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Abstract

We study the process through which reasoning models trained with reinforcement
learning on verifiable rewards (RLVR) can learn to solve new problems. We find
that RLVR drives performance in two main ways: (1) by compressing pass@k into
pass@1 and (2) via "capability gain" in which models learn to solve new problems
that they previously could not solve even at high k. We find that while capability
gain exists across model scales, learning to solve new problems is primarily driven
through self-distillation. We demonstrate these findings across model scales ranging
from 0.5B to 72B parameters on >500,000 reasoning problems with prompts and
verifiable final answers across math, science, and code domains. We further show
that we can significantly improve pass@F£ rates by leveraging natural language
guidance for the model to consider within context while still requiring the model
to derive a solution chain from scratch. Based of these insights, we derive Guide
— a new class of online training algorithms. Guide adaptively incorporates hints
into the model’s context on problems for which all rollouts were initially incorrect
and adjusts the importance sampling ratio for the "off-policy" trajectories in order
to optimize the policy for contexts in which the hints are no longer present. We
describe variants of Guide for GRPO and PPO and empirically show that Guide-
GRPO on 7B and 32B parameter models improves generalization over its vanilla
counterpart with up to 4% macro-average improvement across math benchmarks.
We include careful ablations to analyze Guide’s components and theoretically
analyze Guide’s learning efficienc

1 Introduction

Leading reasoning models on math, science, and coding benchmarks learn to utilize chain-of-thought
via reinforcement learning with verifiable rewards (RLVR) [[1} 12,13} 4]. These models are optimized
to maximize verifiable rewards by comparing predicted final answers to ground truth. Models trained
with RLVR are capable of surpassing previous approaches (such as SFT or RLHF) on challenging
math and science benchmarks due to availability of verifiable rewards at scale. Yet the drivers
of these gains—and how they evolve with model scale—remain poorly understood. Yue et al.
[S]] attribute RLVR’s improvements almost entirely to the distillation of the base model’s existing
knowledge. In this work, we instead formalize RLVR’s improvements as a sum of two orthogonal
effects—distillation and genuine capability gain—and investigate how each of these effects evolves
as models scale.

Specifically, there are at least two ways to improve a language model’s ability to solve challenging
reasoning problems autonomously:
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1. By distilling knowledge from pass @£k into pass@1 [|6} (7} (8} 9} [10} [11]]

2. Capability gain via RL in which a language model learns to solve new problems it previously
was not able to solve even when given k attempts.

In this work, we propose a formalism to measure the extent to which learning during RLVR is driven
by self-distillation or capability gain. We then seek to leverage these insights to accelerate learning
of new problems during RLVR by incorporating guidance into the reasoning model’s context. We
therefore address two main research questions:

1. Self-distillation or capability gain? To what extent is learning during RLVR merely redis-
tributing probability mass among outputs the model already knows (“self-distillation) versus
genuinely expanding the model’s problem-solving capabilities?

2. Do guidance-conditioned trajectories on failure accelerate learning? If we give the policy
selective guidance on complete problem failure, while requiring the trajectories to be generated
by the same policy state (and therefore close to the on-policy distribution), can we close
knowledge gaps faster than (a) using fully off-policy data, (b) providing no guidance at all, or
(c) always providing guidance?

Addressing these questions, our study yields three key contributions. First, we show that improve-
ments during RLVR are primarily driven by self-distillation: models learn to compress pass@#k
into pass@1 by shifting probability mass toward answers they could already reach with multiple
attempts. Second, we find that pass@F itself can be significantly improved through selective
guidance: when the model fails all £ attempts, providing a hint in-context—while still requiring
it to derive the reasoning chain from scratch—helps it discover successful trajectories that remain
unreachable through naive sampling. Third, synthesizing these insights, we introduce Guide, a
training algorithm that uses guided rollouts on failure to increase pass @k, thereby expanding the pool
of answers available for self-distillation. Guide accelerates learning in RLVR by turning unreachable
solutions into reachable ones, and by carefully correcting the importance sampling ratio, we enable
the model to subsequently learn them without guidance. We validate Guide across math benchmarks
and provide theoretical and empirical analysis of its learning efficiency.

2 Methods

2.1 Self-Distillation vs. Capability Gain

We study the post-training dynamics that govern LL.Ms learning to solve new tasks. We measure
this ability as the rewards R acquired from an environment, such as the test set of a benchmark.
Specifically, we are interested in how an LLM learns to solve new problems during RL. To this end,
we define R™¢! as the sum of net new rewards acquired after RL for a policy gy
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where U™t is the set of indices of unsolved problems prior to RL and S™n is the set of indices of
solved problems prior to RL. We define solved and unsolved here via pass@1 correctness. Note that
R™¢ can be calculated against both training data and test data and in practice is equal to the change
in accuracy before and after training.

Note that the progress term can be decomposed into problems that have at least one correct solution
in a sample V; = {01, ..., 9k} of k responses from 7ip; to the same prompt (i.e. pass@k = 1) and
problems that have no correct solutions in the sample (i.e. pass@k = 0).
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In order to understand how RLVR teaches models to solve new reasoning problems in practice, we
set k equal to the number of rollouts per problem used during training (k may be set higher and we
define effective vs. absolute capability gain in Appendix §DJ.



Algorithm 1 Guide-GRPO: GRPO with guidance-augmented rollouts on failure

Input: initial policy 7, ; reward model 7, ; task prompts D; hyper-parameters €, 3, u, k roll-outs per prompt,
guidance suffix guid

1: Mg < Oinit

2: foriter=1,...,1 do

3: Tref <— 79 > freeze reference
4 for step =1,..., M do

5: Sample minibatch D, C D

6: Toyy < T > snapshot old policy
7

8

Sample K outputs {0; }2| ~ 7o, (- | q) for every q¢ € Dy

: Identify unsolved set U = { ¢ €D, : all k roll-outs fail}
9: for g € U do
10: Sample k guidance rollouts 6 ~ g, ( - | (g, guid))
11: end for
12: Compute rewards r; = r,(0;) (and r5 if present)
13: Compute advantages A” via group-relative estimation
14: for gstep =1,...,ndo
15: Update 7o by maximising the Guide objective in Eq. 2.2]
16: end for
17: end for
18: end for

19: return my
Qutput: fine-tuned policy 7y

Decomposing progress into the above terms enables us to understand the mechanisms driving RLVR.
We empirically analyze these components in Section[3.1|and find that while effective capability gain
exists, progress is dominated by self-distillation.

2.2 Guide: Accelerating learning with guidance on failure

Inspired by our empirical results showing that self-distillation dominates learning of new problems
during RLVR (see Figure [T)), concurrent work showing similar results [5]], and a rich history of
success in RL of using off-policy data to improve training efficiency [12], we seek to increase the
proportion of correct rollouts during RL. We hypothesize that a particularly effective means to do
this will be by guiding the policy with a prompt-specifc hint, &, such that the model is required to
reach the solution in its own terms: mg(0; ¢ | ¢, h, 0; <¢). In an initial validation of this hypothesis,
we find that including hints significantly improves pass @k, as shown in Figure[2] To this end, we
derive a new class of online RL training algorithms which we call Guide. We describe the general
form and a specialization to PPO in Appendix §B] Further, we carefully analyze a specialization of
Guide to GRPO in which we (1) provide guidance on unsolved prompts and (2) apply an off-policy
importance weight so that samples drawn with guidance still optimize performance without guidance,
as shown in Algorithm T}

GRPO In typical RLVR with GRPO, for each question ¢, we sample k outputs {o;}*_, from the old
policy g, (- | q) and score them, yielding rewards {r; }¥_,. We apply per-prompt z-normalization
and set the token-level advantages Ai,t for all tokens ¢ in each output o; equal to the corresponding
normalized reward /Lt =7 = %,t =1,..., o4

The GRPO objective maximized during policy updates is defined as:

Jorvo(0) =E [min {”Am clip (”‘9, 1—e14 s> Ai,t} — ﬂDKL} )

TOoia o
where € and (5 are hyperparameters controlling clipping and KL regularization, respectively.

Guide We make the observation that because we want the model to perform well without guidance,
the guided trajectories are off-policy. To avoid biasing the gradient, we should appropriately compute
the importance weight (Sutton & Barto 1998). To this end, we modify the GRPO objective to
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where S(q) is the set of & sampled rollouts for prompt ¢, containing % plain rollouts r ~ g, (- | 4)
and, if all fail, k guided rollouts r ~ g, (- | Z4), where x, and Z, are the plain and guided prompts
respectively, s, € {x4,Z,} is the prompt used to generate rollout r, A, ; is the group-normalized
advantage at token ¢, and ¢, 5 are the PPO-style clipping and KL-regularization hyperparameters.
Guide injects hints only when all unguided rollouts fail, and an importance weight projects those
off-policy trajectories onto the on-policy gradient direction. This focuses learning signal on the
hardest unsolved problems while keeping every guided update aligned with the plain-prompt objective,
thereby achieving faster progress than vanilla GRPO. We formalize this notion into the following
theorem and provide a proof in Appendix §C}

Theorem 1 (Guide-GRPO improves learning efficiency) Let U be the set of prompts q unsolved
by the current policy mg. Suppose that, in expectation over unsolved prompts and the group G, of
guided and unguided trajectories, the guided advantage is positive:

Eqev [Eyng(»mq) [Aq(% Gq)} } > 0.

Then for all n sufficiently small, the one-step expected improvement, AR, under Guide-GRPO exceeds
that of Vanilla GRPO, to first order in n:

E[ARGuide] > E[ARvanilta], 3)
where
E[ARvanina] =10 Y Aqp} + O(7), )
qeU
E[ARGuia] =1 [Aq P2+ (1= pg)F Eyory (1) [Ag ()] Pg| + O(1), )
qeU

and pg = Pyony(|z,) [f(y) = y;‘] denotes the success probability under the unguided policy.
Note that Guide’s relative gain over vanilla GRPO increases when

* failure probability (1 — p,)* is large (hard prompts),

* guided advantage E[A,] is large on average relative to the full rollout group,

* the success probability under the unguided policy p, is non-zero (so credit can propagate).

3 Experiments

3.1 RLVR Drives Learning Progress Mainly via Self-Distillation

We investigate the mechanisms driving performance improvements in models trained using RLVR,
explicitly decomposing the observed improvements into two measurable effects: capability gains
and self-distillation. Concretely, for the experiments in this section, we define capability gain and
self-distillation as follows:

Capability gain The count of problems that are initially unsolved by the untrained policy, even
with multiple attempts pass@16, which subsequently become solvable by the RLVR-trained policy
within a single sample (pass@1).

3In practice, we compute the unsolved set U using pass@1 & temperature 0, the potential distill set D with
pass@16 & temperature 1 (to mirror training settings), and potential capability gain set G = U — D. Solved
problems are defined by pass@1 temperature 0.



Self-distillation The count of problems solvable by the untrained policy with multiple sampling
attempts (pass@16) that later become solvable with just one attempt (pass@1) during RLVR training.

Capability Gain (CG) Distillation Progress (Distillation + CG)
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Figure 1: Capability gain (left), self-distillation (middle), and combined progress (capability gain +
self-distillation; right) across training steps on all test sets.

3.1.1 Experimental setup

For our base models, we use Qwen 2.5 [[13] at five model scales, 0.5B, 3B 7B, 32B, and 72B as
the starting untrained policies. Each run is trained for 256 steps using the GRPO training objective
on a dataset composed of math, stem, and coding tasks. We evaluate every 16 training steps on the
following benchmarks: GSMS8K [[14], MATH500 [15], AIME24 [16], AIME25 [17], AMC23
[18], GPQA-DIAMOND [19], OLYMPIADBENCH [20], LEETCODE [21]], LIVECODEBENCH [22]],
and HUMANEVAL [23]]. To measure variance in capability gain and self-distillation across runs (as
defined in[3.T)), we perform 10 independent trials, each with its own random seed. We first generate
100 rollouts at temperatures 1.0 and 0.0 for every problem in the full test set. Then for each trial,
to compute pass@ 1, we randomly sampling one of the 100 temperature 0.0 rollouts and judge its
correctness; to compute pass@ 16, we randomly sample 16 trajectories from the temperature 1.0
rollouts and judge if any of the sample are correct. We apply this sampling procedure independently
across the 10 trials and aggregate results to report the overall mean and standard error of capability
gain, distillation, and progress counts on the full test set. Additional training hyper-parameters and
implementation details are provided in Appendix §[I|

3.1.2 Analysis

Figure[T]decomposes net performance gains (Eq. [2.T)) into capability gain and self-distillation. We
make the following observations:

Self-distillation dominates Across all four Qwen sizes, the majority of the progress improvement
comes from converting answers that were already reachable within < 16 untrained samples into
the trained pass@1 at temp 0. Among the models evaluated, Qwen 7B and Qwen 3B shows the
highest gain via self-distillation, whereas the larger models (Qwen 32B and Qwen 72B) showed
comparatively fewer gains from self-distillation. In contrast, every model learns to solve some
problems it could not solve at initialization, with the 0.5B model gaining the most in relative terms.
Nevertheless, capability gain remains a minority contributor at every scale, indicating that RLVR
primarily re-allocates probability mass rather than discover truly novel solutions at the studied k.

Headroom dictates returns and shrinks with capability We first note that the unsolved set |U|
contracts sharply as model size grows: 0.5B begins with 3195 unsolved items, 3B with 2150, 7B with
1913, 32B with 1617, and 72B with just 1532. Because each model converts a similar fraction of its
own |U| (= 25%), the absolute count of pass@1 lift (Figure right) inevitably drops at larger scale.
Progress for stronger models therefore hinges on introducing harder examples that replenish |U| and
expose new reasoning gaps.

3.2 Guide-GRPO towards mathematical reasoning

Leveraging the observation that the majority of the performance gain in RLVR training is from
self-distillation, we seek to increase the proportion of correct trajectories during RL training while
remaining close to the policy’s sampling distribution. In this section, we first validate the hypothesis
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Figure 2: Impacts of guidance on correct rollouts. Left: Guidance vs. no-guidance pass @k perfor-
mance on Qwen-2.5-Math-7B on 10K randomly sampled training examples from open-r1/OpenR1-
Math-220k [24]). Including problem-specific guidance into the context increases unbiased pass@¥k.
Middle: Guided rollouts solve more previously unsolvable questions (capability gain), with gains
growing in k. Right: Guidance also improves performance on the distillation subset in comparison to
unguided model.

that prompt-specific guidance in the model’s context improves pass @k (Figure2)), and then utilize
this improvement to empirically demonstrate Guide-GRPO’s (Algorithm|[I)) effectiveness towards
improving mathematical reasoning for language policy models (Table [T] and Table 2)).

3.2.1 Experimental Setup

Our training data consists of the default subset of OpenR1-Math-220k [24]], comprising 93.7K math
reasoning tasks. For each entry, we extract the prompt, ground-truth answer, and the human-authored
reference solution. For guidance generation, we prompt GPT-40 to produce pedagogically-inspired
hints that mimic expert tutoring strategies — providing high-level conceptual direction and problem-
solving frameworks without revealing solution paths (full instructions and guidance examples are in
Appendix §H).

Our base model, Qwen-2.5-Math-7b [13], is a large language model pre-trained and fine-tuned
for complex mathematical reasoning. We establish a comprehensive comparative framework: (1)
standard GRPO training, (2) GRPO with Filtering — a technique shown to improve training efficiency
by discarding prompts for which the rollouts are all incorrect or all correct [25]], (3) our proposed
Guide-GRPO approach, (4) a SFT baseline trained directly on human-authored solutions, (5) expert
iteration (STaR) and (6) context distillation [6, [26]. This multi-faceted comparison allows us to
evaluate whether transforming expert solutions into guided hints yields performance advantages over
both direct imitation of expert reasoning and optimized reinforcement learning approaches. Moreover,
to assess the robustness of our method to increasing computational resources, we conduct experiments
that increase context length (4K — 8K) followed by an increase in context length and model size (7B
— 32B). Additional training hyper-parameters and implementation details are provided in Appendix
§J] We also include results showing similar improvements on Llama-3.1-8B Instruct, which can found
in Table[6]in the Appendix.

3.2.2 Results

Task-specific guidance increases correct rollouts Figure|2|demonstrates that introducing targeted,
in-context guidance significantly increases the number of correct rollouts. We then dissect how
these hints affect both capability gain and self-distillation (see Section [3.1)). Our analysis reveals
that guidance not only helps the model solve previously unreachable prompts (capability gain) but
also reinforces consistency on already-solvable ones (self-distillation). Building on this insight, we
apply Guide-GRPO (see Section [3.2)) to transfer performance improvements observed under guidance
to directly improve the base policy. More details about this experimental setup are described in
Appendix []|

Guide-GRPO leads to better test-time performance As shown in Table|l} Guide-GRPO consis-
tently outperforms all baselines across both pass@1 and pass@ 16 metrics on a wide range of math
benchmarks. Notably, Guide-GRPO achieves a 3% absolute improvement in pass@ 1 on Olympiad-
level questions and a 13% improvement in pass@ 16 on AIME 25, relative to the next best performing
baseline. On aggregate, it achieves the highest macro-average (51.03 pass@1, 70.15 pass@16) and



Table 1: Comparison of Pass@1 (greedy decoding) and Pass@ 16 (temperature 1.0) performance on
several math benchmarks across different training algorithms. SFT is trained on the reference solution,
Filter-GRPO uses the standard GRPO objective with filtering of all incorrect and all correct groups,
GRPO is without filtering, Base is the base model (Qwen-2.5-Math-7B), STaR is expert iteration,
Ctx Dist. is context distillation, and Guide-GRPO is our method. The performance for Pass@1 is
averaged over 5 independent samples. Table [ contains the full results with 95% confidence intervals.
Bold values indicate best performance.
Benchmark Metric Guide Filter-GRPO GRPO STaR CtxDist. SFT Base

P@l  82.68 80.80 7900 7720 7692 7280 68.80

MATHS00  paie 9360 92.60 9080 9120 9040  87.00 89.60
GSMEK P@1 9143 91.84 9171 8720 8820 8822 8321
P@I6 9773 96.59 9697 98.10  98.18 9689 97.19

P@l 3235 3051 3272 3103 2794 2625 2647

MINERVA " pais  47.43 4375 4596  48.16 4191 3529 43.01
P@l  43.11 4021 3956 3610 3541 3505 33.07

OLYMPIAD 616 64.59 60.89 6133 5778 5452 5052 5215
AMC P@l  63.61 60.24 6241 4458  49.16 5036 47.47
P@I6  84.34 84.34 8434 7590 8072  69.88 7831

AMEg  P@L 3067 18.67 2667 1333 2267 1133 667
P@I6  56.67 53.33 60.00 4000 4333 2333 33.33

AMEas  P@l 1333 1333 1333 667 1533 667 333
P@I6  46.67 3333 3000 1000 2000 1333 1333

" P@l 5103 47.94 4934 4230 4476 4042 3843

acro Avg.

P@16  70.15 66.40 6706 60.16 6130 5375 58.13

Micto Ave,  P@1 7066 69.76 6959 6552 6562 6380 61.16
& p@l6 8329 8123 8144 8075 7958 7628 7831

micro-average (70.66 pass@1, 83.29 pass @ 16) scores, highlighting robust gains across both balanced
and volume-weighted evaluations.

These results demonstrate that Guide-GRPO is effective at integrating prompt-specific guidance
into the training process, enabling the resulting policy to generalize better to difficult mathematical
reasoning task — even without access to guidance at test time. Additionally, its strong pass @k
performance, combined with our observation that RLVR primarily drives progress through self-
distillation, suggests that Guide-GRPO promotes better exploration and solution diversity, which are
key to continued improvement in reasoning-centric domains.

Guide-GRPO improvements scale with context length and model size The results in Table
demonstrates Guide-GRPO’s consistent improvements over vanilla GRPO when scaling to larger
context lengths (4K — 8K) and model sizes (7B — 32B). For the 32B model, Guide-GRPO achieves
3.39 percentage point improvement in macro-average Pass@1 (56.26% vs 52.87%) and 1.89 per-
centage point improvement in micro-average Pass@1 (76.36% vs 74.47%). More generally, the
improvements are consistent across both Pass@1 and Pass@ 16 metrics, with Guide-GRPO showing
gains ranging from 1-4 percentage points across all configurations. These results strengthen the
empirical evidence that Guide-GRPO’s test-time generalization scales effectively with increased
computational resources along both context length and parameter count dimensions.

Table 2: Comparison of Pass@1 (greedy decoding) and Pass@16 (temperature 1.0) performance
on several math benchmarks with larger context length (8K) across model sizes (7B and 32B). The
performance for Pass@1 is averaged over 5 independent samples. Table [5]contains the full results
with 95% confidence intervals. Bold values indicate best performance.

Benchmark Metric Guide-32B-8K GRPO-32B-8K  Guide-7B-8K  GRPO-7B-8K

P@1 56.26 52.87 49.58 49.29
Macro Avg.

P@16 74.08 71.84 72.15 68.42
Micro A P@1 76.36 74.47 71.15 69.89
ICIOAVE- p@l6 85.63 84.94 84.29 83.84
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Figure 3: Comparison of Guide-GRPO with baseline methods across training steps (400 total). Left:
Rollout accuracy without guidance shows Guide-GRPO ultimately outperforming baselines despite
lower initial performance. Middle: Generation entropy remains consistently higher for Guide-GRPO,
indicating better solution diversity. Right: Response token length increases for Guide-GRPO in later
training stages. Shaded regions represent confidence intervals.

Guide-GRPO demonstrates better train-time metrics Figure [3|reveals an interesting training
trajectory for Guide-GRPO. While initially exhibiting lower rollout accuracy without guidance,
Guide-GRPO ultimately surpasses standard GRPO methods as training progresses. This performance
crossover indicates our selective guidance injection approach effectively updates policy weights,
enabling the model to perform better independently without requiring guidance at inference time.
Notably, Guide-GRPO maintains consistently higher entropy throughout training while steadily
increasing response length. This combination of enhanced entropy and improved performance, both
during training and testing, suggests that Guide-GRPO preserves exploratory capacity for novel
solutions while achieving superior results across diverse mathematical reasoning tasks.

Training dynamics reveal critical convergence factors for Guide-GRPO Our investigation into
various policy loss formulations uncovered specific configurations that lead to consistent training
instability. Figure [ in Appendix §Eillustrates the reward trajectories across different settings,
highlighting two critical factors affecting convergence:

* Importance weighting relative to guided distribution — Constructing importance weights for
guided trajectories relative to old policy weights conditioned solely on the prompt introduces
significant training instability. Since the sampled trajectories originate from the old policy
conditioned on both prompt and guidance—rather than just the prompt—the resulting probability
ratios between current and old policy weights misrepresent the true gradient direction along the
sampled trajectory, leading to suboptimal updates. A theoretical support is detailed in Appendix

* PPO-Clip mechanism destabilizes guided trajectories — When incorporating guided tra-
jectories with importance weighting relative to the sampling distribution, we observe that
PPO-clipping causes training divergence at approximately 50 steps. This phenomenon aligns
with theoretical expectations: guided trajectories inherently generate smaller probability ratios,
causing the minimum clip operation to artificially inflate most token probability ratios, thereby
triggering unstable gradient updates. We mitigated this issue by removing ratio clipping, which
empirically produced stable training outcomes.

Threshold for guidance Our ablation across three guidance thresholds (All Incorrect, Mostly
Incorrect, and Always) reveals optimal performance when guidance is applied only when all standard
rollouts fail, as shown in Table [3] While "Mostly Incorrect" performs comparably, unconditional
guidance significantly impairs results. Excessive guidance handicaps learning by preventing the
model from developing robust reasoning. Conversely, strategic guidance only for entirely incorrect
samples provide essential signal when the model’s sampling distribution completely misses valid
solutions, providing exposure to guided solution traces to problems beyond the current policy’s
capability while incentivizing independent exploration in all other cases.



Table 3: Performance comparison of various guidance threshold strategies. The "All Incorrect"
strategy applies guidance only when all original prompt rollouts fail; "Mostly Incorrect”" applies
guidance when accuracy falls below 25%; and "Always" unconditionally applies guidance to all
rollouts. Bold values indicate best performance.

Metric All Incorrect Mostly Incorrect Always

Macro Av P@l 51.03 50.48 40.97
& pels 70.15 69.86 60.03
Micro Av P@1 70.66 70.14 63.18
& pele 83.29 83.29 80.72

4 Related Work

Reinforcement Learning for LLM Reasoning Recent advances in reinforcement learning ap-
proaches [27, 1281 29,130} 31]] have demonstrated remarkable progress in enhancing LLMs’ reasoning
capabilities. OpenAl-ol [1] and DeepSeek-R1 [2] have generated state-of-the-art results in complex
reasoning tasks such as in math, coding, etc. by pioneering the use of Reinforcement Learning from
Verifiable Rewards (RLVR) [3, 132} 2 [1]], in which the reward is computed using a rule-based verifica-
tion function [33} 134} 35]]. Some works also provide frameworks for the distillation of knowledge
from pass@Fk into pass@]1 via expert iteration [6} [7, [8, Ol [10, [11]] to improve a language model’s
ability to solve challenging reasoning problems autonomously.

Learning Mechanisms for Reinforcement from Verifiable Rewards Building upon the increasing
traction of RLVR in the reasoning space, some works have addressed the fundamental dynamics
of improvements seen from RLVR [5 36} [37]], claiming that RLVR boosts sampling efficiency by
biasing the model’s output distribution toward paths that are more likely to yield rewards but reduces
the overall reasoning capacity boundary at very high k (= 256) [5]. We corroborate the results
regarding sampling efficiency in our work as well, revealing that while capability gain exists in
the lower k range (<= 16) across multiple domains (math, coding, STEM, etc.) and model scales,
learning to solve new problems via RLVR is dominated by self-distillation of pass @k performance
into pass@1 performance.

Reinforcement Learning for LLMs with Off-Policy Data A variety of off-policy reinforcement
learning techniques such as DPO [38]] and variants of on-policy algorithms like Tapered Off-Policy
REINFORCE [39] have been applied to LLMs recently. Off-policy methods yield the advantage of
enabling better sample efficiency by learning from experiences collected by different policies, but
at the cost of potential increased instability. One recent work [40] targets integrating high-quality
off-policy trajectories with policy shaping via regularized importance sampling. In contrast, our
method leverages guidance in context, which we hypothesize has the potential to bridge the gap in
benefits between on-policy and off-policy learning than fully off-policy incorporation and can be
applied to training settings in which no more power teacher model exists to distill from. Thus, we
focused on studying how to improve model performance independent of directly distilling from a
much stronger model such as R1.

5 Future Work

While Guide-GRPO demonstrates strong empirical and theoretical performance on mathematical
reasoning, several directions remain open. First, future work should more deeply investigate the
effect of the quality and nature of guidance on model progress during RL. Future methods may
dynamically generate guidance targeted at specific reasoning failures in the policy’s trajectories
within a multi-agent RL setting. Extending Guide to other domains such as code generation, agents,
or even robotics could test its generality. In these initial experiments we have only evaluated Guide
on models at 32B-parameter scale and at context lengths up to 8k due to compute limitations. Scaling
studies are needed to understand how the effectiveness of Guide varies with model size, context
length, and compute scale.
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A The Use of LLMs

We used LLMs mainly to help proof-read parts of the paper and help paraphrase or shorten some paragraphs to
more concise and coherent sentences. We also used LLMs to help verify the proof of Theorem 1 and help catch
any flaws.

B Guide Algorithms

The Guide algorithm is a general method for adaptively incorporating guidance into online RL. The general
form is given as:

Algorithm 2 Guide

1: for iteration=1,2,... do
2: for step=1,2,... ,N do
: Run policy 7y, in environment for 7" timesteps
end for
Identify unsolved set U = {q : all rollouts fail }
For q € U, sample guided rollouts 6 ~ g, (-|{q, guid))

3
4
5
6:
7: Compute unguided A, and guided advantages A; ¢
8.
9
10:

old

Optimize objective 7 in eq. [2.2) wrt 6
: 901(1 «— 0
end for

Guide can also be specialized to PPO, integrating selective hinting on failed prompts and importance-sampling
corrections directly into PPO’s training loop. We call this specialization Guide-PPO.

Algorithm 3 Guide-PPO
Input: initial policy 7, ; reward model r,,; task prompts D; hyperparameters 3, ~.

1: for iteration =1,2,... do

2: TOoa € 0>  Tref < o
3: Sample minibatch D, C D
4: Sample k rollouts {o; }}_1 ~ mq,,(-|q) forall g € D,
5: Compute rewards 7; = 7, (0;) and estimate advantages AM via GAE
6: Identify unsolved set U = {q € Dy : all k rollouts fail}
7: for g € U do
8: Sample k guidance rollouts 6 ~ g, (-|(q, guid))
9: Compute guided rewards r5 = r,(0)
10: Recompute advantages Aayt combining original and guided rollouts
11: end for
12: Optimize objective 7 in eq. 2.2] wrt 0
13: end for
Where:

* Ty: policy being trained; my,_,,: sampling policy from previous iteration.

* Tt fixed KL-penalty reference policy.

* Dy: sampled minibatch of prompts.

e U: prompts where all original rollouts fail, triggering guided rollouts.

* 0: rollouts sampled with additional guidance suffix guid.

. Ai,t: advantages estimated via Generalized Advantage Estimation (GAE).
* f(-): shaping function correcting importance sampling.

e f: KL divergence regularization coefficient.
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C Learning Efficiency of Guidance-Augmented GRPO

C.1 Preliminaries

Let 7o (y | ) be an autoregressive language model that samples a trajectory of token outputs y = (y1,...,yr).
The success probability p, is defined as the marginal probability of sampling a trajectory that leads to a correct
final answer. Gradients and advantages refer to whole-sequence log-probabilities and returns unless otherwise
noted.

For each prompt ¢ with plain input z, and guided input Z,, define

Pq(0) = Pyrny(lag) [f(y) = vq] Pg(0) = Pymnyizy) [f (W) = yg] (6)

the success probabilities without and with guidance, respectively. For compactness, we overload notation and
write

Pq = pq(0r), @)
to denote the scalar success probability at time step ¢, while retaining pq(-) to indicate its dependence on 6
elsewhere in the analysis.

A vanilla GRPO update with step size 7 > 0 is
01 =00+ Ay Vologms(yq | z4), (8)
qeU
where A, is a group-normalised scalar advantage, computed over both guided and unguided rollouts.

When all k plain rollouts for g fail, Guide-GRPO draws k guided rollouts on Z, and applies an importance
weight

wq:M>0 9)

T41a (yq | jtl)

to make the guided gradient on-policy.
Let U be the set of problems unsolved by the initial policy.

We assume that for each question ¢ € U, the guided outputs have positive expected advantage relative to the full
group of both guided and unguided rollouts G, i.e.,

Egev [EWG(.W [Aq(y; Gq)] ] >0. (10)

This allows for the possibility that guidance may not always help, but is beneficial on average. For brevity, we
define:

BlAy) = By iz [Aaly; Ga) ] an

C.2 Lemmas

Lemma 1 (Importance sampling aligns gradients) For any guided sample yq ~ mo,,,( - | Zq),
Vo logmo(yq | £q) = wq Vo logma(yq | 24) 12

so the guided gradient is a positive scalar multiple of the plain gradient. Consequently,

cos(Vg log mo(yq | Tq), weVelogmo(yq | xq)) =1. (13)

Lemma 2 (Selective guidance outperforms or matches always-guidance) Let A{;’” and Af;‘"" denote the ex-
pected guided advantages conditioned on whether all k plain rollouts fail or at least one succeeds, respectively:

A"f;il =F (13q) [Aq (y; Gq) ‘ all k plain rolloutsfail] , 14

y~mg
A;ucc = Eyry(12,) [Aq (y; Gq) ‘ at least one plain success] . (15)

Then the expected first-order improvement in the number of unguided solutions is greater for selective guidance
than for always guidance:

Asel 2 Aall' (16)
Moreover, since flq(y; Gg) is computed relative to the full set of guided and unguided rollouts, and the group
mean reward is lower when all plain rollouts fail, we have AZ“” > Ay by construction.
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Proof 1 Selective guidance applies guided updates only when all k plain rollouts fail, so:

A= 3 (Al + (1= po) A an
qeU
A=Y [quﬁ + (1= pa)* Ay + (1= (1= p)") ~Z“C‘pq] : (18)
qeU
Subtracting,
A% _ A — g Z [1 (- pq)k] (A{;il _ A.;ucc) Pq. (19)
qeU

Each term in the sum is < 0 since the bracketed term is positive and flf;’” > Af;‘“. Therefore, A* > A%

C.3 Main Theorem

Guide-GRPO improves learning efficiency Let U be the set of prompts ¢ unsolved by the current policy
me. Suppose that, in expectation over unsolved prompts and the group G, of guided and unguided trajectories,
the guided advantage is positive:

Eqev [Ey~w<»\fq) [Aq(y; Gq)H > 0.

Then for all n sufficiently small, the one-step expected improvement, AR, under Guide-GRPO exceeds that of
Vanilla GRPO, to first order in 7:

E[ARGuide] > E[ARvania) s 20)
where
E[ARvmin =1y Aqpg +O(n°), @n
qeU
E[ARGuide] = 1 Z [Aq p§ +(1- pq)k ]EyNTre(‘Iiﬂ[Aq(y)] pq} + 0(772): (22)
qeU

and pg = Pyry(|zg) [f(y) = y;] denotes the success probability under the unguided policy.

Proof 2 Let 0,11 = 0; + 1 g(0:) for a small step size n > 0. We perform a first-order Taylor expansion:

Pq(0r+1) = pqg(0: +n9) (23)
Pa(0: +19) = pa(6:) + 1 (Vapa(6:), 9) + O(n*) (24)
=pq+1 (Vopg, 9) + O(n?). (25)
Using the log derivative trick:
Vopg = Eyurmg(leg) [ILf(4) = y3]Velogma(y | z4)] (26)
which for a single trajectory entails:
Pa(0e41) = pq +1q (Vo logmo(yq | 24), 9) + O(°). @7)
Now substitute in the Guide-GRPO update:
9= AVologmo(yy | 24) + Y (1 —pg)"AgVelogma(yq | z4), (28)
qeU qeU
-3 [Aq (- pq)’“Aq] Vo log mo(yq | q)- 29)
qeU
Then:
(Volog mo(ys | 2a),9) = [Ag+ (1= p0)" Ay Vo log ma(yq | o) (30)
Therefore:
Pa(0+1) = Py = 1 [Aq + (1= p)* Ay | Vo log mo(yy | 20)II” + O(P). (31)
Summing over q:
E[ARGua] = Blpg(0:+1) — pq(6:)] (32)
qeU
=1 P [Aq +(1- pq)kE[Aq}] Ve logma(yq | zq)lI> + O(n*). (33)
qeU
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Compare to vanilla:
>+ 0. (34)

E[ARvimita] = 1) Aqpq | Vo logmo(yq | z4)

qeU

As long as Eqcu [Eymfg(.\;;q) [Aq (y; Gq) ] ] > 0, the guide update yields a greater gain.

Interpretation Guide enables gradient updates on prompts where all plain rollouts fail, scaling its advantage
by (1 — p,)". Its relative gain over vanilla GRPO is therefore proportional to

(1= ) By 120) [Aalyi Ga)| Pas (35)

which increases when

o failure probability (1 — p,)" is large (hard prompts),

* guided advantage By, (.|z,)[Aq(y; G4)] is large on average relative to the full rollout group,

« the baseline success probability p, is non-zero (so credit can propagate).

D Effective vs Absolute Capability Gain

We can set k equal to the number of rollouts per problem used during training, which we call effective capability
gain, or to the convergence of pass@k curves where each additional sample provides a relative pass@k
improvement below some threshold ¢, which we define as absolute capability gain.

Let kes be the number of rollouts per problem used in RLVR training. We define the effective capability gain
as

G = D I[VgeyFem) s gty n g =yl (36)
icU

In contrast, we can define absolute capability gain. Let

_ . . pass@k—pass@Q(k—1)
kabs = mln{ k: et <€

be the smallest sample size at which additional rollouts yield < e relative improvement. Then the absolute
capability gain is

Gus = S T[Vg e VE™) : gty A G = ] 37)
€U

E Training Dynamics

Training Rewards Under Different Policy Loss

0.35 1

o
w
o

—e— importance weighted + ppo clip
@ no importance weighted + ppo clip
—A— importance weighted + no ppo clip

Train-time Rewards
o
N
G

0.20

0.15

6 160 260 360 460
Training Step
Figure 4: Comparison of train-time rewards under different policy loss computation when training
with guided trajectories. The most stable training setup is when the importance weight is considered
relative to the sampling distribution (prompt + guidance in context) and the typical ppo clip in the
probability ratios is removed.
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F Guided Trajectory Policy Reshaping

Inspired by Yan et al. [40], we introduce a policy-reshaping factor that re-weights gradient contributions from
off-policy (guided) samples, with the goal of amplifying learning signals from low-probability tokens in guided
rollouts.

Let w; be the importance-weight ratio (as defined in Equation 2.2)) for token ¢ in a guided trajectory x, and let

w = {wi, ..., w) }. While Yan et al. apply the static transform f(x) = 1/(1 + x), we propose an adaptive
alternative:
1
W) = ———,
Flws) Poo(w) + w;

where Pyo(w) denotes the 90th percentile of the ratios in w. This normalisation boosts the relative contribution
of tokens whose ratios fall below the percentile threshold, while tempering the influence of outliers with
extremely large ratios. Because Pyo (W) is recomputed for every rollout, the reshaping adapts automatically to
changes in the distributional gap between guided and unguided sampling throughout training. We experimented
with 70, 80, and 90th percentiles and found that 90th percentile led to the best performance.

Preliminary experiments show modest but consistent gains on our validation benchmarks. Nevertheless, a
systematic ablation (e.g. exploring different percentile thresholds or coupling the factor with temperature-scaled
guidance) remains future work. We therefore present these results here in the Appendix for completeness rather
than as a conclusive endorsement of the method.

G Full Performance Results

Table 4: Pass@1 with greedy decoding and Pass@ 16 with temperature 1.0 performance with 95%
confidence intervals. The CI for pass@1 is captured from 5 indepedent runs and the CI for pass@16
is captured from the variance of the 16 samples per prompt.

Dataset Metric Guide-GRPO Filter-GRPO GRPO SFT Base
MATHS500 P@1 82.68 & (0.10) 80.80 & (0.00) 79.00 + (0.00) 72.30 + (0.00) 68.80 + (0.00)
P@16 93.60 + (0.54) 92.60 + (0.57) 90.80 + (0.63) 87.00 & (0.74) 89.60 & (0.67)
GSMSK P@1 91.43 + (0.12) 91.84 + (0.04) 91.71 + (0.04) 88.22 4 (0.06) 83.21 & (0.14)
P@16 97.73 £ (0.20) 96.59 + (0.24) 96.97 + (0.23) 96.89 + (0.23) 97.19 £ (0.22)
MINERVA P@1 32.35 +(0.14) 30.51 & (0.00) 32.72 4 (0.00) 26.25 + (0.18) 26.47 % (0.00)
P@16 47.43 + (1.43) 43.75 + (1.47) 45.96 + (1.43) 35.29 4+ (1.42) 43.01 + (1.47)
OLYMPIAD P@1 43.11 £ (0.22) 40.21 £ (0.12) 39.56 + (0.00) 35.05 4 (0.28) 33.07 & (0.11)
P@16 64.59 + (0.90) 60.89 + (0.92) 61.33 £+ (0.92) 50.52 + (0.94) 52.15 + (0.94)
AMC P@1 63.61 + (0.83) 60.24 + (0.00) 62.41 + (0.47) 50.36 + (0.83) 47.47 + (0.58)
P@16 84.34 4 (1.95) 84.34 & (1.95) 84.34 & (1.95) 69.88 + (2.47) 78.31 £ (2.22)
AIME 24 P@1 30.67 £ (1.31) 18.67 £ (1.60) 26.67 £+ (0.00) 11.33 £ (3.92) 6.67 £ (0.00)
P@16 56.67 + (4.43) 53.33 & (4.46) 60.00 + (4.38) 23.33 +(3.78) 33.33 + (4.22)
AIME 25 P@1 13.33 & (0.00) 13.33 & (0.00) 13.33 & (0.00) 6.67 £ (0.00) 3.33 & (0.00)
P@16 46.67 + (4.46) 33.33 + (4.22) 30.00 + (4.10) 13.33 £+ (3.04) 13.33 + (3.04)
Macro Av P@1 51.03 + (0.40) 47.94 + (0.25) 49.34 + (0.07) 40.42 + (0.83) 38.43 4+ (0.12)
& P@16 70.15 + (2.00) 66.40 + (1.98) 67.06 + (1.96) 53.75 + (1.80) 58.13 & (1.83)
Micro Ave. P@1 70.66 + (0.00) 69.76 + (0.00) 69.59 + (0.00) 63.80 + (0.00) 61.16 + (0.00)

P@l16 83.29 £ (0.34) 81.23 £ (0.35) 81.44 £ (0.35) 76.28 £ (0.39) 78.31 £ (0.37)
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Table 5: Pass@1 with greedy decoding and Pass@ 16 with temperature 1.0 performance with 95%
confidence intervals. The CI for pass@1 is captured from 5 indepedent runs and the CI for pass@ 16

is captured from the variance of the 16 samples per prompt.

Benchmark Metric Guide-32B-8K GRPO-32B-8K Guide-7B-8K GRPO-7B-8K
MATHS500 P@1 85.08 = (0.20)  84.00 £ (0.12)  83.08 £ (0.16) 79.96 £ (0.08)
P@16 94.80 £+ (0.49)  95.20 + (0.47) 94.60 + (0.50) 94.40 £ (0.50)

GSM8K P@1 95.60 = (0.05)  95.60 £ (0.00) 92.25 £ (0.06) 91.46 £ (0.04)
P@16 98.03 = (0.19) 97.88 £(0.19) 97.80 £ (0.20) 98.18 £ (0.18)

MINERVA P@1 35.59 £ (0.18)  35.51 £(0.18) 29.41 £ (0.00) 30.15 £ (0.00)
P@16 50.00 = (1.49) 49.63 £(1.49) 49.26 £ (1.49) 48.53 £+ (1.48)

OLYMPIAD P@1 54.52 + (0.44)  48.06 £ (0.07) 43.67 £(0.17) 42.37 +(0.22)
P@l16 71.11 £ (0.85)  68.89 £+ (0.87) 66.37 £(0.89) 65.33 £ (0.90)

AMC P@1 65.06 = (0.88)  63.61 £ (0.75) 62.65 £ (0.00) 53.73 £+ (0.58)
P@16 87.95 + (1.75) 8795+ (1.75) 90.36 £ (1.59) 89.16 & (1.67)

AIME 24 P@1 32.67 = (1.31)  20.00 £ (0.00) 16.67 £ (0.00) 26.67 £ (0.00)
P@16 66.67 = (4.38)  60.00 £ (4.22) 63.33 £(4.31) 53.33 £+ (4.46)

AIME 25 P@1 25.33 £(3.33) 23.33£(0.00) 19.33 £(1.31) 20.67 & (1.31)
P@16 50.00 = (4.43) 4333 £ (4.43) 43.33 £(4.43) 30.00 £ (4.10)

Macro Avg P@l 56.26 £ (0.91) 52.87 £(0.16) 49.58 £ (0.24) 49.29 4+ (0.32)
" P@16 74.08 £ (1.94) 71.84 £(1.92) 72.15+£(191) 68.42 4+ (1.90)

Micro Av P@l1 76.36 + (0.00)  74.47 £+ (0.00) 71.15 £ (0.00) 69.89 £ (0.00)
g P@l16 85.63 +(0.32) 84.94 +(0.32) 84.29 +(0.33) 83.84 £ (0.33)

Table 6: Comparison of Pass@1 (greedy decoding) and Pass@ 16 (temperature 1.0) performance on
several math benchmarks across different training algorithms using Llama 3.1 8B Instruct

Benchmark Metric Guide-GRPO Filter-GRPO Base
P@l 60.60 53.60 47.96

MATH300  p@a 16 81.20 73.40 79.80
P@l 84.61 83.47 84.22

GSMBK P@16 96.74 94.69 97.12
P@l 26.74 23.52 20.61

MINERVA  pa 16 44.85 37.50 450
P@l 2431 20.24 16.31

OLYMPIAD 1416 40.00 37.04 36.74
P@l 24.89 23.86 2361

AMC P@16 45.78 48.19 45.42
P@l 6.67 0.00 333

AIME24  pale 2333 20.00 2333
P@l 0.00 0.00 0.00

AIME25S  pae 10.00 10.00 0.00
Macro Ave,  P€! 32.54 2924 28.00
P@16 48.84 45.83 46.80

Micto Ave. P@1 57.68 54.60 52.81
& pal6 72.95 69.34 72.04

H Guidance Generation

To generate prompt-specific guidance, we used the prompt below at temperature 0 with GPT-4o0.

You are an expert math tutor with years of experience helping students understand
— difficult concepts without solving problems for them. Your task is to analyze a
— math problem and its reference solution, then create a series of helpful hints
— that guide the student toward discovering the solution independently.
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[question]: {question}
[reference_answer]: {reference_answer}

When creating hints, follow these principles:

- Start with conceptual hints that point to relevant mathematical principles

- Progress to more specific strategic hints about approach

- Offer guidance on potential roadblocks without revealing key steps

- Never provide direct calculations or formulas that would bypass the student's own
— Treasoning

- Include 3-5 hints in ascending order of directness

[guidance] :

[Conceptual hint focusing on relevant mathematical principles]
[Strategic hint about approach without revealing steps]

[Hint addressing common misconception or roadblock]

[More direct hint if needed]

[Final hint that guides toward the solution method without providing it]
1

SO WN -

The following are some examples on the guidance generated using the prompt above:
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Example A: (Algebra)

User: Find $\\frac{a~{12}-4096}{64 a~{6}}$, if $\\frac{a~{2}}{4}-\\frac{4}{a~{2}}=3%.
A hint to the problem is provided below:

[HINT_START]
1. Notice that the given condition and the expression both involve terms of the form a2 and its

< reciprocal. Think about how the identity (a2/4) - (4/a®) might be used as a building block for
— factoring the larger expression.

2. Consider rewriting the numerator in a way that reveals a common factor with the given condition.
< Ask yourself if a difference of powers or a recognizable factorization pattern might help connect
— the two parts of the expression.

3. It might be useful to make a substitution, such as letting x = a2/4, to help simplify both the

< given equation and the overall expression. How can this substitution simplify the structure of

— the problem?

4. Once you have expressed the terms in a unified form using your substitution, think about how to
— factor or combine terms so that the given condition naturally appears in the algebraic

<— manipulation.

5. Finally, reflect on any familiar algebraic identities or factorizations you know that involve

< higher powers; these might help you write the expression in a form that can be directly evaluated
<~ using the given value. Use these observations to guide your step-by-step approach toward the

— final simplified result.

[HINT_END]

Example B: (Geometry)

User: The area of a new playground is square and measures $1600 \\mathrm{"m}~{2}$. How long is one
< side of the playground? How many meters of fence are needed for three sides?

A hint to the problem is provided below:

[HINT_START]

1. Think about what it means for a shape to be a square, and how its area relates to the length of
<~ one of its sides.

2. Consider how you might determine the side length from the given area without directly calculating
— it-what operation relates area and side length for a square?

3. Once you have an idea for finding the side length, think about how you would compute the total

< length of fence needed for three sides of a square playground. What does that imply about

<— multiplying the side length?

4. Be cautious about mixing up the operations needed to go from area to side length and then to the
— fence perimeter. Ensure each step follows from the properties of a square.

5. Finally, try to translate the relationships into a step-by-step approach that first finds the side
<— of the square and then uses that to calculate the overall fence length for three of its sides.
[HINT_END]

Table 7: Two sample hint blocks produced by our pipeline.
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Example C: Effect of Hints on Model Reasoning

(1) Question (no hints)

In the right-angled triangle $ABC$, the lengths of the legs $AC=3$ and $BC=4$. Point $A$ was moved to
— point $A_{1}$ parallel to $BC$, then point $B$ was moved to point $B_{1}$ parallel to $A_{1}C$,
< and finally, point $C$ was moved to point $C_{1}$ parallel to $A_{1}B_{1}$, such that the

— resulting triangle $A_{1}B_{1}C_{1}$ is right-angled at $B_{1}$, and the length of the leg

— $A_{1}B_{1}$ is 1 unit. What is the length of the leg $B_{1}C_{1}$?'

(2) Model response without hints (incorrect)

To solve this problem, we need to understand the geometric transformations and the properties of the
right-angled triangles involved. Let's break down the problem step-by-step.\n\nl. **Initial
Triangle \\(ABC\\D**:\n - \\(AC = 3\\)\n - \\(BC = 4\\)\n - \\(AB = \\sqrt{AC~2 + BC"2} =
\\sqrt{3-2 + 4-2} = 5\\)\n\n2. **Transformation of Points**:\n - Point \\(A\\) is moved to
\\(A_1\\) parallel to \\(BC\\).\n - Point \\(B\\) is moved to \\(B_1\\) parallel to
\\(A_1C\\).\n - Point \\(C\\) is moved to \\(C_1\\) parallel to \\(A_1B_1\\).\n\n3. **Resulting
Triangle \\(A_1B_1C_1\\)**:\n - The triangle \\(A_1B_1C_1\\) is right-angled at \\(B_1\\).\n
The length of the leg \\(A_1B_1 = 1\\).\n\n\hl{Since the points are moved parallel to the sides
of the triangle, the resulting triangle} \\(A_1B_1C_1\\) is similar to the original triangle
\\(ABC\\). The ratio of the corresponding sides of the triangles will be the same.\n\nLet's
denote the length of the leg \\(B_1C_1\\) as \\(x\\). Since the triangles are similar, the ratio
of the corresponding sides will be the same. The ratio of the sides of the triangles
\\(A_1B_1C_1\\) and \\(ABC\\) is \\(1/5\\).\n\nSo, the length of the leg \\(B_1C_1\\) will be

\\ (4 \\times (1/5) = 4/5\\).\n\nLet's confirm this with Python and sympy.\n\n" " python\nimport
sympy as sp\n\n# Given lengths of the original triangle\nAC = 3\nBC = 4\nAB = sp.sqrt(AC**2 +
BC**2)\n\n# The length of the leg A1B1 is given as 1\nA1B1 = 1\n\n# The ratio of the sides of the
similar triangles\nratio = A1B1 / AB\n\n# The length of the leg B1C1\nB1C1 = BC *

ratio\n\nprint (B1C1)\n™~"\n"~~output\n4/5\n" " "\nThe length of the leg \\(B_1C_1\\) in the
resulting triangle \\(A_1B_1C_1\\) is \\(\\boxed{\\frac{4}{5}}\\).

R A A A A

(3) Question (with hints)

In the right-angled triangle $ABC$, the lengths of the legs $AC=3$ and $BC=4$. Point $A$ was moved to
point $A_{1}$ parallel to $BC$, then point $B$ was moved to point $B_{1}$ parallel to $A_{1}C$,
and finally, point $C$ was moved to point $C_{1}$ parallel to $A_{1}B_{1}$, such that the
resulting triangle $A_{1}B_{1}C_{1}$ is right-angled at $B_{1}$, and the length of the leg
$A_{1}B_{1}$ is 1 unit. What is the length of the leg $B_{1}C_{1}$? A hint to the problem is
provided below: [HINT_START] 1. Consider that moving points along lines parallel to a side of a
triangle does not change the distance (or altitude) from that side, so the area remains constant
from the original triangle to the resulting triangle. 2. Remember that for a right triangle the
area can be found using half the product of its two legs. With one leg given as 1, think about
how you can relate this familiar formula to the unchanged area of the triangle. 3. A common
pitfall is to assume that moving the points alters side ratios or angle measures aside from the
given right angle; keep in mind that the key is the invariant area. 4. Now, equate the area
expressed in the original triangle with that expressed in the new right triangle, and set up an
equation that will allow you to solve for the unknown leg length without doing detailed
arithmetic. 5. Finally, confirm that the relationship you’ve set up is consistent with how
translation preserves distances from the parallel lines-this should guide you to finding the
missing leg length. [HINT_END] Consider the hint but start your solution from scratch and do not
directly reference the hint (e.g. avoid phrases like "using the hint").

L A A A A A

(4) Model response with hints (correct)

To solve this problem, we need to use the fact that the area of the triangle remains constant before
and after the movements of the points. Let's break down the problem step-by-step:\n\nl. **Initial
Triangle \(ABC\)**:\n - \(AC = 3\)\n - \(BC = 4\)\n - The area of triangle \(ABC\) is
\(\frac{1}{2} \times AC \times BC = \frac{1}{2} \times 3 \times 4 = 6\).\n\n2. **Final Triangle
\(A_1B_1C_1\)**:\n - \(A_1B_1 = 1\)\n - Let \(B_1C_1 = x\)\n - The area of triangle \(A_1B_1C_1\)
is \(\frac{1}{2} \times A_1B_1 \times B_1C_1 = \frac{1}{2} \times 1 \times x =

\frac{x}{2}\) .\n\nSince the area remains constant, we have:\n\[\n6 = \frac{x}{2}\n\]\nSolving for
\(x\), we get:\n\[\nx = 12\n\]\n\nSo, the length of the leg \(B_1C_1\) is \(12\).\n\nLet's
confirm this with Python code to ensure the result is accurate.\n " python\n# Given values for
the initial triangle ABC\nAC = 3\nBC = 4\n\n# Calculate the area of the initial triangle
ABC\narea_ABC = 0.5 * AC * BC\n\n# Given value for the final triangle A1B1C1\nA1B1 = 1\n\n# Let
B1C1 be x\n# The area of the final triangle A1B1C1 is 0.5 * A1B1 * B1C1\n# Since the area remains
constant, we have:\n# area_ABC = 0.5 * A1B1 * B1Ci\n# 6 = 0.5 * 1 * x\n# x = 12\n\n# Calculate
the length of B1C1\nB1C1 = 2 * area_ABC / A1Bi\nprint(Bi1C1)\n  ~\n” " ~output\n12.0\n" " \nThe
length of the leg \(B_1C_1\) is \(\boxed{12}\).

A A A

Table 8: Example where the model’s initial solution (without hints) is incorrect; after receiving
the
model incorrectly assumes that the three parallel translations produce complete triangle similarity,
adopts a side-length ratio of 1:5, and consequently predicts B;C; = 4 x 1 = 2. After the area-

guidance, the model corrects its reasoning and produces the right answer. Without guidance,

5 5

invariance hint is provided, the model abandons this similarity shortcut, equates the original area

%-3-4 = 6 with the area of the translated right triangle %-1 -x, and correctly derives ¢ = B1Cy =

This example shows how a concise, domain-specific hint can redirect the model’s reasoning and

correct a systematic geometric error. 21




I Training Details: Reinforcement Learning with Verifiable Rewards (RLVR)
Training

Prior to RLVR training, we perform one epoch of supervised fine-tuning (SFT) using the AMPS dataset [15] on
all Qwen 2.5 base models [13]] to ensure that the models produce reasoning-formatted outputs. The prompt used
for both RLVR and SFT is shown below:

A conversation between user and assistant.

The user asks a question, and the assistant solves it.

The assistant first thinks about the reasoning process in the mind and then provides
— the user with the answer.

The reasoning process and answer are enclosed within <think> </think> and <answer>
< </answer> tags, respectively, i.e., <think> reasoning process here </think>
< <answer> answer here </answer>.

User: {{question}}

Assistant:
LI )

For RLVR, we gathered the publicly available verifiable rewards dataset into three broad splits.

Table 9: Training dataset composition for RLVR

Dataset Number of Examples

Math 450,000
Code 25,276
STEM 38,958
Total 514,234

For training, we used the following hyperparameters when running the open-source VeRL [41]] package with
GRPO:

Table 10: Hyper-parameters for GRPO training

hyperparameter and settings  value

train batch size 1024
ppo mini batch 512
number rollouts per prompt 8
training steps 256
actor learning rate le-6
kl coeff 0
entropy coeff 0
prompt max length 1024
generation max length 3072
policy model temperature 1
optimizer Adam

For SFT, we used the following hyperparameters,
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Table 11: Hyper-parameters for SFT training

hyperparameter and settings  value

train batch size 32
training epochs 1
actor learning rate le-5
max context length 4092
optimizer Adam

J Guide-GRPO towards Mathematical Reasoning Details

In this appendix, we discuss further experimental details for our results in[3.2]

J.1 Guidance Pass@K on Training Data

Dataset and Model Details For the evaluation, we randomly sample 10k samples from OpenR 1-Math-220k
[24] train subset and use the Qwen-2.5-Math-7B trained by [40|] for running inference. For these prompts we
generate guidance using reference solution by using the prompt described in Appendix [H]

Capability Gain and Distillation We compute the capability gain (C) and distillation set (D) from the
model rollouts without guidance using the strategy described in Section[3.1] For each set, we then measure pass
@ k for the guided and non-guided model with samples generated with temperature 1.0. We see that the model
with guidance can solve more unsolvable questions in comparsion to the non guided model and the number of
questions also increases with rising k. Similarly, the guided model also shows significantly higher pass @ 1 with
arising trend with increasing k.

J.2 GRPO and SFT Training

Training Data For the training data, we use the default subset of OpenR1-Math-220k, which contains 93.7K
math reasoning tasks that have been sourced for several math competitions, textbooks and online forums. We
use the prompt, the final answer, and the reference solution, which is the solution that is scraped from the
corresponding source, not the 1lm-generated solution. In order to format the training data, we leverage the system
prompt used by Yan et al. that encourages the model to first think through the problem and then provide an
answer in boxed format [40]:

Your task is to follow a systematic, thorough reasoning process before providing the
final solution. This involves analyzing, summarizing, exploring, reassessing,
and refining your thought process through multiple iterations. Structure your
response into two sections: Thought and Solution. In the Thought section,
present your reasoning using the format: \"<think>\n {thoughts} </think>\n\".
Each thought should include detailed analysis, brainstorming, verification, and
refinement of ideas. After \"</think>\n,\" in the Solution section, provide the
final, logical, and accurate answer, clearly derived from the exploration in the
Thought section. If applicable, include the answer in \\boxed{} for closed-form
results like multiple choices or mathematical solutioms.

R R

Using this system prompt, we simply apply the chat template with the user prompt to formulate the training
prompt for GRPO training.

Training hyperparameter Table[12|contains the common training hyper-parameter for training the policy
models under vanilla GRPO and Guide-GRPO and Table[I3|contains the training hyper-parameters for the SFT
training on reference solutions:
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hyperparameter and settings  value

train batch size 1024
ppo mini batch 512
number rollouts per prompt 8
training epochs 2
actor learning rate le-6
kl coeff 0
entropy coeff 0
prompt max length 1024
generation max length 3072
policy model temperature 1
optimizer Adam

Table 12: Hyper-parameters for GRPO training

hyperparameter and settings  value

train batch size 32
training epochs 2
actor learning rate le-5
max context length 4092
optimizer Adam

Table 13: Hyper-parameters for SFT training

Training Setup We fork the open-sourced VeRL [41]] training package. We make the following modifications
to the code for implementing Guide-GRPO:

* Implement filtering of prompts for which all solution trajectories are all correct or all incorrect

* Adjusted importance weighting to calculate log probabilities relative to prompt plus guidance

» Update the data-loaders to include the token ids for prompt with guidance

¢ Dynamic re-rolls from prompt groups for which all trajectories are incorrect using prompt plus
guidance in the context of the policy model

Compute All GRPO model training used 2 nodes for a total of 16 gpus with 88 CPU cores, 80 Gi GPU

memory and 1.5TB system memory per node. The total GRPO training time ranged between 36 to 48 hours.
The SFT training was done on 1 node with training time of approximately 6 hours.
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