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Abstract

Biomedical reasoning often requires travers-001

ing interconnected relationships across enti-002

ties such as drugs, diseases, and proteins. De-003

spite the increasing prominence of large lan-004

guage models (LLMs), existing benchmarks005

lack the ability to evaluate multi-hop reason-006

ing in the biomedical domain, particularly for007

queries involving one-to-many and many-to-008

many relationships. This gap leaves the criti-009

cal challenges of biomedical multi-hop reason-010

ing underexplored. To address this, we intro-011

duce BioHopR, a novel benchmark designed to012

evaluate multi-hop, multi-answer reasoning in013

structured biomedical knowledge graphs. Built014

from the comprehensive PrimeKG, BioHopR015

includes 1-hop and 2-hop reasoning tasks that016

reflect real-world biomedical complexities.017

Evaluations of state-of-the-art models reveal018

that O3-mini, a proprietary reasoning-focused019

model, achieves 37.93% accuracy on 1-hop020

tasks and 14.57% on 2-hop tasks, outper-021

forming proprietary models such as GPT4O022

and open-source biomedical models including023

HuatuoGPT-o1-70B and Llama-3.3-70B. How-024

ever, all models exhibit significant declines in025

multi-hop performance, underscoring the chal-026

lenges of resolving implicit reasoning steps027

in the biomedical domain. By addressing the028

lack of benchmarks for multi-hop reasoning in029

biomedical domain, BioHopR sets a new stan-030

dard for evaluating reasoning capabilities and031

highlights critical gaps between proprietary and032

open-source models while paving the way for033

future advancements in biomedical LLMs.034

1 Introduction035

Recent advances in large language models (LLMs)036

and Question Answering (QA) systems have037

shifted the focus from simple factoid retrieval038

tasks to more sophisticated reasoning capabilities039

(Huang and Chang, 2022; Plaat et al., 2024; Ope-040

nAI, 2025). Among these, multi-hop reasoning041

has emerged as a critical area of research, where042

answering a question requires traversing multiple 043

interconnected reasoning steps (Misra et al., 2023; 044

Yang et al., 2024; Schnitzler et al., 2024). For exam- 045

ple, to answer “Who is the wife of the president of 046

the United States?”, a LLM must first identify the 047

president (step 1) and then determine their spouse 048

(step 2). This type of reasoning, referred to as 049

multi-hop reasoning, is especially vital in domains 050

where information is highly interconnected, such 051

as the biomedical field. 052

In the biomedical domain, knowledge is often 053

structured in ontologies and knowledge graphs 054

(KGs), where entities like drugs, diseases, proteins, 055

and phenotypes are represented as nodes, and their 056

relationships as edges (Himmelstein et al., 2017; 057

Sung et al., 2021; Chandak et al., 2023). Biomedi- 058

cal queries frequently demand multi-step reasoning 059

over these graphs (Sung et al., 2021; Su et al., 2024; 060

Matsumoto et al., 2025). For instance, identifying 061

diseases associated with a drug might require a 062

single-hop relation, while determining proteins tar- 063

geted by that drug through its associated disease in- 064

volves two reasoning steps. Additionally, biomed- 065

ical reasoning often entails one-to-many or many- 066

to-many relationships, where a single query may 067

yield multiple valid answers (e.g., a drug targeting 068

multiple proteins) (Liang et al., 2019). This com- 069

plexity highlights the need for specialized bench- 070

marks that rigorously evaluate models’ ability to 071

reason across multiple steps while generating com- 072

prehensive, multi-answer responses. 073

Existing benchmarks for multi-hop reasoning, 074

such as Hetionet (Himmelstein et al., 2017) and 075

other biomedical QA datasets (Rao et al., 2022), 076

have laid the groundwork for evaluating multi- 077

hop capabilities in the biomedical domain. How- 078

ever, these benchmarks primarily focus on single- 079

hop tasks or utilize pre-defined templates that fail 080

to fully capture the intricacies of multi-step rea- 081

soning. Similarly, general-domain benchmarks 082

like TWOHOPFACT (Yang et al., 2024) test mod- 083
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els’ latent multi-hop reasoning ability but lack the084

domain-specific challenges of biomedical reason-085

ing, such as reasoning over structured relationships086

and handling multi-answer outputs. As a result, the087

unique challenges of biomedical multi-hop reason-088

ing remain underexplored.089

To address these limitations, we introduce Bio-090

HopR, a new benchmark specifically designed to091

test the multi-hop reasoning capabilities of LLMs092

in the biomedical domain. Unlike general-domain093

benchmarks that rely on reasoning across discon-094

nected documents, BioHopR focuses on reason-095

ing within a single, structured biomedical knowl-096

edge graph. Our benchmark systematically con-097

structs 1-hop (e.g., Drug–Disease) and 2-hop (e.g.,098

Drug–Disease–Protein) question-answer pairs from099

the PrimeKG knowledge graph (Chandak et al.,100

2023). Questions are designed to evaluate models’101

abilities to reason step-by-step, explicitly requiring102

the inference of intermediate entities, and gener-103

ate multi-answer responses reflective of real-world104

biomedical complexity.105

Contributions. Our main contributions are as106

follows:107

• A New Benchmark for Multi-Hop Reason-108

ing: We propose BioHopR, the first pub-109

licly available benchmark explicitly designed110

to evaluate multi-hop, multi-answer reason-111

ing within structured biomedical knowledge112

graphs. We will release the dataset and the113

code for evaluation.114

• Evaluation and Analysis of LLMs in115

Biomedical Multi-hop Reasoning: We eval-116

uate state-of-the-art LLMs on our benchmark,117

highlighting their strengths and, more im-118

portantly, limitations in handling biomedical119

multi-hop reasoning tasks.120

By introducing BioHopR, we aim to fill a crit-121

ical gap in multi-hop QA research and advance122

the development of LLMs capable of robust and123

interpretable reasoning in structured, high-stakes124

domains like biomedical research and healthcare.125

2 Related Works126

Biomedical Question Answering. Research in127

medical LLMs has been facilitated by the devel-128

opment of question-answering (QA) datasets that129

benchmark models’ understanding of medical do-130

main knowledge (Hendrycks et al., 2020; Jin et al.,131

2021; Pal et al., 2022). These datasets typically132

consist of multiple-choice questions (MCQs) fo- 133

cused on single-hop reasoning tasks, providing a 134

straightforward way to evaluate LLMs’ ability to 135

comprehend and respond to diverse medical in- 136

quiries. While these benchmarks have driven sig- 137

nificant progress, they primarily measure classifi- 138

cation accuracy, which is insufficient for capturing 139

the nuanced reasoning required for medical exper- 140

tise. 141

Medical QA often involves interconnected con- 142

cepts where reasoning over multiple steps is crucial. 143

However, current benchmarks rarely go beyond 144

single-hop tasks and do not evaluate models’ abil- 145

ity to provide explanations for their answers or jus- 146

tify their reasoning process. Recently, MedExQA 147

introduced an evaluation framework with detailed 148

explanations for assessing the reasoning capabili- 149

ties of LLMs (Kim et al., 2024). While this is a 150

step forward, it remains constrained to single-hop 151

reasoning and does not address the need for multi- 152

hop reasoning or the generation of multiple valid 153

answers—a common requirement in biomedical 154

inquiries. 155

Knowledge Graph Question Answering. 156

Knowledge Graph Question Answering (KGQA) 157

systems leverage structured knowledge graphs 158

to answer questions that require reasoning over 159

graph-based relationships. In the biomedical 160

domain, Hetionet (Himmelstein et al., 2017) 161

introduced a knowledge graph containing entities 162

like genes, drugs, and diseases, enabling structured 163

reasoning. Extensions of Hetionet have been used 164

for multi-hop QA tasks (Rao et al., 2022), but 165

these datasets often rely on fixed templates and 166

predefined reasoning paths, limiting their ability to 167

evaluate the nuanced multi-hop reasoning required 168

in real-world biomedical applications. This work 169

explored techniques such as knowledge graph 170

embeddings and graph neural networks (Kipf 171

and Welling, 2016; Hamilton et al., 2018), and 172

transformer-based models like BioBERT (Lee 173

et al., 2020) to extract and utilize graph-based 174

knowledge. However, this dataset tests the model’s 175

performance in a classification task to a single 176

answer. Also, this dataset is not publicly available, 177

limiting its role in facilitating biomedical large 178

language model research. 179

In domains like biomedical science, many ques- 180

tions inherently involve multiple correct answers. 181

For instance, identifying all drugs that treat a spe- 182

cific disease or all proteins associated with a dis- 183
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Dataset Domain Reasoning Answer-Level

MedQA (Jin et al., 2021) Biomedical No Single Answer

Hetionet QA (Himmelstein et al.,

2017)

Biomedical Graph-based Reasoning (MH) Single Answer

MedExQA (Kim et al., 2024) Biomedical Explanation Generation Single Answer

TWOHOPFACT (Yang et al., 2024) General Implicit Reasoning (MH) Single Answer

BioHopR (Ours) Biomedical Implicit Reasoning (MH) Multi Answers

Table 1: Comparison of BioHopR with existing datasets. Key differentiators include domain focus, reasoning type

(MH is tagged for multi-hop reasoning supported dataset), and answer-level, such as multi-answer capability.

ease phenotype requires models to retrieve com-184

prehensive sets of answers rather than a single re-185

sponse.186

Latent Multi-Hop Reasoning in Large Lan-187

guage Models. Recent work has explored the188

latent reasoning capabilities of LLMs, focusing189

on whether models can implicitly infer intermedi-190

ate entities and use them for multi-step reasoning.191

The TWOHOPFACT dataset (Yang et al., 2024)192

evaluates this capability by testing whether LLMs193

can identify "bridge entities" in two-hop reasoning194

tasks. While TWOHOPFACT demonstrates that195

LLMs can perform latent multi-hop reasoning in196

general domains, it does not address the unique197

challenges of biomedical reasoning. Biomedical198

queries often require explicit reasoning over struc-199

tured data and demand comprehensive answers200

involving one-to-many or many-to-many relation-201

ships.202

These gaps highlight the need for a benchmark203

like BioHopR, which explicitly evaluates models’204

ability to perform step-by-step reasoning and gener-205

ate multi-answer outputs in the biomedical domain.206

Multi-Answer Reasoning. Existing QA bench-207

marks, both in general and biomedical domains,208

typically assume a one-to-one mapping between209

questions and answers, which oversimplifies the210

complexity of real-world reasoning tasks. This as-211

sumption is especially problematic in the biomed-212

ical domain, where relationships between entities213

are often one-to-many or many-to-many.214

BioHopR BioHopR addresses this limitation by215

introducing questions that require multi-answer rea-216

soning, ensuring that the benchmark captures the217

intricate relational structures and knowledge depen-218

dencies present in biomedical science. The differ-219

ences between our dataset and relevant datasets are220

summarized in Table 1.221

3 BioHopR: Multi-hop Reasoning in 222

Biomedicine 223

BioHopR is a benchmark specifically designed 224

to evaluate the ability of large language models 225

(LLMs) in performing multi-hop reasoning and 226

generating multi-answer outputs in the biomedical 227

domain. Compared to other knowledge graphs such 228

as Hetionet, PrimeKG provides a broader coverage 229

of biomedical entities, richer relational structures, 230

and up-to-date knowledge in the field (Chandak 231

et al., 2023). This allows for the generation of 232

diverse, clinically relevant up-to-date multi-hop 233

queries. By systematically constructing questions 234

over PrimeKG, the dataset is constrained to fol- 235

low a one-many-many relationship structure. This 236

restriction ensures that queries reflect real-world 237

biomedical scenarios where entities like drugs, dis- 238

eases, and proteins exhibit hierarchical and com- 239

plex interconnected relationships. 240

3.1 Multi-hop, Multi-answer Knowledge 241

Formalization 242

Nodes and Relations. In our dataset, the entities 243

in PrimeKG are represented as nodes, and their 244

relationships are directed edges. For any query, 245

the node from which reasoning starts is defined as 246

the query node, and the node(s) forming the final 247

answers are the target nodes. In the case of 2-hop 248

reasoning, the intermediate node connecting the 249

query and target is defined as the bridge node. We 250

restrict node types to the following: Drug, Proteins, 251

Disease, Phenotype. 252

Relationship Structure. The dataset is restricted 253

to follow a one-many-many relationship structure. 254

In 1-hop questions, a direct relationship connects 255

the query node to the target nodes. For example: 256

Query (Drug)
treats
−−−→ Target (Diseases). (1) 257

This setup reflects a single reasoning step where a 258

query node is linked to multiple target nodes. 259
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In 2-hop questions, the query node connects to260

the target nodes via an intermediate bridge node,261

forming a two-step reasoning chain. For example:262

Query (Phenotype)
side_effects_of
−−−−−−−−→ Bridge (Drug)263

treats
−−−→ Target (Diseases). (2)264

Here, the bridge node (e.g., drug), used to query for265

1-hop questions, serves as the intermediate entity266

linking the query and target.267

Answer Definition. The target nodes are the268

final answers to the query. For 1-hop reasoning, this269

corresponds to all nodes directly connected to the270

query node. For 2-hop reasoning, the answers are271

all nodes reachable via the bridge node, requiring272

models to infer both the intermediate (bridge) and273

final (target) nodes.274

3.2 Dataset Construction Pipeline275

The dataset is constructed using the following sys-276

tematic process:277

1. Entity Sampling: Nodes representing drugs,278

diseases, proteins, and phenotype entities are279

extracted from PrimeKG.280

2. 2-Hop Path Definition: For 2-hop questions,281

valid paths are constructed by combining two282

connected edges, ensuring the query-bridge-283

target structure follows the one-many-many284

relationship:285

Query
Relation1−−−−−→ Bridge

Relation2−−−−−→ Target.

(3)286

3. 1-Hop Relationship Extraction: For 1-hop287

questions, all relationships connecting query288

nodes (e.g., drugs) to their target nodes (e.g.,289

diseases) are extracted. To maintain consis-290

tency with 2-hop questions, 1-hop relation-291

ships without a corresponding 2-hop path are292

excluded.293

4. Answer Extraction: For each question, all294

reachable target nodes are extracted as an-295

swers. This ensures that the multi-answer296

nature of the dataset is preserved.297

3.3 1-Hop and 2-Hop Questions298

1-Hop Questions. For a 1-hop question, the299

model is required to directly link the query node to300

the target node, such as:301

“Name a disease that is treated by Drug Dr?”

(4)302

with the answer set defined as: 303

A = {D1, D2, . . . , Dn}, (5) 304

where Di represents disease linked to the query 305

drug Dr. 306

2-Hop Questions. For a 2-hop question, the 307

model must infer both the bridge node and the 308

target node. An example query is: 309

“Name a diseases that is treated by a drug 310

that has a side effectS?” (6) 311

The model needs to traverse the graph through an 312

intermediate bridge node (drug) before reaching 313

the final target node (disease): 314

A = {D1, D2, . . . , Dn}, (7) 315

where Di represents disease linked to the pheno- 316

type that is a side effect of drug Dr. 317

3.4 Dataset Statistics 318

Relation (Query:Target) Count

Protein:Disease 731

Protein:Drug 589

Disease:Drug 297

Drug:Phenotype 248

Drug:Disease 234

Drug:Protein 165

Disease:Protein 113

Disease:Phenotype 79

Phenotype:Drug 33

Phenotype:Disease 5

Table 2: Distribution of 1-hop relations in BioHopR.

The BioHopR dataset consists of 2,494 unique 319

1-hop questions and 7,633 unique 2-hop questions, 320

resulting in a total of 279,738 answers. On av- 321

erage, each question is associated with 36.65 an- 322

swers, reflecting the dataset’s complexity and the 323

many-to-many relationships inherent in biomedical 324

knowledge. The dataset includes 10 distinct 1-hop 325

relation types and 12 2-hop relation types, and the 326

breakdown of the number of questions for each 327

relation type is summarized in Tables 2 and 3. 328

The restriction to one-many-many relationships 329

ensures that the dataset mirrors real-world biomedi- 330

cal reasoning scenarios, where single entities often 331

relate to multiple downstream entities. This design 332

makes the dataset uniquely suited for evaluating 333

large language models (LLMs) on tasks requiring 334

multi-step reasoning and comprehensive answer 335

generation. 336
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Relation (Query:Bridge:Target) Count

Drug:Protein:Disease 3029

Disease:Drug:Phenotype 949

Disease:Protein:Drug 899

Protein:Disease:Drug 577

Phenotype:Disease:Drug 546

Protein:Drug:Disease 462

Disease:Drug:Protein 381

Drug:Disease:Protein 321

Phenotype:Drug:Disease 215

Drug:Disease:Phenotype 213

Disease:Phenotype:Drug 36

Drug:Phenotype:Disease 5

Table 3: Distribution of 2-hop relations in BioHopR.

3.5 Qualitative Analysis337

To better understand the models’ reasoning capa-338

bilities, we conducted a qualitative analysis on the339

questions about Type II Diabetes, as it is one of the340

widely studied diseases (Skyler et al., 2017).341

3.6 Reasoning Benchmark342

BioHopR presents significant reasoning chal-343

lenges:344

• Models must implicitly identify intermediate345

bridge nodes in 2-hop questions while ensur-346

ing the correctness of the final answers.347

• The many-to-many nature of biomedical re-348

lationships requires models to handle diverse349

answer sets while preserving reasoning con-350

sistency.351

4 Experiments352

We evaluate a range of LLMs on the BioHopR353

benchmark to assess their ability to reason over354

one-many-many relationships. The evaluation fo-355

cuses on both single-answer and multi-answer rea-356

soning for 1-hop and 2-hop questions, highlighting357

the challenges posed by multi-step reasoning and358

comprehensive answer generation.359

4.1 Experimental Setup360

Models Evaluated. We consider a diverse set361

of LLMs, categorized into general-purpose pro-362

prietary, reasoning proprietary, medical-specific,363

and open-source models, as detailed in Table364

4. General-purpose models include GPT4O and365

smaller variants such as GPT4O-mini (Hurst et al.,366

2024). We also added O3-mini as it was most367

recent cost-effective reasoning proprietary model368

(OpenAI, 2025). We also evaluate open-source 369

Llama models (Llama3.1 and Llama3.3) with 370

varying parameter scales (8B and 70B) (Dubey 371

et al., 2024). We selected medical-specific mod- 372

els that are based on the baseline Llama3.1 ar- 373

chitectures: UltraMedical-8B, HuatuoGPT-o1-8B, 374

and HuatuoGPT-o1-70B (Zhang et al., 2024; Chen 375

et al., 2024). HuatuoGPT-o1 models are trained for 376

medical complex reasoning for medical problems. 377

Model Name Domain

GPT4O General

GPT4O-mini General

O3-mini Reasoning

Llama3.1 8B General

Llama3.1 70B General

Llama3.3 70B General

UltraMedical-8B Medical

HuatuoGPT-o1-8B Medical Reasoning

HuatuoGPT-o1-70B Medical Reasoning

Table 4: Models evaluated in the experiments.

4.2 Evaluation 378

The proprietary GPT models (GPT4O, GPT4O- 379

mini, and O3-mini) were accessed using OpenAI’s 380

API1. For open-source models, we used four A100 381

GPUs with 80GB memory per GPU for 70B pa- 382

rameter models and one A6000 GPU for 8B pa- 383

rameter models. The evaluation was conducted in 384

a zero-shot setting, with a batch size of 1 and a 385

temperature set to 0, except O3-mini model which 386

does not support temperature parameter, to ensure 387

deterministic responses. The evaluation code for 388

open-source models were implemented using the 389

HuggingFace Transformers library (Wolf, 2019). 390

4.3 Evaluation Metrics 391

Embedding-Based Accuracy. Accuracy (ACC) 392

is computed using the cosine similarity between the 393

predicted response and the ground truth answer list, 394

leveraging BioLORD-2023-C embeddings (Remy 395

et al., 2023). Let p denote the embedding of the 396

predicted response and {a1, a2, . . . , an} denote the 397

embeddings of the ground truth answers. The co- 398

sine similarity for a prediction p and an answer ai 399

is defined as: 400

cos(p, ai) =
p · ai

∥p∥∥ai∥
. (8) 401

1https://platform.openai.com/docs/models
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Model ACC_HOP1 (%) ACC_HOP2 (%) BOTH_COR (%) BOTH_WR (%)

Llama-3.1-8B 0.12 0.05 0.00 99.76

HuatuoGPT-o1-70B 0.16 0.00 0.00 99.93

HuatuoGPT-o1-8B 0.20 0.04 0.00 99.54

UltraMedical-8B 13.75 5.21 2.28 82.33

Llama-3.3-70B 25.58 9.58 4.94 68.33

Llama-3.1-70B 26.38 9.47 4.93 65.64

GPT4O-mini 28.11 14.57 6.54 64.69

GPT4O 32.88 14.57 7.86 57.96

O3-mini 37.93 14.57 8.93 52.14

Table 5: Performance metrics (in percentages) for various models. ACC_HOP1 and ACC_HOP2 represent the

accuracy on 1-hop and 2-hop tasks, respectively. BOTH_COR indicates cases where both hops are correct, and

BOTH_WR indicates cases where both hops are incorrect.

If the maximum cosine similarity across all402

ground truth answers satisfies:403

max
i∈{1,...,n}

cos(p, ai) > τ, (9)404

then the prediction is considered correct. We use405

τ = 0.9 for BioLORD-2023-C embeddings after406

a grid search of threshold values from 0.5 to 0.9,407

which led an optimal setting with 0.9. This thresh-408

old prioritizes precision, ensuring that only highly409

confident predictions are accepted as correct. By410

setting a high threshold, we align with the strict re-411

quirements of biomedical applications, minimizing412

false positives while maintaining robust handling413

of biomedical definition-level similarity and am-414

biguous synonyms.415

5 Results and Discussion416

5.1 Proprietary Models Demonstrate Robust417

Multi-Hop Reasoning418

Proprietary models (GPT4O, GPT4O-mini, and419

O3-mini) demonstrate consistently strong per-420

formance across all metrics. For 1-hop tasks421

(ACC_HOP1), O3-mini achieves the highest ac-422

curacy (37.93%), followed by GPT4O (32.88%)423

and GPT4O-mini (28.11%). Interestingly, all pro-424

prietary models achieve identical performance on425

2-hop tasks (ACC_HOP2: 14.57%), suggesting a426

possible shared capabilities for implicit reasoning427

or complex reasoning.428

These results reflect the impact of the reason-429

ing step before answering. O3-mini’s higher430

ACC_HOP1 indicates the reasoning capability of431

the model allowed it to reason well on single-step432

queries.433

5.2 Open-Source Biomedical Models Face 434

Significant Challenges 435

Open-source biomedical models struggle to match 436

the performance of proprietary models, particularly 437

on multi-hop tasks. HuatuoGPT-o1 models per- 438

form the worst, achieving near-zero accuracy for 439

both 1-hop (ACC_HOP1: 0.20% for HuatuoGPT- 440

o1-8B) and 2-hop (ACC_HOP2: 0.00% for 441

HuatuoGPT-o1-70B). In contrast, UltraMedical- 442

8B performs better (ACC_HOP1: 13.75%, 443

ACC_HOP2: 5.21%). 444

These results suggest that although HuatuoGPT- 445

1 was trained for medical complex reasoning, 446

it’s generalizability is far less than UltraMedical. 447

The reasoning demands of BioHopR is far differ- 448

ent from medical license examination based QA 449

datasets such as MedQA, which HuatuoGPT-o1 450

used for training. Still UltraMedical-8B’s perfor- 451

mance, when compared to a larger general domain 452

open-source models such as Llama3.1-70B and 453

Llama3.3-70B, is far behind, suggesting persistent 454

challenges in resolving bridge nodes for multi-hop 455

queries. 456

Error Patterns. The BOTH_WR metric reveals 457

systemic challenges in multi-hop reasoning for all 458

models. Open-source models like HuatuoGPT-o1- 459

70B exhibit the highest BOTH_WR rates (>99%), 460

reflecting widespread failure in both reasoning 461

hops. Proprietary models demonstrate significantly 462

lower failure rates, with O3-mini achieving the best 463

performance (BOTH_WR: 52.14%). However, 464

even the best-performing models show substantial 465

error rates in both hops, indicating that multi-step 466

inference remains a bottleneck. 467

6



5.3 Multi-Hop Reasoning Remains a468

Bottleneck469

Across all models, performance declines sharply470

from 1-hop to 2-hop tasks. For example, GPT4O’s471

accuracy drops from ACC_HOP1: 32.88% to472

ACC_HOP2: 14.57%, while open-source models473

like Llama-3.1-8B exhibit near-complete failure474

(ACC_HOP2: 0.05%).475

This decline highlights the inherent complexity476

of multi-hop reasoning. Resolving 2-hop queries477

requires implicit inference of intermediate entities478

(e.g., bridge nodes) and alignment of reasoning479

chains across multiple steps.480

5.4 Qualitative Analysis - Case Studies481

Our qualitative analysis on various diseases, includ-482

ing Type II Diabetes and Schizophrenia aligns well483

with the evaluation result in Table 5. We highlight484

the diabetes-related questions in Figure 1. Diabetes-485

related questions for drug Troglitazone, which has486

202 side effects listed from PrimeKG, highlighted487

mixed performance among models. For instance,488

HuatuoGPT-o1-8B correctly predicted answers but489

diverged from the task constraints by elaborating490

on its reasoning instead of adhering to the prompt.491

Similarly, UltraMedical produced multiple answers492

when a single response was requested, with only493

some of the predictions being correct. In con-494

trast, proprietary models such as GPT-4 reliably495

adhered to prompted task, consistently including496

relevant responses such as hepatotoxicity, even if497

these were not explicitly part of the predefined an-498

swer set. This behavior suggests that proprietary499

models may apply broader medical reasoning com-500

pared to open-source models. Proprietary models501

generally outperform open-source models in both502

task adherence and reasoning accuracy.503

5.5 Ablation Study: Prompting Strategy504

Prompting Setup. The dataset can also support505

multi-answer prompting, making two prompting506

strategies designed to evaluate different aspects of507

model reasoning:508

• Single-Answer Prompting: The model is509

prompted to provide one correct answer (e.g.,510

“Name a gene associated with Disease X.”).511

This evaluates the model’s ability to identify512

the most probable answer using implicit rea-513

soning.514

• Multi-Answer Prompting: The model is515

prompted to provide all correct answers (e.g.,516

Questions

Hop1: "...a side effect of drug Troglitazone."
Hop2: "...a side effect of a drug ... treat type 2 diabetes."

Model Hop1 Prediction Hop2 Prediction

HuatuoGPT-
o1-70B

"Alright, let’s
think about
Troglitazone..."

"Alright, let’s
think about
this..."

HuatuoGPT-
o1-8B

"Hepatotoxicity" "Hypoglycemia"

UltraMedical-
8B

"Hepatotoxicity" "Lactic acidosis,
Hypoglycemia,
Hyperkalemia"

GPT4O "Hepatotoxicity" "Weight gain"

O3-mini "Hepatotoxicity" "Weight gain"

Figure 1: Qualitative analysis of model responses to

diabetes-related questions. Red-colored text shows the

wrong answer. Orange-colored text shows the answer

that is not in the answer list, but is plausible. Blue-

colored text shows the correct answer.

“Name all genes associated with Disease X.”). 517

This evaluates the model’s ability to generate 518

exhaustive, comprehensive outputs, which is 519

inherently more challenging. 520

While both strategies are valuable for un- 521

derstanding model performance, Multi-Answer 522

Prompting poses significant challenges. On aver- 523

age, each question in the dataset has 36.65 correct 524

answers, making it computationally expensive and 525

cognitively demanding for large language models 526

to generate a complete answer set. 527

5.5.1 Evaluation Metric for Multi-Answer 528

F1 Score for Multi-Answer Prompting. For 529

Multi-Answer Prompting, F1 score is computed 530

using cosine similarity-based matching. Let P = 531

{p1, p2, . . . , pm} denote the embeddings of the pre- 532

dicted responses and A = {a1, a2, . . . , an} denote 533

the embeddings of the ground truth answers. A 534

predicted response pj is considered a true positive 535

if: 536

max
i∈{1,...,n}

cos(pj , ai) > τ, (10) 537

where we set τ = 0.9 for high-confidence matches. 538

For Single-Answer Prompting, we use the same 539

evaluation metric, ACC. 540

5.5.2 Analysis and Results. 541

To analyze the feasibility of Multi-Answer Prompt- 542

ing, we conducted an ablation study using GPT4O 543

and GPT4O-mini, the proprietary models. Ta- 544

ble 6 presents the performance metrics for Single- 545
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Relation Type

1-Hop 2-Hop

GPT4O GPT4O-mini GPT4O GPT4O-mini

(ACC / F1) (ACC / F1) (ACC / F1) (ACC / F1)

Same Query and Bridge

Disease:Drug:Phenotype 47.47 / 35.35 43.77 / 29.21 25.08 / 8.20 25.08 / 7.21

Disease:Drug:Protein 47.47 / 35.35 43.77 / 29.21 3.67 / 0.22 3.67 / 1.27

Drug:Disease:Phenotype 55.13 / 14.41 50.85 / 16.70 22.07 / 9.75 22.07 / 10.19

Drug:Disease:Protein 55.13 / 14.41 50.85 / 16.70 4.67 / 0.48 4.67 / 0.65

Same Query and Target

Disease:Phenotype:Drug 20.25 / 9.22 22.78 / 8.51 16.67 / 4.04 16.67 / 2.73

Disease:Protein:Drug 35.40 / 1.63 26.55 / 4.82 8.12 / 3.76 8.12 / 3.76

Drug:Phenotype:Disease 23.39 / 8.62 31.05 / 6.71 0.00 / 0.00 0.00 / 0.00

Drug:Protein:Disease 20.61 / 2.31 20.00 / 15.36 20.14 / 4.54 20.14 / 4.54

Others

Phenotype:Disease:Drug 0.00 / 0.05 0.00 / 3.49 14.47 / 6.63 14.47 / 6.63

Phenotype:Drug:Disease 15.15 / 7.63 24.24 / 4.10 3.72 / 2.77 3.72 / 2.77

Protein:Disease:Drug 35.29 / 10.06 27.50 / 8.22 2.95 / 2.54 2.95 / 2.54

Protein:Drug:Disease 23.60 / 9.46 14.43 / 10.84 1.08 / 1.49 1.08 / 1.49

Overall 32.88 / 7.29 28.11 / 9.41 14.57 / 4.96 14.57 / 5.22

Table 6: Comparison of Single-Answer prompting (ACC) and Multi-Answer prompting (F1) for GPT4O and

GPT4O-mini across 1-hop and 2-hop relation types.

Answer and Multi-Answer prompting across 1-hop546

and 2-hop tasks.547

Single-Answer Prompting Outperforms Multi-548

Answer Prompting: GPT4O achieves an aver-549

age ACC of 32.88% in 1-hop tasks, significantly550

higher than its Multi-Answer F1 score of 7.29%.551

The gap is even more pronounced in 2-hop tasks,552

where GPT4O achieves 14.57% ACC compared553

to just 4.96% F1. Relations with abstract or less554

structured targets (e.g., Disease:Drug:Protein)555

exhibit particularly poor F1 scores under Multi-556

Answer prompting, with GPT4O achieving only557

0.22% F1 in 2-hop tasks. These results highlight558

the difficulty of generating comprehensive answer559

sets, especially for complex reasoning paths.560

Based on these findings, we restricted our evalu-561

ation of all other models to Single-Answer Prompt-562

ing. This decision is motivated by higher robust-563

ness and computational overhead of multi-answer564

prompting. Also in many real-world scenarios,565

users typically seek the most probable or relevant566

answer, aligning more closely with Single-Answer567

prompting.568

While Multi-Answer prompting offers valuable569

insights into a model’s ability to generate exhaus-570

tive outputs, it remains a challenging evaluation571

paradigm. Future work could focus on improving572

model training and prompting strategies to better573

support comprehensive answer generation. 574

6 Conclusion 575

We introduced BioHopR, a benchmark for eval- 576

uating multi-hop, multi-answer reasoning in the 577

biomedical domain. Built on the PrimeKG knowl- 578

edge graph, BioHopR captures the complexity 579

of real-world biomedical queries through one-to- 580

many and many-to-many relationships, rigorously 581

assessing reasoning over 1-hop and 2-hop tasks. 582

Evaluation results highlight that O3-mini, a pro- 583

prietary model with a reasoning step, outperforms 584

open-source models including biomedical models 585

like HuatuoGPT-o1. Across all models, the perfor- 586

mance drop from 1-hop to 2-hop tasks underscores 587

the difficulty of aligning intermediate reasoning 588

steps, especially in bridging entities. 589

By addressing the lack of benchmarks for multi- 590

hop reasoning in biomedical domain, BioHopR sets 591

a new standard for evaluating reasoning capabilities 592

and provides a critical step toward more robust and 593

interpretable LLMs for biomedical research and 594

real-world applications. Future directions include 595

expanding the dataset to other knowledge sources 596

and domains, such as chemistry. 597
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Limitation598

While BioHopR provides a rigorous benchmark599

for evaluating multi-hop reasoning in the biomed-600

ical domain, several limitations exist. BioHopR601

is currently focused on 4 major entities only: Pro-602

tein, Phenotype, Drug, Disease. Also, it relies ex-603

clusively on a single knowledge graph, PrimeKG,604

which, while comprehensive, may not fully cap-605

ture the diversity of biomedical knowledge or its606

real-world dynamics. This lack of diversity could607

bias model evaluation toward the structure and con-608

tent of 4 major node types and PrimeKG, poten-609

tially under-representing a model’s ability to gen-610

eralize to other knowledge and sources. While611

human evaluation was not the primary focus of this612

work, future efforts could include more extensive613

and diverse human evaluations to validate model-614

generated outputs.615

Broader Impacts and Ethics Statement616

Our work raises no major ethical concerns. All eval-617

uations and experiments were conducted strictly for618

research purposes.619

We will release BioHopR. License and copy-620

right information, along with Terms of Use, will621

be made available upon release of the dataset and622

associated materials. While BioHopR facilitates ad-623

vancements in biomedical reasoning tasks, it is not624

designed for use in real-world clinical applications.625

Consequently, models evaluated or trained on Bio-626

HopR should not be used for clinical decision-627

making without rigorous validation and regulatory628

approvals.629

This restriction aims to mitigate potential risks630

associated with incorrect reasoning or hallucinated631

outputs, which could lead to harmful clinical out-632

comes. Additionally, while BioHopR supports re-633

search into biomedical reasoning, it is critical that634

researchers use the benchmark responsibly, with635

appropriate safeguards in place to ensure the ethical636

use of derived insights and outputs.637
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Appendix755

The Figure 2 illustrates the frequency distribu-756

tion of target and bridge entities within the Bio-757

HopR dataset, highlighting key patterns. The left758

panel demonstrates the prevalence of proteins (e.g.,759

CYP3A4), phenotypes (e.g., Nausea), drugs (e.g.,760

Olanzapine), and diseases (e.g., Schizophrenia) as761

target nodes in multi-hop queries. Meanwhile, the762

right panel showcases the distribution of bridge763

entities, which frequently include proteins (e.g.,764

CDK2), phenotypes (e.g., Neoplasm of the skin),765

drugs (e.g., Fostamatinib), and diseases. These pat-766

terns reflect the diversity and real-world complexity767

of biomedical entities, emphasizing the challenges768

of reasoning over structured knowledge graphs for769

multi-hop queries.770

Figure 3 illustrates the results of a grid search for771

determining the optimal cosine similarity thresh-772

old for BioLORD-2023-C embeddings. The x-axis773

represents the threshold values, ranging from 0.1 to774

0.9, while the y-axis shows the accuracy for "Both775

Correct" predictions. A sharp decline in accuracy is776

observed as the threshold increases, with accuracy777

plateauing beyond 0.8. The chosen threshold of778

0.9 ensures high precision by accepting only highly779

confident predictions, aligning with the strict re-780

quirements of biomedical reasoning tasks.781

A Detailed Qualitative Analysis782

We further included other diseases: Vitamin A783

Deficiency, Lung Cancer, Alzheimer’s Disease,784

Schizophrenia. We selected these medical con-785

ditions because they represent a range of domains786

within the biomedical field, which include nutri-787

tional deficiencies, metabolic disorders, chronic788

diseases and neurodegenerative conditions. This789

selection allows for a more comprehensive assess-790

ment of the models’ ability to reason across differ-791

ent medical contexts and complexities. Addition-792

ally, for conditions such as Type II diabetes and793

Vitamin A deficiency, the answers may seem quite794

straightforward, making them useful for assess-795

ing whether the models can correctly identify and796

reason over well-established medical knowledge.797

Whereas, for complex conditions such as Lung798

Cancer and Alzheimer’s Disease, we can evaluate799

the models ability to reason through more intricate,800

multi-factorial diseases.801

Our qualitative analysis showed several key find-802

ings regarding the models’ reasoning capabilities803

across different diseases. Interestingly, none of the804

models generated questions for Alzheimer’s Dis- 805

ease, which was unexpected given its significant 806

global impact and strong presence in the Knowl- 807

edge Graph. In contrast, the models seemed to rea- 808

son well over diabetes-related questions, although 809

it would often provide multiple correct answers, 810

even when prompted for a single response. This 811

could suggest an alignment with well-established 812

medical knowledge in this domain. For cancer- 813

related questions, the models tended to select the 814

most straightforward and common answers, though 815

the Knowledge Graph contained a broader mix of 816

more complex phenotypes. This seems to indi- 817

cate a preference for simplicity in model-generated 818

reasoning, potentially overlooking more nuanced 819

aspects of the disease. 820

When comparing open-source models against 821

proprietary models, the qualitiative analysis shows 822

that proprietary models generally performed bet- 823

ter than open-source models in terms of providing 824

structured and direct responses. proprietary mod- 825

els demonstrated a better adherence to the prompt 826

constraints, whilst the open source models seem 827

to show more explanatory or multi-component an- 828

swers. For example, the HuatuoGPT-70B open 829

source model, consistently responded with "think- 830

ing" before elaborating on its reasoning instead of 831

directly providing a single answer for both 1-hop 832

and 2 hop prediction as prompted. This suggests 833

that the model prioritises explaining its reasoning 834

than strictly following the prompt’s format. In con- 835

strast, however, proprietary models such as GPT-4 836

more reliably adhered to the prompt constraints,. 837

When prompted to give a single answer for one hop 838

and two hop questions, GPT-4 consistently did so, 839

and this was present across the closed-source GPT 840

family, suggesting that these proprietary models 841

may be better optimised for tasks requring direct 842

and efficient responses. Among the open source 843

models tested, LLaMA Ultra Medical, a medical 844

open source LLM, tended to provide multiple an- 845

swers when prompted for one single answer, and of 846

those multiple answers, apart from Type II diabetes, 847

most answers were incorrect. 848

Taking an look into responses related to dia- 849

betes, responses were quite mixed. For instance, 850

HuatuoGPT-01-8B performed outside the con- 851

straints of the task, correctly predicting the answer 852

before proceeding to provide its reasoning. On the 853

other hand, LLaMA 8B Instruct struggled with both 854

Hop 2 and Hop 1 predictions, failing to generate the 855

correct responses. Similarly, LLaMA Ultra Medi- 856
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Figure 2: Common target and bridge entities for each node type in BioHopR.
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cal did not fully adhere to the prompt’s instructions857

— when asked to provide a single answer for Hop858

2, it instead generated a list of multiple possible an-859

swers. While the listed responses were correct, this860

deviation indicates a challenge in following explicit861

task constraints. Moreover, for Hop 1, the model’s862

response was incorrect, further highlighting incon-863

sistencies in its performance. Interestingly, GPT-4864

did not correctly predict the Hop 2 or Hop 1 an-865

swers in a strict sense. However, the model con-866

sistently included hepatotoxicity as a response—a867

condition that, while not explicitly listed among868

the correct answers, is still a relevant and justifi-869

able finding. This pattern was observed across the870

GPT model family, suggesting that these models871

might apply broader medical reasoning even when872

their direct predictions do not align with predefined873

correct answers.874

Schizophrenia, as seen in our figure, appeared875

frequently in the data. For GPT-4, in one-hop pre-876

dictions, the model frequently guessed Clozapine877

as a treatment for schizophrenia. While this answer878

is medically correct, it was not explicitly part of the879

datasets predefined answer set. This suggests that880

the model is leveraging broader clinical knowledge881

rather than strictly adhering to the dataset’s con-882

straints. This trend was also consistent across the883

other GPT-family models, GPT-4o mini. However,884

for the o3 models, the one-hop predictions were885

correct and within our predefined list of answers.886
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