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Abstract

Incremental models that process sentences one001
token at a time will sometimes encounter points002
where more than one interpretation is possible.003
Causal models are forced to output one inter-004
pretation and continue, whereas models that005
can revise may edit their previous output as the006
ambiguity is resolved. In this work, we look007
at how restart-incremental Transformers build008
and update internal states, in an effort to shed009
light on what processes cause revisions not vi-010
able in autoregressive models. We propose an011
interpretable way to analyse the incremental012
states, showing that their sequential structure013
encodes information on the garden path effect014
and its resolution. Our method brings insights015
on various bidirectional encoders for contextu-016
alised meaning representation and dependency017
parsing, contributing to show their advantage018
over causal models when it comes to revisions.1019

1 Introduction020

This is the honey... even if we stopped mid-sentence021

here, you would likely have created a partial inter-022

pretation of this prefix considering the honey as (the023

beginning of) a noun phrase. It could have many024

continuations, e.g. that skunks like, or produced by025

stingless bees. But what if the next token is another026

noun, as bee? A semantic parser would have to027

revise its previous hypothesis to accommodate the028

fact that honey has become a modifier of bee.029

Bidirectional NLP models (i.e. those that encode030

linguistic input using both its left and right context)031

have transformed the field of computational linguis-032

tics. But that has come at the cost of cognitive plau-033

sibility in various aspects, in particular establish-034

ing a disregard for language’s temporal structure.035

While humans process language one increment at036

a time (Marslen-Wilson, 1973; Altmann and Steed-037

man, 1988; Levelt, 1993), BiLSTMs (Graves and038

Schmidhuber, 2005) and Transformers (Vaswani039

1Code: https://anonymous.4open.science/r/restart-inc-56A0/
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Figure 1: A prefix with multiple valid continuations.
A causal decoder is forced to output only one POS-
tag for the token can at this point and cannot change
it anymore, even if its internal state encodes the local
ambiguity. In contrast, a restart-incremental model can
perform revisions and would thus be able to recover if
the selected label turned out to be incorrect (as in left).

et al., 2017) have mechanisms that rely on access to 040

the complete input sequence, making them unsuit- 041

able as off-the-shelf components for incremental 042

applications. Although their unidirectional coun- 043

terparts, LSTMs and autoregressive (aka causal) 044

Transformers, are equipped with the possibility of 045

incremental decoding (making predictions relying 046

only on left context), their token representations 047

are static and thus not updated as incoming tokens 048

arrive (Eisape et al., 2022), because the underly- 049

ing encoding is unidirectional. This places them at 050

the disadvantage of not being able to revise, which 051

is a desired property to recover from mistakes or 052

local ambiguities (Schlangen and Skantze, 2011; 053

Madureira et al., 2023), as shown in Figure 1. 054

The restart incremental (RI) paradigm2 055

(Schlangen and Skantze, 2011) circumvents this 056

issue by adding an interface upon any model, mak- 057

ing it work incrementally by processing prefixes 058

from scratch whenever a new input increment 059

arrives (Beuck et al., 2011). Even though it is com- 060

putationally costly, RI has been effectively studied 061

in simultaneous MT (Arivazhagan et al., 2020; Sen 062

et al., 2023), dialogue systems (Khouzaimi et al., 063

2Or qualitative incrementality (Kilger and Finkler, 1995).
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2014), disfluency detection (Chen et al., 2022)064

and NLU pipelines (Rafla and Kennington, 2019).065

Besides, it has the advantage of incorporating066

recent increments into past predictions, revising067

hypotheses when deemed necessary.068

A recent line of work has investigated restart-069

incrementality for sequence labelling by profiling070

bidirectional encoders (Madureira and Schlangen,071

2020; Kahardipraja et al., 2021) and modelling and072

evaluating revision policies (Kahardipraja et al.,073

2023; Kaushal et al., 2023; Madureira et al., 2023).074

Still, evaluations so far have been performed in a075

black box fashion: Only the relations between in-076

put tokens and output labels have been considered.077

The output labels as top positions of the softmax op-078

eration are only one product of many intermediate079

computations that have not been examined.080

Therefore, we still do not know why RI models081

revise when they revise. What happens internally in082

the model’s mechanisms to encode the need to edit083

previous outputs? How can (static) causal represen-084

tations be affected under RI bidirectionality? Can085

we predict whether the model will recover from a086

wrong interpretation? To answer such questions,087

we need a shift to glass box interpretability meth-088

ods that can shed light on the dynamics of updates089

in the internal states which lead to output revisions.090

Linguistically motivated analyses are also required091

to examine the behaviour of bidirectional models092

with respect to specific phenomena known to cause093

reinterpretations, like garden path constructions.094

Thus, our present contributions to make RI mod-095

els more transparent and explainable are (a) a096

formalisation of RI sequential processors as tran-097

sition systems that create structured step-by-step098

constructions not present in causal models; (b) a099

proposal of interpretability methods for the inter-100

nal mechanisms of RI models; and (c) an analysis101

of the strategies employed by various models on102

stimuli containing local ambiguities, for which a103

well-defined motivation for reanalysis is known.104

2 Related Work105

Monotonic decoding is advantageous to avoid out-106

put instability but comes with the downside of not107

recovering if there is a genuine reason to revise.108

Some attempts to overcome this issue are adapting109

back-propagation to update the internal represen-110

tation of the output (Qin et al., 2020) or gradient-111

based methods to update the cached internal rep-112

resentations (Yoshida and Gimpel, 2021) without113

changing the model’s parameters. Although this al- 114

leviates the strict monotonicity, it requires adapting 115

the model’s implementation. RI, on the other hand, 116

is available to anyone in possession of any model, 117

as it only requires re-running it as is each time. Via 118

recomputations, bidirectional models innately in- 119

corporate new increments into its states and revise 120

if needed (Kahardipraja et al., 2023). 121

Several methods have been proposed to analyse 122

how neural networks encode linguistic informa- 123

tion (Belinkov and Glass, 2019), with Transform- 124

ers front and centre, e.g. in how information flows 125

in its self-attention (Abnar and Zuidema, 2020) and 126

how its predictions are refined or affected by previ- 127

ous tokens layer after layer (Ferrando et al., 2023; 128

Belrose et al., 2023; Din et al., 2023). Voluminous 129

BERTology works exist (Clark et al., 2019; Rogers 130

et al., 2020), in particular investigating its attention 131

mechanisms, what it means for an embedding to 132

be contextualised instead of static and what layers 133

encode what type of linguistic structure. Another 134

angle is to look at how linguistic information is dy- 135

namically learnt throughout the training regime of 136

LMs (Saphra and Lopez, 2019; Chen et al., 2023). 137

The realm of incremental processing has also 138

been active. Ulmer et al. (2019) propose meth- 139

ods to interpret how RNNs incrementally encode, 140

integrate and retain information. The incremen- 141

tal aptitude of neural networks to encode syntac- 142

tic information has also been examined with the 143

aid of psycholinguistic experimental methodolo- 144

gies (Futrell et al., 2019). An evident test bed are 145

stimuli containing local ambiguities to evaluate if 146

they exhibit garden path effects. In psycholinguis- 147

tics, a traditional debate holds between the early- 148

commitment with eventual reanalysis vs. beam 149

search approaches, where multiple hypotheses are 150

kept in parallel, known as two and one-stage ac- 151

counts, respectively (Van Schijndel and Linzen, 152

2021). In this sense, the RI paradigm can be 153

viewed as a two-stage account performing multiple 154

forward-reanalyses (Frazier and Rayner, 1982). 155

Recent findings point to models encoding multi- 156

ple hypotheses in face of local ambiguities. Aina 157

and Linzen (2021) probe to what extent autoregres- 158

sive LMs encode multiple syntactic analyses by 159

assessing the probability assigned to each interpre- 160

tation as they generate continuations of a prefix, 161

finding that multiple interpretations are followed in 162

parallel. Methods relying on surprisal theory show 163

that the magnitude of the garden path effect in au- 164

toregressive and RNN LMs underestimate human 165
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behaviour (Van Schijndel and Linzen, 2021; Are-166

halli et al., 2022). Other works study BERT-based167

models using differences in surprisal and attention168

between unambiguous and locally ambiguous sen-169

tences (Lee et al., 2022; Lee and Shin, 2023).170

Other glass box analyses have been put forward.171

Irwin et al. (2023) use probing tasks with garden172

paths to study how the BERT family assigns se-173

mantic roles in QA tasks. Jurayj et al. (2022) de-174

fine vector similarity methods as an improvement175

over surprisal to shed light on how GPT-2 traverses176

garden paths, finding periods of ambiguity in the177

hidden states that do not always surface. Lindborg178

and Rabovsky (2021) study how meaning is built179

word by word by GPT-2 looking at the connec-180

tion between the size of the updates in its output181

activations and the N400 psychometric in humans.182

Through structural probes, Hewitt and Manning183

(2019) show that it is possible to recover syntax184

trees from ELMo and BERT embeddings using185

linear transformations. Eisape et al. (2022) extend186

the probe to incremental settings and conclude that187

the internal representations of autoregressive LMs188

encode syntactic uncertainty that can be explored189

by future tokens, which would be a reason why190

such models perform well even without access to191

future words. It is also possible that monotonic192

models work well due to speculation about the193

future. Pal et al. (2023) use GPT’s internal states194

to predict future tokens, finding that some layers195

partially anticipate subsequent tokens. But this196

speculation may lead to wrong paths and is not197

always desirable. Kitaev et al. (2022), for instance,198

explore non-speculative incrementality to induce199

syntactic representations free of speculation.200

As we see, in previous studies, analyses hap-201

pened either at autoregressive mode or with bidi-202

rectional access to the whole sequence. Our focus203

is to tailor interpretability methods for inspecting204

the emergent properties of bidirectional models un-205

der restart incrementality, beyond output labels.206

3 Formalisation207

A restart-incremental model is constructed upon208

an underlying (non-incremental) model, making it209

perform a sequence of re-computations as the input210

is processed increment by increment (Schlangen211

and Skantze, 2011; Beuck et al., 2011). We propose212

a general formalisation of this procedure, detail its213

structures for sequential processing and discuss214

their interpretation for bidirectional models.215

Restart-Incrementality Let M : w 7→ o be a 216

(non-incremental) model that maps an input w to 217

an output o by computing internal states s. Gener- 218

ally speaking, restart-incrementality is an interface 219

I around M , such that I(M) can be fed individual 220

tokens wi, which—until the interface is reset—are 221

taken as continuations of the sequence of tokens 222

fed so far. Hence, at time step t, I(M) will be 223

provided with the token wt. Internally, the inter- 224

face assembles the prefix w1, . . . , wt (denoted as 225

wt below), which it feeds to M , to compute the 226

corresponding sequences st = (st1, . . . , s
t
t) and 227

ot = (ot1, . . . , o
t
t).

3 228

This way, from the perspective of M , it is always 229

a sequence of tokens that is being processed from 230

scratch, independently from any prior calls of M , 231

while from the perspective of I(M), with each call 232

a single token is added. While for the further down- 233

stream processing, only the output revisions (that 234

is, the elements where ot+1 differs from ot) may 235

be of interest,4 for the purpose of our analysis the 236

sequences s1, s2, . . . , sn corresponding to each pre- 237

fix are kept in memory by I(M). I(M) can hence 238

be regarded as a transition system where states are 239

updated based on the action of recomputing with 240

the integration of a new input increment. 241

Triangular Structures To represent the mem- 242

ory built by I(M), we can extend the 2D chart of 243

outputs in Madureira et al. (2023) with a third di- 244

mension, filling it with state sequences as follows: 245

w1 s11
w1 w2 s21 s22

w1 w2 w3 s31 s32 s33

. .
.

. .
.

. .
. ...

...
...

...
. . .

w1 w2 w3 . . . wn sn1 sn2 sn3 · · · snn

246

The right portion represents how the states 247

evolve from time step to time step for an input 248

sequence of n tokens. The last state sequence co- 249

incides with the sequence M creates when the full 250

input is available. Figure 2 illustrates three types 251

of resulting structures. Although they are actu- 252

ally multidimensional arrays, with some abuse of 253

nomenclature, we will reference them by the trian- 254

gular prisms they resemble. In the right triangle 255

3By growing incrementally, each prefix changes the con-
text of each prior input token, which is why the elements
of state and output sequences need to be indexed with the
timestep in superscript; e.g., s41 is the internal representation
of token 1, at the time when the first 4 tokens were available.

4As in the IU model of Schlangen and Skantze (2011),
implemented in InproTK (Kennington et al., 2014).
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Figure 2: Triangular structures representing states built
step by step in restart-incremental sequential processing.

in (a), each token is assigned one value per time256

step. In the right triangular prism (b), each time257

step produces a vector with a fixed number of di-258

mensions for each token (for instance, a probability259

distribution over labels or an embedding). In the260

truncated triangular prism (c), at each time step, a261

vector the same size of the current prefix is built262

for each token (for example, attention scores or263

dependency arcs over the input).264

These structures allow us to inspect emergent265

properties by comparing time steps. We can specif-266

ically look at the dynamics of the sjk for a fixed k,267

i.e. the states corresponding to the same input to-268

ken, but over the re-computations at each time step.269

Note that, when models are bidirectional, this is a270

much richer process than what happens in autore-271

gressive or monotonic decoders, where elements272

in the main diagonal are computed once and kept273

fixed for all subsequent steps. Here, all s can keep274

changing as right context gets integrated.5275

4 Method276

We now introduce our method and motivate its in-277

terpretations. Once we have extracted states as a278

RI model processes a sentence, we can analyse the279

dynamics of this process, i.e. how do these vectors280

evolve over time. The 3D structures (b) and (c)281

from Figure 2 can be converted into 2D as in (a)282

if we apply a metric over the features dimension,283

summarising it into one value (e.g. Shannon’s en-284

tropy or divergence over distributions and similar-285

ity or distance metrics for embeddings). With such286

scores, we can then examine whether the behaviour287

of their variation aligns with output edits.288

If we look at columns of the triangular structures,289

we can analyse a sequence of states assigned to one290

token step by step. If we consider the rows, we291

see the effect that the recently added token had on292

5The main diagonal contains another form of causality:
Although its elements also see no right context, they are com-
puted considering bidirectional representations of the left to-
kens available. In causal models, all states are unidirectional.

temporarily 
ambiguous

unambiguous unambiguous without 
added token

Figure 3: We realign tokens to compare a locally am-
biguous sentence with its unambiguous counterpart.

the current prefix. This analysis can in principle be 293

applied to any sentence. However, to shed light on 294

how restart-incremental models edit the output and 295

how they engage in reinterpretation, it is useful to 296

analyse what happens when the linguistic input is 297

known to contain local ambiguities. That way, we 298

have a genuine motivation to expect revisions and 299

can study how states change at key positions. 300

Let vijk be the value assigned for feature k of 301

token j at time step i in a sequence with n tokens. 302

We can compare the differences between vijk and 303

four relevant positions with clear interpretations: 304

• the value vjjk at the main diagonal, i.e. the 305

initial interpretation of token j when it was 306

first observed without any right context 307

• the value v
(i−1)
jk at the previous time step, i.e. 308

the change in the interpretation of token j 309

caused by the most recently added token wi 310

• the value vnjk at the last time step, i.e. the final 311

(gold standard) interpretation of token j when 312

it is observed with the whole context 313

• the value v
(i+d)
jk , where i + d is the position 314

when the disambiguating token occurs 315

A classic approach in studies using surprisal or 316

reading time as a measure of processing difficulty is 317

to consider the difference of the measure in the dis- 318

ambiguating region of an unambiguous sentence 319

and a locally ambiguous sentence as the garden 320

path effect (Van Schijndel and Linzen, 2021; Are- 321

halli et al., 2022; Huang et al., 2023). Drawing a 322

parallel with that approach, we compute triangular 323

structures for the stimulus and its baseline. After 324

removing the extra tokens, we have two structures 325

with the same dimensions, as shown in Figure 3. 326

To give an example, such a pairing would be “The 327

professor noticed the grant gained more attention” 328

and “The professor noticed (that) the grant gained 329

more attention”, with the token in parentheses re- 330

moved after computing the states to make the 331

structures directly comparable. 332
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5 Analysis333

Overall, we are interested in how future tokens334

affect states of past tokens and how such changes335

surface as output revisions. Our main hypothesis336

is that RI models are led down the garden path337

when they first encounter a local ambiguity without338

further right context but, as the disambiguating339

region is integrated, states are updated to absorb340

the new interpretation. We provide insights into341

updates that may be allowing them to recover.342

Scope We apply our method to two RI scenar-343

ios. Firstly, we look at the construction of meaning344

representations in bidirectional LMs (§5.2). We345

assume that the representations of a token encode346

its meaning in the available context, tracking how347

it evolves step by step and across all the layers. If348

there is a shift in the meaning of a token, we expect349

to observe variation over a control reference in the350

corresponding states. The second scenario is de-351

pendency parsing as sequence labelling with arcs352

and relations (§5.3) (Spoustová and Spousta, 2010;353

Strzyz et al., 2019). In this case, we have the output354

labels as an external signal of the concrete deci-355

sions made by the model. We investigate whether356

changes in divergence of the attention scores and of357

the distribution over labels or arcs align with output358

edits and with the resolution of the ambiguity.359

Material We study three kinds of local ambi-360

guities in English: 24 instances of Direct Ob-361

ject/Sentential Complement (NP/S) and of Main362

Verb/Reduced Relative ambiguity (MVRR) garden363

paths from Huang et al. (2023) and 281 instances364

of noun-noun compounds (NNC) from Garcia et al.365

(2021) with a fixed context. Examples of each type366

are shown in Figure 4. NNC has a very localised367

need for revision, where the immediate next token368

changes the interpretation of the preceding noun.369

In NP/S and MVRR, the disambiguating token ap-370

pears after a NP, with a more broad syntactic and371

semantic shift of all the prefix. Please see the origi-372

nal publications for detailed motivations.373

NNC (s)

NP/S (s)

MVRR (s)

This is the public service ,

The professor noticed the grant gained more attention…

The dancer assigned the ballet achieved incredible success…

         (b) This is the public ,

The professor noticed that the grant gained more attention…         (b)

The dancer who was assigned the ballet achieved incredible…         (b)

Figure 4: Types of stimuli (s) and their reference base-
lines (b). The words in lilac/bold are locally ambiguous
until the underlined/yellow token is observed.

5.1 General Effects of Right Context 374

We start by showing, in Table 1, that even in the 375

baseline stimuli (where no major revisions are ex- 376

pected), a token’s state keeps being updated as 377

more right tokens are integrated. For meaning, we 378

compute the cosine distance between a state and its 379

previous version at the last layer of BERT, to iso- 380

late how the latest token wt+i affects st+i−1
t . For 381

dependency parsing, we measure the variation of 382

entropy of the arc distribution also with respect to 383

its previous state for the biaffine parser (Dozat and 384

Manning, 2017) with RoBERTa. On average, there 385

is a considerable effect when the immediately next 386

token is added, which decreases gradually as more 387

right context is observed in almost all cases. 388

t+1 t+2 t+3 t+4 t+5 t+6 t+7

Meaning
MVRR 0.38 0.09 0.05 0.04 0.04 0.03 0.03
NPS 0.39 0.10 0.07 0.05 0.03 0.03 0.02
NNC 0.34 0.12 0.15 0.13 - - -

DP
MVRR 0.11 0.02 0.01 0.02 0.01 0.00 0.00
NPS 0.19 0.06 0.05 0.01 0.00 0.00 0.00
NNC 0.14 0.21 0.29 0.08 - - -

Table 1: Average effect of token wt+i on st over all
baseline stimuli.

5.2 Incremental Construction of Meaning 389

For this part, we extract the hidden states for all 390

layers of pretrained bidirectional transformer LMs. 391

We show results for BERT (Devlin et al., 2019) here 392

and RoBERTa (Liu et al., 2019b) in the Appendix. 393

We also study static embeddings in causal models, 394

namely GPT-2 (Radford et al., 2019) here and OPT 395

(Zhang et al., 2022) in the Appendix. We measure 396

how much states are updated, by computing their 397

cosine distance to a reference time step. 398

NNC In Figure 5, we zoom in at what happens 399

to the prefix when the second noun is added (the 400

fifth time step) by computing the cosine distance 401

between states s4i and s5i , for i = 1, . . . , 4. We 402

subtract from it a baseline case where a comma 403

is observed instead. This controls for keeping the 404

meaning of the first noun as a NP head versus it be- 405

coming a modifier of the second noun. The results 406

show that the second noun affects the meaning of 407

all previous tokens, more than the baseline, and the 408

effect is even larger for the first noun, in all layers 409

but especially in middle ones. In the last layer, the 410

mean cosine distance between the initial state of 411
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Figure 5: BERT’s mean effect of the second noun on the
tokens in the prefix. Absolute difference over baseline.

the first noun and its updated version when the sec-412

ond noun is observed is almost 0.41, considerably413

above the corresponding 0.34 in Table 1.414

NP/S In these stimuli, humans can first interpret415

the NP as direct object, but only until disambiguat-416

ing region is observed, when it becomes a sentential417

complement. The final meaning of the stimulus is418

the same as the baseline’s.Thus here we measure419

how distant each sji is from its target interpretation420

sNi at the final time step N . Then we compute421

the absolute difference between the distances for422

the stimulus and the baseline. In Figure 6 (left),423

we show the effect around the disambiguating to-424

ken for the layer where it is most prominent. The425

representation of the first verb diverges from its426

final meaning as the NP is processed. After the427

disambiguating region is integrated, this difference428

almost disappears. This suggests that the model429

first builds an initial interpretation for the stimulus430

but, one token after the second verb, it turns to its431

final meaning, as in the unambiguous case. BERT432

seems to load the semantics of the argument on the433

first verb, so the noun does not encode so much434

what its role is in the two variations of the sentence.435

We also observe this in almost all layers, especially436

the middle to upper ones (see Appendix).437

MVRR For stimuli where the first verb becomes438

a reduced relative, we perform the same type of439

analysis as in NP/S and observe similar results. In440

Figure 6 (right), a similar pattern occurs, but the441

divergence starts earlier, at the initial step where the442

first verb is observed. Again, this is evidence that443

the initial representation of the verb did not fully444

encode what would be the final reduced relative445

form and is revised in the face of upcoming tokens.446

The mean variation on the first verb once the sec-447

ond disambiguating token is observed is 0.15 and448

0.14 for NP/S and MVRR, well above the average449

variation at t+ 4 in Table 1. The conclusion so far450

is that future tokens do affect the meaning repre-451
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Figure 6: Average absolute difference between stimulus
and baseline in distance of each representation to its
final state at layer 9 of BERT.

sentation of previous tokens and more considerably 452

so when the model has a linguistic motivation to 453

revise its states. 454

Causal Models We now look at what happens 455

with static embeddings by directly computing the 456

distance from the states in the ambiguous stimulus 457

to the corresponding states in the baseline, which 458

disambiguates the meaning in advance. We sub- 459

tract from that the distance of a similar pair of sen- 460

tences with an unambiguous first verb (given for 461

MVRR and said for NP/S, see Appendix for the de- 462

tailed formulation) to account for the effect of one 463

sentence having more tokens than the other. The 464

remaining absolute difference is shown in Figure 7. 465

The intermediate layers encode a difference, which 466

should be due to non-commitment in the ambigu- 467

ous stimulus to what will turn out to be the “true” 468

analysis. That can be interpreted as how the model 469

would revise, if it could. In OPT (Appendix), the 470

difference remains and can affect its predictions. 471

For GPT-2’s last layer, however, the distance is 472

close to 0 in both pairs, so that the actual states 473

used for downstream decisions are practically the 474

same in the stimulus and the baseline, despite their 475

potentially different unfolding meanings. 476
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Figure 7: Distance between the causal embeddings of
the stimulus and the baseline, after taking the absolute
difference of the expected variation by a counterpart
pair with an unambiguous verb, for all layers of GPT-2.

6



5.3 Incremental Dependency Parsing477

Aside from being a fundamental aspect of human478

language processing, incremental parsing is also479

useful in applications such as simultaneous trans-480

lation (Ryu et al., 2006) and disfluency detection481

(Honnibal and Johnson, 2014). We investigate two482

dependency parsers in a RI setting: 1) the biaffine483

parser (Dozat and Manning, 2017) trained on top484

of RoBERTa and fine-tuned on PTB (Marcus et al.,485

1993) and 2) the DiaParser (Attardi et al., 2021),486

which uses ELECTRA (Clark et al., 2020) and is487

fine-tuned on PTB and EWT (Silveira et al., 2014).488

Here we only show findings for the biaffine parser489

as we find similar results to occur in DiaParser. See490

the Appendix for a full comparison.491

Our focus is on the self-attention mechanism of492

the parsers, from which the dependency arcs and493

labels are directly derived. Both parsers handle494

parsing and labelling decisions sequentially, select-495

ing the labels for each arc only after ensuring the496

well-formedness of the tree via the MST algorithm497

(Chu and Liu, 1965; Edmonds, 1967). As such, an498

independent analysis of the dependency labels is499

not possible, as they depend on the predicted arcs,500

which in turn may also change from time to time as501

more tokens are observed. Hence we analyse both502

dependency arcs and labels in a joint fashion. We503

measure how attention distributions evolve across504

time steps, by computing the Jensen-Shannon di-505

vergence (JSD) with respect to the last, previous,506

or first (the main diagonal) time step as a reference.507

We also consider how the arc may change due to508

future tokens. See the Appendix for full details.509

NNC We isolate the effect of the local ambigu-510

ity by computing the absolute difference of JSD511

between the stimulus and the baseline in a similar512

manner to (§5.2). Using the first time step as a ref-513

erence, we glean how far the label distribution of514

the first noun shifts from its origin when it acts as a515

modifier for the second noun as opposed to encoun-516

tering a comma, where it retains its interpretation517

as the NP head. We also compute the difference518

with respect to the previous step to investigate how519

the distribution shift causes the dependency struc-520

ture to change through time. Both are shown in521

Figure 8. On the left, we see that the second noun522

alters the original distribution of the first noun more523

than the baseline, as the head-dependent relation524

of the first noun changes. To the right, we find that525

the second noun affects not only the first noun, but526

also the distributions of all previous tokens as it527

Th
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Figure 8: Average absolute difference of JSD between
stimulus and baseline on NNC. Left: first step reference.
Right: previous step reference.

replaces the first noun as the argument of is. This 528

is not present on the left figure. 529

NP/S As the stimulus in the NP/S ambiguity has 530

the same final interpretation as their unambiguous 531

counterpart, we take the final step as a reference 532

and compute the absolute difference of JSD be- 533

tween them, factoring out the complementiser that. 534

We find that the label distribution of the sentential 535

complement diverges at the beginning between the 536

stimuli and the baseline when compared to the fi- 537

nal distribution (Figure 9, left). However, there is 538

almost no difference between them after entering 539

the disambiguating region, similar to (§5.2). 540

no
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Figure 9: Average absolute difference of JSD between
stimulus and baseline on NP/S (left, final step reference)
& MVRR (right, previous step reference).

MVRR For MVRR, we are interested in how 541

the dynamics of the parse evolve throughout the 542

time axis. We subtract the JSD of the stimulus 543

calculated wrt. the previous step from the baseline 544

chart. In Figure 9 (right), we notice peaks in the 545

difference for the first noun when the first and sec- 546

ond verbs are encountered. The first one occurs 547

as the first verb can initially be parsed either as 548

the main verb or the verb in the reduced relative 549

clause, making the first noun be interpreted differ- 550

ently. However, this is reconciled in the second 551

peak when the disambiguating region is incorpo- 552

rated to the stimulus’ interpretation. We observe an 553
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effect similar to NP/S afterwards, as the ambiguity554

is resolved and the JSD difference vanishes.555

Alignment with Edits We examine whether556

changes in label distributions due to future tokens557

also coincide with changes in arcs or labels. For558

instance, this happens in NNC when the first noun559

is revised from the argument of the verb to be the560

modifier of the second noun. To do this, we use the561

JSD chart with the previous step as a reference and562

assume that changes or edits happens if its value563

is bigger than a threshold τ = 0.45 ln(2), where564

ln(2) is the divergence upper bound. Then we com-565

pute the Matthews correlation coefficient (MCC)566

(Matthews, 1975) between the predictions and the567

edits (Table 2). In general, we find that distribu-568

tion shifts are positively correlated to edits, with a569

stronger magnitude for dependency arcs compared570

to labels. This suggests that shifts in distributions571

encode information that surface as revisions.572

NNC NP/S MVRR

Arc S B S B S B

Biaffine 0.99 0.96 0.95 0.92 0.86 0.93
DiaParser (EWT) 0.97 1.00 0.95 0.92 0.80 0.94
DiaParser (PTB) 0.81 0.78 0.91 0.92 0.79 0.96

Label S B S B S B

Biaffine 0.55 0.77 0.86 0.77 0.71 0.84
DiaParser (EWT) 0.37 0.53 0.78 0.70 0.61 0.75
DiaParser (PTB) 0.23 0.52 0.78 0.72 0.64 0.86

Table 2: MCC between distribution shifts and edits for
dependency arcs and labels. S: stimulus & B: baseline.

6 Discussion & Conclusion573

Our method has shown that a RI interface applied574

to bidirectional encoders yields models that build575

sequences of states with a rich dynamics of updates576

of past representations. This grants these models577

with revisability, a property that is desirable in in-578

cremental systems (Schlangen and Skantze, 2011)579

but not present in unidirectional models. While580

causal models must create a representation based581

only on left context and stick to their first com-582

mitment, RI bidirectional models can profit from583

incorporating right context and revisit its previous584

decisions. Our analysis has empirically revealed585

that the RI models we studied seem to run into the586

downsides of parsing, i.e. they are led down the gar-587

den path, but their initial internal representations588

are updated once the disambiguating region is pro-589

cessed, more than in the baselines. In other words,590

it seems that they make early commitments but 591

then revise accordingly, as two-stage approaches 592

to language processing. 593

In the analysis of contextualised embeddings, 594

the effect is less pronounced on lower layers, but 595

more prominent from middle to upper layers. This 596

relates to the findings of Tenney et al. (2019) who 597

suggest that upper layers (that are more semantic) 598

can be used to disambiguate decisions in lower 599

layers (that are more syntactic). This is also in line 600

with works showing that middle to upper layers are 601

most informative for some tasks (Liu et al., 2019a). 602

Treating the triangular structures as internal 603

states of a transition system constructed from graph- 604

based dependency parsers allows us to uncover how 605

relations between tokens change as an effect of fu- 606

ture tokens. By using the divergence computed 607

with various reference time steps as a measure, we 608

show that attention distributions may evolve differ- 609

ently throughout the course of processing and how 610

they can become similar again through the disam- 611

biguation process. The shift in distributions also 612

indicates edits in dependency arcs and labels, and 613

more importantly, enlightens us more about why 614

RI models revise when they do. 615

While decoder-only LLMs have grown in popu- 616

larity the past few years, we still see room for im- 617

provement, particularly regarding how their static 618

representations can be updated (like RI models) 619

as more tokens are processed. This can benefit 620

tasks that require non-monotonic reasoning (Kraus 621

et al., 1990), regardless of whether it involves NLG 622

or NLU. Moreover, natural language is inherently 623

ambiguous, although its spectrum of ambiguity de- 624

pends on its use (Schlangen, 2023) which needs 625

this processing mode. 626

One of Transformers’ properties that does not 627

align with human language processing, is how 628

words are processed in parallel, even in autore- 629

gressive settings. Ideally, models of human lan- 630

guage should also face similar input and linguistic 631

challenges as humans do (Blank, 2023). We show 632

that when facing such challenge in the form of 633

garden-path sentences, Transformers with a RI in- 634

terface still exhibit the ability to disambiguate using 635

forward-reanalysis (Frazier and Rayner, 1982). 636

Future research can explore how the restart activ- 637

ity can serve as an indicator of updates that should 638

not be immediately integrated into the output, or 639

model a controller that is able to detect variations 640

that lead to revisions and decide whether to delay 641

outputs until a level of certainty has been reached. 642
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Limitations643

We have only considered short-range temporary644

ambiguities, i.e. those that are resolved up to 3 of645

4 tokens into the future. It would be interesting646

to study whether meaningful revisions also occur647

when the distance between the temporarily ambigu-648

ous token and the disambiguating region is longer.649

We observed that the standard deviation of the650

means we report can be large at some cases. That651

means that, for some sentences, the effect is less652

present and in others where it is more extreme.653

This may relate to what is the most likely early654

commitment given the lexical information of the655

ambiguous tokens. Further investigation could try656

to consider that. Larger samples would also be657

necessary to have better mean and std. estimators.658

Related to that, we did not take into account the fre-659

quency of the vocabulary choices in these datasets.660

The garden path effects we found may not be so661

salient for all types of local ambiguities. Our initial662

analysis on the verb-noun ambiguity using the stim-663

uli by Aina and Linzen (2021) (like the example664

in Figure 1) led to inconclusive results. For such665

cases, maybe other metrics are required, especially666

because it is harder to isolate the effect of the ambi-667

guity from the effect that the immediate next token668

has on its neighbour. Further investigation can also669

be done with ungrammatical sentences and other670

types of garden paths in the SAP benchmark.671

As we discuss in the Appendix, some stimuli672

were excluded from the analysis of meaning due to673

rare tokens that require subtokenisation and cause674

misalignment in the incremental structures.675

For the analysis of causal embeddings, we used676

different architectures. Ideally, we should also com-677

pare a fixed architecture, trained with all the same678

parameters and data, but once with causal masking679

and once with bidirectional access. That way we680

could directly compare how the RI bidirectional681

and causal embeddings differ.682

We do not perform layer-level analysis for depen-683

dency parsing as both parsers use scalar mix of hid-684

den representations from pre-trained LMs. While685

we only use graph-based dependency parsers, it686

would be interesting to apply our methods to687

transition-based parsers, as they works from left688

to right and are traditionally associated with the689

notion of incrementality (Nivre, 2008). In our pre-690

liminary analysis, we also compare Shannon’s en-691

tropy on attention distributions for dependency arcs.692

However, the results are inconclusive.693
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A Appendix1099

In this section, we provide some additional details1100

and results.1101

Classic garden paths The NP/S garden path1102

was originally discussed by Frazier (1979) and1103

the MVRR by Bever (1970). We did not use1104

the other forms of garden path in the SAP bench-1105

mark (Huang et al., 2023) because the type revision1106

would be harder to isolate or, in the case of NP/Z1107

and subject-verb agreement mismatch, the stimu-1108

lus is not a completely well-formed construction in1109

written text.1110

NNC The template we selected for the stimuli is1111

This is a noun1 noun2, and for the baseline1112

reference is This is a noun1, . This was chosen1113

to be a not very informative left context in order to1114

focus on the effect of the NP construction.1115

Licenses The NNC stimuli6 are released without1116

a license. The NP/S and MVRR stimuli7 and the1117

repository as a whole is under the MIT license.1118

BERT and ELECTRA are released under Apache1119

2.0. RoBERTa and GPT-2 are under MIT. OPT is1120

under a custom OPT-175B license agreement. The1121

dependency parsing libraries we used are under the1122

MIT license.1123

B Details: Incremental Construction of1124

Meaning1125

We use the pretrained model checkpoints and cor-1126

responding tokenizers available on HuggingFace:1127

bert-base-uncased,8 roberta-base,9 gpt2,101128

and facebook/opt-125m.111129

6https://github.com/marcospln/noun_compound_
senses

7https://github.com/caplabnyu/sapbenchmark
8https://huggingface.co/bert-base-uncased
9https://huggingface.co/roberta-base

10https://huggingface.co/gpt2
11https://huggingface.co/facebook/opt-125m

We did not include the stimuli for which tokens 1130

were split into subtokens, because that creates mis- 1131

alignment in the triangular structures and thus re- 1132

quires workarounds. Because of that, the samples 1133

differed slightly for each model. This is not a prob- 1134

lem in our analysis because we are not ranking the 1135

performance of the models; what matters is the 1136

intrinsic behaviour of each model separately. The 1137

number of excluded instances is shown in Table 3. 1138

model source n excluded

BERT NP/S 5
BERT MVRR 4
BERT NNC 14
RoBERTa NP/S 1
RoBERTa MVRR 0
RoBERTa NNC 23
opt NP/S 1
opt MVRR 0
opt NNC 23
gpt2 NP/S 1
gpt2 MVRR 0
gpt2 NNC 23

Table 3: Number of excluded instances for each model
and type of stimuli due to subtokenisation.

Cosine distance was chosen because that should 1139

capture meaning variations in the embedding space. 1140

It is also possible to use other distance met- 1141

rics like Manhattan or Euclidean distance. We 1142

used the paired_distances method from the 1143

sklearn.metrics.pairwise package12 to com- 1144

pute the cosine distance. 1145

B.1 Computations 1146

We now describe in greater detail the computation 1147

steps we took to derive the plots the results they 1148

illustrate. 1149

Each sentence was fed to each model prefix by 1150

prefix and after each step we saved the hidden rep- 1151

resentations. We stored the representations of all 1152

layers using 4D arrays with dimensions number 1153

of layers, sequence length (time step), sequence 1154

length (token position), embedding dimension. All 1155

models had an initial embedding layer and 12 en- 1156

coding layers. 1157

NNC We extracted the states for all stimuli and 1158

their corresponding baseline. Then, we computed 1159

the cosine distance of each state to its own version 1160

in the preceding time step. For the main diagonal 1161

12https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.pairwise.paired_
distances.html#sklearn.metrics.pairwise.paired_
distances
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(i.e. the first time a token’s state is constructed),1162

we set this value to be 0 for a better visualisation.1163

This resulted in a 2D lower diagonal matrix where1164

each cell contains one value. Let cs and cb be these1165

charts for the stimulus and its baseline, respectively.1166

cs has one row and one column more than cb, since1167

the baseline does not contain the second noun and is1168

thus one token shorter. We create c′s by deleting the1169

last row and last column in cs (which correspond to1170

the comma) and then compute the absolute differ-1171

ence d = |c′s − cb|. We then average the numbers1172

in d over all stimulus+baseline pairs for each layer.1173

NP/S and MVRR We extracted the states for all1174

stimuli and their corresponding baseline. Then, we1175

computed the cosine distance of each state to its1176

own version in the last time step, which represents1177

its meaning given the full sentence as context. This1178

resulted in a 2D lower diagonal matrix where each1179

cell contains one value. Let cs and cb be these1180

charts for the stimulus and its baseline, respectively.1181

Here, cb has more rows/columns due to the added1182

tokens that disambiguate the verb (i.e. that or who1183

was). We create c′b by deleting the extra row(s) and1184

column(s) in cb (which correspond to the added1185

tokens) and then compute the absolute difference1186

d = |cs − c′b|. We then average the numbers in1187

d over all stimulus+baseline pairs for each layer.1188

Some sentences start with a det adj noun and1189

other with det noun. For the plots, we remove1190

the initial rows/columns and begin the chart at the1191

aligned noun.1192

Causal For the analysis of causal embeddings,1193

we use four variations of each sentence: (a) the1194

stimulus with a temporary ambiguity; (b) the base-1195

line, which disambiguates the role of the verb and1196

NP in advance; (c) the stimulus with the first verb1197

replaced with an unambiguous verb; (d) the base-1198

line with the first verb replaced by the same unam-1199

biguous verb. For NP/S, we use the verb said and1200

for MVRR, given. For example, for NP/S:1201

(a) The new doctor demonstrated the operation1202

appeared increasingly likely to succeed.1203

(b) The new doctor demonstrated that the opera-1204

tion appeared increasingly likely to succeed.1205

(c) The new doctor said the operation appeared1206

increasingly likely to succeed.1207

(d) The new doctor said that the operation ap-1208

peared increasingly likely to succeed.1209

and for MVRR: 1210

(a) The professor awarded the grant gained more 1211

attention from marine biologists. 1212

(b) The professor who was awarded the grant 1213

gained more attention from marine biologists. 1214

(c) The professor given the grant gained more 1215

attention from marine biologists. 1216

(d) The professor who was given the grant gained 1217

more attention from marine biologists. 1218

We first compute the distance of the states of 1219

the tokens in (a) to their corresponding states in 1220

(b) (i.e. the states of the added tokens are ignored). 1221

Let us call the resulting vector dab. To account for 1222

the expected variation due to the different number 1223

of tokens, we do the same for (c) and (d), to be 1224

used as a reference, and get dcd. Then, we take the 1225

absolute difference |dab − dcd| and average values 1226

over all stimuli. 1227

To conclude, we detail the procedure to compute 1228

the numbers in Table 1. We first create triangular 1229

structures for all baseline sentences by computing 1230

the cosine distance of each state to its own version 1231

in the immediately preceding time step. The cell 1232

at row i and column j in the right triangle thus 1233

contain a value representing how much token wi 1234

has affected the state sj of token wj , with i > j. 1235

We then average the distances for all tokens that 1236

have a corresponding state 1, 2, . . . , 7 steps into the 1237

future. In practice, this means collecting values at 1238

each sub-diagonal −1,−2, . . . ,−7 and computing 1239

the average over baseline stimuli. 1240

B.2 Additional Results 1241

In BERT, for layers 1 to 10, the maximum average 1242

change occurs at the first noun when the second 1243

noun is observed. For the upper layers, it is the 1244

second most, but still with a mean distance of al- 1245

most 0.41, considerably above the corresponding 1246

0.34 in Table 1. In the full overview in Figure 17 1247

we see that all previous tokens are affected by all 1248

right tokens, especially during the construction of 1249

the NP. In Figure 10, we see that RoBERTa has 1250

a similar effect on the NNC stimuli as BERT: the 1251

second noun influences the whole prefix, especially 1252

the first noun. Here, however, the magnitude of the 1253

effect is smaller, roughly half that of BERT. Be- 1254

sides, the upper layers have effects as high as the 1255

middle layers, different from BERT, where two of 1256

the middle layers stand out. Figure 20 shows again 1257
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that the magnitude of the state distances is smaller1258

for RoBERTa. Up to layer 7, the effect of the sec-1259

ond noun on the first one is the largest. However, in1260

the upper layers, this no longer holds: The largest1261

variation occurs for this when is is observed.1262

Figures 18 and 19 show the full results of the1263

NP/S and MVRR cases for BERT. For RoBERTa,1264

the patterns of behaviour are similar: The repre-1265

sentation of the first verb differs from what will1266

be the final one, until the second verb, and one to-1267

ken after that, are integrated. Again, while BERT1268

has an effect of around 0.15, RoBERTa’s effect is1269

around 0.05, as illustrated in Figure 21 and 22. In1270

both types of ambiguity, the effect becomes smaller1271

in the last layer for RoBERTa, while it persists in1272

BERT. More investigation is needed to shed light1273

on what conceptual differences between the models1274

cause the different behaviours.1275

Figure 11 shows the analysis of the causal em-1276

beddings for OPT. Like GPT-2, it creates dissimilar1277

representations for the ambiguous and the unam-1278

biguous prefixes, but here the effect last until the1279

final layer, i.e. it will influence the subsequent1280

predictions. Figures 13 and 12 show directly the1281

distance between stimulus and baseline, without1282

subtracting the counterpart pair. This is to show1283

that, indeed, for GPT-2, the representations of the1284

last layer are very similar, despite the disambigua-1285

tion in advance.1286
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12

Figure 10: NNC. Average (absolute) effect over a base-
line of the second noun on the tokens in the prefix for
RoBERTa.

C Details: Incremental Dependency1287

Parsing1288

We use the biaffine parser implemented in SuPar1289

(https://github.com/yzhangcs/parser) with1290

embeddings from RoBERTa large. For the Di-1291

aParser, we follow the original implementation1292

(https://github.com/Unipisa/diaparser) us-1293

ing ELECTRA base. Both parsers use stanza (Qi1294

et al., 2020) as tokenizers.1295
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Figure 11: Distance between the causal embeddings
of the stimulus and the baseline, after subtracting the
expected variation by a counterpart pair with an unam-
biguous verb, for all layers of OPT.
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Figure 12: Distance between the causal embeddings of
the stimulus and the baseline, for all layers of OPT.

C.1 Computation 1296

Our method is inspired by the approach of Hrycyk 1297

et al. (2021). Let us consider head(i)t as the 1298

head of token i predicted at time step t. When 1299

head(i)t = head(i)ref , we can directly compare 1300

the label attention distribution between the cur- 1301

rent time step t against the reference time step 1302

ref ∈ {0, t − 1, T}. However when head(i)t ̸= 1303

head(i)ref , either heads may or may not be ob- 1304

served yet. In the case where the head is already 1305

observed, we use the label distribution from the 1306

self-attention matrix at time step t or ref for com- 1307

parison depending whether t < ref , otherwise we 1308

assume a uniform distribution. To be more precise, 1309

let assume that in an incremental scenario, the atten- 1310

tion distribution for dependency labels at time step 1311

n is also available at time step m where m > n. 1312

We then compute the Jensen-Shannon divergence 1313

as the following when head(i)n ̸= head(i)m: 1314

JSD(p(y|arc(i, j)n)||p(y|arc(i, j)m)) (1) 1315

JSD(p(y|arc(i, k)n)||p(y|arc(i, k)m)) (2) 1316

where arc(i, j) is the arc between token i and 1317

j, and p(y|arc(i, ·)) is obtained from the self- 1318

attention matrix if the token is already observed 1319

and uniform distribution otherwise. The distance 1320

15
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Figure 13: Distance between the causal embeddings of
the stimulus and the baseline, for all layers of GPT-2.

between the label attention distribution at time step1321

n and m is then defined as the average of (1) and1322

(2).1323

C.2 Additional Results1324

NP/S For the last time step as a reference, we1325

see that the complement’s distribution is closer to1326

the final for the baseline compared to the stimulus,1327

showing that the complementiser helps in process-1328

ing the temporary ambiguity. The overview is de-1329

picted in Figure 24. We also measure how the label1330

distribution changes as more token is observed by1331

taking the absolute difference of JSD between the1332

stimulus and the baseline wrt. the previous time1333

step. In Figure 14 (right), we observe a noticeable1334

difference in the divergence of the complement1335

when the disambiguation token (the second verb)1336

is encountered. After that point, the gap diminishes1337

rapidly.1338

MVRR We compute the absolute difference of1339

JSD wrt. the last step as the stimulus and the base-1340

line have the same final interpretation. In Figure1341

15 (left), we observe that the first noun and the1342

first verb are processed differently in both cases.1343

This is highly likely due to the fact that the first1344

verb can be interpreted as the main verb or as a1345

reduced relative, which also affects how the first1346

noun is understood. We see that both the stimulus1347

and the baseline converge to the same interpretation1348

after the disambiguation token (the second verb) is1349

observed.1350

Alignment In addition to MCC, we also compute1351

the average precision (AP) score for both the stim-1352

ulus and the baseline. We do this by treating edits1353

as the ground truth and the JSD wrt. previous step1354

as the prediction to see if edits can be predicted1355

just from JSD alone (Table 4). We observe that1356

the AP for dependency arcs are high in general,1357

while it is lower for the labels. We also see that the1358
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Figure 14: Average absolute difference of JSD between
stimulus and baseline on NP/S. Left: last step as refer-
ence. Right: previous step as reference. We also include
the results for biaffine parser for the ease of comparison.

average edit ratio is low for all stimuli except NNC, 1359

as shown in Table 5. 1360

NNC NP/S MVRR

Arc S B S B S B

Biaffine 0.99 0.99 0.92 0.88 0.88 0.89
DiaParser (EWT) 0.99 1.00 0.98 0.96 0.91 0.97
DiaParser (PTB) 0.99 0.99 0.97 0.98 0.92 0.99

Label S B S B S B

Biaffine 0.41 0.90 0.92 0.78 0.80 0.85
DiaParser (EWT) 0.30 0.48 0.86 0.76 0.75 0.87
DiaParser (PTB) 0.55 0.80 0.89 0.74 0.78 0.91

Table 4: Average Precision between JSD wrt. previous
time step and edits for dependency arcs and labels. S:
stimulus & B: baseline.

16



no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

MVRR

noun
verb 1

det
noun

verb 2
...
...
...
...
...

0.0

0.1

0.2

0.3

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

MVRR

noun
verb 1

det
noun

verb 2
...
...
...
...
...

0.0

0.1

0.2

0.3

(a) Biaffine parser

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

MVRR

noun
verb 1

det
noun

verb 2
...
...
...
...
...

0.0

0.1

0.2

0.3

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

MVRR

noun
verb 1

det
noun

verb 2
...
...
...
...
...

0.0

0.1

0.2

0.3

(b) DiaParser (ELECTRA-EWT)

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

MVRR

noun
verb 1

det
noun

verb 2
...
...
...
...
...

0.0

0.1

0.2

0.3

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

MVRR

noun
verb 1

det
noun

verb 2
...
...
...
...
...

0.0

0.1

0.2

0.3

(c) DiaParser (ELECTRA-PTB)

Figure 15: Average absolute difference of JSD between
stimulus and baseline on MVRR. Left: last step as refer-
ence. Right: previous step as reference. We also include
the results for biaffine parser for the ease of comparison.

NNC NP/S MVRR

Arc S B S B S B

Biaffine 0.53 0.41 0.11 0.11 0.12 0.10
DiaParser (EWT) 0.67 0.60 0.13 0.13 0.15 0.11
DiaParser (PTB) 0.53 0.40 0.11 0.12 0.12 0.09

Label S B S B S B

Biaffine 0.27 0.31 0.09 0.08 0.09 0.09
DiaParser (EWT) 0.27 0.30 0.09 0.08 0.11 0.08
DiaParser (PTB) 0.27 0.30 0.09 0.08 0.10 0.08

Table 5: Average edit ratio for dependency arcs and
labels. S: stimulus & B: baseline.
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Figure 16: Average absolute difference of JSD between
stimulus and baseline on NNC. Left: first step as refer-
ence. Right: previous step as reference.
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Figure 17: Overview of the mean cosine distance of a contextual embedding to its state in the preceding time step,
for all layers of BERT, averaged over all NNC stimuli.
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Figure 18: Overview of the cosine distance of a contextual embedding to its final state (last row). The numbers
represent the absolute difference over the unambiguous baseline, for all layers of BERT, averaged over all NP/S
stimuli.

19



no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .01

.01 .01 .01

.01 .01 .01 .01

.00 .00 .01 .00 .01

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 1  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.02 .02

.01 .01 .01

.01 .01 .01 .01

.01 .01 .00 .01 .01

.01 .01 .00 .00 .01 .01

.00 .00 .00 .00 .00 .01 .01

.00 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .00 .01

layer 2  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.03 .04

.02 .01 .00

.01 .01 .01 .01

.01 .01 .00 .00 .01

.01 .01 .00 .00 .01 .01

.01 .00 .00 .00 .01 .01 .01

.00 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .00 .01

layer 3  
no

un
ve

rb
 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.03 .06

.02 .01 .01

.01 .02 .01 .01

.01 .01 .00 .00 .02

.01 .01 .00 .00 .01 .02

.01 .01 .00 .00 .01 .01 .01

.00 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .00 .01

layer 4  
no

un
ve

rb
 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.03 .06

.02 .01 .01

.01 .02 .01 .01

.01 .02 .01 .01 .03

.01 .01 .01 .01 .01 .02

.00 .01 .00 .00 .01 .01 .01

.00 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .00 .01

layer 5  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.02

.02 .10

.01 .03 .02

.01 .04 .01 .02

.01 .03 .02 .01 .03

.01 .03 .02 .01 .01 .03

.01 .02 .01 .00 .01 .01 .02

.00 .01 .00 .00 .01 .01 .00 .02

.00 .01 .00 .00 .01 .00 .00 .01 .01

.00 .01 .00 .00 .01 .00 .00 .00 .01 .01

layer 6  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.02

.02 .14

.01 .04 .05

.01 .06 .02 .02

.01 .05 .02 .01 .04

.01 .04 .02 .01 .03 .04

.01 .03 .01 .01 .01 .01 .02

.00 .02 .01 .00 .01 .01 .01 .02

.00 .01 .01 .00 .01 .01 .00 .01 .02

.00 .01 .00 .00 .01 .00 .00 .00 .01 .02

layer 7  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.02

.03 .20

.02 .09 .04

.02 .13 .04 .04

.02 .11 .05 .02 .05

.01 .07 .05 .02 .04 .03

.01 .03 .02 .01 .02 .02 .03

.00 .02 .01 .00 .01 .01 .01 .03

.00 .02 .01 .00 .01 .01 .00 .01 .02

.00 .01 .01 .00 .01 .01 .00 .00 .01 .02

layer 8  
no

un
ve

rb
 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.02

.03 .21

.02 .11 .07

.02 .16 .05 .04

.03 .15 .06 .02 .05

.01 .09 .07 .03 .05 .03

.01 .04 .03 .01 .02 .02 .03

.01 .03 .01 .00 .02 .01 .01 .03

.00 .02 .01 .00 .02 .01 .00 .01 .02

.00 .02 .01 .00 .02 .01 .00 .01 .01 .02

layer 9  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.02

.03 .18

.02 .10 .06

.03 .15 .05 .04

.03 .14 .06 .02 .05

.01 .08 .07 .02 .05 .03

.01 .04 .03 .01 .03 .02 .03

.01 .03 .02 .01 .03 .02 .01 .02

.01 .02 .01 .00 .03 .02 .01 .01 .02

.00 .02 .01 .00 .02 .01 .01 .01 .01 .02

layer 10  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.02

.03 .15

.02 .08 .05

.03 .12 .04 .04

.02 .12 .05 .02 .04

.01 .06 .06 .02 .04 .03

.01 .03 .03 .01 .03 .02 .03

.01 .02 .02 .01 .03 .02 .01 .02

.01 .02 .01 .00 .03 .02 .01 .01 .02

.01 .02 .01 .00 .03 .02 .01 .01 .01 .02

layer 11  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.03

.05 .19

.04 .10 .07

.04 .15 .04 .05

.03 .15 .05 .02 .06

.03 .08 .06 .03 .07 .03

.02 .04 .03 .01 .05 .03 .04

.02 .03 .02 .01 .04 .03 .01 .03

.01 .02 .01 .01 .04 .02 .01 .01 .02

.01 .03 .01 .00 .04 .02 .01 .01 .02 .03

layer 12  

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Figure 19: Overview of the cosine distance of a contextual embedding to its final state (last row). The numbers
represent the absolute difference over the unambiguous baseline, for all layers of BERT, averaged over all MVRR
stimuli.
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Figure 20: Overview of the mean cosine distance of a contextual embedding to its state in the preceding time step,
for all layers of RoBERTa, averaged over all NNC stimuli.
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Figure 21: Overview of the cosine distance of a contextual embedding to its final state (last row). The numbers
represent the absolute difference over the unambiguous baseline, for all layers of RoBERTa, averaged over all NP/S
stimuli.

22



no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.00

.01 .01

.01 .01 .00

.01 .01 .00 .01

.00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 1  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.00

.01 .01

.00 .00 .00

.00 .00 .00 .00

.00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 2  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.00

.01 .02

.00 .01 .00

.00 .01 .00 .00

.00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 3  
no

un
ve

rb
 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.00

.01 .02

.00 .01 .01

.00 .01 .01 .00

.00 .01 .00 .00 .01

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 4  
no

un
ve

rb
 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .03

.00 .02 .01

.00 .02 .01 .01

.00 .01 .01 .00 .01

.00 .01 .01 .00 .01 .01

.00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 5  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .03

.01 .02 .01

.00 .02 .01 .01

.00 .02 .01 .00 .01

.00 .01 .01 .00 .01 .01

.00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 6  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.00

.01 .03

.01 .03 .02

.01 .03 .02 .01

.00 .03 .02 .01 .01

.00 .01 .01 .01 .01 .01

.00 .01 .01 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 7  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .03

.01 .03 .02

.01 .04 .02 .01

.01 .03 .02 .01 .01

.00 .02 .01 .01 .01 .01

.00 .01 .01 .00 .00 .00 .00

.00 .01 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 8  
no

un
ve

rb
 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .04

.01 .05 .03

.01 .05 .03 .01

.01 .04 .02 .01 .02

.01 .03 .02 .01 .02 .01

.00 .02 .01 .01 .01 .00 .00

.00 .01 .01 .00 .01 .00 .00 .01

.00 .01 .01 .00 .01 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 9  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .05

.01 .05 .02

.01 .06 .03 .01

.01 .05 .02 .01 .02

.01 .03 .02 .01 .02 .01

.01 .02 .01 .01 .01 .00 .00

.00 .01 .01 .00 .01 .00 .00 .01

.00 .01 .01 .00 .01 .00 .00 .00 .01

.00 .01 .00 .00 .01 .00 .00 .00 .00 .00

layer 10  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .04

.01 .05 .01

.01 .06 .02 .01

.01 .05 .02 .01 .02

.01 .03 .01 .01 .02 .01

.01 .02 .01 .00 .01 .01 .00

.00 .01 .01 .00 .01 .00 .00 .01

.00 .01 .00 .00 .01 .00 .00 .00 .01

.00 .01 .00 .00 .01 .00 .00 .00 .00 .00

layer 11  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .02

.01 .02 .01

.01 .04 .01 .01

.01 .03 .01 .01 .02

.01 .02 .01 .01 .02 .01

.00 .01 .01 .00 .01 .01 .00

.00 .01 .00 .00 .01 .00 .00 .01

.00 .01 .00 .00 .01 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 12  

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 22: Overview of the cosine distance of a contextual embedding to its final state (last row). The numbers
represent the absolute difference over the unambiguous baseline, for all layers of RoBERTa, averaged over all
MVRR stimuli.
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Figure 23: Overview of the JSD for the label attention distributions wrt. the first and previous time steps as reference,
averaged over all NNC stimuli and baselines. From left to right: biaffine parser, DiaParser (ELECTRA-EWT and
ELECTRA-PTB).
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Figure 24: Overview of the JSD for the label attention distributions wrt. the last and previous time steps as reference,
averaged over all NP/S stimuli and baselines. From left to right: biaffine parser, DiaParser (ELECTRA-EWT and
ELECTRA-PTB).
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Figure 25: Overview of the JSD for the label attention distributions wrt. the last and previous time steps as reference,
averaged over all MVRR stimuli and baselines. From left to right: biaffine parser, DiaParser (ELECTRA-EWT and
ELECTRA-PTB).
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