 43.00 77.64 69.95 43.43 64.22

LLaMA-2-7B

Dense 75.97 69.06 77.74 44.20 78.07 76.35 46.33 66.82

LLM-Pruner 57.77 55.49 50.12 36.80 71.87 58.84 32.34 51.89
Wanda-sp 65.94 58.33 63.12 38.00 74.76 65.99 37.46 57.66
Self-Pruner 70.63 67.40 64.71 40.20 75.30 67.85 39.42 60.79

LLaMA-2-13B

Dense 79.38 72.22 80.55 45.20 79.11 79.42 49.06 69.28

LLM-Pruner 68.31 60.38 57.09 43.40 76.12 66.66 40.70 58.95
Wanda-sp 71.59 63.54 66.94 39.40 76.33 68.64 40.10 60.94
Self-Pruner 75.81 70.09 69.94 41.00 77.53 72.73 43.26 64.34

LLaMA-2-70B

Dense 83.81 77.90 83.73 48.80 82.21 82.74 57.51 73.81

Wanda-sp 81.45 78.27 84.20 47.40 81.66 80.95 54.66 72.66
Self-Pruner 82.75 78.06 84.22 48.20 81.73 81.35 54.76 73.01

LLaMA-3-8B

Dense 79.16 72.77 81.35 45.00 79.71 80.09 53.41 70.21

LLM-Pruner 54.16 56.12 52.87 36.40 71.93 58.63 32.51 51.80
Wanda-sp 36.96 51.22 40.89 26.80 62.46 43.01 25.00 40.91
Self-Pruner 65.21 64.64 49.94 39.00 76.12 65.87 36.43 56.74

LLaMA-3.1-8B

Dense 79.01 73.32 82.05 45.00 79.98 81.57 53.58 70.64

LLM-Pruner 53.22 57.93 54.89 33.20 72.14 61.95 33.87 52.45
Wanda-sp 48.52 53.75 52.11 30.20 66.38 51.85 27.56 47.19
Self-Pruner 66.07 65.59 53.61 39.60 76.99 67.26 37.54 58.09

Vicuna-13B

Dense 77.49 71.59 85.26 45.40 79.00 78.66 50.68 69.73

LLM-Pruner 65.62 59.27 53.15 42.20 75.57 68.43 41.21 57.92
Wanda-sp 69.19 62.67 72.94 39.40 75.95 71.76 44.52 62.35
Self-Pruner 74.35 68.98 81.01 42.30 76.39 73.78 44.54 65.90
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Table 10: Zero-shot performance of pruned LLMs with 40% pruning ratio.
Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-1-7B

Dense 76.19 69.85 75.11 44.40 78.62 75.25 44.71 66.30

LLM-Pruner 49.34 54.62 45.08 33.20 67.36 46.55 29.78 46.56
Wanda-sp 39.45 53.51 59.39 28.60 62.40 38.47 26.02 43.98
Self-Pruner 66.49 64.09 68.44 37.20 72.52 61.20 37.88 58.26

LLaMA-1-13B

Dense 79.06 72.69 77.86 44.80 79.16 77.36 47.87 68.40

LLM-Pruner 61.60 57.77 60.92 37.60 72.85 53.37 34.04 54.02
Wanda-sp 67.24 59.75 62.75 34.20 73.83 62.12 37.46 56.76
Self-Pruner 74.29 70.01 70.34 41.80 75.46 67.17 43.00 63.15

LLaMA-2-7B

Dense 75.97 69.06 77.74 44.20 78.07 76.35 46.33 66.82

LLM-Pruner 43.48 52.80 59.82 32.20 65.56 42.59 29.95 46.63
Wanda-sp 57.31 54.70 61.56 35.40 70.62 56.99 33.45 52.86
Self-Pruner 65.13 64.25 62.72 39.00 73.72 60.52 37.80 57.59

LLaMA-2-13B

Dense 79.38 72.22 80.55 45.20 79.11 79.42 49.06 69.28

LLM-Pruner 57.59 55.64 42.45 39.40 71.16 54.76 33.11 50.59
Wanda-sp 28.50 50.04 62.14 24.00 54.90 28.45 23.63 38.81
Self-Pruner 73.39 68.59 75.17 40.20 75.14 66.96 43.09 63.22

LLaMA-2-70B

Dense 83.81 77.90 83.73 48.80 82.21 82.74 57.51 73.81

Wanda-sp 80.60 74.03 80.45 45.20 79.98 77.30 50.43 69.71
Self-Pruner 81.00 78.53 84.80 48.20 80.85 78.90 51.53 71.97

LLaMA-3-8B

Dense 79.16 72.77 81.35 45.00 79.71 80.09 53.41 70.21

LLM-Pruner 37.76 52.17 42.45 28.80 64.36 42.09 25.85 41.93
Wanda-sp 30.16 49.88 52.66 25.00 56.53 33.42 21.33 38.43
Self-Pruner 59.24 62.83 51.16 37.80 73.45 56.57 32.08 53.30

LLaMA-3.1-8B

Dense 79.01 73.32 82.05 45.00 79.98 81.57 53.58 70.64

LLM-Pruner 38.12 52.96 43.09 29.80 65.56 45.24 24.49 42.75
Wanda-sp 31.86 52.57 57.09 25.20 57.78 33.84 22.10 40.06
Self-Pruner 60.32 63.22 46.73 39.40 73.78 59.09 34.64 53.88

Vicuna-13B

Dense 77.49 71.59 85.26 45.40 79.00 78.66 50.68 69.73

LLM-Pruner 56.99 54.78 49.54 39.00 72.09 55.18 34.64 51.74
Wanda-sp 28.49 51.14 61.93 26.40 54.13 29.17 22.27 39.08
Self-Pruner 71.75 66.85 80.40 39.10 74.37 69.49 41.55 63.35
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Table 11: Zero-shot performance of pruned LLMs with 50% pruning ratio.
Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

LLaMA-1-7B

Dense 76.19 69.85 75.11 44.40 78.62 75.25 44.71 66.30

LLM-Pruner 36.64 52.96 51.07 30.20 61.81 35.19 25.85 41.96
Wanda-sp 29.39 50.83 54.13 23.40 54.79 29.84 22.78 37.88
Self-Pruner 59.35 59.67 63.06 33.20 69.75 52.95 32.76 52.96

LLaMA-1-13B

Dense 79.06 72.69 77.86 44.80 79.16 77.36 47.87 68.40

LLM-Pruner 47.16 53.43 61.01 35.20 67.14 37.79 29.01 47.25
Wanda-sp 38.86 51.54 57.92 28.00 61.43 38.47 25.43 43.09
Self-Pruner 69.68 66.85 65.66 37.20 72.25 58.96 38.05 58.38

LLaMA-2-7B

Dense 75.97 69.06 77.74 44.20 78.07 76.35 46.33 66.82

LLM-Pruner 31.41 50.43 57.92 28.00 57.73 31.65 26.02 40.45
Wanda-sp 27.88 48.93 48.53 25.40 54.73 29.50 22.35 36.76
Self-Pruner 55.64 53.12 60.73 36.40 69.26 51.68 32.59 51.35

LLaMA-2-13B

Dense 79.38 72.22 80.55 45.20 79.11 79.42 49.06 69.28

LLM-Pruner 43.45 52.88 38.26 33.20 64.31 35.90 26.88 42.12
Wanda-sp 30.23 50.20 62.02 26.00 54.57 27.78 25.68 39.50
Self-Pruner 66.26 66.38 64.77 39.00 71.55 59.97 41.72 58.52

LLaMA-2-70B

Dense 83.81 77.90 83.73 48.80 82.21 82.74 57.51 73.81

Wanda-sp 68.30 58.96 67.85 40.20 76.39 71.25 41.47 60.63
Self-Pruner 79.15 78.85 82.85 45.00 79.11 75.65 49.48 70.01

LLaMA-3-8B

Dense 79.16 72.77 81.35 45.00 79.71 80.09 53.41 70.21

LLM-Pruner 33.22 49.81 41.53 29.00 60.45 36.32 23.72 39.15
Wanda-sp 29.03 50.91 50.09 25.00 55.88 31.57 22.10 37.80
Self-Pruner 47.33 55.88 41.50 32.80 67.79 48.11 29.52 46.13

LLaMA-3.1-8B

Dense 79.01 73.32 82.05 45.00 79.98 81.57 53.58 70.64

LLM-Pruner 32.45 52.64 49.60 28.00 60.34 38.05 23.21 40.61
Wanda-sp 28.29 49.33 57.68 25.00 56.20 30.47 22.01 38.43
Self-Pruner 48.95 56.75 45.57 30.80 67.08 49.83 29.95 46.99

Vicuna-13B

Dense 77.49 71.59 85.26 45.40 79.00 78.66 50.68 69.73

LLM-Pruner 44.59 52.01 43.15 31.80 65.29 40.74 28.84 43.77
Wanda-sp 29.92 51.14 62.08 24.80 53.97 28.45 26.11 39.50
Self-Pruner 59.55 59.67 63.46 33.60 70.35 58.96 36.86 54.64
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