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ABSTRACT

This paper considers the projection-free sparse convex optimization problem for
the vector domain and the matrix domain, which covers a large number of im-
portant applications in machine learning and data science. For the vector domain
D C R?, we propose two quantum algorithms for sparse constraints that finds a
e-optimal solution with the query complexity of O(v/d/¢) and O(1/¢) by using
the function value oracle, reducing a factor of O(v/d) and O(d) over the best clas-
sical algorithm, respectively, where d is the dimension. For the matrix domain
D C R¥*4, we propose two quantum algorithms for nuclear norm constraints that
improve the time complexity to O(rd/e?) and O(+/rd/e?) for computing the up-
date step, reducing at least a factor of O(v/d) over the best classical algorithm,
where r is the rank of the gradient matrix. Our algorithms show quantum advan-
tages in projection-free sparse convex optimization problems as they outperform
the optimal classical methods in dependence on the dimension d.

1 INTRODUCTION

In this paper, we consider the following constrained optimization problem of the form

min f(x), (1)
such objective covers many important application in operations research and machine learning. We
are interested in the case where 1) the objective function f is convex and continuously differentiable,
and 2) the domain D C R is a feasible set that is convex, and the dimension d is high. Typical in-
stances of such high-dimensional optimization problems include multiclass classification, multitask
learning, matrix learning, network systems and many more (Garber & Hazan| (2016);|Hazan & Kale
(2012); |[Hazan et al.| (2012); Jaggi| (2013)); Dudik et al.| (2012); [Zhang et al.| (2012); [Harchaoui et al.
(2015));|[Hazan & Luo|(2016). As an example, for matrix completion, the optimization problem is:

min X, i —Yii)? 2

e BB DL (Kag = Yiy)?, 0
(1,5)EQ

where X is the matrix to be recovered, {2 denotes the observed elements, Y ; is the observed known

value at position (4, j), and ||.X||,, < k represents the trace norm (nuclear norm) constraint.

Compared with unconstrained convex optimization problems, optimizing Equation (1)) involves han-
dling constraints, which introduces new challenges. A straightforward method for optimizing Equa-
tion () is the projected gradient descent approach [Levitin & Polyak]|(1966). This method first takes
a step in the gradient direction and then performs the projection to satisfy the constraint. However, in
practice, the dimensions of the feasible set can be very large, leading to prohibitively high computa-
tional complexity. For example, when solving Equation (2)), the projection step involves performing
a singular value decomposition (SVD), whose time complexity is O(mn min{m,n}) (O(d?) for
X € R¥4), Compared to the projected gradient descent approach, the Frank-Wolfe (FW) method
(also known as the conditional gradient method) is more efficient when dealing with structured con-
strainted optimization problems. Rather than performing projections, it solves a computationally
efficient linear sub-problem to ensure that the solution lies within the feasible set D. When solving
Equation (2), the time complexity of the Frank-Wolfe method is O(mn) (O(d?) for X € R4x?),
which is significantly lower than the complexity of SVD-based projections. Since the Frank-Wolfe
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method is efficient for optimizing many difficult machine learning problems, such as low-rank con-
strained problems and sparsity-inducing constrained problems, it has attracted significant attention
and has been applied to solving Equation (3)) and many of its variants.

Despite the efficiency of FW in handling structured constraints, it still incurs significant computa-
tional overhead when dealing with high-dimensional problems. The bottleneck of the computation
is the linear subproblem over D, which is either assumed to have efficient implementation or sim-
ply follows existing classical oracles, such as [Dunn & Harshbarger| (1978)); Jaggi| (2013)); |Garber &
Hazan| (2016). The overhead of these oracles, however, grows linearly or superlinearly in terms of
dimension d.

Recently, quantum computing has emerged as a promising new paradigm to accelerate a large num-
ber of important optimization problems (see Appendix[A-4). We aim to take a thorough investigation
on whether quantum computing can accelerate FW algorithms, in particular the linear sub-problem
over structured constraints regarding dimension d. We aim to answer the following question:

Can one utilize quantum techniques to accelerate Frank-Wolfe algorithms in terms of dimension d?

Chen et al. gave an initial answer to this question|/Chen & de Wolf](2023)). They considered the linear
regression problem with explicit functional form where the closed form of gradient is provided.
Given the precomputed matrix factors of the closed-form objective function stored in specific data
structures, they leveraged HHL-based algorithms to accelerate matrix multiplications in calculating

the closed-form gradient, leading to a upper bound of O (\/E / 52) . In this work, we consider a more

general problem where the objective function is a smooth convex function accessible only through
a function value oracle, and then we consider a more general constraint conditions (the latent group
norm ball) to enhance the theoretical framework’s applicability. Besides, we also consider the case
of matrix feasible set, under different assumptions. To our best knowledge, we are the first one to
consider accelerating the matrix case of the FW algorithm by quantum computing.

Contributions. We give a systematic study on how to accelerate FW algorithms when D is either
a vector domain R%, or a matrix domain R%*¢ subject to various structured constraints. Note that
our findings can be applied to non-square matrices, we express our results using square matrices for
simplicity of presentation (Remark [T). We summarize our contributions as follows.

For the vector domain D C R¢:

* We propose the quantum Frank-Wolfe algorithm for the projection-free sparse convex op-
timization problem under ¢; norm constraints (Theorem|[T)) and the d-dimensional simplex
Ay (Theorem . We achieve a query complexity of O(v/d/¢) in finding an e-optimal solu-
tion using the function value oracle, reducing a factor of O(\/g) over the optimal classical
algorithm. Furthermore, if the objective function is a Lipschitz continuous function, we
prove that the query complexity can be reduced to O(1/¢) by employing the bounded-error
Jordan quantum gradient estimation algorithm, at the cost of more qubits and additional
gates (Theorem [5). In addition, we consider the generalization to latent group norm con-

straints (TheoremH} and achieve a query complexity of O (w /1G] |g|max), representing an

(0] <\/ |G |) speedup over the classical algorithm. These results are presented in Section ,
Appendix [A.T|and[A.2] The comparison with the classical methods is shown in Table [T}

 Specifically, we develop a novel quantum subroutine for the Frank-Wolfe linear subprob-
lem over latent group norm constraints, by computing dual norms coherently across all
groups in quantum superposition and identifying the dominant group via quantum maxi-
mum finding. We establish a novel error propagation analysis for dual norm computation
under gradient approximation, deriving bounds via Holder’s inequality that enable precise
control of linear subproblem accuracy throughout Frank-Wolfe iterations. The examples
in the main text such as the /1-norm constrained are special instances of the latent group
constraints. In short, we develop quantum subroutines for dominant atom finding and show
that the errors can be controlled by setting appropriate parameters.

For the matrix domain D C R4*4:
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* For the projection-free sparse problem under nuclear norm constraints, we propose two
complementary quantum Frank-Wolfe algorithms tailored to high-rank and low-rank gra-
dient matrices, respectively (see Appendix [A.5). For finding an e-optimal solution, we
achieve a time complexity of O(rd/c?) (Theorem and O(y/rd/e?) (Theorem in com-
puting the update direction, representing an at least O(\/g) speedup over state-of-the-art
classical algorithm, where 7 is the rank of the gradient matrix. These results are presented
in Section[d and the comparison with the classical methods is shown in Table [2]

 Specifically, in the first algorithm, we simplify the top-£ singular vectors extraction method
Bellante et al.| (2022) by utilizing the quantum maximum finding algorithm, which avoids
the overheads of repeated sampling to estimate the factor score ratio, and avoids the over-
heads of searching the threshold value. In the second algorithm, we introduce the quantum
power method to extract the top singular vectors, which reduces the dependence on the rank
of the gradient matrix, at the cost of higher sensitivity on solution precision.

Wide range of critical applications can be benefited from the acceleration of QFW, including sparse
regression (Lasso), sparse signal recovery, matrix completion, boosting algorithms (e.g., AdaBoost),
Support Vector Machines, and density estimation (2013). Other applications include signal
processing (sparsity constraints via /1 norm), game theory (zero sum games with simplex) and
SDPs (nuclear norm optimization). The proposed top singular vectors extraction techniques also
have a potential application for bi-quadratic programming (2024). We discuss some of
these applications in Appendix [A.6]

We notice an independent work on the quantum power method [Chen et al.| (20254), whose second
algorithm shares a conceptual similarity with our second approach: both iteratively apply quantum
matrix-vector multiplication. They assume a sparse-query access to the matrix as input, and achieve
a complexity of O((dv/s/~e)'T°(1)), where s is the sparsity, 7 is the eigenvalue gap, whereas our
method relies on the rank of the matrix, instead of the sparsity. In the case of dense full-rank matrix,
their algorithm and ours are consistent in terms of dimensional dependence, which provides mutual
validation of correctness.

The remainder of this paper is organized as follows. Section [2] introduces the basic concept of
constrained optimization and the classical Frank-Wolfe algorithm. Appendix [A.3]introduces the no-
tations and assumptions of quantum computing. Section[3]and @] presents our quantum FW methods
for vector domain and matrix domain, respectively. Extension for the vector cases are presented in
Appendix [A-T)and [A.2] Extended related works are presented in Appendix [A:4] and we conclude
with a discussion about the future work in Section[5} Proof details are given in Appendix [B]

Table 1: Classical algorithms V.S. quantum algorithms of the vector case, where C¥ is the curvature
of the objective function f, ¢ is the precision of the solution, d is the dimension of the domain, G is
the Lipschitz parameter of the objective function, p is the failure probability.

Optimization Domain Constraints Algorithm Tteration Query ity Qubits Gates
Sparse Vectors [T, -ball FWlJa;ilM O(Cy/e) O(d)
QFW (Theorem|1 O(Cy/e) O(Vdlog (Cy/pe)) O (d+1log?l) O(Vd)
QFW (Theorem 15:1 o(Cy/e) o(1) @) (d log ;J) O(dlog d)
Sparse non-neg. vectors Simplex Ay ank—WolfcM 13] 1 O(Cy/e) O(d)
QFW (Theorem| O(Cy/e) O(Vdlog (Cy/pe)) O (d+1log?l) O(Vd)
QFW (TheoremEJ 0(Cy/e) 0() 0 (dlog %5) O(dlogd)
Latent group sparse vectors [-g-ball FWI@I 2013 O(Cy/e) O ,cqlaD)
QFW (Theorem 0(C1/2) | O (VIG118lmax 08 (Cr/p2)) | O(d +10g1G] + lalumax 05(1/2)) | OG/IG] lalma)

2 PRELIMINARIES

2.1 NOTATIONS AND ASSUMPTIONS FOR CONSTRAINED OPTIMIZATION PROBLEM
We consider constrained convex optimization problems of the form

min f(), 3)

where € R?, f: R? — R, and D C R is the constraint set. In addition, as usually in constrained
convex optimization, we also make the following assumptions:
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Table 2: Classical algorithms V.S. quantum algorithms of the matrix case, where C'y is the curvature
of the objective function f, ¢ is the precision of the solution, d is the dimension of the domain, Ty
is the times required to evaluate V f; o1 (M) and is the largest and the second largest singular value,
respectively; r is the rank of the gradient matrix; ~/, ;,, is a factor which depends on the relation of
the singular value distribution of the gradient matrix and the direction of the initial vector.

Domain Constraints Algorithm Iteration | Complexity of the Update Computing
. . i) ] M)d?

Sparse Matrices  ||-||,,-ball FW with Power Method Jaggi|(2013) | O(Cy/e) o (% + TV>

. . . S | o1 (M)d?

FW with Lanczos Method Jaggi|(2013) | O(C//e) o <7(m(1u)7@(1\1)>5 + Tv>

. A 3(M)d

FW with QTSVE (Theorem 0(Cy/e) O (orar e + To
~ Tol (M

FW with QPM (Theorem 4 0(Cy/e) O (= + Tv

Algorithm 1 Classical Frank-Wolfe Algorithm with Approximate Linear Subproblems
1: Input: Solution precision ¢, iterations 7.

. Output: (7 such that f(x”) — f(x*) <e.

. Initialize: Let (1) € D.

cfort=1,...,T do

Let Yt = H_%

Find direction s € D such that

(5. V(@) < min(s, V(@) + Sy ®

7: Update z(“t1) = (1 — 4)z® + ;.
8: end for

Assumption 1. f is convex and L-smooth, i.e., the gradient of f satisfies |V f(x) — V f(y)]|, <
L||z — y||, for any z,y € R%

Assumption 2. D is compact and convex, and the diameter of D has an upper bound D, i.e.,
Va,y € K, lz —yl2 < D.

Typically, solving argmin.p x "y for any y € RY, is much faster than the projection operation
onto D (i.e., solving argmin,p, || — y||). Examples of such domains include the set of sparse
vectors, bounded norm matrices, flow polytope and many more Hazan & Kale| (2012). Therefore,
for such domains, the basic idea of the Frank-Wolfe algorithm is to replace the projection operation
with a linear optimization problem.

In the design and analysis of the Frank-Wolfe algorithm, one important quantity is the curvature C’,
which measures the “non-linearity” of f and is defined as follows,

Cr = sup 2 % (F) - f@) — (y— 2, V(@) 4

@,s€D,6€[0,1], y=z+B(s—z) B

By Lemma 7 of Jaggi| (2013), the curvature can be bounded as C'y < LD?.

2.2 CLASSICAL FRANK-WOLFE ALGORITHM

The classical Frank-Wolfe algorithm is given in Algorithm[I] The key step is the linear subproblem
of Equation (5) which seeks an approximate minimizer in D of (s, V f(x®)). Classically, the per-
step cost is O(NN) where N is the number of elements that need to be searched which introduces a
large O(N) cost. In this work, we will show that O(v/N) quantum queries to solve this subproblem.

Lemma 1. [Jaggi (2013), Theorem 1] For each t > 1, the iterates of Algorithm[l] satisfy

f@) = f@) < f%(l +9), (6)

where ©* is the optimal solution to Equation (3), and ¢ is the solution quality to which the internal

(1+6)Cf)
€

linear subproblems are solved. That is, one can use O( iterations to have a e-opt solution.
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Algorithm 2 Quantum Frank-Wolfe Algorithm for Sparsity/Simplex Constraint

1: Input: Solution precision ¢, gradient precision {o }7_.
2: Output: z(7) such that f(z7) — f(x*) <e.
3: Initialize: Let (1) € D.
. _ 46
5:fort=1,....,T do
6: Letvy, = H%

7 Prepare quantum state Zf:_ol i) [x®) |0).
8

9

f(@Ptoe)—f2®)
(o4

Perform quantum gradient circuit (Lemma ‘ to get thol |2) |w(t)> ‘
Apply quantum maximum finding to the absolute value of the third register (to the third
register directly for the simplex constraint, respectively) (Lemmal4), and then measure the first
register to obtain measurement result ;.
10: Set s = —e;,. Update ('t = (1 — v,)x® + 5.
11: end for

3 QUANTUM FRANK-WOLFE ALGORITHMS OVER VECTORS

3.1 QUANTUM FRANK-WOLFE WITH SPARSITY CONSTRAINTS
We first consider the optimization problem
min f(z), s.t. ¢ € RY, ||lz]| <1, (7

where the sparsity constraint D = {x € R? : ||z||, < 1}.

By Section 4 of (2013), any linear function attains its minimum over a convex hull at a vertex.
Thus, for the £; norm problem, the exact minimizer (i.e, corresponding to 6 = 0) of Equation (3) is
§ = —e;, with

iy € argmax |V, f(zV)], (3)
i€[d]

i.e., it is a coordinate corresponding to the largest absolute value of the gradient component.

Our approach will be to construct an approximate quantum maximum gradient component finding
algorithm to find such an i;.

Quantum access model Uy. In this subsection, we assume that the value of the loss function is
accessed via a function value oracle as shown in Assumption 3}

Assumption 3. There is a unitary Uy that, in time Ty, returns the function value, ie., Uy :
|z) |ay — |x) |a + f(x)), for any a, where |x) := |z1) |22) ... |T4).

The preparation of the input state in Step 7 of Algorithm []is efficient. Initialize the algorithm at
x(®) = 0, each Frank-Wolfe step adds a single coordinate direction to the solution. Specifically, the
update rule 2+ = (1— “/L)ac(t) + v¢s¢—where s; is a standard basis vector—implies that the so-
lution *) after ¢ iterations is a sparse vector with at most ¢ non-zero components. Consequently, the
quantum state |x(t>> is a sparse computational basis state. This state can be perform an incremental
update, setting at most one new coordinate to a non-zero value per iteration. The gate complexity
for this sparse update is O(¢). The total number of iterations 7" required for an e-optimal solution
is O(1/¢), which is independent of the dimension d. Therefore, the state preparation overhead per
iteration remains O(1/¢), completely decoupled from the potentially large dimension d.

Quantum gradient circuit. Next, we present a general unitary U, to approximate the gradient

V f(x+). Specifically, we use the forward difference g;(x;) = f@etoe)—f(@d) approximate each

item of V; f (x;) with £ error ey, ie., ||V f(x) — g(xe)|| . < €gs where o is the tunable parameter
for the desired accuracy.

lloo
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Lemma 2 (Theorem 3.1 Berahas et al. (2022)). Under Assumption let g;(x) = L@roel=i(=)
then for all x € R4,

VdLo

lg(@) = V@), < ——- ©)

Lemma 3. Given access to the quantum function value oracle Uy, there exists a quantum circuit
to construct a quantum error bounded gradient oracle U, : i) |x) |0) — |i) |x)|g:i(x)), where

gi(x) = M is the i-th component of the gradient and o is the tunable parameter, with
two queries to the quantum function value oracle.

The proof is given in Appendix

Quantum maximum finding circuit. Based on U, leveraging the quantum minimum-finding al-
gorithm |Durr & Hoyer| (1996), we give an approximate search of the maximum gradient component
as shown in Lemma 4] with proof given in Appendix Note that Algorithm [3|in the matrix sec-
tion of this work also utilizes quantum maximum finding, but with a non-uniform input state. We
also provide a proof in Appendix [B.2]that the quantum maximum finding procedure is applicable to
non-uniform input states.

Lemma 4. (Approximate maximum gradient component finding) Given access to the quantum
error bounded gradient oracle U, : |i)|x)|0) — [i)|x)|g:(x)) s.t. for each i € [d|, after
measuring |g;(x)), the measured outcome g;(x) satisfies |g;(x) — Vfi(x)| < e. There exists a
quantum circuit Amax that finds the index i* that satisfies V f;-(x) > max;epq V fj(x) — 2¢ or
IV fi ()| > max;eq |V fi(z)| — 26 using O(V/dlog(%)) applications of Uy, Ug and O(+/d)
elementary gates, with probability 1 — 0. For the non-uniform initial state, let p be the initial mea-
surement probability of the maximum component, then the algorithm finds the maximum with query

complexity ofO(% log(%) ).

Convergence Analysis. Now we can conduct the convergence analysis with the help of approxi-
mate maximum finding sub-routine and show how to choose appropriate parameters, which gives
Theorem I] with proof given in Appendix [B.3]

Cr

Theorem 1. (Quantum FW over the sparsity constraint) By setting o, = VaL fort € [T),

the quantum algorithm (Algorithm [2)) solves the sparsity constraint optimization problem for any

precision ¢ such that f(x7) — f(x*) < einT = % — 2 rounds, succeed with probability 1 — p,

with O (\/& log %) calls to the function value oracle Uy per round.

If the objective function is a G-Lipschitz continues function (ie. |f(x) — f(y)| < Glly —
x|, Vx,y € D), an alternative approach for estimating the gradient of the objective function
involves employing the bounded-error Jordan algorithm to improve the query complexity of each
iteration to O(1), at the cost of additional space complexity and extra gate operations. This result is

given in Appendix
3.2 EXTENSIONS: QUANTUM FRANK-WOLFE FOR ATOMIC SETS

Classically, the Frank-Wolfe algorithm has been shown to be well-suited to atomic sets Jaggi| (2013),
i.e. where the constraint set is expressed as the convex hull of another (not-necessarily finite) set .A:
D = conv(A) In this case, the Frank-Wolfe update calculation requires a minimization only over
A: minge (8, Vf(z(®)). The optimization over the ¢; ball as studied above is a special case of
this, since {z € R? : ||z|,} = conv{z*ei,Les,...,+ey}. Note also that quantum optimization
over the simplex A; = conv{ey,..., ey} can be done by almost exactly the same method as for
the ¢; case, with the only modification to account for the fact that only the unit vectors need to be
optimized over, which gives Theorem

Theorem 2. (Quantum FW over the simplex) By setting o, = % fort € [T), the quantum

algorithm (Algorithm[2) solves the simplex constraint optimization problem for any precision € such
T * . _4cC . 7. . C

that f(x")— f(x*) < einT = — —2 rounds, succeed with probability 1—p, with O (\/alog p—g)

calls to the function value oracle Uy per round.
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Two more extensions for atomic sets are given in Appendix[A.2]

4 QUANTUM FRANK-WOLFE ALGORITHMS OVER MATRICES

In this section, we consider the matrix version of the constrained optimization problem in Equa-
tion (), specifically,

min f(X), s.t. X € R | X, <1, (10)

where the sparsity constraint is D = {X € R4 : || X||

< 1}. For simplicity of presentation, we
first focus on square matrices, i.e., X € R%*¢ (Remark‘

Schatten matrix norm. In contrast to the vector norm ||-|| on R¢, the corresponding Schatten matrix
norm || X || is defined as ||(o1, ..., 04)||, Where o1, ..., 04 are singular values of X. It is known that
the dual of the Schatten ¢, norm is the Schatten ¢, norm with 1/p + 1/¢ = 1. The most prominent
example is the trace norm ||-||,,, also referred to as the nuclear norm or Schatten ¢; norm, defined as

the sum of the singular values || X ||,, = 3¢, 0.

Linear subproblem solver. Following the classical Frank-Wolfe iteration framework, we aim to
solve the linear optimization subproblem mingep (S, V f(X;)) where X, denotes the iterate matrix
atstep t, and (X,Y) = tr X 'Y represents the Hilbert-Schmidt inner product. For convenience, let
M = Vf(X;) in the rest of this section. To solve this subproblem, one can compute the singular
value decomposition (SVD) M = Udiag(a)V' T, where o are singular values of M and U,V €
R?*4 are orthogonal matrices. Since Schatten norms are invariant under orthogonal transformations,
the optimal solution S € D for the minimization problem mingep (S, M) takes the forms of S =
Udiag(s)V' T, where (s, o) = ||, with [[s]|, < 1and 1/p + 1/g = 1. For the nuclear norm (i.e.,

¢1 Schatten norm), this reduces to S = uw ' where u, v are the left and right top singular vectors
of M, corresponding to its largest singular value o1 (M ). Thus, the core computational task is to
efficiently approximate the top singular vectors u, v € R%, ensuring |[u’ Mv — oy (M)| < €.

Power method and Lanczos method. Compared with the SVD that requires O(d®) computational
cost per iteration to compute all d singular vectors, extracting only the top singular vector is much
easier. Specifically, Kuczynski & Wozniakowski| (1992)) considers two iterative methods: the power
method and the Lanczos method. The power method achieves |u" Mv — o1 (M)| < &’ with the

worst-case computation complexity of O (%) , while the Lanczos method achieves

2
|uT Mv — o1(M)| < &' with the worst-case computation complexity of O ( N ‘z ;/([1)\4 )d (1;1/;) ,>’
g1 —02 g

where ¢’ is the additive error. Similar to the convergence analysis in Section setting &/ =
O(e), the complexity of update computing are O ((GI(MFUZ(M))E and O ( oo )
respectively.

Quantum enhancement. In the following, we propose two quantum subroutines to compute the top
singular vector: the quantum top singular vector extraction method and the quantum power method.
Note that for the matrix case, we could also assume the same function value oracle and naturally
employ an improved Jordan’s algorithm to achieve a query complexity advantage in gradient esti-
mation. However, in this work, we aimed to further investigate whether quantum algorithms can
accelerate the computational complexity of the update step beyond just query counts. Therefore, the
analysis focuses on the update direction computation and assumes that the gradient has been pre-
computed and stored in the memory (Remark [3), following the classical convention of excluding
gradient evaluation time [Jaggi| (2013)).

First, we assume the following gradient access model for matrix data. A detailed description of this
data structure can be found in Section 1.A of |Kerenidis & Prakash|(2020b).

Assumption 4 (Quantum access to a matrix). We assume that we have efficient quantum access to
the matrix M € R¥, That is, there exists a data structure that allows performing the mapping

|2} [0) = [é) |M;,.) = |d) ||M1 I Z M;j |j) for all i, and |0) — HMH E IM; .|| |8} in time O(1).
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4.1 QUANTUM FRANK-WOLFE WITH QUANTUM TOP SINGULAR VECTOR EXTRACTION

Leveraging the quantum access defined in Assumptiond} quantum singular value estimation can be
performed efficiently.

Lemma S (Singular value estimation (Theorem 3 |Bellante et al.| (2022))), |Kerenidis & Prakash
(2020b)). Let there be quantum access to M € RY*%, with singular value decomposition M =

Zf o;u;vl. Let € > 0 be a precision parameter. There exists a quantum circuit for performing the

mapping [rir— Y27 325 Mig i) 1) 10) = et 320 04 [wa) |v3) [5) such that |o; — 5| < € with
probability at least 1 — 1 /poly(d) in time O (M)

To extract classical singular vectors corresponding to the largest singular value from a quantum state,
{5 norm quantum state tomography is required.

Lemma 6 (¢, state-vector tomography |[Kerenidis et al.| (20205 2019d)). Given a unitary mapping
Uy : |0) — |x) in time T(Ug) and 6 > 0, there is an algorithm that produces an estimate
T € R with ||Z||, = 1 such that ||z — ||, < & with probability at least 1 — 1/poly(d) in time

0 (T (V) 52).

Quantum top singular vector extraction (QTSVE). The goal of the quantum subroutine in each
iteration is to find the top right / left singular vectors of the gradient matrix. First, we prepare the
gradient matrix state using the quantum access as stated in Assumption[d] then we perform QSVE to
this state. The quantum maximum finding is applied to obtain the quantum state corresponding to the
largest singular value. Prepare sufficient quantum states corresponding to the largest singular value
until satisfying the requirement of tomography, then perform quantum state tomography to extract
the corresponding right / left classical singular vectors. This procedure is shown in Lemma [7] with
the proof given in Appendix Note that the success probability of QTSVE can be improved by
repeating it logarithmic times and then taking the average.

Lemma 7. (Quantum top singular vector extraction) Let there be efficient quantum access to a

2

o1 (M)
Yo}
), give the estimated

matrix M € RY?, with singular value decomposition M = Zf o;u;vl. Define p =

|| M || -dpoly log d
/Ped?

top singular value o1 of M to precision € and the corresponding unit estimated singular vectors u, v

to precision § such that | u — WUep|| < 9, ||V — viop|| < & with probability at least 1 — 1/poly(d).

There exist quantum algorithms that with time complexity O (

Convergence Analysis. Our quantum Frank-Wolfe algorithm for nuclear norm constraint (Algo-
rithm 3)) then follows, with the analysis given in Appendix

Theorem 3. (Quantum FW with QTSVE) By setting §; = m and ¢, < (o1(M;) —
02(My))/2 for t € [T, the quantum algorithm (Algorithm |3) solves the nuclear norm constraint

optimization problem for any precision € such that f(XT) — f(X*) <einT = % — 2 rounds,

~ 3
with time complexity O (%) for computing the update direction per round, where

r is the rank of the gradient matrix.

In computing the update direction, Algorithm [3| reduces a O(de/ro?(M)) factor to the power
method and O(de'® /ro?-(M)) to the Lanczos method, respectively. See Remark 2] for more in-
formation about parameter choosing.

4.2 QUANTUM FRANK-WOLFE WITH QUANTUM POWER METHOD

The second framework is to accelerate the power method directly with quantum matrix-vector
multiplication method and quantum tomography. The classical power method constructs a se-
quence 2o, ..., 2, where zp = b is drawn uniformly random over a unit sphere b : ||b||, = 1, and
Ziv1 = M TMz,; fori > 1, (Ziy1 = MM Tz, for the left singular vector, respectively). After
y T
k= w, we have % —o01(M)| < e, where C is a constant.
v 12

Quantum power method (QPM). Using the quantum access given in Assumption |4} the quantum
matrix-vector multiplication can be performed efficiently:
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Algorithm 3 Quantum Frank-Wolfe Algorithm for Nuclear Norm Constraint with QTSVE

Input: Solution precision ¢, singular value precision {e; }7_,, tomography precision {d;}7_;.
Output: X () such that f(X7) — f(X*) < e
Initialize: Let X(1) € D.
Let T = ‘f —2.
fort=1,...,T do
Letvy, =

d ~d o p
Prepare 1o 3¢ 30 M, i) ) ).
Perform QSVE (Lemma to get \/f 2 Sor o |wi) [vi) [75) , where|o; — 7] < €.
Apply quantum maximum finding (Lemma4) to the third register to get |uop) |Viop) [T1)-
Perform ¢,-norm tomography (Lemma [6), to obtain w, v, where ||u — wiop| < 9t
”” — Vgopl| < 5t

11: Set S = uwv'. Update X1 = (1 — ) X®) 4 ~,8.
12: end for

—_

Y 2 N ANRLD

—_

Algorithm 4 Quantum Frank-Wolfe Algorithm for Nuclear Norm Constraint with QPM

1: Input: Solution precision e, multiplication times {k;}_;, multiplication precision {d;}7_;,
tomography precision {8, }1_;
Output: X(™) such that f(X7) — f(X*) < e
Initialize: Let X(1) € D.
Let T = f —2.
fort=1,...,T do
Letvy, =

Prepare ﬁ Zf Z? M;; 1) |7) |b) |b), where b is the uniform superposition state.
F

Apply quantum power method (Lemma@ to get W Zf Zj M;; 1) |7) |Zu) |Zv), where
2w = (MMT)*b|| < 6, ||Z0 — (MTM)Fb|| < 6.
9: Perform ¢5-norm tomography (Lemma [6) to obtain w,v, where [[u—Z,[ <
5, lv — 2| < 4.
10: Set S = uw'. Update X1 = (1 — ) X®) 4 ~,8.
11: end for

Lemma 8. (Quantum matrix-vector multiplication (Theorem 4 |Bellante et al.|(2022))), Chakraborty
et al.|(2019)) Let there be quantum access to the matrix M € R¥*¢ with 0,4, < 1, and to a vector

z € R Let ||Mz| > ~'. There exists a quantum algorithm that creates a state |y) such that
Ily) — [M2)|| < € in time O (%HMHF log(1 /e)), with probability at least 1 — 1/poly(d).

Apply 2k times of quantum matrix-vector multiplication, we can get a quantum state correspond-
ing to 2y, as shown in Lemma [% with proof given in Appendix [B.I0] A similar process can be
constructed to compute (M M T )*b (corresponding to the left singular vector) simultaneously.

Lemma 9. (Quantum power method) Let there be quantum access to the matrix M € R4%4 with

Omax < 1, and to a vector z € R%. Let ', be the lower bound of ||( H MTM)iz H )| for all i € [K].
There exzsts a quantum algorithm that creates a state |y) such that H ly) — | MTM)* >H <din
time O(="—||M||  log(1/4)), with probability at least 1 — O(k /poly(d)).

Y min

Convergence Analysis. After quantum state tomography, we can extract the classical top singular
vectors. Note that the success probability of QPM and tomography can be improved by repeating
the whole procedure logarithmic times and then taking the average. Our quantum Frank-Wolfe
algorithm (Algorithm ) for nuclear norm constraint then follows, and the parameters choosing and
convergence analysis are given in Theorem 4] with the proof given in Appendix [B.11]

Theorem 4. (Quantum FW with QPM) By setting k; = wﬁt =4, = 10071")1{/? 3 for
t € [T), the quantum algorithm (Algorithm 4)) solves the nuclear norm constraint optimization
problem for any precision ¢ such that f(XT) — f(X*) < einT = ﬁ — 2 rounds, with time
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\rot(My)d
Q=01 (Me))y %ine®

rank of the gradient matrix, Cy is a constant and ', ;,, is the lower bound of H (M," M;)'b) H for all
i€ [k].

complexity O ( ) for computing the update direction per round, where v is the

In computing the update direction, Algorithm 4| reduces a O(de2y/>,, //To3(M)) factor to the

power method and O(ds25~'2 . /\/ro3-(M)) to the Lanczos method. A discussion of this section
is given in Appendix[A.3]

5 CONCLUSION AND FUTURE WORK

This paper addresses the projection-free sparse convex optimization problem. We propose several
quantum Frank-Wolfe algorithms for both vector and matrix domains, demonstrating the quantum
speedup over the classical methods with respect to the dimension of the feasible set.

For future work, we aim to extend quantum Frank-Wolfe methods to stochastic and online opti-
mization frameworks, to characterize quantum advantages in projection-free regret minimization.
Meanwhile, |Jaggi| (2013) highlights several interesting cases involving matrix norms, where classi-
cal approaches often rely on computationally expensive singular value decomposition. A potential
avenue of interest is determining whether quantum computing can yield greater speedups in such
settings. Moreover, as mentioned in Appendix[A.5] the gradient in the matrix completion is sparse,
which might allow for further acceleration via quantum sparse matrix multiplication, constituting
an interesting direction for future research. These investigations would collectively advance the
understanding of quantum-enhanced projection-free optimization.
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Appendix

A EXTENSION AND DISCUSSION

A.1 QUANTUM FRANK-WOLFE OVER VECTORS WITH BOUNDED-ERROR JORDAN
ALGORITHM

The quantum Frank-Wolfe Algorithm with Bounded-error Jordan’s Algorithm is shown in Algo-
rithmE} We reformulate the results of the bounded-error Jordan algorithm from He et al.[(2024)) in
terms of infinity norm error, with the proof detailed in the Appendix

Algorithm 5 Quantum Frank-Wolfe Algorithm with Bounded-error Jordan Algorithm

1: Input: Solution precision ¢, gradient precision {o; }7_;.
. Output: (7 such that f(x”) — f(x*) <e.

. Initialize: Let (1) € D.

LetT = 2% 2,

cfort=1,....T do

Let Yt = H%

Using Algorithm to get the whole vector of estimated gradient V f, ().

Scan all the component of V f;(x;) to find the coordinate i; corresponding to the largest
absolute value of the estimated gradient component.
9: Set s = —e;,. Update ('t = (1 — v,)x® + 5.
10: end for

I A S ol

Lemma 10. (Lemma 1|He et al.|(2024)) If f is G-Lipschitz continues and L-smooth convex function
and can be accessed by a quantum function value oracle, then there exists an quantum algorithm
that for anyr > 0 and 1 > p > 0, gives the estimated gradient g(x), which satisfies

Prllg(z) = Vf(@)lloo > 870*(n/p + 1)Lr/p] < p, (11)
using O(1) applications of Uy and O(dlogd) elementary gates. The space complexity is

The next step is to determine the quantum gradient estimated parameters 7; in each Frank-Wolfe
iteration through convergence analysis.

Theorem 5. (Quantum FW with bounded-error Jordan algEo)rithm) By setting vy =

167rd2(d/ppc+f1)L(t+2) fort € [T, the quantum algorithm (Algorithm |5) solves the sparsity constraint
4c

optimization problem for any precision ¢ such that f(xz') — f(x*) < e in T = ==L — 2 rounds,
with O (1) calls to the function value oracle Uy per round.

The proof is given in Appendix [B.3] Substituting the parameter 7, into the space complexity yields

the qubit requirement as O (d log %). Since each gradient estimation succeeds with probability

1 — p, the probability that all 7" iterations succeed is at least 1 — T'p. By setting p = p/T’, we ensure
an overall success probability of at least 1 — p.

A.2 MORE EXTENSIONS OVER VECTORS FOR ATOMIC SETS

In this appendix, we give two more extension for the vector case. The first extension is to consider
|A| = N, witheach a; € Abeing T-sparse with non-zero (index, value) pairs (i, (a;)), i.e., each
aj € R4, but has only 7 non-zero elements. Assume that the non-zero elements are accessed with a
quantum oracle V' which implements the transformation V' |5) |k) [0) |0) — |7) |k) |éx) |(a;)k). One
can construct a coherent access to the non-zero elements

VET15) @) 1K) 10)10) = 17) Q) k) lix) | (az)x) (12)
k=1 k=1
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using 7 calls of V. Then, a slight modification of the method of Section [3.1] can compute the FW
update using O(7+v/N log(1/6§)) queries to V and U,.

The second extension is to consider latent group norm constraints, which have found use in inducing
sparsity in problems in machine learning|Jenatton et al.[{(2011)). The ¢; norm, d-simplex, group lasso
etc. are all special cases of this.

Following Jaggi (2013) we let G = {g1,82,...,9/g/}. 8: C [d]. U, 9; = [d]. Note that the g; need
not be disjoint. For each g € G, let ||-||, be an arbitrary £, norm, and define the latent group norm

[l = b 2 vl
st x= z Vlg] (13)
geg

where v(g) € RS is the restriction of v € R? to coordinates in g, and Vg € R4 has zeros outside
the support of g. In this case, the Frank-Wolfe update corresponds to finding the value s : |[s|[g < 1

such that s "V f(z) = |V f(z)||g, where ||V f(z)||g = max,.|s), <15 V().

By Section 4.1 inJaggi| (2013)), this norm is an atomic norm, and the dual norm is given by

IVF@)llg = max||Vf (@), (14)
which implies that
max (—s' Vf(z)) =max max (—s' Vf(z)). (15)

siflsllg<1 9€g s:f|s]| <1

Therefore, it suffices to consider each ||-|| , ball separately, and then do quantum maximizing over
all the |G| balls to find the one that has the largest value of |-V f(z)g, ||; The quantum Frank-

Wolfe algorithm over latent group norm ball is then given in Algorithm[6] Note that by the absolute
homogeneity property of dual norms,

IVf@wlg = 1=V @l

certain negative signs have been omitted in the algorithmic formulation.

(16)

Algorithm 6 Quantum Frank-Wolfe Algorithm over Latent Group Norm Ball

1: Input: Gap ¢, accuracy {0} }._,, iterations 7.
2: Initialize: Let (") € D,
3: fort=1,....,T do
4 Lety = 25,z =,
Prepare state 2, i) 4 |2) ®%| |gs.5) 10) [0) [0) [0).

5
6: Perform quantum gradient circuit to get > ; |i) 4 &) ®|]g:"1 |9i.5) |9a., ()) 10) [0) |0),
7. Compute S i) l2) (@)

)
‘Hg(m)(gi) pi>“|9(w)(gi) ;>-

where gg, (@) =
Apply quantum maximum finding on the last register, and then measure the rest registers,
denote the result of the first register as .

9: Initial s = 0, set s, ; = sgn(gg,, ; (m))’ggim. (x)
1. Then normalize s.

10: Update (1) = (1 — ~,)z®) + ~,s.

11: end for

Ot

9.} |90, (@) |sen(ga,, (@)]|9g., (@)

e

Qiy —

1 .
for j = 1to|g;|, where -1-+ -1 =
Piy | iy

To simplify the proof of the query complexity of the quantum FW update (Lemma [TT]), we first as-
sume that the gradient estimation and the maximum-finding are exact, with proof given in Appendix
Then we give the error analysis and show how to choose the parameters o in Theorem [6] with

proof given in Appendix[B.7]
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Lemma 11. [Quantum FW update over latent group norm ball] Let H||g be a latent group norm
corresponding to G = {g1, 92, ...,0|g|}, and let |g| .. = max; |g;|. Then, there exists a quantum
algorithm computing the Frank-Wolfe update s* = argmax§€”_Hg_Ba”<.§Tg(:13)> in O(\/1G118| max)
calls to Uy.

Cy
VAL (t+2) max;eqig)y l9i|'/Pi
Sort € [T), the quantum algorithm (Algorithm@ solves the latent group norm constraint optimiza-

Theorem 6. [Quantum FW over latent group norm ball] By setting o, =

tion problem for any precision ¢ such that f(x*) — f(z*) < ecinT = % — 2 rounds, succeed with

probability 1 — p, with O (\ /1619|1105 108 %) calls to the function value oracle Uy per round.

A.3 NOTATIONS AND ASSUMPTIONS FOR QUANTUM COMPUTATION

Basic Notions in Quantum Computing. Quantum computing utilizes Dirac notation as its mathe-
matical foundation. Let {|i)}9=; denote the computational basis of C? as {|i)}}=, where |i) is a
d-dimensional unit vector with 1 at the i*" position and 0 elsewhere. A d-dimensional quantum state
is represented as a unit vector |v) = (v1,va,...,v4)7 = Y, v; |i) € C? with complex amplitudes

v; satisfying 37 |v;]* = 1.

Composite Systems. The joint state of two quantum systems |v) € C% and |u) € C2 is described
by the tensor product |v) ® |u) = (viu1, viug,. ... Vau1, ..., V4 UL) € C¥% The ® symbol is
omitted when context permits.

Quantum Dynamics. Closed system evolution is described by unitary transformations. Quantum
measurement in the computational basis probabilistically projects the state onto a basis vector |4)
with the probability of the square of the magnitude of its amplitude. For example, measuring |v) =

>, vi |i) yields outcome ¢ with probability |vi|?, followed by post-measurement state |).

Quantum Access Models. In general, In quantum computing, access to the objective function is
facilitated through quantum oracles () s, which is a unitary transformation that maps a quantum state
|z) |q) to the state |z) |q + f(z)), where |z), |¢) and |g + f(x)) are basis states corresponding to
the floating-point representations of x, ¢ and ¢ + f(z). Moreover, given the superposition input
> z.q Qg [7) [q), by linearity the quantum oracle will output the state >, v q |2) [q + f(2)).

A.4 EXTENDED RELATED WORKS

The Frank-Wolfe (FW) algorithm, also known as the conditional gradient method, has evolved
through several key theoretical and applied research phases. The original FW framework |[Frank
et al.| (1956) established a projection-free method for quadratic programming with optimal conver-
gence rates when solutions lie on the feasible set boundary, a property later rigorously proven by
Canon & Cullum)| (1968)). Wolfe’s away-step modification [Wolfe| (1970) addressed boundary solu-
tion limitations, while Dunn’s extension |Dunn & Harshbarger| (1978) generalized FW to smooth
optimization over Banach spaces using linear minimization oracles.

Modern convergence analyzes were unified by Jaggil (2013)), who introduced duality gap certificates
for primal-dual convergence in constrained convex optimization. For strongly convex objectives,
Garber & Hazan| (2016) demonstrated accelerated linear convergence rates. Projection-free opti-
mization on non-smooth objective functions was studied in [Lan| (2013); |Argyriou et al.| (2014);
Pierucci et al.| (2014). Data-dependent convergence bounds on spectahedrons were improved by
Garber| (2016) and |Allen-Zhu et al.[(2017).

Note that the framework was extended to online and stochastic optimizations, inspiring a series
of seminal contributions |Hazan & Kale| (2012); (Garber & Hazan| (2016)); Levy & Krause (2019);
Lan & Zhou| (2016); [Hazan & Luo| (2016); |(Chen et al. (2018)); [Hassani et al.| (2020); Xie et al.
(2020); Yurtsever et al| (2019); [Zhang et al| (2020). Our future research will explore quantum-
enhanced acceleration for these online/stochastic settings. Meanwhile, in recent years, FW methods
have gained attention for their effectiveness in dealing with structured constraint problem arising in
machine learning and data science, such as LASSO, SVM training, matrix completion and clustering
detection. Readers are referred to Bomze et al.| (2021)); Pokuttal (2023) for more information.
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The algorithms we develop in the matrix domain belong to the quantum algorithmic family for lin-
ear systems. This family originated with the seminal HHL algorithm Harrow et al.| (2009), which
solves quantum linear systems and achieves exponential speedups over classical methods for well-
conditioned sparse matrices. Subsequent improvements reduced dependency on condition number
and sparsity [Ambainis| (2012); [Childs et al.| (2017)); Wossnig et al.| (2018). The HHL framework has
been successfully adapted to machine learning tasks including support vector machines |Rebentrost;
(2014), supervised and unsupervised machine learning [Lloyd et al.| (2013)), principal compo-

nent analysis|Lloyd et al.|(2014) and recommendation systems|Kerenidis & Prakash|(2017)). One can
reduce the condition number by preprocessing the matrix itself, and QRAM can help to accelerate

such preprocessing. Based on this, the quantum singular value estimation method was developed
in|[Kerenidis & Prakash| (2017)) and was generalized in [Kerenidis & Prakash| (2020b). Furthermore,
recent work integrates QSVE with state-vector tomography, amplitude amplification/estimation, and
spectral norm analysis to enable top-k singular vector extraction Bellante et al.| (2022).

Recently, quantum computing has emerged as a promising new paradigm to accelerate a large num-
ber of important optimization problems, e.g., combinatorial optimization [Grover| (1996); [Ambainis
& Spalek! (2006); Diirr et al.| (2006); Durr & Hoyer| (1996); [Mizel (2009); [Yoder et al. (2014);
Sadowski| (2015); [He et al.| (2020), linear programming |[Kerenidis & Prakash| (2020a)); [Li et al.|
(2019); [van Apeldoorn & Gilyén| (2019b); [Apers & Gribling (2023)), second-order cone program-
ming [Kerenidis et al.|(2019cibfla), quadratic programming Kerenidis & Prakash|(2020b)), polynomial
optimization |[Rebentrost et al.| (2019)), semi-definite optimization Kerenidis & Prakash| (2020a); [van
[Apeldoorn & Gilyén|(2019a); Brandao & Svore] (2017); Brandao et al.| (2019)); [van Apeldoorn et al.
2017), convex optimization [van Apeldoorn et al.| (2020); |(Chakrabarti et al.| (2020); [Zhang et al.
2024)), nonconvex optimization [Zhang & Li| (2023); |(Chen et al.| (2025b), stochastic optimization
[Sidford & Zhang| (2023) online optimization He et al.| (2022; [2024); Lim & Rebentrost (2022),
multi-arm bandit (Casalé et al.| (2020); Wang et al.| (2021); [Li & Zhang| (2022)); [Wan et al.| (2023).
The quantum community is actively pursuing further accelerations of quantum computing in the
field of optimization.

A.5 DISCUSSION OF THE TWO QUANTUM FRANK-WOLFE ALGORITHMS FOR THE MATRIX
CASE

We essentially developed two complementary algorithms tailored to high-rank and low-rank gradient
matrices, respectively. For Algorithm [3} quantum advantage exists when d > r/\/o; — o9¢. For
Algorithm Ié—_ll, quantum advantage holds when d > /7\/o1 — 02/€>(1 — 01). Since the quantum
subroutines in the matrix section effectively process the gradient matrix normalized by its Frobenius
norm, when this matrix has very low rank, 1 — o; tends to be small (approaching 0 when the rank
is 1). In such cases, Algorithm [B]delivers better performance, whereas Algorithm[d]is more suitable
otherwise. These two complementary algorithms deliver a quantum speedup of at least O(\/E)

Furthermore, the repetition steps required for quantum state tomography can be parallelized
in the quantum computing cluster. By utilizing O(d) quantum computers simultaneously, the
dependence of d in time complexity can be eliminated, giving a parallel time complexity of
~ 3 ~ 4
roy (M) Vroy (M)

O (o sxcmes ) and O (=it oes )

Remark 1. Note that in Section |4} for simplicity of presentation, we focus on square matrices.
However, all of the quantum techniques mentioned above can also be applied to non-square matri-
ces, since the quantum singular value estimation can be applied to non-square matriceyKerenidis &|

[PrakasTi (20208).

Remark 2. All parameters can be determined during preprocessing. Since tomography constitutes
the dominant part of the computational overhead, this preprocessing will not affect the final asymp-
totic complexity. The choice of §; relates to the maximum singular value of the current gradient
matrix. Its range can be determined by running Quantum Singular Value Estimation (QSVE) fol-
lowed by a maximum-value search algorithm. The purpose of €, is to ensure that the ordering of
the largest and second-largest singular values does not become misordered during QSVE execution.
This parameter can be determined via two methods: 1. During preprocessing, run QSVE-quantum
maximum search and perform a binary search to find the critical point where two measurement
outcomes appear. Then perform another binary search on €; to locate the critical point that distin-
guishes between these two outcomes. 2. Use the results of amplitude estimation as an indicator to
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identify the critical point where a sudden jump in amplitude occurs. Since tomography remains the
primary source of algorithmic overhead, the computational cost of this process will not impact the
final asymptotic complexity.

Remark 3. Note that both the classical and quantum algorithms in this section assume that the
gradients are pre-stored at the memory. In some applications, obtaining the gradients may not be
easy, and even directly loading them into the memory would scale linearly with the size of the matrix.
This work focuses only on the computation of the update direction, but the gradient calculation
time, which is also ignored in classical algorithms |Jaggi| (2013), is explicitly included in the result
Table |2} This is because in quantum computing, there exist several well-established algorithms for
gradient estimation Jordan| (2005)); |Gilyén et al.|(2019). Moreover, in some applications (such as
the matrix completion problem, which we will clarify below), the gradient matrix is sparse. In such
applications, the construction of the corresponding quantum memory depends on the sparsity rather
than the dimension. The potential acceleration in the gradient calculation and state preparation are
left for future exploration.

To show that solving Equation ([2) is a special case of solving Equation , let Z = X/k. Then, the
constraint || X ||¢; < k becomes || Z ||t = || X/k||tr = || X||t:/k < 1. Substituting into the objective
function of Equation (2)):

Y (XY= > (kZi;-Yi ) (17)
(i,7)€Q (i,7)eQ2

Define the function f(Z) = 3_; jyea(kZi; — Y; ;)2. Then, Equation (2) is equivalent to:
(2). (18)

min
1Z]e<1
This matches the form of Equation (10).

Satisfaction of Assumption[2} The trace normrﬂ - |ltx is a convex function, so the set {Z : || Z ]|y, <
1} is convex. In the finite-dimensional space R?*<, the set {Z : || Z||;; < 1} is closed (because the
trace norm is continuous) and bounded (since | Z||r < || Z]|sx < 1), hence it is compact. For any
Z1,Zs € D, we have | Z1||p < 1and | Zs]|r <1, s0:

121 = Za|lp < | Z1|F + || Z2]lF < 2. (19)
Thus, the diameter D < 2. Therefore, Assumption|2|is satisfied.

Satisfaction of Assumption The function f(Z) = 32 »eo(kZij — Y; ;)? is a sum of squares,
hence it is convex. For (i, j) € (2, the partial derivative is 2(kZ; ; — Y; ;); for (4,7) ¢ €, itis 0.
Therefore, the gradient V f(Z) = 2Pq(kZ —Y'), where Py, is the projection operator that preserves
elements in §2 and sets others to zero. For any Z7, Z,

Vf(Z1) =V [f(Zs) =2Pa(kZ1 — kZ2). (20)
Since P, is a linear operator and does not increase the Frobenius norm, we have
IVf(Z1) = V[(Z2)llr = 12Pa(Z1 — Z2)||p < 2k(|Z1 — Z2| p. @21
Thus, V f is Lipschitz continuous with constant L = 2k. Therefore, Assumption [I]is satisfied.

In conclusion, we can apply the algorithms from Section 4 to solve the matrix completion problem.
Furthermore, since the gradient of the matrix completion problem is sparse (with only |2| non-zero
entries and zeros elsewhere), the construction of quantum memory depends solely on || rather
than the dimension d. Moreover, the computation of the update rule can be further accelerated by
leveraging quantum multiplication for sparse matrix. This aspect is left for future investigation.

A.6 POTENTIAL APPLICATIONS

Our proposed quantum Frank-Wolfe algorithms are applicable to a broad class of convex optimiza-
tion problems with structured constraints. This section elaborates on the applications of our algo-
rithms in three key domains: sparsity constraints in signal processing, zero-sum games in game
theory, and semidefinite programming.
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Signal Processing: Sparsity Constraints via /; Norm. In signal processing, a common problem is
recovering sparse signals from noisy observations, typically achieved through ¢; norm regularization
to promote sparsity in the solution. Consider the basis pursuit denoising problem:

1
min —||Ax — b||2 subjectto ||z|; < T, (22)
xzeRd 2

where A € R™*? ig the measurement matrix, b € R™ is the observation vector, and 7 > 0 is the
constraint radius. The feasible domain D = {x € R? : ||z||; < 7} is an ¢;-norm ball. As discussed
in Section[3] the core of the Frank-Wolfe update step under this constraint involves solving the linear
subproblem mingep (s, V f(x™®)), whose exact solution is given by the coordinate with the largest
absolute gradient component (i.e., § = —7 - sign(V; f(x®)) - e;, where i = argmax; IV, f(x®))]).
Our quantum Frank-Wolfe algorithm (Theorem [I) can be use to reduced the per-iteration query
complexity from the classical O(d) to O(v/d).

Game Theory: Zero-Sum Games with Simplex Constraints. In game theory, Nash equilibria
for two-player zero-sum games can be found by solving a linear programming problem over the
simplex. Consider a game with payoff matrix A € R"™*". The row player’s mixed strategy is
a vector x € A,, (m-dimensional simplex), and the column player’s mixed strategy is a vector
y € A,,. The row player aims to minimize the expected loss " Ay. Finding the Nash equilibrium
can be formulated as:

min max x ' Ay. (23)
TEA,, YEA,

Through linear programming duality or its variants, this problem can be transformed into an opti-
mization problem over the simplex. The feasible domain is the simplex D = A,. The solution to the
Frank-Wolfe linear subproblem under this constraint corresponds to the unit vector with the largest
gradient component (i.e., § = e;, where i = argmin; V; f (x®)). Our quantum Frank-Wolfe
algorithm (Theorem [2) similarly accelerates this step, achieving quantum speedup with respect to
dimension.

Semidefinite Programming. Our quantum algorithms for computing top singular vectors have
potential applications in semidefinite programming (SDP). Many SDP solvers, particularly those
based on first-order methods, require repeatedly solving linear minimization oracles over the spec-
trahedron. The solution to this subproblem is given by the outer product of the eigenvector corre-
sponding to the smallest eigenvalue of a symmetric matrix A [Nesterov|(2007));|d” Aspremont] (2008));
[Baes & Biirgisser| (2009). Computing this vector is equivalent to finding the top eigenvector of the
shifted matrix —A. This computational bottleneck is structurally analogous to the top singular vec-
tor extraction problem addressed by our quantum subroutines in Section[d} Therefore, our quantum
top singular vector extraction (QTSVE) and quantum power method (QPM) algorithms can be inte-
grated into SDP solvers to accelerate this subroutine, providing quantum speedup for a wide class
of SDP problems.

B PROOF DETAIL

B.1 PROOF OF LEMMA[3]

Lemma 3. Given access to the quantum function value oracle Uy, there exists a quantum circuit
to construct a quantum error bounded gradient oracle Uy : |i)|x) |0) — [i) |x) [g;(x)), where

gi(x) = w is the i-th component of the gradient and o is the tunable parameter, with
two queries to the quantum function value oracle.
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Proof. By choosing appropriate o, we now construct a gradient unitary U, : |i)|x)|0) —
i) |2) |gi(x)) as follows:

[#) |2) 0) [0) 10) 0)

= 1) o) =+ 02) 00} [0) 24
= 11 o) | + 0e:) 7@ + oe0) @) 0 2s)
10 la) -+ o) (o + o) ()| LTI ) 26)
= 1) fo) 9s(a) e8)

where Equation is by adding o at the i-th entry of the third register, Equation is by applying
U based on the second and the third register, Equation (26)) is by applying addition and division
based on the fourth and the fifth register, Equation (27) is by uncomputing the third, fourth and fifth
register. For the complexity, this U, takes two queries of Uy and O(1) elementary gates to get the
approximate gradient.

B.2 PROOF OF LEMMA [

Lemma 4. (Approximate maximum gradient component finding) Given access to the quantum
error bounded gradient oracle U, : |i)|x)|0) — |i)|x)|g;(x)) s.t. for each i € [d], after
measuring |g;(x)), the measured outcome g;(x) satisfies |g;(x) — V fi(x)| < e. There exists a
quantum circuit Amax that finds the index i* that satisfies V f;-(x) > max;epq V fj(x) — 2¢ or
|V fi= (®)| > maxjeiq |V fi(x)| — 26 using O(Vdlog(L)) applications of U,, U] and O(Vd)
elementary gates, with probability 1 — 0. For the non-uniform initial state, let p be the initial mea-
surement probability of the maximum component, then the algorithm finds the maximum with query

complexity ofO(% log($)).

Proof. We restate the quantum minimum finding algorithm here for reader benefits Durr & Hoyer
(1996): Choose threshold index 0 < j < d — 1 uniformly at random. Repeat the following and

return j when the total running time is more than 22.5v/d + 1.4 log(d):

1. Prepare the state 3¢ [i) |z) |g:(z)) |0).

2. Set the third register to |1) conditioned on the value of the second register smaller than
95(x)

3. Apply the quantum exponential Grover search algorithm for the third register being 1.

4. Measure the first and the third registers in computation basis, if the measurement result
of the third register is smaller than g;(x), set j to be the measurement result of the first
register.

By Theorem 1 of Durr & Hoyer (1996)), the algorithm finds the minimum g;(x) with probability
1/2, O(V/d) applications of Uy, U} and O(+V/d) elementary gates. The probability can be boost to
1 — ¢ with O(log(1/4)) repeats and taking the minimum of the outputs.

This algorithm can be modified into the quantum maximum absolute value finding algorithm by
setting the third register to |1) conditioned on the value of the second register greater than |g;(x)| in
Step 2, and set j to be the measurement result that is greater than |g,(x)| in Step 4.

However, with the estimated error, the greatest estimated gradient component g,,,4, () may not have
the same index of V fyqz (). As |g;(x) — Vfi(x)| < e for each 4, in the worst case, there exists
i such that |g;(x)| = |V fi(x)| + € > |gi-(x)| = max;ciq) |V fj(x)| — ¢, the maximum finding
algorithm will give such g;(x) as outcome, which is greater than max;¢(q) |V fj ()| — 2e.
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Similarly, As |g;(x) — Vfi(z)| < e for each 4, in the worst case, there exists 7 such that
l9:(x)| = [Vfi(x)] — € < [gi-(x)] = minjeciq [V fj(x)| + €, the minimum finding algorithm
will give such g;(x) as outcome, which is less than min ;¢ g |V f;(2)| + 2¢. Similar proof processes
can be employed to derive the error bounds for the minimum/maximum search.

Note that in the matrix case of this work, the state prepared to apply quantum maximum finding
is not a uniform superposition, but the algorithm in |Durr & Hoyer]| (1996) is only for the uniform
superposition input. For the non-uniform input, in the third step, the Grover operator should be
replaced with the amplitude amplification operator. We now prove the complexity of the algorithm
for the non-uniform initial state. For the analysis of the probability of success, assume that there
is no time-out, that is, the algorithm runs long enough to find the minimum. Then we analyze the
probability that an element of a given rank becomes the threshold during the algorithm (Lemma I2))
and then bound the expected number of iterations (Lemma [13]), which extend Lemma 1 and 2 in
Durr & Hoyer| (1996).

Then, by Lemma|13| the expected running time of finding the maximum is O ( W) By Markov’s

inequality, after running the algorithm for twice the expected time, the probability of success is at
least 1/2. The probability can be boost to 1 — ¢ with O(log(1/0)) repeats and taking the maximum
of the outputs. This extends the Diirr-Hgyer minimum finding algorithm to the weighted case and
provides a complexity analysis tailored to singular value distributions for the matrix case of this
work.

Lemma 12 (Probability of Selecting Threshold of Rank r). Let p(t,r) be the probability that the
element of rank r (where rank 1 is the maximum) will ever be chosen when the infinite algorithm is
searching among t elements. Then, forr <t, p(t,r) = P, = ST S s andfor r >t p(tr)=0.

Proof. The case r > t is trivial. For r < ¢, we proceed by induction on ¢ for fixed r.

Base step: When ¢ = r, the algorithm starts by measuring the initial state, which yields the element
of rank r with probability P,.. Since the relative amplitudes of the basis states constituting the
marked state remain invariant throughout the amplification process, the probability of selecting rank
7 as the threshold is exactly P,.

Inductive step: Assume that for all k& € [r, ], p(k,r) = P.. Now consider ¢ + 1 elements. The
initial threshold is chosen with probability p, for rank r. If the initial threshold has rank greater than
r, then the algorithm will update the threshold only if it finds an element with rank between r and
the current threshold. By the induction hypothesis, the probability that rank r is eventually selected
when starting from a threshold of rank k (where r < k <t + 1)is p(k — 1,7) = P,.. Therefore,

t+1

p Pk
p(t—’—lv”ﬂ):t_kia—’_ Z —i+1 p(k_lar)
j=1Pi  p=pt1 22j=1Di

1 t+1
= YT (pr + Z pr - p(k — laT)> . (29)

j=1Dj k=r+1

By the inductive hypothesis,

t+1
1
P(t+177“)=t+1<pr+ Z pk'Pr>~ (30)
Zj:l pj k=r+1

Substitute P, into the equation, we have

t+1
p(t+17r) t+1 <p7" + Z pk) ) (31)
ZJ 1p] k= r+1 Z] lp.j
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Then, after some simple equivalent transformations, we have

T t+1
plt+1,r) = Dr (1 n Zk 41 pk) _ Pr <Zj—1 pj + Zk:rJrl pk)
> j >

T+1 T+1 T )
j=1Pj Za 1Pj j=1Dj Zj:lpﬂ
t+1
_ Dr Zj 1Pj _ Dr -p (32)
- T - T
POT ID D RF VR DY
This completes the induction. Therefore, the lemma follows. |

Lemma 13 (Expected Running Time). The expected number of iterations of the quantum maximum

finding algorithm for non-uniform initial state is O \/%1 .

Proof. Let E be the expected number of iterations to find the maximum (rank 1). By Lemma
the probability that the initial threshold has rank r is P, = Z . When the current threshold
j=1 J

has rank 7, the quantum search algorithm ﬁnds a better element. (with rank less than 7) in expected
O(1/+/S,—1) iterations, where S,_; = ZJ 1P5-

Since the threshold rank decreases monotonically, each rank r is visited as a threshold at most once,
with probability P,.. Thus,

N

pr 1
E=) P.. = == 33
S0 ) o522 @

where S, = 25:1 pj, and for 7 = 1, So = 0 and the search time is 0. We have

T A L A R I

r=2

where the first inequality holds because

2
S’rfl Srfl Srfl
1-— >0 = 1-— < 1-—

Pr ! 1 /Sr ~3/2
. <2 — = x dx. (35)
Sr \V Sr—l < \V Sr—l \/577‘> Sr—1

Therefore, E = O(1/,/p1), which gives the lemma. |

B.3 PROOF OF THEOREM[I]

Theorem 1. (Quantum FW over the sparsity constraint) By setting o, = fL (t+2) fort € [T,

the quantum algorithm (Algorithm [2)) solves the sparsity constraint optimization problem for any
precision ¢ such that f(xT) — f(x*) <einT = % — 2 rounds, succeed with probability 1 — p,

with O (\/glog %) calls to the function value oracle Uy per round.

Proof. By Lemma and the inequality between {5 norm and /., norm, we have

VdLo
5

lgi(®) = Vfi(z)| < [lg(x) = V(@) < llg(zx) - V@), < (36)

By Lemmaf] after the quantum approximate maximum absolute value finding, we have an estimated
maximum gradient component which satisfied

|V fi- ()] > max |V f;(x)| — VdLo (37)
JE[d]

23



Under review as a conference paper at ICLR 2026

Set s = —e;+, we have

(5, V(@®) = =|V fir (2|

IN

—max ’ij (w(t))‘ +VdLo,
jeld]

= _<eargmaxie[d] \Vf,f(m(t))hvf(w(t)» + \/gLUt
= min(3, V(@) + VdLoy.
se

By the update rule and the definition of the curvature, we have
2
F@) = F(1 =30 +3s) < 1)+ ls — 20, V) + Loy
Combining Inequality [38]and [39] we have

f@D) < f(@Y) 4y (min(s, V(@) = (@, V(@) + VLo, + %tch-

Let h(x®) := f(x®) — f(z*), we have
h(z*) < h(z®) + ’Yt(ggg@, V@) — (@, Vi) + VLo, + %tch
< h@®) = yh(x2®) + Vv, Loy + %ch
= (1 —y)h(xD) + Vdy Lo, + %?Cf.

'Yth

2 _
T30t = 2\/EL,Wf:have

Set vy =

2 2 \?
)y < (1 2 ) 2
h(x )_<1 t+2>h(w )+<t+2> Cy.

Using a similar induction as shown in|Jaggi| (2013) over ¢, we have
4C
ha®) < —L
@) <3
We will restate this induction in Lemma [14] for reader benefit.
Cy 4Cy

Thus, set v, = t%, o= Jirers forall ¢t € [T], after T = == — 2 rounds, we have

f@T)) = f(z*) <e,

for any € > 0.

(38)

(39)

(40)

(41)

(42)

(43)

(44)

In each round, by Lemma 3] two queries to the quantum function value oracle are needed to con-
struct the quantum gradient oracle. Then by lemma , O(v/dlog %) queries to the quantum gradient
oracle are needed to find the index of the estimated maximum gradient component with successful
probability of 1 — 4. Since each maximum finding succeeds with probability 1 — §, the probability
that all T iterations succeed is at least 1 — T'§. By setting § = p/T', we ensure an overall success

probability of at least 1 — p. Therefore, O (\/E log %) queries to the quantum function value oracle

are needed in each iteration. Then the theorem follows.

We restate the proof of the induction we use in Theorem I] for reader benefit.
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Lemma 14. (Jaggi (2013)) If for any t € [N],

h(x®Y) < o2 h(x®) + 2 ch
= t+2 bl

then

Proof. Fort = 0, we have

2 2 \?
Wy < (1 (0) i —
h(x )_(1 0+2)h(:c )+(0+2> Cr = Cy.

Assume that h(x®)) < %, we have
h(w(tﬂ)) < (1= 2 h(:c(t)) + 2 ’ Cy
- t+ 2 t+2

1\ 4C; 2 \?
= 1—
< t+2)t+2+<t+2> Cr

_t+14C; - t+24C;  ACy
St 2t4+2 " t+3t+2 t+3’

which gives the lemma.

B.4 PROOF OF LEMMAI[I0I

(45)

(46)

(47)

(48)

The framework of quantum gradient estimator originates from Jordan quantum gradient estimation

method [Jordan| (2005)), but Jordan algorithm did not give any error bound because the analysis

of it

was given by omitting the high-order terms of Taylor expansion of the function directly. In 2019, the

quantum gradient estimation method with error analysis was given in |Gilyén et al.|(2019), and

was

applied to the general convex optimization problem [van Apeldoorn et al.| (2020); |(Chakrabarti et al.
(2020). In those case, however, O(log n) repetitions were needed to estimate the gradient within an
acceptable error. The query complexity was then improved to O(1) in|He et al.[(2022;2024). Here

we use the version of He et al.|(2024) (Algorithm .

Algorithm 7 Bounded-error Jordan quantum gradient estimation |He et al.| (2024))

1: Input: point z, parameters r, p, €.
2: Output: g(z)

3: Prepare the initial state: d b-qubit registers [09°,09%, ..., 09") where

. . 167d
Prepare 1 c-qubit register |09¢) where ¢ = log,—— — 1. And prepare |yo)
p

) 2mia
d
\/272(;,6{0,1,...,241—1}6 2% |a).
4: Apply Hadamard transform to the first d registers.
: Perform the quantum query oracle Qp to the first d + 1 registers, where F'(u)

2° 2°
3G [f (m + % <u - 2]1)) - f(x)} , and the result is stored in the (d + 1)th register.

Perform the addition modulo 2¢ operation to the last two registers.
Apply the inverse evaluating oracle Q;l to the first d + 1 registers.
Perform quantum inverse Fourier transformations to the first d registers separately.
Measure the first d registers in computation bases respectively to get my,ma, ..., My.
T
~ 2G 20 20 20
10: 9($)=Vf(33)=<m1—,m2 sMp — — | .

W

LPeAD

2b 2 AN 2

Gp
b = 10g2 W
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Lemma 10. (Lemma 1|He et al.|(2024))) If f is G-Lipschitz continues and L-smooth convex function
and can be accessed by a quantum function value oracle, then there exists an quantum algorithm

that for anyr > 0 and 1 > p > 0, gives the estimated gradient g(x), which satisfies
Pr[lg(x) ~ V(@) > 870%(n/p + 1)Lr/p] < p.

(1)

using O(1) applications of U; and O(dlogd) elementary gates. The space complexity is

1o (dlog %)

Proof. The primary additional gate overhead originates from the quantum Fourier transformation
(QFT). Each QFT requires O(log d) elementary gates, and for d such operations, the total additional
elementary gate overhead is O(dlog d). Consequently, the additional elementary gate overhead is

O(dlogd).
The states after Step 3 will be:

ae{0,1,...,27 -1}

0%%,0%%, ..., 0%%) [0%°) |a) .

After Step 4:
1 2ria c
Jabnre Z Z e2" \ul,uQ,...7un>|O® )a) .
U1 Uzt €{0,1,...,20—1} a€{0,1,...,26 —1}
After Step 5:
1 2mia
— > S un s, u) |[F(u) fa).
2omke u1,uz,...,un €{0,1,...,22—1} a€{0,1,...,2¢ -1}
After Step 6:
1 i 2mia
NG > Yoo ST jun s, ) [F(w) fa)
u1,uz,...,un €{0,1,...,20—1} a€{0,1,...,2¢—1}
After Step 7:
1 i 2mia
NGIET Z Z 2T (u) o T [ug, ugy .y Up) ‘0®C> la) .

U1,u2,...,un €{0,1,...,20—1} a€{0,1,...,2¢ -1}
In the following, the last two registers will be omitted:

1 .
o2miF
E 2 (u) |y, ugy ..ty .

bn
U1,u2,...,un €{0,1,...,20—1}

And then we simply relabel the state by changingu — v = u — 22—}}:
1 miF (v
> Z e2mF @) |y)

V1,02,...,0n €{—2071, 20147 201}

We denote Formula as |¢). Let g = V f(x), and consider the idealized state
1 mig-w

o) = Z 3t v) .

2bn
V1,020, 0y €{ =201 20141 2b—1}

ﬁ

After Step 9, from the analysis of phase estimation Brassard et al.| (2002):
Ngi

P
' { 2G
Lete =n/p+ 1, where 1 > p > 0. We have

Ng;
Pr{ 2G

> €:| < ﬁ,V’L S [n]

—m;

—m;

P
>n/p+ 1} < 2n,Vz € [n].

26
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Note that the difference in the probabilities of measurement on |¢) and |¢)) can be bounded by the
trace distance between the two density matrices:

Xl = [oX¢l I = 271 = [{8[¥) [* < 2[[[¢) — [¥) ||. (59)

Since f is L-smooth, we have

2b v 1
F(v) < E[f($+ﬁ)—f($)]+ﬁ
26 L(rv)? 1
acrw? Ut T It e
g-v  2'Lrn 1
. 60
_2G+ 4G +20+1 (60)
Then,
1 TiF (v 27ig-v
o) = l¢) ||2=2mz:|62 P — 58
1 ) 2mig - v
< g 2 2P ()~ S5
Qern 1 .,
<o 2 gt ) (61)
Set b = log, ﬁ c = log, 2,,nLT — 1. We have
2 o
62
o) = 19) I < <., (©2)
which implies || |¢)(¢| — [¢))(¥| |1 < 5=. Therefore, by the union bound,
2bg;
PrH 22 —m;| >n/p+ 1] <§,Vi€[n]. (63)
Furthermore, there is
2G 1
P - st > 290 2 i o
as b = log, 47552” we have
Pr[ gi — %Zf(x)‘ > 8mn?(n/p + 1)Lr/p} < E,W € [n]. (65)
By the union bound, we have
Pr[lg = V(@) > 870%(n/p+1)Lr/p] < p, (66)
which gives the lemma. |
B.5 PROOF OF THEOREM[3]
Theorem 5. (Quantum FW with bounded-error Jordan algorithm) By setting ry =
167rd2(d/pc+1)L ) fort € [T, the quantum algorithm (Algorithm|5) solves the sparsity constraint

optimization problem for any precision ¢ such that f(x7) — f(x*) < ecinT = % — 2 rounds,
with O (1) calls to the function value oracle Uy per round.

Proof. By Lemma[I0] with probability greater than p, we have
l9i(x) = Vfi(2)| < |lg(x) = V (@)l < 8md*(d/p+1)Lr/p. (67)
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Then the maximum component’s coordinate of the estimated gradient i* = argmax;c(q | gi(x®))|
satisfies

|Vﬁ%@\Zgﬁﬂvﬁwﬂ—l&W%Wp+ULﬁp (68)
J

Set s = —e;+, we have
(s, V(@®) = =|V fir (2|
S—m%ﬂVﬂ@“w+ﬂ&W%Wp+DLﬁp
JjE
= _<eargmaxie[d] \Vlf(w(’))hv.f(m(t)» + 167rd2(d/p + 1)L’/‘/p
= min(3, v F(@®)) + 167d*(d/p+ 1)Lr/p. (69)
EIS

By the update rule and the definition of the curvature, we have
2
@) = f(1 =02 +8) < f@®) + (s — @D, V(@) + FC; (T0)
Combining Inequality [69]and [70] we have

2
F@D) < fa®) 47 (mins, V(@) — (20, V@) + 167 (d/p+ 1) e /p+ Ly

(71)
Let h(x®) := f(x®) — f(z*), we have

h(@!V) < h() + v (min(s, V() — (@, V(@) +167d*(d/p + 1) Lyer/p + %ch

2
< h(@®) = (@) + 167 (d/p + 1) Lyer/p + -C;

2
= (1 —y)h(xD) + 167wd?(d/p + 1) Lyer/p + %Cf. (72)
Setv; — -2y, — py:Cy h
AN = 132"t = 32742 (@/pr)L> WE NAVE
h(zD) < P h(x®) + 2 2(Jf. (73)
= t42 t42

Using a similar induction as shown in|Jaggi| (2013) over ¢, we have

4C
hz®) < —L 74
(@) < D) (74)
Thus, set 7; = 25,7 = PGy forall ¢ € [T, after T = 2S£ — 2 rounds, we h
SV = 755 Tt = Terar(a/ iy forallt € [T1], after T' = — rounds, we have
f(@ D)~ fa") <, (75)
forany € > 0.

In each round, by Lemma O(1) queries to the quantum function value oracle are needed to get
the estimated gradient vector. Subsequent steps no longer require queries to the oracle. Therefore,
in each round, O(1) queries to the quantum function value oracle are needed. Then the theorem
follows.
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B.6 PROOF OF LEMMA [T1]

Lemma 11. [Quantum FW update over latent group norm ball] Let H”g be a latent group norm
corresponding to G = {g1, 92, .. .,8|g|}, and let |g| .. = max; |g;|. Then, there exists a quantum
algorithm computing the Frank-Wolfe update s* := argmax;e/ | . sarl8T (@) in O(/1G]|8] )
calls to Uy.

Proof. Assume that all ||-[|, are {,-norms, i.e. |||, = |||, for some (p; € [1,00]), and have
quantum access to each g; = {@i,1,8i2,---,8ig,|; C [d] that load g; into quantum registers via
Ug | >A |0> - | >A |gz 1> |gz 2 ‘gz lgil > (76)

where A is a log |G| qubit register. For each |g; ;) one can compute an approximation | 9g.,(x)) to
the g;,j-th component of the gradient at by the method in Sec. [3.1}

Noting that maxge|.| a8 Y := [yl and that
P
s*:= argmax s'y (77)
g€l -ball

has components
* —1
s; oc sgn(yi)|y:l* (78)
where % + % = 1, one can compute

lg:l

®|9m 10) [0} 10) [0)

\91

®|gz,] |94.,,()) 0) [0) |0)

\gl

® |gm |gg1 j > ‘sgn g, ))‘ggw (x)

") 10) o)

lg:l

®|gm [90.., (@) [sen(ga., (@))]g6.., (@)

") ls@)an

o) 10)
o) |l

lg:l

®|gm [96.., (@) [sen(ga., (@))]g6.., (@)

“ ) lo@) 5

(79)

Apply quantum maximum finding to the last register can then be used to find s* in O(4/|G|) itera-
tions. Each gg, ; () requires 2 queries to Uy, totally O(|g;|) queries for a fixed 4. In the above the

index i ranges over i = 1,2, ..., |G|. The query complexity is therefore O(\/|G||g|
with the classical >, . [g]- Then the lemma follows.

max)» compared
u

B.7 PROOF OF THEOREM[G
Cy

VAL(t+2) max, (g l9:|"/7i
Sort € [T), the quantum algorithm (Algorithm@) solves the latent group norm constraint optimiza-

Theorem 6. [Quantum FW over latent group norm ball] By setting o, =

tion problem for any precision ¢ such that f(x1) — f(z*) < ecinT = % — 2 rounds, succeed with
probability 1 — p, with O (\ /1G119],1ax 108 %) calls to the function value oracle Uy per round.
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Proof. Let the true gradient component be g, ; (), and its estimated value be gy, ; () such that

|§gm. (%) — gq, (m)| < IL” According to Step 7 of the algorithm, the dual norm computation
involves:
9
|w@mim=lggl§:%%” LSy (80)
where -~ + - = 1. The estimated dual norm is:
9
g = <15 1
|9@) oI, = max nggg” 81)
The dual norm error can be decomposed as
lg:l
- * * S \/&LO’
la@)ooll;, = lo@)lly, | < max 32252 (82)

= =1

By Holder’s inequality, for any s satisfying |[s||l;, < 1, let (4, be the vector in R®: with all the

VdLo
2

component being we have

mi S5 VdLo
5 | S

Sllq ||6(g7;) pi < H(S(gl) p (83)
=1
Since [|0(g,)llp; < M, it follows that
VdLo|gi| /P
[la@)nll;, = la@)ianlly,| < 160 e < F=52—. (84
Then, by Lemma [ and[T1] after Step 8, we have
13(@) @ ll;, > {2@7“9( woll,, = VLo max [gi pi, (85)

succeed with probability at least 1 — §, with query complexity of O (\/ 1G119] nax 108 %) Setd = &
to ensure that this procedure succeeds for all 7' iterations.

Cs
VAL(t+2) max;e( g |9:|*/Pi

The rest parallels the proof of Theorem Set oy = for all t € [T, after

T = 4Cf — 2 rounds, we have
J@®) — fa) <e, (86)
for any € > 0. Then the theorem follows. ]

B.8 PROOF OF LEMMA[7]

Lemma 7. (Quantum top singular vector extraction) Let there be eﬁﬁcient quantum access to a
0'1 (1\/[)

i= 1Uz

matrix M € R4, with singular value decomposition M = Z o;u;vl. Define p = >

. . o . M]|| . dpolylog d ; .
There exist quantum algorithms that with time complexity O (H”ff#)’ give the estimated

top singular value 51 of M to precision € and the corresponding unit estimated singular vectors w, v
to precision § such that ||[u — || < (d).

Proof. Initialize the quantum registers to the uniform superposition state by using Hadamard gates,
we have

d

H®|0) |0} [0) — > |} [0} |0). (87)

%
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By Assumptiond] we can perform the mapping

d

in time O(1). Note that

|M” ZZ M |i) [5) 10) = ‘M” Zmluz [0:) [0). (89)

Then by the quantum singular estimation algorithm (QSVE, Lemma[3)), we have

IMH ZZMU\ 1) 10) = IV|| Zmuz |vi) [73) , (90)

with the cost of O M)
€

which will be invoked multiple times in the quantum maximum finding. This requires that the
errors in the estimates of the singular values should be consistent across multiple runs. Note that
the randomness of QSVE comes from the quantum phase estimation algorithm, and the QSVE
algorithm of Lemma [5] uses a consistent version of phase estimation. This consistency in phase
estimation guarantees that the error patterns are reproducible, thereby maintaining uniform errors
over repeated oracle calls.

. This process of generating such a state is treated as an oracle

Set € < (01 — 02)/2 to ensure that even with the error of singular value estimation, the estimated
largest singular value is still larger than the estimated second largest singular value, which can
ensure that when we use the quantum maximum finding algorithm, if succeed, we will always get
the superposition state corresponding to the largest singular value. By Lemmaf] the cost of finding

the largest singular value is O ( . By Lemma@ O( d 1§2g d) repeats are needed to tomography the

7
corresponding singular vectors of the largest singular value.

Therefore, the overall complexity is O (Wg}%) . |

B.9 PROOF OF THEOREM[3]

Theorem 3. (Quantum FW with QTSVE) By setting §; = m and ¢, < (o1(M;) —
02(My))/2 for t € [T, the quantum algorithm (Algorithm |3) solves the nuclear norm constraint

optimization problem for any precision € such that f(XT) — f(X*) <einT = % — 2 rounds,
~ 3
with time complexity O (%) for computing the update direction per round, where

r is the rank of the gradient matrix.

Proof. By Lemmal[7] set €, < (o1(M) — 02(M))/2 to ensure that the quantum maximum finding
algorithm, if succeed, will always get the superposition state of the largest singular value. As the
QSVE algorithm from Lemma [5] use a consistent version of phase estimation, the estimated error
of the singular value will keep unchanged. Thus, we can measure the register of singular value
in the computational basic, to check whether the quantum maximum finding succeed, to boost up
the success probability. By Lemma([7} we obtain the estimated singular vectors u, v, which satisfy
I\M\Ipdpolylogd>
\/ped?

Note that in the matrix case, the linear optimization subproblem of the Frank-Wolfe framework

It — wiopl| < O, || — Viopl| < 6t, with time complexity O (

min(S, M) s.t. tr{S} <1 1)
SeD

is equivalent to the following problem

min x' Myy st ||, |y| < 1. 92)
z,ycRd
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Therefore, since the update direction S = u " v, the solution quality of the linear subproblem can be
bounded with the solution quality of the equivalent problem, that is

(S, M) — min(S, M;) = (u"v, My) — min(S, M)
SeD SeD

:uTMtvf min :cTMty

z,ycRd
=u' Mw —ul,, M. (93)
Then by Lemma[7)and[T3] we have
[ Myv — g, Myviop| < 201 (My)6;. (94)

By the update rule and the definition of the curvature, for each round ¢, we have
FXED) = £(1 = 7) XD +74,.5) < f(XD) +3,(S — XD M) + %ng ©5)
Combining Inequality 03] 04]and 03] we have
FXED) < f(XD) 4 %(gleig(gv M) — (XU, M) + 23100 (My)5, + %?Cﬂ (96)

Let h(X®) := f(X®) — f(X*), we have

2
A1) < B(XO) 4y, (min(S, 1) — (XO, M) + 2 (M) + Lo
SeD

2
< R(XW) — yh(X D) + 29,01 (M), + %Cf

2
= (1 —7)R(XD) + 29,01 (M), + %Cf. 97)

2 7 Cy
Set’}/t = m76t = m,we have

2
2 2
RXED)y < (1 —=— ) p(x® — ) cy. 98
( )< 2 M ) @ ©8)
Using a similar induction as shown in|Jaggi| (2013) over ¢, we have
4C
h(z®) < —L 99
@) < =L ©9)
_ 2 _ Cy _ 4Cy
In summary, set vy, = =7 0 = 20T () after T = —t -2 rounds, we have
f@®) = fa") <e, (100)
. c c . .
for any ¢ > 0. Since ¢; = 2(t+2)cfl(Mt) > 2(T+2)£1(Mt) = 201E(M), in each round, the time

M|| o2 (M)d-polylog d .

\ﬁ\(lgl(lj\;)202p(ﬂ3;))52 ) Since |M || < /roi(M),p > %,
ro (M)d-poly log d
(01 (M)—02(M))e?
matrix. |

complexity of update computing is O (l

the time complexity is upper bounded by O ( ), where 7 is the rank of the gradient

Lemma 15. Forany ||z — o'||5, [|[y — ¢'|l, < < 1, |||, ||yl < 1, we have
’azTMy — &' My'| < 200 (M)6. (101)

Proof. Sincex My — ' My’ = (z — /)T My + ' M(y — y), we have

g
' My —a My" < oMz =& ||yllylly + o1 (M)]|2[|o]ly — y'[l,- (102)

Thus, for any [l — &[5, 1y — #/lly < 6 < 1, ], gl < 1, we have
’wTMy—:c’TMy’ < 201 (M)6. (103)
m
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B.10 PROOF OF LEMMA9I

Lemma 9. (Quantum power method) Let there be quantum access to the matrix M € R with
Omax < 1, and to a vector z € R%. Let o/, be the lower bound of ||(M T M)'z)| for all i € [k].

There exists a quantum algorithm that creates a state |y) such that |||y) — |(MTM)*z)|| < & in
time O(="—||M|| » log(1/3)), with probability at least 1 — O(k /poly(d)).

7
Y min

Proof. Suppose ||z; — M z_1]|| < e with z; = Mz;_; forl € [L], and 29 = z, we have
lz1 — Mz| <e

||22 — M2LE|| < sz — Mz + Mz — M2z||
<|lz2 = Ma|| + || M2z — M|
<e+|[M(z1 — Mz
<€+ Omax||z1 — Mx||
< (1+ omax)e

HZg — M%‘H < HZg — Mz + Mzy — MgacH
< 2z — Mzs|| + || M2z2 — M|
<€+ ||[M(22 — M)
<e+ O'maXHZQ — szH
< €4 Omax(l + Omax)e
< (14 Omax + Opax )€ (104)

We use omin||z]| < ||Mz|| < omax||z||, where omax = max,o 2T Maz/||z|*. By induction, we

have .
2 = MPa|| < ) olke= Tomax — 1 (105)

max
o -1
i€[L) max

Let v/, be the lower bound of ||(M T M)'z)|| forall i € [k]. As each multiplication requires time
Ei k steps of multiplication require time complexity

complexity of O(%HMHF log(1/€)) (Lemma
of O ( k|| M|l log(l/e)). Furthermore, since

V' min
1—ok(M) 1
log ——= < —log(l —0y(M)) < ———— 106
Ogl—O'l(M)i Og( 01( ))—1_0_1(M)3 ( )
if we want ||z, — M*z|| < 6, the time complexity will be O (% 10g(1/5)>.
]

B.11 PROOF OF THEOREM [4]

Theorem 4. (Quantum FW with QPM) By setting k; = Mﬁt =4, = =7 in for

160‘1(Mt)
t € [T), the quantum algorithm (Algorithm 4)) solves the nuclear norm constraint optimization
problem for any precision ¢ such that f(XT) — f(X*) < einT = @ — 2 rounds, with time

Vrot(M)d
(=01 (M))y 3 ine®

rank of the gradient matrix, Cy is a constant and ', is the lower bound of || (M, My;)'b)|| for all
i€ k]

complexity O ( ) for computing the update direction per round, where r is the

Proof. Denote (MM ")*b as z,, (M T M)*b as z,. For the quantum power method, we first use
the Lemma [8| to construct a unitary U; which computes & steps of multiplication: Uy : |b) |b) —
|Zu) |Z0) with ||Z, — 24|, < 0 and ||Z, — 24|, < 0 (Lemma E[) Then we tomography |Z,,) |Z,)

-
to get u, v. Simalar to the proof of Theorem [3, our goal is to ensure | ¥ 1% _ 5 (M)| < e.
’ lullllv]]
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QCOG‘l(IV[) Ind
€

First, we settle down k& = so that we have

zI Mz,
Zutfv al(M)‘ <e/2. (107)
zullll2o]l
Suppose o1(M) < 1 and ||(MTM)b)|| € [V i, 1] for i = 1,...,k, after applying k times of

quantum matrix-vector multiplication (U;) as described by Lemma [8} we obtain [Z,,) |Z,) with
_ _ o ~ k[ M .

IZu — 2zulls, < 6 and ||Z, — 2|y, < §intime T(U;) = O (% log(l/d)). Using
Uy, we can tomography [Z,) |Z,) and obtain u,v with ||u —Z,|| < ¢, [|[v —Z,|| < ¢ in time

0] (%) . By the triangle inequality, we have

lu—zul, <0+ <1,[|lv—2, <5+ <1 (108)
Notice that
H u Zu ‘ B H u u N u Zu
full =zl ull  lzull  lzull 2l
- H u u ’Jr u Zu ‘
Tl (=l lzull [zl
<ole =zl (109)
(E
we have P
H" Zu ’g oo (110)
ull [zl Y’ min
Similarly, we have
v d+6
‘”—zH<2,+. (111)
HvH ||ZUH Y min

Thus, we have

u! Mv zIMzU u! Mv u' Mz, u!l Mz, z;L'—sz
[ulllloll lzallllzoll] — [Hellivll felllzoll] - Hlalllzoll flzalll[20]]
Mo — 2ol Ml — 2|
[EA (EA
5+ M
< 4%' (112)
Y min
The remaining proof is similar to that of Theorem Now we set 6 = ¢ = %,
T
Il\LuTHJI\\{}I)\ - sz:iljl\ﬁ:l\ < €/2. Therefore, % fol(M)’ < e. The time complexity is
O(T(Uy)d/(8")?) = O(%), where 7 is the rank of the gradient matrix. |
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E LLM USAGE

Large Language Models (LLMs) were used solely to aid or polish writing. This includes polishing
sentences, improving grammar, and enhancing the readability and fluency of the text.
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