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ABSTRACT

This paper considers the projection-free sparse convex optimization problem for
the vector domain and the matrix domain, which covers a large number of im-
portant applications in machine learning and data science. For the vector domain
D ⊂ Rd, we propose two quantum algorithms for sparse constraints that finds a
ε-optimal solution with the query complexity of O(

√
d/ε) and O(1/ε) by using

the function value oracle, reducing a factor ofO(
√
d) andO(d) over the best clas-

sical algorithm, respectively, where d is the dimension. For the matrix domain
D ⊂ Rd×d, we propose two quantum algorithms for nuclear norm constraints that
improve the time complexity to Õ(rd/ε2) and Õ(

√
rd/ε3) for computing the up-

date step, reducing at least a factor of O(
√
d) over the best classical algorithm,

where r is the rank of the gradient matrix. Our algorithms show quantum advan-
tages in projection-free sparse convex optimization problems as they outperform
the optimal classical methods in dependence on the dimension d.

1 INTRODUCTION

In this paper, we consider the following constrained optimization problem of the form

min
x∈D

f(x), (1)

such objective covers many important application in operations research and machine learning. We
are interested in the case where 1) the objective function f is convex and continuously differentiable,
and 2) the domain D ⊂ Rd is a feasible set that is convex, and the dimension d is high. Typical in-
stances of such high-dimensional optimization problems include multiclass classification, multitask
learning, matrix learning, network systems and many more Garber & Hazan (2016); Hazan & Kale
(2012); Hazan et al. (2012); Jaggi (2013); Dudik et al. (2012); Zhang et al. (2012); Harchaoui et al.
(2015); Hazan & Luo (2016). As an example, for matrix completion, the optimization problem is:

min
X∈Rm×n,∥X∥tr≤k

∑
(i,j)∈Ω

(Xi,j − Yi,j)
2, (2)

where X is the matrix to be recovered, Ω denotes the observed elements, Yi,j is the observed known
value at position (i, j), and ∥X∥tr ≤ k represents the trace norm (nuclear norm) constraint.

Compared with unconstrained convex optimization problems, optimizing Equation (1) involves han-
dling constraints, which introduces new challenges. A straightforward method for optimizing Equa-
tion (1) is the projected gradient descent approach Levitin & Polyak (1966). This method first takes
a step in the gradient direction and then performs the projection to satisfy the constraint. However, in
practice, the dimensions of the feasible set can be very large, leading to prohibitively high computa-
tional complexity. For example, when solving Equation (2), the projection step involves performing
a singular value decomposition (SVD), whose time complexity is O(mnmin{m,n}) (O(d3) for
X ∈ Rd×d). Compared to the projected gradient descent approach, the Frank-Wolfe (FW) method
(also known as the conditional gradient method) is more efficient when dealing with structured con-
strainted optimization problems. Rather than performing projections, it solves a computationally
efficient linear sub-problem to ensure that the solution lies within the feasible set D. When solving
Equation (2), the time complexity of the Frank-Wolfe method is O(mn) (O(d2) for X ∈ Rd×d),
which is significantly lower than the complexity of SVD-based projections. Since the Frank-Wolfe
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method is efficient for optimizing many difficult machine learning problems, such as low-rank con-
strained problems and sparsity-inducing constrained problems, it has attracted significant attention
and has been applied to solving Equation (3) and many of its variants.

Despite the efficiency of FW in handling structured constraints, it still incurs significant computa-
tional overhead when dealing with high-dimensional problems. The bottleneck of the computation
is the linear subproblem over D, which is either assumed to have efficient implementation or sim-
ply follows existing classical oracles, such as Dunn & Harshbarger (1978); Jaggi (2013); Garber &
Hazan (2016). The overhead of these oracles, however, grows linearly or superlinearly in terms of
dimension d.

Recently, quantum computing has emerged as a promising new paradigm to accelerate a large num-
ber of important optimization problems (see Appendix A.4). We aim to take a thorough investigation
on whether quantum computing can accelerate FW algorithms, in particular the linear sub-problem
over structured constraints regarding dimension d. We aim to answer the following question:

Can one utilize quantum techniques to accelerate Frank-Wolfe algorithms in terms of dimension d?

Chen et al. gave an initial answer to this question Chen & de Wolf (2023). They considered the linear
regression problem with explicit functional form where the closed form of gradient is provided.
Given the precomputed matrix factors of the closed-form objective function stored in specific data
structures, they leveraged HHL-based algorithms to accelerate matrix multiplications in calculating
the closed-form gradient, leading to a upper bound ofO

(√
d/ε2

)
. In this work, we consider a more

general problem where the objective function is a smooth convex function accessible only through
a function value oracle, and then we consider a more general constraint conditions (the latent group
norm ball) to enhance the theoretical framework’s applicability. Besides, we also consider the case
of matrix feasible set, under different assumptions. To our best knowledge, we are the first one to
consider accelerating the matrix case of the FW algorithm by quantum computing.

Contributions. We give a systematic study on how to accelerate FW algorithms when D is either
a vector domain Rd, or a matrix domain Rd×d subject to various structured constraints. Note that
our findings can be applied to non-square matrices, we express our results using square matrices for
simplicity of presentation (Remark 1). We summarize our contributions as follows.

For the vector domain D ⊂ Rd:

• We propose the quantum Frank-Wolfe algorithm for the projection-free sparse convex op-
timization problem under ℓ1 norm constraints (Theorem 1) and the d-dimensional simplex
∆d (Theorem 2). We achieve a query complexity of Õ(

√
d/ε) in finding an ε-optimal solu-

tion using the function value oracle, reducing a factor of O(
√
d) over the optimal classical

algorithm. Furthermore, if the objective function is a Lipschitz continuous function, we
prove that the query complexity can be reduced to O(1/ϵ) by employing the bounded-error
Jordan quantum gradient estimation algorithm, at the cost of more qubits and additional
gates (Theorem 5). In addition, we consider the generalization to latent group norm con-
straints (Theorem 6) and achieve a query complexity of Õ

(√
|G||g|max

)
, representing an

O
(√

|G|
)

speedup over the classical algorithm. These results are presented in Section 3,
Appendix A.1 and A.2. The comparison with the classical methods is shown in Table 1.

• Specifically, we develop a novel quantum subroutine for the Frank-Wolfe linear subprob-
lem over latent group norm constraints, by computing dual norms coherently across all
groups in quantum superposition and identifying the dominant group via quantum maxi-
mum finding. We establish a novel error propagation analysis for dual norm computation
under gradient approximation, deriving bounds via Hölder’s inequality that enable precise
control of linear subproblem accuracy throughout Frank-Wolfe iterations. The examples
in the main text such as the ℓ1-norm constrained are special instances of the latent group
constraints. In short, we develop quantum subroutines for dominant atom finding and show
that the errors can be controlled by setting appropriate parameters.

For the matrix domain D ⊂ Rd×d:

2
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• For the projection-free sparse problem under nuclear norm constraints, we propose two
complementary quantum Frank-Wolfe algorithms tailored to high-rank and low-rank gra-
dient matrices, respectively (see Appendix A.5). For finding an ε-optimal solution, we
achieve a time complexity of Õ(rd/ε2) (Theorem 3) and Õ(

√
rd/ε3) (Theorem 4) in com-

puting the update direction, representing an at least O(
√
d) speedup over state-of-the-art

classical algorithm, where r is the rank of the gradient matrix. These results are presented
in Section 4 and the comparison with the classical methods is shown in Table 2.

• Specifically, in the first algorithm, we simplify the top-k singular vectors extraction method
Bellante et al. (2022) by utilizing the quantum maximum finding algorithm, which avoids
the overheads of repeated sampling to estimate the factor score ratio, and avoids the over-
heads of searching the threshold value. In the second algorithm, we introduce the quantum
power method to extract the top singular vectors, which reduces the dependence on the rank
of the gradient matrix, at the cost of higher sensitivity on solution precision.

Wide range of critical applications can be benefited from the acceleration of QFW, including sparse
regression (Lasso), sparse signal recovery, matrix completion, boosting algorithms (e.g., AdaBoost),
Support Vector Machines, and density estimation Jaggi (2013). Other applications include signal
processing (sparsity constraints via ℓ1 norm), game theory (zero sum games with simplex) and
SDPs (nuclear norm optimization). The proposed top singular vectors extraction techniques also
have a potential application for bi-quadratic programming Li et al. (2024). We discuss some of
these applications in Appendix A.6

We notice an independent work on the quantum power method Chen et al. (2025a), whose second
algorithm shares a conceptual similarity with our second approach: both iteratively apply quantum
matrix-vector multiplication. They assume a sparse-query access to the matrix as input, and achieve
a complexity of Õ((d

√
s/γε)1+o(1)), where s is the sparsity, γ is the eigenvalue gap, whereas our

method relies on the rank of the matrix, instead of the sparsity. In the case of dense full-rank matrix,
their algorithm and ours are consistent in terms of dimensional dependence, which provides mutual
validation of correctness.

The remainder of this paper is organized as follows. Section 2 introduces the basic concept of
constrained optimization and the classical Frank-Wolfe algorithm. Appendix A.3 introduces the no-
tations and assumptions of quantum computing. Section 3 and 4 presents our quantum FW methods
for vector domain and matrix domain, respectively. Extension for the vector cases are presented in
Appendix A.1 and A.2. Extended related works are presented in Appendix A.4, and we conclude
with a discussion about the future work in Section 5. Proof details are given in Appendix B.

Table 1: Classical algorithms V.S. quantum algorithms of the vector case, where Cf is the curvature
of the objective function f , ε is the precision of the solution, d is the dimension of the domain, G is
the Lipschitz parameter of the objective function, p is the failure probability.

Optimization Domain Constraints Algorithm Iteration Query complexity Qubits Gates
Sparse Vectors ∥·∥1-ball FW Jaggi (2013) O(Cf/ε) O(d)

QFW (Theorem 1) O(Cf/ε) O(
√
d log (Cf/pε)) O

(
d+ log 1

ε

)
O(

√
d)

QFW (Theorem 5) O(Cf/ε) O(1) O
(
d log Gd

ρε

)
O(d log d)

Sparse non-neg. vectors Simplex ∆d Frank-Wolfe Jaggi (2013) O(Cf/ε) O(d)

QFW (Theorem 2) O(Cf/ε) O(
√
d log (Cf/pε)) O

(
d+ log 1

ε

)
O(

√
d)

QFW (Theorem 5) O(Cf/ε) O(1) O
(
d log

CfGd
pε

)
O(d log d)

Latent group sparse vectors ∥·∥G-ball FW Jaggi (2013) O(Cf/ε) O(
∑

g∈G |g|)
QFW (Theorem 6) O(Cf/ε) O

(√
|G||g|max log (Cf/pε)

)
O(d+ log |G|+ |g|max log(1/ε)) Õ(

√
|G| · |g|max)

2 PRELIMINARIES

2.1 NOTATIONS AND ASSUMPTIONS FOR CONSTRAINED OPTIMIZATION PROBLEM

We consider constrained convex optimization problems of the form

min
x∈D

f(x), (3)

where x ∈ Rd, f : Rd → R, and D ⊆ Rd is the constraint set. In addition, as usually in constrained
convex optimization, we also make the following assumptions:

3
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Table 2: Classical algorithms V.S. quantum algorithms of the matrix case, where Cf is the curvature
of the objective function f , ε is the precision of the solution, d is the dimension of the domain, T∇
is the times required to evaluate ∇f ; σ1(M) and is the largest and the second largest singular value,
respectively; r is the rank of the gradient matrix; γ′min is a factor which depends on the relation of
the singular value distribution of the gradient matrix and the direction of the initial vector.

Domain Constraints Algorithm Iteration Complexity of the Update Computing
Sparse Matrices ∥·∥tr-ball FW with Power Method Jaggi (2013) O(Cf/ε) O

(
σ1(M)d2

(σ1(M)−σ2(M))ε + T∇

)
FW with Lanczos Method Jaggi (2013) O(Cf/ε) O

( √
σ1(M)d2

√
(σ1(M)−σ2(M))ε

+ T∇

)
FW with QTSVE (Theorem 3) O(Cf/ε) Õ

(
rσ3

1(M)d
(σ1(M)−σ2(M))ε2 + T∇

)
FW with QPM (Theorem 4) O(Cf/ε) Õ

( √
rσ4

1(M)d

(1−σ1(M))γ′3
minε

3 + T∇

)

Algorithm 1 Classical Frank-Wolfe Algorithm with Approximate Linear Subproblems
1: Input: Solution precision ε, iterations T .
2: Output: x(T ) such that f(xT )− f(x∗) ≤ ε.
3: Initialize: Let x(1) ∈ D.
4: for t = 1, ..., T do
5: Let γt = 2

t+2 .
6: Find direction s ∈ D such that

⟨s,∇f(x(t))⟩ ≤ min
ŝ∈D

⟨ŝ,∇f(x(t))⟩+ δ

2
γtCf . (5)

7: Update x(t+1) = (1− γt)x
(t) + γts.

8: end for

Assumption 1. f is convex and L-smooth, i.e., the gradient of f satisfies ∥∇f(x)−∇f(y)∥2 ≤
L∥x− y∥2 for any x,y ∈ Rd.
Assumption 2. D is compact and convex, and the diameter of D has an upper bound D, i.e.,
∀x, y ∈ K, ∥x− y∥2 ≤ D.

Typically, solving argminx∈D x⊤y for any y ∈ Rd, is much faster than the projection operation
onto D (i.e., solving argminx∈D ∥x− y∥). Examples of such domains include the set of sparse
vectors, bounded norm matrices, flow polytope and many more Hazan & Kale (2012). Therefore,
for such domains, the basic idea of the Frank-Wolfe algorithm is to replace the projection operation
with a linear optimization problem.

In the design and analysis of the Frank-Wolfe algorithm, one important quantity is the curvature Cf ,
which measures the “non-linearity” of f and is defined as follows,

Cf = sup
x,s∈D,β∈[0,1],y=x+β(s−x)

2

β2
× (f(y)− f(x)− ⟨y − x,∇f(x)⟩) . (4)

By Lemma 7 of Jaggi (2013), the curvature can be bounded as Cf ≤ LD2.

2.2 CLASSICAL FRANK-WOLFE ALGORITHM

The classical Frank-Wolfe algorithm is given in Algorithm 1. The key step is the linear subproblem
of Equation (5) which seeks an approximate minimizer in D of ⟨s,∇f(x(t))⟩. Classically, the per-
step cost is O(N) where N is the number of elements that need to be searched which introduces a
largeO(N) cost. In this work, we will show thatO(

√
N) quantum queries to solve this subproblem.

Lemma 1. [Jaggi (2013), Theorem 1] For each t ≥ 1, the iterates of Algorithm 1 satisfy

f(x(t))− f(x∗) ≤ 2Cf

t+ 2
(1 + δ), (6)

where x∗ is the optimal solution to Equation (3), and δ is the solution quality to which the internal
linear subproblems are solved. That is, one can use O(

(1+δ)Cf

ε ) iterations to have a ε-opt solution.

4
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Algorithm 2 Quantum Frank-Wolfe Algorithm for Sparsity/Simplex Constraint
1: Input: Solution precision ε, gradient precision {σt}Tt=1.
2: Output: x(T ) such that f(xT )− f(x∗) ≤ ε.
3: Initialize: Let x(1) ∈ D.
4: Let T =

4Cf

ε − 2.
5: for t = 1, ..., T do
6: Let γt = 2

t+2 .

7: Prepare quantum state
∑d−1

i=0 |i⟩
∣∣x(t)

〉
|0⟩.

8: Perform quantum gradient circuit (Lemma 3) to get
∑d−1

i=0 |i⟩
∣∣x(t)

〉 ∣∣∣ f(x(t)+σtei)−f(x(t))
σt

〉
.

9: Apply quantum maximum finding to the absolute value of the third register (to the third
register directly for the simplex constraint, respectively) (Lemma 4), and then measure the first
register to obtain measurement result it.

10: Set s = −eit . Update x(t+1) = (1− γt)x
(t) + γts.

11: end for

3 QUANTUM FRANK-WOLFE ALGORITHMS OVER VECTORS

3.1 QUANTUM FRANK-WOLFE WITH SPARSITY CONSTRAINTS

We first consider the optimization problem

min f(x), s.t. x ∈ Rd, ∥x∥ ≤ 1, (7)

where the sparsity constraint D = {x ∈ Rd : ∥x∥1 ≤ 1}.

By Section 4 of Jaggi (2013), any linear function attains its minimum over a convex hull at a vertex.
Thus, for the ℓ1 norm problem, the exact minimizer (i.e, corresponding to δ = 0) of Equation (5) is
ŝ = −eit with

it ∈ argmax
i∈[d]

|∇if(x
(t))|, (8)

i.e., it is a coordinate corresponding to the largest absolute value of the gradient component.

Our approach will be to construct an approximate quantum maximum gradient component finding
algorithm to find such an it.

Quantum access model Uf . In this subsection, we assume that the value of the loss function is
accessed via a function value oracle as shown in Assumption 3.

Assumption 3. There is a unitary Uf that, in time Tf , returns the function value, i.e., Uf :
|x⟩ |a⟩ → |x⟩ |a+ f(x)⟩, for any a, where |x⟩ := |x1⟩ |x2⟩ ... |xd⟩.

The preparation of the input state in Step 7 of Algorithm 2 is efficient. Initialize the algorithm at
x(0) = 0, each Frank-Wolfe step adds a single coordinate direction to the solution. Specifically, the
update rule x(t+1) = (1− γt)x

(t) + γtst—where st is a standard basis vector—implies that the so-
lution x(t) after t iterations is a sparse vector with at most t non-zero components. Consequently, the
quantum state

∣∣x(t)〉 is a sparse computational basis state. This state can be perform an incremental
update, setting at most one new coordinate to a non-zero value per iteration. The gate complexity
for this sparse update is O(t). The total number of iterations T required for an ε-optimal solution
is O(1/ε), which is independent of the dimension d. Therefore, the state preparation overhead per
iteration remains O(1/ε), completely decoupled from the potentially large dimension d.

Quantum gradient circuit. Next, we present a general unitary Ug to approximate the gradient
∇f(xt). Specifically, we use the forward difference gi(xt) =

f(xt+σei)−f(xt)
σ to approximate each

item of ∇if(xt) with ℓ∞ error εg , i.e., ∥∇f(xt)− g(xt)∥∞ ≤ εg , where σ is the tunable parameter
for the desired accuracy.

5
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Lemma 2 (Theorem 3.1 Berahas et al. (2022)). Under Assumption 1, let gi(x) =
f(x+σei)−f(x)

σ ,
then for all x ∈ Rd,

∥g(x)−∇f(x)∥2 ≤
√
dLσ

2
. (9)

Lemma 3. Given access to the quantum function value oracle Uf , there exists a quantum circuit
to construct a quantum error bounded gradient oracle Ug : |i⟩ |x⟩ |0⟩ → |i⟩ |x⟩ |gi(x)⟩, where
gi(x) =

f(x+σei)−f(x)
σ is the i-th component of the gradient and σ is the tunable parameter, with

two queries to the quantum function value oracle.

The proof is given in Appendix B.1.

Quantum maximum finding circuit. Based on Ug , leveraging the quantum minimum-finding al-
gorithm Durr & Hoyer (1996), we give an approximate search of the maximum gradient component
as shown in Lemma 4, with proof given in Appendix B.2. Note that Algorithm 3 in the matrix sec-
tion of this work also utilizes quantum maximum finding, but with a non-uniform input state. We
also provide a proof in Appendix B.2 that the quantum maximum finding procedure is applicable to
non-uniform input states.
Lemma 4. (Approximate maximum gradient component finding) Given access to the quantum
error bounded gradient oracle Ug : |i⟩ |x⟩ |0⟩ → |i⟩ |x⟩ |gi(x)⟩ s.t. for each i ∈ [d], after
measuring |gi(x)⟩, the measured outcome gi(x) satisfies |gi(x) − ∇fi(x)| ≤ ϵ. There exists a
quantum circuit Amax that finds the index i∗ that satisfies ∇fi∗(x) ≥ maxj∈[d] ∇fj(x) − 2ϵ or
|∇fi∗(x)| ≥ maxj∈[d] |∇fj(x)| − 2ϵ, using O(

√
d log

(
1
δ

)
) applications of Ug , U †

g and O(
√
d)

elementary gates, with probability 1 − δ. For the non-uniform initial state, let p be the initial mea-
surement probability of the maximum component, then the algorithm finds the maximum with query
complexity of O( 1√

p log
(
1
δ

)
).

Convergence Analysis. Now we can conduct the convergence analysis with the help of approxi-
mate maximum finding sub-routine and show how to choose appropriate parameters, which gives
Theorem 1, with proof given in Appendix B.3.

Theorem 1. (Quantum FW over the sparsity constraint) By setting σt =
Cf√

dL(t+2)
for t ∈ [T ],

the quantum algorithm (Algorithm 2) solves the sparsity constraint optimization problem for any
precision ε such that f(xT )− f(x∗) ≤ ε in T =

4Cf

ε − 2 rounds, succeed with probability 1− p,

with O
(√

d log
Cf

pε

)
calls to the function value oracle Uf per round.

If the objective function is a G-Lipschitz continues function (i.e. |f(x) − f(y)| ⩽ G∥y −
x∥, ∀x,y ∈ D), an alternative approach for estimating the gradient of the objective function
involves employing the bounded-error Jordan algorithm to improve the query complexity of each
iteration to O(1), at the cost of additional space complexity and extra gate operations. This result is
given in Appendix A.1.

3.2 EXTENSIONS: QUANTUM FRANK-WOLFE FOR ATOMIC SETS

Classically, the Frank-Wolfe algorithm has been shown to be well-suited to atomic sets Jaggi (2013),
i.e. where the constraint set is expressed as the convex hull of another (not-necessarily finite) set A:
D = conv(A) In this case, the Frank-Wolfe update calculation requires a minimization only over
A: minŝ∈A⟨ŝ,∇f(x(t))⟩. The optimization over the ℓ1 ball as studied above is a special case of
this, since {x ∈ Rd : ∥x∥1} = conv{±e1,±e2, . . . ,±ed}. Note also that quantum optimization
over the simplex ∆d = conv{e1, . . . ,ed} can be done by almost exactly the same method as for
the ℓ1 case, with the only modification to account for the fact that only the unit vectors need to be
optimized over, which gives Theorem 2.

Theorem 2. (Quantum FW over the simplex) By setting σt =
Cf√

dL(t+2)
for t ∈ [T ], the quantum

algorithm (Algorithm 2) solves the simplex constraint optimization problem for any precision ε such
that f(xT )−f(x∗) ≤ ε in T =

4Cf

ε −2 rounds, succeed with probability 1−p, withO
(√

d log
Cf

pε

)
calls to the function value oracle Uf per round.

6
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Two more extensions for atomic sets are given in Appendix A.2.

4 QUANTUM FRANK-WOLFE ALGORITHMS OVER MATRICES

In this section, we consider the matrix version of the constrained optimization problem in Equa-
tion (1), specifically,

min f(X), s.t. X ∈ Rd×d, ∥X∥tr ≤ 1, (10)

where the sparsity constraint is D = {X ∈ Rd×d : ∥X∥tr ≤ 1}. For simplicity of presentation, we
first focus on square matrices, i.e., X ∈ Rd×d (Remark 1).

Schatten matrix norm. In contrast to the vector norm ∥·∥ on Rd, the corresponding Schatten matrix
norm ∥X∥ is defined as ∥(σ1, ..., σd)∥, where σ1, ..., σd are singular values of X . It is known that
the dual of the Schatten ℓp norm is the Schatten ℓq norm with 1/p+ 1/q = 1. The most prominent
example is the trace norm ∥·∥tr, also referred to as the nuclear norm or Schatten ℓ1 norm, defined as
the sum of the singular values ∥X∥tr =

∑d
i=1 σi.

Linear subproblem solver. Following the classical Frank-Wolfe iteration framework, we aim to
solve the linear optimization subproblem minS∈D⟨S,∇f(Xt)⟩ where Xt denotes the iterate matrix
at step t, and ⟨X,Y ⟩ = trX⊤Y represents the Hilbert-Schmidt inner product. For convenience, let
M = ∇f(Xt) in the rest of this section. To solve this subproblem, one can compute the singular
value decomposition (SVD) M = Udiag(σ)V ⊤, where σ are singular values of M and U, V ∈
Rd×d are orthogonal matrices. Since Schatten norms are invariant under orthogonal transformations,
the optimal solution S ∈ D for the minimization problem minS∈D⟨S,M⟩ takes the forms of S =
Udiag(s)V ⊤, where ⟨s,σ⟩ = ∥σ∥q with ∥s∥p ≤ 1 and 1/p+ 1/q = 1. For the nuclear norm (i.e.,
ℓ1 Schatten norm), this reduces to S = uv⊤ where u,v are the left and right top singular vectors
of M , corresponding to its largest singular value σ1(M). Thus, the core computational task is to
efficiently approximate the top singular vectors u,v ∈ Rd, ensuring |u⊤Mv − σ1(M)| ≤ ε.

Power method and Lanczos method. Compared with the SVD that requires O(d3) computational
cost per iteration to compute all d singular vectors, extracting only the top singular vector is much
easier. Specifically, Kuczyński & Woźniakowski (1992) considers two iterative methods: the power
method and the Lanczos method. The power method achieves |u⊤Mv − σ1(M)| ≤ ε′ with the
worst-case computation complexity of O

(
σ1(M)d2 ln d

(σ1(M)−σ2(M))ε′

)
, while the Lanczos method achieves

|u⊤Mv − σ1(M)| ≤ ε′ with the worst-case computation complexity of O
( √

σ1(M)d2 ln d√
(σ1(M)−σ2(M))ε′

)
,

where ε′ is the additive error. Similar to the convergence analysis in Section 3.1, setting ε′ =

O(ε), the complexity of update computing are O
(

σ1(M)d2 ln d
(σ1(M)−σ2(M))ε

)
and O

( √
σ1(M)d2 ln d√

(σ1(M)−σ2(M))ε

)
,

respectively.

Quantum enhancement. In the following, we propose two quantum subroutines to compute the top
singular vector: the quantum top singular vector extraction method and the quantum power method.
Note that for the matrix case, we could also assume the same function value oracle and naturally
employ an improved Jordan’s algorithm to achieve a query complexity advantage in gradient esti-
mation. However, in this work, we aimed to further investigate whether quantum algorithms can
accelerate the computational complexity of the update step beyond just query counts. Therefore, the
analysis focuses on the update direction computation and assumes that the gradient has been pre-
computed and stored in the memory (Remark 3), following the classical convention of excluding
gradient evaluation time Jaggi (2013).

First, we assume the following gradient access model for matrix data. A detailed description of this
data structure can be found in Section 1.A of Kerenidis & Prakash (2020b).

Assumption 4 (Quantum access to a matrix). We assume that we have efficient quantum access to
the matrix M ∈ Rd×d. That is, there exists a data structure that allows performing the mapping
|i⟩ |0⟩ → |i⟩ |Mi,·⟩ = |i⟩ 1

∥Mi,·∥
∑d

j Mij |j⟩ for all i, and |0⟩ → 1
∥M∥F

∑d
i ∥Mi,·∥ |i⟩ in time Õ(1).

7
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4.1 QUANTUM FRANK-WOLFE WITH QUANTUM TOP SINGULAR VECTOR EXTRACTION

Leveraging the quantum access defined in Assumption 4, quantum singular value estimation can be
performed efficiently.
Lemma 5 (Singular value estimation (Theorem 3 Bellante et al. (2022)), Kerenidis & Prakash
(2020b)). Let there be quantum access to M ∈ Rd×d, with singular value decomposition M =∑d

i σiuiv
T
i . Let ϵ > 0 be a precision parameter. There exists a quantum circuit for performing the

mapping 1
∥M∥F

∑d
i

∑d
j Mij |i⟩ |j⟩ |0⟩ → 1

∥M∥F

∑k
i σi |ui⟩ |vi⟩ |σi⟩ such that |σi − σi| ≤ ϵ with

probability at least 1− 1/poly(d) in time O
(

∥M∥F poly log d

ϵ

)
.

To extract classical singular vectors corresponding to the largest singular value from a quantum state,
ℓ2 norm quantum state tomography is required.
Lemma 6 (ℓ2 state-vector tomography Kerenidis et al. (2020; 2019d)). Given a unitary mapping
Ux : |0⟩ → |x⟩ in time T (Ux) and δ > 0, there is an algorithm that produces an estimate
x ∈ Rd with ∥x∥2 = 1 such that ∥x− x∥2 ≤ δ with probability at least 1 − 1/poly(d) in time

O
(
T (Ux)

d log d
δ2

)
.

Quantum top singular vector extraction (QTSVE). The goal of the quantum subroutine in each
iteration is to find the top right / left singular vectors of the gradient matrix. First, we prepare the
gradient matrix state using the quantum access as stated in Assumption 4, then we perform QSVE to
this state. The quantum maximum finding is applied to obtain the quantum state corresponding to the
largest singular value. Prepare sufficient quantum states corresponding to the largest singular value
until satisfying the requirement of tomography, then perform quantum state tomography to extract
the corresponding right / left classical singular vectors. This procedure is shown in Lemma 7, with
the proof given in Appendix B.8. Note that the success probability of QTSVE can be improved by
repeating it logarithmic times and then taking the average.
Lemma 7. (Quantum top singular vector extraction) Let there be efficient quantum access to a
matrix M ∈ Rd×d, with singular value decomposition M =

∑d
i σiuiv

T
i . Define p =

σ2
1(M)∑d
i=1 σ2

i

.

There exist quantum algorithms that with time complexity O
(

∥M∥F dpoly log d√
pϵδ2

)
, give the estimated

top singular value σ1 ofM to precision ϵ and the corresponding unit estimated singular vectors u,v
to precision δ such that ∥u− utop∥ ≤ δ, ∥v − vtop∥ ≤ δ with probability at least 1− 1/poly(d).

Convergence Analysis. Our quantum Frank-Wolfe algorithm for nuclear norm constraint (Algo-
rithm 3) then follows, with the analysis given in Appendix B.9.

Theorem 3. (Quantum FW with QTSVE) By setting δt =
Cf

2(t+2)σ1(Mt)
and ϵt ≤ (σ1(Mt) −

σ2(Mt))/2 for t ∈ [T ], the quantum algorithm (Algorithm 3) solves the nuclear norm constraint
optimization problem for any precision ε such that f(XT ) − f(X∗) ≤ ε in T =

4Cf

ε − 2 rounds,

with time complexity Õ
(

rσ3
1(Mt)d

(σ1(Mt)−σ2(Mt))ε2

)
for computing the update direction per round, where

r is the rank of the gradient matrix.

In computing the update direction, Algorithm 3 reduces a O(dε/rσ2
1(M)) factor to the power

method and O(dε1.5/rσ2.5
1 (M)) to the Lanczos method, respectively. See Remark 2 for more in-

formation about parameter choosing.

4.2 QUANTUM FRANK-WOLFE WITH QUANTUM POWER METHOD

The second framework is to accelerate the power method directly with quantum matrix-vector
multiplication method and quantum tomography. The classical power method constructs a se-
quence z0, ...,zk, where z0 = b is drawn uniformly random over a unit sphere b : ∥b∥2 = 1, and
zi+1 = M⊤Mzi for i ≥ 1, (zi+1 = MM⊤zi for the left singular vector, respectively). After
k = C0σ1(M) ln d

ε , we have
∣∣∣z⊤

k Mzk

∥zk∥2
2

− σ1(M)
∣∣∣ ≤ ε, where C0 is a constant.

Quantum power method (QPM). Using the quantum access given in Assumption 4, the quantum
matrix-vector multiplication can be performed efficiently:

8
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Algorithm 3 Quantum Frank-Wolfe Algorithm for Nuclear Norm Constraint with QTSVE
1: Input: Solution precision ε, singular value precision {ϵt}Tt=1, tomography precision {δt}Tt=1.
2: Output: X(T ) such that f(XT )− f(X∗) ≤ ε.
3: Initialize: Let X(1) ∈ D.
4: Let T =

4Cf

ε − 2.
5: for t = 1, ..., T do
6: Let γt = 2

t+2 .

7: Prepare 1
∥M∥F

∑d
i

∑d
j Mij |i⟩ |j⟩ |0⟩.

8: Perform QSVE (Lemma 5) to get 1√∑r
iσ

2
i

∑r
i σi |ui⟩ |vi⟩ |σi⟩ , where|σi − σi| ≤ ϵt.

9: Apply quantum maximum finding (Lemma 4) to the third register to get |utop⟩ |vtop⟩ |σ1⟩.
10: Perform ℓ2-norm tomography (Lemma 6), to obtain u, v, where ∥u− utop∥ ≤ δt,

∥v − vtop∥ ≤ δt.
11: Set S = uv⊤. Update X(t+1) = (1− γt)X

(t) + γtS.
12: end for

Algorithm 4 Quantum Frank-Wolfe Algorithm for Nuclear Norm Constraint with QPM
1: Input: Solution precision ε, multiplication times {kt}Tt=1, multiplication precision {δt}Tt=1,

tomography precision {δ′t}Tt=1.
2: Output: X(T ) such that f(XT )− f(X∗) ≤ ε.
3: Initialize: Let X(1) ∈ D.
4: Let T =

4Cf

ε − 2.
5: for t = 1, ..., T do
6: Let γt = 2

t+2 .

7: Prepare 1
∥M∥F

∑d
i

∑d
j Mij |i⟩ |j⟩ |b⟩ |b⟩, where b is the uniform superposition state.

8: Apply quantum power method (Lemma 9) to get 1
∥M∥F

∑d
i

∑d
j Mij |i⟩ |j⟩ |zu⟩ |zv⟩, where∥∥zu − (MM⊤)kb

∥∥ ≤ δt,
∥∥zv − (M⊤M)kb

∥∥ ≤ δt.
9: Perform ℓ2-norm tomography (Lemma 6) to obtain u,v, where ∥u− zu∥ ≤
δ′t, ∥v − zv∥ ≤ δ′t.

10: Set S = uv⊤. Update X(t+1) = (1− γt)X
(t) + γtS.

11: end for

Lemma 8. (Quantum matrix-vector multiplication (Theorem 4 Bellante et al. (2022)), Chakraborty
et al. (2019)) Let there be quantum access to the matrix M ∈ Rd×d with σmax ≤ 1, and to a vector
z ∈ Rd. Let ∥Mz∥ ≥ γ′. There exists a quantum algorithm that creates a state |y⟩ such that

∥|y⟩ − |Mz⟩∥ ≤ ϵ in time Õ
(

1
γ′ ∥M∥F log(1/ϵ)

)
, with probability at least 1− 1/poly(d).

Apply 2k times of quantum matrix-vector multiplication, we can get a quantum state correspond-
ing to zk, as shown in Lemma 9, with proof given in Appendix B.10. A similar process can be
constructed to compute (MM⊤)kb (corresponding to the left singular vector) simultaneously.
Lemma 9. (Quantum power method) Let there be quantum access to the matrix M ∈ Rd×d with
σmax ≤ 1, and to a vector z ∈ Rd. Let γ′min be the lower bound of

∥∥(M⊤M)iz)
∥∥ for all i ∈ [k].

There exists a quantum algorithm that creates a state |y⟩ such that
∥∥|y⟩ − ∣∣(M⊤M)kz

〉∥∥ ≤ δ in
time Õ( k

γ′
min

∥M∥F log(1/δ)), with probability at least 1−O(k/poly(d)).

Convergence Analysis. After quantum state tomography, we can extract the classical top singular
vectors. Note that the success probability of QPM and tomography can be improved by repeating
the whole procedure logarithmic times and then taking the average. Our quantum Frank-Wolfe
algorithm (Algorithm 4) for nuclear norm constraint then follows, and the parameters choosing and
convergence analysis are given in Theorem 4, with the proof given in Appendix B.11.

Theorem 4. (Quantum FW with QPM) By setting kt = 2C0σ1(Mt) ln d
ε , δt = δ′t = εγ′

min

16σ1(Mt)
for

t ∈ [T ], the quantum algorithm (Algorithm 4) solves the nuclear norm constraint optimization
problem for any precision ε such that f(XT ) − f(X∗) ≤ ε in T =

4Cf

ε − 2 rounds, with time

9
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complexity Õ
( √

rσ4
1(Mt)d

(1−σ1(Mt))γ′3
minε

3

)
for computing the update direction per round, where r is the

rank of the gradient matrix, C0 is a constant and γ′min is the lower bound of
∥∥(M⊤

t Mt)
ib)
∥∥ for all

i ∈ [k].

In computing the update direction, Algorithm 4 reduces a O(dε2γ′
3
min/

√
rσ3

1(M)) factor to the
power method and O(dε2.5γ′

3
min/

√
rσ3.5

1 (M)) to the Lanczos method. A discussion of this section
is given in Appendix A.5.

5 CONCLUSION AND FUTURE WORK

This paper addresses the projection-free sparse convex optimization problem. We propose several
quantum Frank-Wolfe algorithms for both vector and matrix domains, demonstrating the quantum
speedup over the classical methods with respect to the dimension of the feasible set.

For future work, we aim to extend quantum Frank-Wolfe methods to stochastic and online opti-
mization frameworks, to characterize quantum advantages in projection-free regret minimization.
Meanwhile, Jaggi (2013) highlights several interesting cases involving matrix norms, where classi-
cal approaches often rely on computationally expensive singular value decomposition. A potential
avenue of interest is determining whether quantum computing can yield greater speedups in such
settings. Moreover, as mentioned in Appendix A.5, the gradient in the matrix completion is sparse,
which might allow for further acceleration via quantum sparse matrix multiplication, constituting
an interesting direction for future research. These investigations would collectively advance the
understanding of quantum-enhanced projection-free optimization.

REFERENCES

Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, and Yuanzhi Li. Linear convergence of a frank-wolfe type
algorithm over trace-norm balls. Advances in neural information processing systems, 30, 2017.

A Ambainis. Variable time amplitude amplification and a faster quantum algorithm for solving
systems of linear equations. In Symp. Theoretical Aspects of Computer Science (STACS 2012),
volume 14, pp. 636–47, 2012.
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Appendix

A EXTENSION AND DISCUSSION

A.1 QUANTUM FRANK-WOLFE OVER VECTORS WITH BOUNDED-ERROR JORDAN
ALGORITHM

The quantum Frank-Wolfe Algorithm with Bounded-error Jordan’s Algorithm is shown in Algo-
rithm 5. We reformulate the results of the bounded-error Jordan algorithm from He et al. (2024) in
terms of infinity norm error, with the proof detailed in the Appendix B.4.

Algorithm 5 Quantum Frank-Wolfe Algorithm with Bounded-error Jordan Algorithm
1: Input: Solution precision ε, gradient precision {σt}Tt=1.
2: Output: x(T ) such that f(xT )− f(x∗) ≤ ε.
3: Initialize: Let x(1) ∈ D.
4: Let T =

4Cf

ε − 2.
5: for t = 1, ..., T do
6: Let γt = 2

t+2 .
7: Using Algorithm 7 to get the whole vector of estimated gradient ∇̃ft(xt).
8: Scan all the component of ∇̃ft(xt) to find the coordinate it corresponding to the largest

absolute value of the estimated gradient component.
9: Set s = −eit . Update x(t+1) = (1− γt)x

(t) + γts.
10: end for

Lemma 10. (Lemma 1 He et al. (2024)) If f isG-Lipschitz continues and L-smooth convex function
and can be accessed by a quantum function value oracle, then there exists an quantum algorithm
that for any r > 0 and 1 ≥ ρ > 0, gives the estimated gradient g(x), which satisfies

Pr
[
∥g(x)−∇f(x)∥∞ > 8πn2(n/ρ+ 1)Lr/ρ

]
< ρ, (11)

using O(1) applications of Uf and O(d log d) elementary gates. The space complexity is

O
(
d log Gρ

4πd2Lr

)
.

The next step is to determine the quantum gradient estimated parameters rt in each Frank-Wolfe
iteration through convergence analysis.
Theorem 5. (Quantum FW with bounded-error Jordan algorithm) By setting rt =

ρCf

16πd2(d/ρ+1)L(t+2) for t ∈ [T ], the quantum algorithm (Algorithm 5) solves the sparsity constraint

optimization problem for any precision ε such that f(xT ) − f(x∗) ≤ ε in T =
4Cf

ε − 2 rounds,
with O (1) calls to the function value oracle Uf per round.

The proof is given in Appendix B.5. Substituting the parameter rt into the space complexity yields
the qubit requirement as O

(
d log Gd

ρε

)
. Since each gradient estimation succeeds with probability

1− ρ, the probability that all T iterations succeed is at least 1−Tρ. By setting ρ = p/T , we ensure
an overall success probability of at least 1− p.

A.2 MORE EXTENSIONS OVER VECTORS FOR ATOMIC SETS

In this appendix, we give two more extension for the vector case. The first extension is to consider
|A| = N , with each aj ∈ A being τ -sparse with non-zero (index, value) pairs (ik, (aj)k), i.e., each
aj ∈ Rd, but has only τ non-zero elements. Assume that the non-zero elements are accessed with a
quantum oracle V which implements the transformation V |j⟩ |k⟩ |0⟩ |0⟩ → |j⟩ |k⟩ |ik⟩ |(aj)k⟩. One
can construct a coherent access to the non-zero elements

V ⊗τ |j⟩
τ⊗

k=1

|k⟩ |0⟩ |0⟩ = |j⟩
τ⊗

k=1

|k⟩ |ik⟩ |(aj)k⟩ (12)
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using τ calls of V . Then, a slight modification of the method of Section 3.1 can compute the FW
update using O(τ

√
N log(1/δ)) queries to V and Ug .

The second extension is to consider latent group norm constraints, which have found use in inducing
sparsity in problems in machine learning Jenatton et al. (2011). The ℓ1 norm, d-simplex, group lasso
etc. are all special cases of this.

Following Jaggi (2013) we let G = {g1, g2, . . . , g|G|}, gi ⊆ [d],
⋃

i gi = [d]. Note that the gi need
not be disjoint. For each g ∈ G, let ∥·∥g be an arbitrary ℓp norm, and define the latent group norm

∥x∥G := min
v(g)∈R|g|

∑
g∈G

∥∥v(g)∥∥g
s.t. x =

∑
g∈G

v[g] (13)

where v(g) ∈ Rg is the restriction of v ∈ Rd to coordinates in g, and v[g] ∈ Rd has zeros outside
the support of g. In this case, the Frank-Wolfe update corresponds to finding the value s : ∥s∥G ≤ 1

such that s⊤∇f(x) = ∥∇f(x)∥∗G , where ∥∇f(x)∥∗G = maxs:∥s∥G≤1 s
⊤∇f(x).

By Section 4.1 in Jaggi (2013), this norm is an atomic norm, and the dual norm is given by

∥∇f(x)∥∗G = max
g∈G

∥∥∇f(x)(g)∥∥∗g, (14)

which implies that

max
s:∥s∥G≤1

(−s⊤∇f(x)) = max
g∈G

max
s:∥s∥g≤1

(−s⊤∇f(x)). (15)

Therefore, it suffices to consider each ∥·∥g ball separately, and then do quantum maximizing over
all the |G| balls to find the one that has the largest value of ∥−∇f(x)gi∥

∗
pi

. The quantum Frank-
Wolfe algorithm over latent group norm ball is then given in Algorithm 6. Note that by the absolute
homogeneity property of dual norms,∥∥∇f(x)(g)∥∥∗g =

∥∥−∇f(x)(g)
∥∥∗
g
, (16)

certain negative signs have been omitted in the algorithmic formulation.

Algorithm 6 Quantum Frank-Wolfe Algorithm over Latent Group Norm Ball
1: Input: Gap ε, accuracy {σt}Tt=1, iterations T .
2: Initialize: Let x(1) ∈ D.
3: for t = 1, ..., T do
4: Let γt = 2

t+2 , x = x(t).

5: Prepare state
∑n

i=1 |i⟩A |x⟩
⊗|gi|

j=1 |gi,j⟩ |0⟩ |0⟩ |0⟩ |0⟩.
6: Perform quantum gradient circuit to get

∑n
i=1 |i⟩A |x⟩

⊗|gi|
j=1 |gi,j⟩

∣∣ggi,j (x)
〉
|0⟩ |0⟩ |0⟩,

where ggi,j(x) =
f(x+σtegi,j

)−f(x)

σt

7: Compute
∑n

i=1 |i⟩A |x⟩
(⊗|gi|

j=1 |gi,j⟩
∣∣ggi,j

(x)
〉 ∣∣∣sgn(ggi,j

(x))
∣∣ggi,j

(x)
∣∣qi−1

〉)∣∣∣∥∥g(x)(gi)

∥∥
pi

〉 ∣∣∣∥∥g(x)(gi)

∥∥∗
pi

〉
.

8: Apply quantum maximum finding on the last register, and then measure the rest registers,
denote the result of the first register as it.

9: Initial s = 0, set sgit,j
= sgn(ggit,j

(x))
∣∣ggit,j

(x)
∣∣qit−1

for j = 1 to |gi|, where 1
pit

+ 1
qit

=

1. Then normalize s.
10: Update x(t+1) = (1− γt)x

(t) + γts.
11: end for

To simplify the proof of the query complexity of the quantum FW update (Lemma 11), we first as-
sume that the gradient estimation and the maximum-finding are exact, with proof given in Appendix
B.6. Then we give the error analysis and show how to choose the parameters σt in Theorem 6, with
proof given in Appendix B.7.
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Lemma 11. [Quantum FW update over latent group norm ball] Let ∥·∥G be a latent group norm
corresponding to G = {g1, g2, . . . , g|G|}, and let |g|max = maxj |gj |. Then, there exists a quantum
algorithm computing the Frank-Wolfe update s∗ := argmaxŝ∈∥·∥G -Ball⟨ŝ⊤g(x)⟩ in O(

√
|G||g|max)

calls to Uf .

Theorem 6. [Quantum FW over latent group norm ball] By setting σt =
Cf√

dL(t+2)maxi∈[|G|] |gi|1/pi
for t ∈ [T ], the quantum algorithm (Algorithm 6) solves the latent group norm constraint optimiza-
tion problem for any precision ε such that f(xT )−f(x∗) ≤ ε in T =

4Cf

ε −2 rounds, succeed with

probability 1− p, with O
(√

|G||g|max log
Cf

pε

)
calls to the function value oracle Uf per round.

A.3 NOTATIONS AND ASSUMPTIONS FOR QUANTUM COMPUTATION

Basic Notions in Quantum Computing. Quantum computing utilizes Dirac notation as its mathe-
matical foundation. Let {|i⟩}d−1

i=0 denote the computational basis of Cd as {|i⟩}d−1
i=0 , where |i⟩ is a

d-dimensional unit vector with 1 at the ith position and 0 elsewhere. A d-dimensional quantum state
is represented as a unit vector |v⟩ = (v1, v2, . . . , vd)

T =
∑

i vi |i⟩ ∈ Cd with complex amplitudes
vi satisfying

∑
i |vi|

2
= 1.

Composite Systems. The joint state of two quantum systems |v⟩ ∈ Cd1 and |u⟩ ∈ Cd2 is described
by the tensor product |v⟩ ⊗ |u⟩ = (v1u1, v1u2, . . . .v2u1, . . . , vd1

ud2
) ∈ Cd1×d2 The ⊗ symbol is

omitted when context permits.

Quantum Dynamics. Closed system evolution is described by unitary transformations. Quantum
measurement in the computational basis probabilistically projects the state onto a basis vector |i⟩
with the probability of the square of the magnitude of its amplitude. For example, measuring |v⟩ =∑

i vi |i⟩ yields outcome i with probability |vi|2, followed by post-measurement state |i⟩.
Quantum Access Models. In general, In quantum computing, access to the objective function is
facilitated through quantum oraclesQf , which is a unitary transformation that maps a quantum state
|x⟩ |q⟩ to the state |x⟩ |q + f(x)⟩, where |x⟩, |q⟩ and |q + f(x)⟩ are basis states corresponding to
the floating-point representations of x, q and q + f(x). Moreover, given the superposition input∑

x,q αx,q |x⟩ |q⟩, by linearity the quantum oracle will output the state
∑

x,q αx,q |x⟩ |q + f(x)⟩.

A.4 EXTENDED RELATED WORKS

The Frank-Wolfe (FW) algorithm, also known as the conditional gradient method, has evolved
through several key theoretical and applied research phases. The original FW framework Frank
et al. (1956) established a projection-free method for quadratic programming with optimal conver-
gence rates when solutions lie on the feasible set boundary, a property later rigorously proven by
Canon & Cullum (1968). Wolfe’s away-step modification Wolfe (1970) addressed boundary solu-
tion limitations, while Dunn’s extension Dunn & Harshbarger (1978) generalized FW to smooth
optimization over Banach spaces using linear minimization oracles.

Modern convergence analyzes were unified by Jaggi (2013), who introduced duality gap certificates
for primal-dual convergence in constrained convex optimization. For strongly convex objectives,
Garber & Hazan (2016) demonstrated accelerated linear convergence rates. Projection-free opti-
mization on non-smooth objective functions was studied in Lan (2013); Argyriou et al. (2014);
Pierucci et al. (2014). Data-dependent convergence bounds on spectahedrons were improved by
Garber (2016) and Allen-Zhu et al. (2017).

Note that the framework was extended to online and stochastic optimizations, inspiring a series
of seminal contributions Hazan & Kale (2012); Garber & Hazan (2016); Levy & Krause (2019);
Lan & Zhou (2016); Hazan & Luo (2016); Chen et al. (2018); Hassani et al. (2020); Xie et al.
(2020); Yurtsever et al. (2019); Zhang et al. (2020). Our future research will explore quantum-
enhanced acceleration for these online/stochastic settings. Meanwhile, in recent years, FW methods
have gained attention for their effectiveness in dealing with structured constraint problem arising in
machine learning and data science, such as LASSO, SVM training, matrix completion and clustering
detection. Readers are referred to Bomze et al. (2021); Pokutta (2023) for more information.
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The algorithms we develop in the matrix domain belong to the quantum algorithmic family for lin-
ear systems. This family originated with the seminal HHL algorithm Harrow et al. (2009), which
solves quantum linear systems and achieves exponential speedups over classical methods for well-
conditioned sparse matrices. Subsequent improvements reduced dependency on condition number
and sparsity Ambainis (2012); Childs et al. (2017); Wossnig et al. (2018). The HHL framework has
been successfully adapted to machine learning tasks including support vector machines Rebentrost
et al. (2014), supervised and unsupervised machine learning Lloyd et al. (2013), principal compo-
nent analysis Lloyd et al. (2014) and recommendation systems Kerenidis & Prakash (2017). One can
reduce the condition number by preprocessing the matrix itself, and QRAM can help to accelerate
such preprocessing. Based on this, the quantum singular value estimation method was developed
in Kerenidis & Prakash (2017) and was generalized in Kerenidis & Prakash (2020b). Furthermore,
recent work integrates QSVE with state-vector tomography, amplitude amplification/estimation, and
spectral norm analysis to enable top-k singular vector extraction Bellante et al. (2022).

Recently, quantum computing has emerged as a promising new paradigm to accelerate a large num-
ber of important optimization problems, e.g., combinatorial optimization Grover (1996); Ambainis
& Špalek (2006); Dürr et al. (2006); Durr & Hoyer (1996); Mizel (2009); Yoder et al. (2014);
Sadowski (2015); He et al. (2020), linear programming Kerenidis & Prakash (2020a); Li et al.
(2019); van Apeldoorn & Gilyén (2019b); Apers & Gribling (2023), second-order cone program-
ming Kerenidis et al. (2019c;b;a), quadratic programming Kerenidis & Prakash (2020b), polynomial
optimization Rebentrost et al. (2019), semi-definite optimization Kerenidis & Prakash (2020a); van
Apeldoorn & Gilyén (2019a); Brandão & Svore (2017); Brandão et al. (2019); van Apeldoorn et al.
(2017), convex optimization van Apeldoorn et al. (2020); Chakrabarti et al. (2020); Zhang et al.
(2024), nonconvex optimization Zhang & Li (2023); Chen et al. (2025b), stochastic optimization
Sidford & Zhang (2023) online optimization He et al. (2022; 2024); Lim & Rebentrost (2022),
multi-arm bandit Casalé et al. (2020); Wang et al. (2021); Li & Zhang (2022); Wan et al. (2023).
The quantum community is actively pursuing further accelerations of quantum computing in the
field of optimization.

A.5 DISCUSSION OF THE TWO QUANTUM FRANK-WOLFE ALGORITHMS FOR THE MATRIX
CASE

We essentially developed two complementary algorithms tailored to high-rank and low-rank gradient
matrices, respectively. For Algorithm 3, quantum advantage exists when d > r/

√
σ1 − σ2ϵ. For

Algorithm 4, quantum advantage holds when d >
√
r
√
σ1 − σ2/ϵ

2(1 − σ1). Since the quantum
subroutines in the matrix section effectively process the gradient matrix normalized by its Frobenius
norm, when this matrix has very low rank, 1 − σ1 tends to be small (approaching 0 when the rank
is 1). In such cases, Algorithm 3 delivers better performance, whereas Algorithm 4 is more suitable
otherwise. These two complementary algorithms deliver a quantum speedup of at least O(

√
d).

Furthermore, the repetition steps required for quantum state tomography can be parallelized
in the quantum computing cluster. By utilizing O(d) quantum computers simultaneously, the
dependence of d in time complexity can be eliminated, giving a parallel time complexity of
Õ
(

rσ3
1(M)

(σ1(M)−σ2(M))ε2

)
and Õ

( √
rσ4

1(M)

(1−σ1(M))γ′3
minε

3

)
.

Remark 1. Note that in Section 4, for simplicity of presentation, we focus on square matrices.
However, all of the quantum techniques mentioned above can also be applied to non-square matri-
ces, since the quantum singular value estimation can be applied to non-square matricesKerenidis &
Prakash (2020b).

Remark 2. All parameters can be determined during preprocessing. Since tomography constitutes
the dominant part of the computational overhead, this preprocessing will not affect the final asymp-
totic complexity. The choice of δt relates to the maximum singular value of the current gradient
matrix. Its range can be determined by running Quantum Singular Value Estimation (QSVE) fol-
lowed by a maximum-value search algorithm. The purpose of ϵt is to ensure that the ordering of
the largest and second-largest singular values does not become misordered during QSVE execution.
This parameter can be determined via two methods: 1. During preprocessing, run QSVE-quantum
maximum search and perform a binary search to find the critical point where two measurement
outcomes appear. Then perform another binary search on ϵt to locate the critical point that distin-
guishes between these two outcomes. 2. Use the results of amplitude estimation as an indicator to
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identify the critical point where a sudden jump in amplitude occurs. Since tomography remains the
primary source of algorithmic overhead, the computational cost of this process will not impact the
final asymptotic complexity.

Remark 3. Note that both the classical and quantum algorithms in this section assume that the
gradients are pre-stored at the memory. In some applications, obtaining the gradients may not be
easy, and even directly loading them into the memory would scale linearly with the size of the matrix.
This work focuses only on the computation of the update direction, but the gradient calculation
time, which is also ignored in classical algorithms Jaggi (2013), is explicitly included in the result
Table 2. This is because in quantum computing, there exist several well-established algorithms for
gradient estimation Jordan (2005); Gilyén et al. (2019). Moreover, in some applications (such as
the matrix completion problem, which we will clarify below), the gradient matrix is sparse. In such
applications, the construction of the corresponding quantum memory depends on the sparsity rather
than the dimension. The potential acceleration in the gradient calculation and state preparation are
left for future exploration.

To show that solving Equation (2) is a special case of solving Equation (10), let Z = X/k. Then, the
constraint ∥X∥tr ≤ k becomes ∥Z∥tr = ∥X/k∥tr = ∥X∥tr/k ≤ 1. Substituting into the objective
function of Equation (2): ∑

(i,j)∈Ω

(Xi,j − Yi,j)
2 =

∑
(i,j)∈Ω

(kZi,j − Yi,j)
2. (17)

Define the function f(Z) =
∑

(i,j)∈Ω(kZi,j − Yi,j)
2. Then, Equation (2) is equivalent to:

min
∥Z∥tr≤1

f(Z). (18)

This matches the form of Equation (10).

Satisfaction of Assumption 2. The trace norm ∥ · ∥tr is a convex function, so the set {Z : ∥Z∥tr ≤
1} is convex. In the finite-dimensional space Rd×d, the set {Z : ∥Z∥tr ≤ 1} is closed (because the
trace norm is continuous) and bounded (since ∥Z∥F ≤ ∥Z∥tr ≤ 1), hence it is compact. For any
Z1, Z2 ∈ D, we have ∥Z1∥F ≤ 1 and ∥Z2∥F ≤ 1, so:

∥Z1 − Z2∥F ≤ ∥Z1∥F + ∥Z2∥F ≤ 2. (19)

Thus, the diameter D ≤ 2. Therefore, Assumption 2 is satisfied.

Satisfaction of Assumption 1. The function f(Z) =
∑

(i,j)∈Ω(kZi,j − Yi,j)
2 is a sum of squares,

hence it is convex. For (i, j) ∈ Ω, the partial derivative is 2(kZi,j − Yi,j); for (i, j) /∈ Ω, it is 0.
Therefore, the gradient ∇f(Z) = 2PΩ(kZ−Y ), where PΩ is the projection operator that preserves
elements in Ω and sets others to zero. For any Z1, Z2,

∇f(Z1)−∇f(Z2) = 2PΩ(kZ1 − kZ2). (20)

Since PΩ is a linear operator and does not increase the Frobenius norm, we have

∥∇f(Z1)−∇f(Z2)∥F = ∥2PΩ(Z1 − Z2)∥F ≤ 2k∥Z1 − Z2∥F . (21)

Thus, ∇f is Lipschitz continuous with constant L = 2k. Therefore, Assumption 1 is satisfied.

In conclusion, we can apply the algorithms from Section 4 to solve the matrix completion problem.
Furthermore, since the gradient of the matrix completion problem is sparse (with only |Ω| non-zero
entries and zeros elsewhere), the construction of quantum memory depends solely on |Ω| rather
than the dimension d. Moreover, the computation of the update rule can be further accelerated by
leveraging quantum multiplication for sparse matrix. This aspect is left for future investigation.

A.6 POTENTIAL APPLICATIONS

Our proposed quantum Frank-Wolfe algorithms are applicable to a broad class of convex optimiza-
tion problems with structured constraints. This section elaborates on the applications of our algo-
rithms in three key domains: sparsity constraints in signal processing, zero-sum games in game
theory, and semidefinite programming.
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Signal Processing: Sparsity Constraints via ℓ1 Norm. In signal processing, a common problem is
recovering sparse signals from noisy observations, typically achieved through ℓ1 norm regularization
to promote sparsity in the solution. Consider the basis pursuit denoising problem:

min
x∈Rd

1

2
∥Ax− b∥22 subject to ∥x∥1 ≤ τ, (22)

where A ∈ Rm×d is the measurement matrix, b ∈ Rm is the observation vector, and τ > 0 is the
constraint radius. The feasible domain D = {x ∈ Rd : ∥x∥1 ≤ τ} is an ℓ1-norm ball. As discussed
in Section 3, the core of the Frank-Wolfe update step under this constraint involves solving the linear
subproblem mins∈D⟨s,∇f(x(t))⟩, whose exact solution is given by the coordinate with the largest
absolute gradient component (i.e., ŝ = −τ · sign(∇if(x

(t))) ·ei, where i = argmaxj |∇jf(x
(t))|).

Our quantum Frank-Wolfe algorithm (Theorem 1) can be use to reduced the per-iteration query
complexity from the classical O(d) to O(

√
d).

Game Theory: Zero-Sum Games with Simplex Constraints. In game theory, Nash equilibria
for two-player zero-sum games can be found by solving a linear programming problem over the
simplex. Consider a game with payoff matrix A ∈ Rm×n. The row player’s mixed strategy is
a vector x ∈ ∆m (m-dimensional simplex), and the column player’s mixed strategy is a vector
y ∈ ∆n. The row player aims to minimize the expected loss x⊤Ay. Finding the Nash equilibrium
can be formulated as:

min
x∈∆m

max
y∈∆n

x⊤Ay. (23)

Through linear programming duality or its variants, this problem can be transformed into an opti-
mization problem over the simplex. The feasible domain is the simplex D = ∆d. The solution to the
Frank-Wolfe linear subproblem under this constraint corresponds to the unit vector with the largest
gradient component (i.e., ŝ = ei, where i = argminj ∇jf(x

(t))). Our quantum Frank-Wolfe
algorithm (Theorem 2) similarly accelerates this step, achieving quantum speedup with respect to
dimension.

Semidefinite Programming. Our quantum algorithms for computing top singular vectors have
potential applications in semidefinite programming (SDP). Many SDP solvers, particularly those
based on first-order methods, require repeatedly solving linear minimization oracles over the spec-
trahedron. The solution to this subproblem is given by the outer product of the eigenvector corre-
sponding to the smallest eigenvalue of a symmetric matrixA Nesterov (2007); d’Aspremont (2008);
Baes & Bürgisser (2009). Computing this vector is equivalent to finding the top eigenvector of the
shifted matrix −A. This computational bottleneck is structurally analogous to the top singular vec-
tor extraction problem addressed by our quantum subroutines in Section 4. Therefore, our quantum
top singular vector extraction (QTSVE) and quantum power method (QPM) algorithms can be inte-
grated into SDP solvers to accelerate this subroutine, providing quantum speedup for a wide class
of SDP problems.

B PROOF DETAIL

B.1 PROOF OF LEMMA 3

Lemma 3. Given access to the quantum function value oracle Uf , there exists a quantum circuit
to construct a quantum error bounded gradient oracle Ug : |i⟩ |x⟩ |0⟩ → |i⟩ |x⟩ |gi(x)⟩, where
gi(x) =

f(x+σei)−f(x)
σ is the i-th component of the gradient and σ is the tunable parameter, with

two queries to the quantum function value oracle.
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Proof. By choosing appropriate σ, we now construct a gradient unitary Ug : |i⟩ |x⟩ |0⟩ →
|i⟩ |x⟩ |gi(x)⟩ as follows:

|i⟩ |x⟩ |0⟩ |0⟩ |0⟩ |0⟩
→ |i⟩ |x⟩ |x+ σei⟩ |0⟩ |0⟩ |0⟩ (24)
→ |i⟩ |x⟩ |x+ σei⟩ |f(x+ σei)⟩ |f(x)⟩ |0⟩ (25)

→ |i⟩ |x⟩ |x+ σei⟩ |f(x+ σei)⟩ |f(x)⟩
∣∣∣∣f(x+ σei)− f(x)

σ

〉
(26)

→ |i⟩ |x⟩
∣∣∣∣f(x+ σei)− f(x)

σ

〉
(27)

= |i⟩ |x⟩ |gi(x)⟩ , (28)

where Equation (24) is by adding σ at the i-th entry of the third register, Equation (25) is by applying
Uf based on the second and the third register, Equation (26) is by applying addition and division
based on the fourth and the fifth register, Equation (27) is by uncomputing the third, fourth and fifth
register. For the complexity, this Ug takes two queries of Uf and O(1) elementary gates to get the
approximate gradient.

■

B.2 PROOF OF LEMMA 4

Lemma 4. (Approximate maximum gradient component finding) Given access to the quantum
error bounded gradient oracle Ug : |i⟩ |x⟩ |0⟩ → |i⟩ |x⟩ |gi(x)⟩ s.t. for each i ∈ [d], after
measuring |gi(x)⟩, the measured outcome gi(x) satisfies |gi(x) − ∇fi(x)| ≤ ϵ. There exists a
quantum circuit Amax that finds the index i∗ that satisfies ∇fi∗(x) ≥ maxj∈[d] ∇fj(x) − 2ϵ or
|∇fi∗(x)| ≥ maxj∈[d] |∇fj(x)| − 2ϵ, using O(

√
d log

(
1
δ

)
) applications of Ug , U †

g and O(
√
d)

elementary gates, with probability 1 − δ. For the non-uniform initial state, let p be the initial mea-
surement probability of the maximum component, then the algorithm finds the maximum with query
complexity of O( 1√

p log
(
1
δ

)
).

Proof. We restate the quantum minimum finding algorithm here for reader benefits Durr & Hoyer
(1996): Choose threshold index 0 ≤ j ≤ d − 1 uniformly at random. Repeat the following and
return j when the total running time is more than 22.5

√
d+ 1.4 log(d):

1. Prepare the state
∑d

i |i⟩ |x⟩ |gi(x)⟩ |0⟩.

2. Set the third register to |1⟩ conditioned on the value of the second register smaller than
gj(x)

3. Apply the quantum exponential Grover search algorithm for the third register being 1.

4. Measure the first and the third registers in computation basis, if the measurement result
of the third register is smaller than gj(x), set j to be the measurement result of the first
register.

By Theorem 1 of Durr & Hoyer (1996), the algorithm finds the minimum gi(x) with probability
1/2, O(

√
d) applications of Ug , U †

g and O(
√
d) elementary gates. The probability can be boost to

1− δ with O(log(1/δ)) repeats and taking the minimum of the outputs.

This algorithm can be modified into the quantum maximum absolute value finding algorithm by
setting the third register to |1⟩ conditioned on the value of the second register greater than |gj(x)| in
Step 2, and set j to be the measurement result that is greater than |gj(x)| in Step 4.

However, with the estimated error, the greatest estimated gradient component gmax(x) may not have
the same index of ∇fmax(x). As |gi(x) − ∇fi(x)| ≤ ϵ for each i, in the worst case, there exists
i such that |gi(x)| = |∇fi(x)| + ϵ ≥ |gi∗(x)| = maxj∈[d] |∇fj(x)| − ϵ, the maximum finding
algorithm will give such gi(x) as outcome, which is greater than maxj∈[d] |∇fj(x)| − 2ϵ.
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Similarly, As |gi(x) − ∇fi(x)| ≤ ϵ for each i, in the worst case, there exists i such that
|gi(x)| = |∇fi(x)| − ϵ ≤ |gi∗(x)| = minj∈[d] |∇fj(x)| + ϵ, the minimum finding algorithm
will give such gi(x) as outcome, which is less than minj∈[d] |∇fj(x)|+2ϵ. Similar proof processes
can be employed to derive the error bounds for the minimum/maximum search.

Note that in the matrix case of this work, the state prepared to apply quantum maximum finding
is not a uniform superposition, but the algorithm in Durr & Hoyer (1996) is only for the uniform
superposition input. For the non-uniform input, in the third step, the Grover operator should be
replaced with the amplitude amplification operator. We now prove the complexity of the algorithm
for the non-uniform initial state. For the analysis of the probability of success, assume that there
is no time-out, that is, the algorithm runs long enough to find the minimum. Then we analyze the
probability that an element of a given rank becomes the threshold during the algorithm (Lemma 12)
and then bound the expected number of iterations (Lemma 13), which extend Lemma 1 and 2 in
Durr & Hoyer (1996).

Then, by Lemma 13, the expected running time of finding the maximum is O
(

1√
p1

)
. By Markov’s

inequality, after running the algorithm for twice the expected time, the probability of success is at
least 1/2. The probability can be boost to 1− δ with O(log(1/δ)) repeats and taking the maximum
of the outputs. This extends the Dürr-Høyer minimum finding algorithm to the weighted case and
provides a complexity analysis tailored to singular value distributions for the matrix case of this
work.

■

Lemma 12 (Probability of Selecting Threshold of Rank r). Let p(t, r) be the probability that the
element of rank r (where rank 1 is the maximum) will ever be chosen when the infinite algorithm is
searching among t elements. Then, for r ≤ t, p(t, r) = Pr = pr∑r

j=1 pj
, and for r > t, p(t, r) = 0.

Proof. The case r > t is trivial. For r ≤ t, we proceed by induction on t for fixed r.

Base step: When t = r, the algorithm starts by measuring the initial state, which yields the element
of rank r with probability Pr. Since the relative amplitudes of the basis states constituting the
marked state remain invariant throughout the amplification process, the probability of selecting rank
r as the threshold is exactly Pr.

Inductive step: Assume that for all k ∈ [r, t], p(k, r) = Pr. Now consider t + 1 elements. The
initial threshold is chosen with probability pr for rank r. If the initial threshold has rank greater than
r, then the algorithm will update the threshold only if it finds an element with rank between r and
the current threshold. By the induction hypothesis, the probability that rank r is eventually selected
when starting from a threshold of rank k (where r < k ≤ t+ 1) is p(k − 1, r) = Pr. Therefore,

p(t+ 1, r) =
pr∑t+1
j=1 pj

+

t+1∑
k=r+1

pk∑t+1
j=1 pj

· p(k − 1, r)

=
1∑t+1

j=1 pj

(
pr +

t+1∑
k=r+1

pk · p(k − 1, r)

)
. (29)

By the inductive hypothesis,

p(t+ 1, r) =
1∑t+1

j=1 pj

(
pr +

t+1∑
k=r+1

pk · Pr

)
. (30)

Substitute Pr into the equation, we have

p(t+ 1, r) =
1∑t+1

j=1 pj

(
pr +

t+1∑
k=r+1

pk · pr∑r
j=1 pj

)
. (31)
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Then, after some simple equivalent transformations, we have

p(t+ 1, r) =
pr∑t+1
j=1 pj

(
1 +

∑t+1
k=r+1 pk∑r
j=1 pj

)
=

pr∑t+1
j=1 pj

(∑r
j=1 pj +

∑t+1
k=r+1 pk∑r

j=1 pj

)

=
pr∑t+1
j=1 pj

∑t+1
j=1 pj∑r
j=1 pj

=
pr∑r
j=1 pj

= Pr (32)

This completes the induction. Therefore, the lemma follows. ■

Lemma 13 (Expected Running Time). The expected number of iterations of the quantum maximum
finding algorithm for non-uniform initial state is O

(
1√
p1

)
.

Proof. Let E be the expected number of iterations to find the maximum (rank 1). By Lemma 12,
the probability that the initial threshold has rank r is Pr = pr∑r

j=1 pj
. When the current threshold

has rank r, the quantum search algorithm finds a better element (with rank less than r) in expected
O(1/

√
Sr−1) iterations, where Sr−1 =

∑r−1
j=1 pj .

Since the threshold rank decreases monotonically, each rank r is visited as a threshold at most once,
with probability Pr. Thus,

E =

N∑
r=1

Pr ·O

(
1√
Sr−1

)
= O

(
N∑
r=2

pr
Sr

1√
Sr−1

)
, (33)

where Sr =
∑r

j=1 pj , and for r = 1, S0 = 0 and the search time is 0. We have

N∑
r=2

pr

Sr

√
Sr−1

≤
N∑
r=2

∫ Sr

Sr−1

x−3/2 dx =

∫ 1

p1

x−3/2 dx = 2

(
1

√
p1

− 1

)
= O

(
1

√
p1

)
, (34)

where the first inequality holds because(
1−

√
Sr−1

Sr

)2

≥ 0 =⇒ 1− Sr−1

Sr
≤ 2

(
1−

√
Sr−1

Sr

)

=⇒ pr

Sr

√
Sr−1

≤ 2

(
1√
Sr−1

− 1√
Sr

)
=

∫ Sr

Sr−1

x−3/2 dx. (35)

Therefore, E = O(1/
√
p1), which gives the lemma. ■

B.3 PROOF OF THEOREM 1

Theorem 1. (Quantum FW over the sparsity constraint) By setting σt =
Cf√

dL(t+2)
for t ∈ [T ],

the quantum algorithm (Algorithm 2) solves the sparsity constraint optimization problem for any
precision ε such that f(xT )− f(x∗) ≤ ε in T =

4Cf

ε − 2 rounds, succeed with probability 1− p,

with O
(√

d log
Cf

pε

)
calls to the function value oracle Uf per round.

Proof. By Lemma 2 and the inequality between ℓ2 norm and ℓ∞ norm, we have

|gi(x)−∇fi(x)| ≤ ∥g(x)−∇f(x)∥∞ ≤ ∥g(x)−∇f(x)∥2 ≤
√
dLσ

2
. (36)

By Lemma 4, after the quantum approximate maximum absolute value finding, we have an estimated
maximum gradient component which satisfied

|∇fi∗(x)| ≥ max
j∈[d]

|∇fj(x)| −
√
dLσ (37)
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Set s = −ei∗ , we have

⟨s,∇f(x(t))⟩ = −
∣∣∣∇fi∗(x(t))

∣∣∣
≤ −max

j∈[d]

∣∣∣∇fj(x(t))
∣∣∣+√

dLσt

= −⟨eargmaxi∈[d] |∇if(x(t))|,∇f(x(t))⟩+
√
dLσt

= min
ŝ∈D

⟨ŝ,∇f(x(t))⟩+
√
dLσt. (38)

By the update rule and the definition of the curvature, we have

f(x(t+1)) = f((1− γt)x
(t) + γts) ≤ f(x(t)) + γt⟨s− x(t),∇f(x(t))⟩+ γ2t

2
Cf (39)

Combining Inequality 38 and 39, we have

f(x(t+1)) ≤ f(x(t)) + γt(min
ŝ∈D

⟨ŝ,∇f(x)⟩ − ⟨x(t),∇f(x(t))⟩) +
√
dγtLσt +

γ2t
2
Cf . (40)

Let h(x(t)) := f(x(t))− f(x∗), we have

h(x(t+1)) ≤ h(x(t)) + γt(min
ŝ∈D

⟨ŝ,∇f(x)⟩ − ⟨x(t),∇f(x(t))⟩) +
√
dγtLσt +

γ2t
2
Cf

≤ h(x(t))− γth(x
(t)) +

√
dγtLσt +

γ2t
2
Cf

= (1− γt)h(x
(t)) +

√
dγtLσt +

γ2t
2
Cf . (41)

Set γt = 2
t+2 , σt =

γtCf

2
√
dL

, we have

h(x(t+1)) ≤
(
1− 2

t+ 2

)
h(x(t)) +

(
2

t+ 2

)2

Cf . (42)

Using a similar induction as shown in Jaggi (2013) over t, we have

h(x(t)) ≤ 4Cf

t+ 2
. (43)

We will restate this induction in Lemma 14 for reader benefit.

Thus, set γt = 2
t+2 , σt =

Cf√
dL(t+2)

for all t ∈ [T ], after T =
4Cf

ε − 2 rounds, we have

f(x(T ))− f(x∗) ≤ ε, (44)

for any ε > 0.

In each round, by Lemma 3, two queries to the quantum function value oracle are needed to con-
struct the quantum gradient oracle. Then by lemma 4, O(

√
d log 1

δ ) queries to the quantum gradient
oracle are needed to find the index of the estimated maximum gradient component with successful
probability of 1 − δ. Since each maximum finding succeeds with probability 1 − δ, the probability
that all T iterations succeed is at least 1 − Tδ. By setting δ = p/T , we ensure an overall success
probability of at least 1−p. Therefore,O

(√
d log

Cf

pε

)
queries to the quantum function value oracle

are needed in each iteration. Then the theorem follows.

■

We restate the proof of the induction we use in Theorem 1 for reader benefit.
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Lemma 14. (Jaggi (2013)) If for any t ∈ [N ],

h(x(t+1)) ≤
(
1− 2

t+ 2

)
h(x(t)) +

(
2

t+ 2

)2

Cf , (45)

then
h(x(t)) ≤ 4Cf

t+ 2
. (46)

Proof. For t = 0, we have

h(x(1)) ≤
(
1− 2

0 + 2

)
h(x(0)) +

(
2

0 + 2

)2

Cf = Cf . (47)

Assume that h(x(t)) ≤ 4Cf

t+2 , we have

h(x(t+1)) ≤
(
1− 2

t+ 2

)
h(x(t)) +

(
2

t+ 2

)2

Cf

≤
(
1− 2

t+ 2

)
4Cf

t+ 2
+

(
2

t+ 2

)2

Cf

=

(
1− 1

t+ 2

)
4Cf

t+ 2
+

(
2

t+ 2

)2

Cf

=
t+ 1

t+ 2

4Cf

t+ 2
≤ t+ 2

t+ 3

4Cf

t+ 2
=

4Cf

t+ 3
, (48)

which gives the lemma. ■

B.4 PROOF OF LEMMA 10

The framework of quantum gradient estimator originates from Jordan quantum gradient estimation
method Jordan (2005), but Jordan algorithm did not give any error bound because the analysis of it
was given by omitting the high-order terms of Taylor expansion of the function directly. In 2019, the
quantum gradient estimation method with error analysis was given in Gilyén et al. (2019), and was
applied to the general convex optimization problem van Apeldoorn et al. (2020); Chakrabarti et al.
(2020). In those case, however, O(log n) repetitions were needed to estimate the gradient within an
acceptable error. The query complexity was then improved to O(1) in He et al. (2022; 2024). Here
we use the version of He et al. (2024) (Algorithm 7).

Algorithm 7 Bounded-error Jordan quantum gradient estimation He et al. (2024)

1: Input: point x, parameters r, ρ, ϵ.
2: Output: g(x)

3: Prepare the initial state: d b-qubit registers
∣∣0⊗b, 0⊗b, . . . , 0⊗b

〉
where b = log2

Gρ

4πd2βr
.

Prepare 1 c-qubit register |0⊗c⟩ where c = log2
16πd

ρ
− 1. And prepare |y0⟩ =

1
√
2d

∑
a∈{0,1,...,2d−1} e

2πia

2d |a⟩.

4: Apply Hadamard transform to the first d registers.
5: Perform the quantum query oracle QF to the first d + 1 registers, where F (u) =

2b

2Gr

[
f

(
x+

r

2b

(
u−

2b

2
1

))
− f(x)

]
, and the result is stored in the (d+ 1)th register.

6: Perform the addition modulo 2c operation to the last two registers.
7: Apply the inverse evaluating oracle Q−1

F to the first d+ 1 registers.
8: Perform quantum inverse Fourier transformations to the first d registers separately.
9: Measure the first d registers in computation bases respectively to get m1,m2, . . . ,mn.

10: g(x) = ∇̃f(x) =
2G

2b

(
m1 −

2b

2
,m2 −

2b

2
, . . . ,mn −

2b

2

)T

.
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Lemma 10. (Lemma 1 He et al. (2024)) If f isG-Lipschitz continues and L-smooth convex function
and can be accessed by a quantum function value oracle, then there exists an quantum algorithm
that for any r > 0 and 1 ≥ ρ > 0, gives the estimated gradient g(x), which satisfies

Pr
[
∥g(x)−∇f(x)∥∞ > 8πn2(n/ρ+ 1)Lr/ρ

]
< ρ, (11)

using O(1) applications of Uf and O(d log d) elementary gates. The space complexity is

O
(
d log Gρ

4πd2Lr

)
.

Proof. The primary additional gate overhead originates from the quantum Fourier transformation
(QFT). Each QFT requiresO(log d) elementary gates, and for d such operations, the total additional
elementary gate overhead is O(d log d). Consequently, the additional elementary gate overhead is
O(d log d).

The states after Step 3 will be:

1√
2n

∑
a∈{0,1,...,2n−1}

e
2πia
2n
∣∣0⊗b, 0⊗b, . . . , 0⊗b

〉 ∣∣0⊗c
〉
|a⟩ . (49)

After Step 4:

1√
2bn+c

∑
u1,u2,...,un∈{0,1,...,2b−1}

∑
a∈{0,1,...,2c−1}

e
2πia
2n |u1, u2, . . . , un⟩

∣∣0⊗c
〉
|a⟩ . (50)

After Step 5:

1√
2bn+c

∑
u1,u2,...,un∈{0,1,...,2b−1}

∑
a∈{0,1,...,2c−1}

e
2πia
2n |u1, u2, . . . , un⟩ |F (u)⟩ |a⟩ . (51)

After Step 6:

1√
2bn+c

∑
u1,u2,...,un∈{0,1,...,2b−1}

∑
a∈{0,1,...,2c−1}

e2πiF (u)e
2πia
2n |u1, u2, . . . , un⟩ |F (u)⟩ |a⟩ . (52)

After Step 7:

1√
2bn+c

∑
u1,u2,...,un∈{0,1,...,2b−1}

∑
a∈{0,1,...,2c−1}

e2πiF (u)e
2πia
2n |u1, u2, . . . , un⟩

∣∣0⊗c
〉
|a⟩ . (53)

In the following, the last two registers will be omitted:

1√
2bn

∑
u1,u2,...,un∈{0,1,...,2b−1}

e2πiF (u) |u1, u2, . . . , un⟩ . (54)

And then we simply relabel the state by changing u→ v = u− 2b

2 :

1√
2bn

∑
v1,v2,...,vn∈{−2b−1,−2b−1+1,...,2b−1}

e2πiF (v) |v⟩ . (55)

We denote Formula (55) as |ϕ⟩. Let g = ∇f(x), and consider the idealized state

|ψ⟩ = 1√
2bn

∑
v1,v2,...,vn∈{−2b−1,−2b−1+1,...,2b−1}

e
2πig·v

2G |v⟩ . (56)

After Step 9, from the analysis of phase estimation Brassard et al. (2002):

Pr

[∣∣∣∣Ngi2G
−mi

∣∣∣∣ > e

]
<

1

2(e− 1)
, ∀i ∈ [n]. (57)

Let e = n/ρ+ 1, where 1 ≥ ρ > 0. We have

Pr

[∣∣∣∣Ngi2G
−mi

∣∣∣∣ > n/ρ+ 1

]
<

ρ

2n
, ∀i ∈ [n]. (58)
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Note that the difference in the probabilities of measurement on |ϕ⟩ and |ψ⟩ can be bounded by the
trace distance between the two density matrices:

∥ |ϕ⟩⟨ϕ| − |ψ⟩⟨ψ| ∥1 = 2
√
1− | ⟨ϕ|ψ⟩ |2 ≤ 2∥ |ϕ⟩ − |ψ⟩ ∥. (59)

Since f is L-smooth, we have

F (v) ≤ 2b

2Gr
[f(x+

rv

N
)− f(x)] +

1

2c+1

≤ 2b

2Gr
[
r

2b
g · v + L(rv)2

22b
] +

1

2c+1

≤ g · v
2G

+
2bLrn

4G
+

1

2c+1
. (60)

Then,

∥ |ϕ⟩ − |ψ⟩ ∥2 =
1

2bn

∑
v

|e2πiF (v) − e
2πig·v

2G |2

≤ 1

2bn

∑
v

|2πiF (v)− 2πig · v
2G

|2

≤ 1

2bn

∑
v

4π2(
2bLrn

4G
+

1

2c+1
)2. (61)

Set b = log2
Gρ

4πn2Lr , c = log2
4G

2bnLr
− 1. We have

∥ |ϕ⟩ − |ψ⟩ ∥2 ≤ ρ2

16n2
, (62)

which implies ∥ |ϕ⟩⟨ϕ| − |ψ⟩⟨ψ| ∥1 ≤ ρ
2n . Therefore, by the union bound,

Pr

[∣∣∣∣2bgi2G
−mi

∣∣∣∣ > n/ρ+ 1

]
<
ρ

n
, ∀i ∈ [n]. (63)

Furthermore, there is

Pr

[∣∣∣gi − ∇̃if(x)
∣∣∣ > 2G(n/ρ+ 1)

2b

]
<
ρ

n
, ∀i ∈ [n], (64)

as b = log2
Gρ

4πn2Lr , we have

Pr
[∣∣∣gi − ∇̃if(x)

∣∣∣ > 8πn2(n/ρ+ 1)Lr/ρ
]
<
ρ

n
, ∀i ∈ [n]. (65)

By the union bound, we have

Pr
[
∥g − ∇̃f(x)∥∞ > 8πn2(n/ρ+ 1)Lr/ρ

]
< ρ, (66)

which gives the lemma. ■

B.5 PROOF OF THEOREM 5

Theorem 5. (Quantum FW with bounded-error Jordan algorithm) By setting rt =
ρCf

16πd2(d/ρ+1)L(t+2) for t ∈ [T ], the quantum algorithm (Algorithm 5) solves the sparsity constraint

optimization problem for any precision ε such that f(xT ) − f(x∗) ≤ ε in T =
4Cf

ε − 2 rounds,
with O (1) calls to the function value oracle Uf per round.

Proof. By Lemma 10, with probability greater than ρ, we have

|gi(x)−∇fi(x)| ≤ ∥g(x)−∇f(x)∥∞ ≤ 8πd2(d/ρ+ 1)Lr/ρ. (67)
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Then the maximum component’s coordinate of the estimated gradient i∗ = argmaxi∈[d] |gi(x(t))|
satisfies

|∇fi∗(x)| ≥ max
j∈[d]

|∇fj(x)| − 16πd2(d/ρ+ 1)Lr/ρ (68)

Set s = −ei∗ , we have

⟨s,∇f(x(t))⟩ = −
∣∣∣∇fi∗(x(t))

∣∣∣
≤ −max

j∈[d]

∣∣∣∇fj(x(t))
∣∣∣+ 16πd2(d/ρ+ 1)Lr/ρ

= −⟨eargmaxi∈[d] |∇if(x(t))|,∇f(x(t))⟩+ 16πd2(d/ρ+ 1)Lr/ρ

= min
ŝ∈D

⟨ŝ,∇f(x(t))⟩+ 16πd2(d/ρ+ 1)Lr/ρ. (69)

By the update rule and the definition of the curvature, we have

f(x(t+1)) = f((1− γt)x
(t) + γts) ≤ f(x(t)) + γt⟨s− x(t),∇f(x(t))⟩+ γ2t

2
Cf (70)

Combining Inequality 69 and 70, we have

f(x(t+1)) ≤ f(x(t))+ γt(min
ŝ∈D

⟨ŝ,∇f(x)⟩− ⟨x(t),∇f(x(t))⟩)+ 16πd2(d/ρ+1)Lγtr/ρ+
γ2t
2
Cf .

(71)

Let h(x(t)) := f(x(t))− f(x∗), we have

h(x(t+1)) ≤ h(x(t)) + γt(min
ŝ∈D

⟨ŝ,∇f(x)⟩ − ⟨x(t),∇f(x(t))⟩) + 16πd2(d/ρ+ 1)Lγtr/ρ+
γ2t
2
Cf

≤ h(x(t))− γth(x
(t)) + 16πd2(d/ρ+ 1)Lγtr/ρ+

γ2t
2
Cf

= (1− γt)h(x
(t)) + 16πd2(d/ρ+ 1)Lγtr/ρ+

γ2t
2
Cf . (72)

Set γt = 2
t+2 , rt =

ργtCf

32πd2(d/ρ+1)L , we have

h(x(t+1)) ≤
(
1− 2

t+ 2

)
h(x(t)) +

(
2

t+ 2

)2

Cf . (73)

Using a similar induction as shown in Jaggi (2013) over t, we have

h(x(t)) ≤ 4Cf

t+ 2
. (74)

Thus, set γt = 2
t+2 , rt =

ρCf

16πd2(d/ρ+1)L(t+2) for all t ∈ [T ], after T =
4Cf

ε − 2 rounds, we have

f(x(T ))− f(x∗) ≤ ε, (75)

for any ε > 0.

In each round, by Lemma 10, O(1) queries to the quantum function value oracle are needed to get
the estimated gradient vector. Subsequent steps no longer require queries to the oracle. Therefore,
in each round, O(1) queries to the quantum function value oracle are needed. Then the theorem
follows.

■
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B.6 PROOF OF LEMMA 11

Lemma 11. [Quantum FW update over latent group norm ball] Let ∥·∥G be a latent group norm
corresponding to G = {g1, g2, . . . , g|G|}, and let |g|max = maxj |gj |. Then, there exists a quantum
algorithm computing the Frank-Wolfe update s∗ := argmaxŝ∈∥·∥G -Ball⟨ŝ⊤g(x)⟩ in O(

√
|G||g|max)

calls to Uf .

Proof. Assume that all ∥·∥g are ℓp-norms, i.e. ∥·∥gi
= ∥·∥pi

for some (pi ∈ [1,∞]), and have
quantum access to each gi = {gi,1, gi,2, . . . , gi,|gi|} ⊆ [d] that load gi into quantum registers via

UG |i⟩A |0⟩ → |i⟩A |gi,1⟩ |gi,2⟩ . . .
∣∣gi,|gi|

〉
(76)

where A is a log |G| qubit register. For each |gi,j⟩ one can compute an approximation
∣∣ggi,j (x)

〉
to

the gi,j-th component of the gradient at x by the method in Sec. 3.1.

Noting that maxŝ∈∥·∥p-Ball s
⊤y := ∥y∥∗p and that

s∗ := argmax
ŝ∈∥·∥p-ball

s⊤y (77)

has components

s∗i ∝ sgn(yi)|yi|q−1 (78)

where 1
p + 1

q = 1, one can compute

|i⟩A
|gi|⊗
j=1

|gi,j⟩ |0⟩ |0⟩ |0⟩ |0⟩

→ |i⟩A
|gi|⊗
j=1

|gi,j⟩
∣∣ggi,j (x)

〉
|0⟩ |0⟩ |0⟩

→ |i⟩A
|gi|⊗
j=1

|gi,j⟩
∣∣ggi,j

(x)
〉 ∣∣∣sgn(ggi,j

(x))
∣∣ggi,j

(x)
∣∣qi−1

〉
|0⟩ |0⟩

→ |i⟩A

 |gi|⊗
j=1

|gi,j⟩
∣∣ggi,j

(x)
〉 ∣∣∣sgn(ggi,j

(x))
∣∣ggi,j

(x)
∣∣qi−1

〉∣∣∣∥∥g(x)(gi)

∥∥
pi

〉
|0⟩

→ |i⟩A

 |gi|⊗
j=1

|gi,j⟩
∣∣ggi,j

(x)
〉 ∣∣∣sgn(ggi,j

(x))
∣∣ggi,j

(x)
∣∣qi−1

〉∣∣∣∥∥g(x)(gi)

∥∥
pi

〉 ∣∣∣∥∥g(x)(gi)

∥∥∗
pi

〉
(79)

Apply quantum maximum finding to the last register can then be used to find s∗ in O(
√
|G|) itera-

tions. Each ggi,j
(x) requires 2 queries to Uf , totally O(|gi|) queries for a fixed i. In the above the

index i ranges over i = 1, 2, . . . , |G|. The query complexity is therefore O(
√
|G||g|max), compared

with the classical
∑

g∈G |g|. Then the lemma follows. ■

B.7 PROOF OF THEOREM 6

Theorem 6. [Quantum FW over latent group norm ball] By setting σt =
Cf√

dL(t+2)maxi∈[|G|] |gi|1/pi
for t ∈ [T ], the quantum algorithm (Algorithm 6) solves the latent group norm constraint optimiza-
tion problem for any precision ε such that f(xT )−f(x∗) ≤ ε in T =

4Cf

ε −2 rounds, succeed with

probability 1− p, with O
(√

|G||g|max log
Cf

pε

)
calls to the function value oracle Uf per round.
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Proof. Let the true gradient component be ggi,j
(x), and its estimated value be g̃gi,j

(x) such that∣∣g̃gi,j (x)− ggi,j (x)
∣∣ ≤ √

dLσ
2 . According to Step 7 of the algorithm, the dual norm computation

involves: ∥∥g(x)(gi)

∥∥∗
pi

= max
s∈R|gi|


|gi|∑
j=1

sjggi,j (x)

∣∣∣∣ ∥s∥qi ≤ 1

 , (80)

where 1
pi

+ 1
qi

= 1. The estimated dual norm is:

∥∥g̃(x)(gi)

∥∥∗
pi

= max
s∈R|gi|


|gi|∑
j=1

sj g̃gi,j (x)

∣∣∣∣ ∥s∥qi ≤ 1

 . (81)

The dual norm error can be decomposed as∣∣∣∥∥g̃(x)(gi)

∥∥∗
pi

−
∥∥g(x)(gi)

∥∥∗
pi

∣∣∣ ≤ max
∥s∥qi

≤1

∣∣∣∣∣∣
|gi|∑
j=1

sj
√
dLσ

2

∣∣∣∣∣∣ . (82)

By Hölder’s inequality, for any s satisfying ∥s∥qi ≤ 1, let δ(gi) be the vector in Rgi with all the

component being
√
dLσ
2 we have∣∣∣∣∣∣

|gi|∑
j=1

sj
√
dLσ

2

∣∣∣∣∣∣ ≤ ∥s∥qi · ∥δ(gi)∥pi
≤ ∥δ(gi)∥pi

. (83)

Since ∥δ(gi)∥pi
≤

√
dLσ|gi|1/pi

2 , it follows that∣∣∣∥∥g̃(x)(gi)

∥∥∗
pi

−
∥∥g(x)(gi)

∥∥∗
pi

∣∣∣ ≤ ∥δ(gi)∥pi
≤

√
dLσ|gi|1/pi

2
. (84)

Then, by Lemma 4 and 11, after Step 8, we have∥∥g̃(x)(git )

∥∥∗
pit

≥ max
i∈|G|

∥∥g(x)(gi)

∥∥∗
pi

−
√
dLσ max

i∈[|G|]
|gi|1/pi , (85)

succeed with probability at least 1− δ, with query complexity of O
(√

|G||g|max log
1
δ

)
. Set δ = p

T

to ensure that this procedure succeeds for all T iterations.

The rest parallels the proof of Theorem 1. Set σt =
Cf√

dL(t+2)maxi∈[|G|] |gi|1/pi
for all t ∈ [T ], after

T =
4Cf

ε − 2 rounds, we have
f(x(T ))− f(x∗) ≤ ε, (86)

for any ε > 0. Then the theorem follows. ■

B.8 PROOF OF LEMMA 7

Lemma 7. (Quantum top singular vector extraction) Let there be efficient quantum access to a
matrix M ∈ Rd×d, with singular value decomposition M =

∑d
i σiuiv

T
i . Define p =

σ2
1(M)∑d
i=1 σ2

i

.

There exist quantum algorithms that with time complexity O
(

∥M∥F dpoly log d√
pϵδ2

)
, give the estimated

top singular value σ1 ofM to precision ϵ and the corresponding unit estimated singular vectors u,v
to precision δ such that ∥u− utop∥ ≤ δ, ∥v − vtop∥ ≤ δ with probability at least 1− 1/poly(d).

Proof. Initialize the quantum registers to the uniform superposition state by using Hadamard gates,
we have

H⊗d |0⟩ |0⟩ |0⟩ →
d∑
i

|i⟩ |0⟩ |0⟩ . (87)
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By Assumption 4, we can perform the mapping

d∑
i

|i⟩ |0⟩ |0⟩ → 1

∥M∥F

d∑
i

d∑
j

Mij |i⟩ |j⟩ |0⟩ , (88)

in time Õ(1). Note that

1

∥M∥F

d∑
i

d∑
j

Mij |i⟩ |j⟩ |0⟩ =
1

∥M∥F

k∑
i

σi |ui⟩ |vi⟩ |0⟩ . (89)

Then by the quantum singular estimation algorithm (QSVE, Lemma 5), we have

1

∥M∥F

d∑
i

d∑
j

Mij |i⟩ |j⟩ |0⟩ →
1

∥∇∥F

k∑
i

σi |ui⟩ |vi⟩ |σi⟩ , (90)

with the cost of O
(

∥M∥F poly log d

ϵ

)
. This process of generating such a state is treated as an oracle

which will be invoked multiple times in the quantum maximum finding. This requires that the
errors in the estimates of the singular values should be consistent across multiple runs. Note that
the randomness of QSVE comes from the quantum phase estimation algorithm, and the QSVE
algorithm of Lemma 5 uses a consistent version of phase estimation. This consistency in phase
estimation guarantees that the error patterns are reproducible, thereby maintaining uniform errors
over repeated oracle calls.

Set ϵ ≤ (σ1 − σ2)/2 to ensure that even with the error of singular value estimation, the estimated
largest singular value is still larger than the estimated second largest singular value, which can
ensure that when we use the quantum maximum finding algorithm, if succeed, we will always get
the superposition state corresponding to the largest singular value. By Lemma 4, the cost of finding
the largest singular value is O

(
1√
p

)
. By Lemma 6, O(d log d

δ2 ) repeats are needed to tomography the
corresponding singular vectors of the largest singular value.

Therefore, the overall complexity is O
(

∥M∥F dpoly log d√
pϵδ2

)
. ■

B.9 PROOF OF THEOREM 3

Theorem 3. (Quantum FW with QTSVE) By setting δt =
Cf

2(t+2)σ1(Mt)
and ϵt ≤ (σ1(Mt) −

σ2(Mt))/2 for t ∈ [T ], the quantum algorithm (Algorithm 3) solves the nuclear norm constraint
optimization problem for any precision ε such that f(XT ) − f(X∗) ≤ ε in T =

4Cf

ε − 2 rounds,

with time complexity Õ
(

rσ3
1(Mt)d

(σ1(Mt)−σ2(Mt))ε2

)
for computing the update direction per round, where

r is the rank of the gradient matrix.

Proof. By Lemma 7, set ϵt ≤ (σ1(M) − σ2(M))/2 to ensure that the quantum maximum finding
algorithm, if succeed, will always get the superposition state of the largest singular value. As the
QSVE algorithm from Lemma 5 use a consistent version of phase estimation, the estimated error
of the singular value will keep unchanged. Thus, we can measure the register of singular value
in the computational basic, to check whether the quantum maximum finding succeed, to boost up
the success probability. By Lemma 7, we obtain the estimated singular vectors u,v, which satisfy
∥u− utop∥ ≤ δt, ∥v − vtop∥ ≤ δt, with time complexity O

(
∥M∥F dpoly log d√

pϵδ2

)
.

Note that in the matrix case, the linear optimization subproblem of the Frank-Wolfe framework

min
Ŝ∈D

⟨Ŝ,Mt⟩ s.t. tr
{
Ŝ
}
≤ 1 (91)

is equivalent to the following problem

min
x,y∈Rd

x⊤Mty s.t. ∥x∥, ∥y∥ ≤ 1. (92)
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Therefore, since the update direction S = u⊤v, the solution quality of the linear subproblem can be
bounded with the solution quality of the equivalent problem, that is

⟨S,Mt⟩ −min
Ŝ∈D

⟨Ŝ,Mt⟩ = ⟨u⊤v,Mt⟩ −min
Ŝ∈D

⟨Ŝ,Mt⟩

= u⊤Mtv − min
x,y∈Rd

x⊤Mty

= u⊤Mtv − u⊤
topMtvtop. (93)

Then by Lemma 7 and 15, we have∣∣u⊤Mtv − u⊤
topMtvtop

∣∣ ≤ 2σ1(Mt)δt. (94)

By the update rule and the definition of the curvature, for each round t, we have

f(X(t+1)) = f((1− γt)X
(t) + γtS) ≤ f(X(t)) + γt⟨S −X(t),Mt⟩+

γ2t
2
Cf (95)

Combining Inequality 93, 94 and 95, we have

f(X(t+1)) ≤ f(X(t)) + γt(min
Ŝ∈D

⟨Ŝ,Mt⟩ − ⟨X(t),Mt)⟩) + 2γtσ1(Mt)δt +
γ2t
2
Cf . (96)

Let h(X(t)) := f(X(t))− f(X∗), we have

h(X(t+1)) ≤ h(X(t)) + γt(min
Ŝ∈D

⟨Ŝ,Mt⟩ − ⟨X(t),Mt)⟩) + 2γtσ1(Mt)δt +
γ2t
2
Cf

≤ h(X(t))− γth(X
(t)) + 2γtσ1(Mt)δt +

γ2t
2
Cf

= (1− γt)h(X
(t)) + 2γtσ1(Mt)δt +

γ2t
2
Cf . (97)

Set γt = 2
t+2 , δt =

γtCf

4σ1(Mt)
, we have

h(X(t+1)) ≤
(
1− 2

t+ 2

)
h(X(t)) +

(
2

t+ 2

)2

Cf . (98)

Using a similar induction as shown in Jaggi (2013) over t, we have

h(x(t)) ≤ 4Cf

t+ 2
. (99)

In summary, set γt = 2
t+2 , δt =

Cf

2(t+2)σ1(Mt)
, after T =

4Cf

ε − 2 rounds, we have

f(x(T ))− f(x∗) ≤ ε, (100)

for any ε > 0. Since δt =
Cf

2(t+2)σ1(Mt)
≥ Cf

2(T+2)σ1(Mt)
= ε

2σ1(M) , in each round, the time

complexity of update computing is O
(

∥M∥Fσ2
1(M)d·poly log d√

p(σ1(M)−σ2(M))ε2

)
. Since ∥M∥F ≤

√
rσ1(M), p ≥ 1

r ,

the time complexity is upper bounded by O
(

rσ3
1(M)d·poly log d

(σ1(M)−σ2(M))ε2

)
, where r is the rank of the gradient

matrix. ■

Lemma 15. For any ∥x− x′∥2, ∥y − y′∥2 ≤ δ < 1, ∥x∥, ∥y∥ ≤ 1, we have∣∣∣x⊤My − x′⊤My′
∣∣∣ ≤ 2σ1(M)δ. (101)

Proof. Since x⊤My − x′⊤My′ = (x− x′)⊤My + x′M(y − y′), we have∣∣∣x⊤My − x′⊤My′
∣∣∣ ≤ σ1(M)∥x− x′∥2∥y∥2 + σ1(M)∥x′∥2∥y − y′∥2. (102)

Thus, for any ∥x− x′∥2, ∥y − y′∥2 ≤ δ < 1, ∥x∥, ∥y∥ ≤ 1, we have∣∣∣x⊤My − x′⊤My′
∣∣∣ ≤ 2σ1(M)δ. (103)

■
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B.10 PROOF OF LEMMA 9

Lemma 9. (Quantum power method) Let there be quantum access to the matrix M ∈ Rd×d with
σmax ≤ 1, and to a vector z ∈ Rd. Let γ′min be the lower bound of

∥∥(M⊤M)iz)
∥∥ for all i ∈ [k].

There exists a quantum algorithm that creates a state |y⟩ such that
∥∥|y⟩ − ∣∣(M⊤M)kz

〉∥∥ ≤ δ in
time Õ( k

γ′
min

∥M∥F log(1/δ)), with probability at least 1−O(k/poly(d)).

Proof. Suppose ∥zl −Mzl−1∥ ≤ ϵ with zl =Mzl−1 for l ∈ [L], and z0 = x, we have

∥z1 −Mx∥ ≤ ϵ∥∥z2 −M2x
∥∥ ≤

∥∥z2 −Mz1 +Mz1 −M2x
∥∥

≤ ∥z2 −Mz1∥+
∥∥Mz1 −M2x

∥∥
≤ ϵ+ ∥M(z1 −Mx)∥
≤ ϵ+ σmax∥z1 −Mx∥
≤ (1 + σmax)ϵ∥∥z3 −M3x

∥∥ ≤
∥∥z3 −Mz2 +Mz2 −M3x

∥∥
≤ ∥z3 −Mz2∥+

∥∥Mz2 −M3x
∥∥

≤ ϵ+
∥∥M(z2 −M2x)

∥∥
≤ ϵ+ σmax

∥∥z2 −M2x
∥∥

≤ ϵ+ σmax(1 + σmax)ϵ

≤ (1 + σmax + σ2
max)ϵ. (104)

We use σmin∥x∥ ≤ ∥Mx∥ ≤ σmax∥x∥, where σmax = maxx̸=0 x
⊤Mx/∥x∥2. By induction, we

have ∥∥zL −MLx
∥∥ ≤

∑
i∈[L]

σi−1
maxϵ =

σL
max − 1

σmax − 1
ϵ. (105)

Let γ′min be the lower bound of
∥∥(M⊤M)iz)

∥∥ for all i ∈ [k]. As each multiplication requires time
complexity of Õ( 1γ ∥M∥F log(1/ϵ)) (Lemma 8), k steps of multiplication require time complexity

of Õ
(

k
γ′

min
∥M∥F log(1/ϵ)

)
. Furthermore, since

log
1− σk

1 (M)

1− σ1(M)
≤ − log (1− σ1(M)) ≤ 1

1− σ1(M)
, (106)

if we want
∥∥zk −Mkx

∥∥ ≤ δ, the time complexity will be Õ
(

k∥M∥F

(1−σ1(M))γ′
min

log(1/δ)
)

.

■

B.11 PROOF OF THEOREM 4

Theorem 4. (Quantum FW with QPM) By setting kt = 2C0σ1(Mt) ln d
ε , δt = δ′t = εγ′

min

16σ1(Mt)
for

t ∈ [T ], the quantum algorithm (Algorithm 4) solves the nuclear norm constraint optimization
problem for any precision ε such that f(XT ) − f(X∗) ≤ ε in T =

4Cf

ε − 2 rounds, with time

complexity Õ
( √

rσ4
1(Mt)d

(1−σ1(Mt))γ′3
minε

3

)
for computing the update direction per round, where r is the

rank of the gradient matrix, C0 is a constant and γ′min is the lower bound of
∥∥(M⊤

t Mt)
ib)
∥∥ for all

i ∈ [k].

Proof. Denote (MM⊤)kb as zu, (M⊤M)kb as zv . For the quantum power method, we first use
the Lemma 8 to construct a unitary U1 which computes k steps of multiplication: U1 : |b⟩ |b⟩ →
|zu⟩ |zv⟩ with ∥zu − zu∥2 ≤ δ and ∥zv − zv∥2 ≤ δ (Lemma 9). Then we tomography |zu⟩ |zv⟩
to get u,v. Simalar to the proof of Theorem 3, our goal is to ensure

∣∣∣ u⊤Mv
∥u∥∥v∥ − σ1(M)

∣∣∣ ≤ ε.
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First, we settle down k = 2C0σ1(M) ln d
ε so that we have∣∣∣∣ z⊤

uMzv
∥zu∥∥zv∥

− σ1(M)

∣∣∣∣ ≤ ε/2. (107)

Suppose σ1(M) < 1 and
∥∥(M⊤M)ib)

∥∥ ∈ [γ′min, 1] for i = 1, ..., k, after applying k times of
quantum matrix-vector multiplication (U1) as described by Lemma 8, we obtain |zu⟩ |zv⟩ with
∥zu − zu∥2 ≤ δ and ∥zv − zv∥2 ≤ δ in time T (U1) = Õ

(
k∥M∥F

(1−σ1(M))γ′
min

log(1/δ)
)

. Using
U1, we can tomography |zu⟩ |zv⟩ and obtain u,v with ∥u− zu∥ ≤ δ′, ∥v − zv∥ ≤ δ′ in time
O
(

T (U1)d log d
(δ′)2

)
. By the triangle inequality, we have

∥u− zu∥2 ≤ δ + δ′ ≤ 1, ∥v − zv∥2 ≤ δ + δ′ ≤ 1 (108)

Notice that ∥∥∥∥ u

∥u∥
− zu

∥zu∥

∥∥∥∥ =

∥∥∥∥ u

∥u∥
− u

∥zu∥
+

u

∥zu∥
− zu

∥zu∥

∥∥∥∥
≤
∥∥∥∥ u

∥u∥
− u

∥zu∥

∥∥∥∥+ ∥∥∥∥ u

∥zu∥
− zu

∥zu∥

∥∥∥∥
≤ 2

∥u− zu∥
∥zu∥

, (109)

we have ∥∥∥∥ u

∥u∥
− zu

∥zu∥

∥∥∥∥ ≤ 2
δ + δ′

γ′min

. (110)

Similarly, we have ∥∥∥∥ v

∥v∥
− zv

∥zv∥

∥∥∥∥ ≤ 2
δ + δ′

γ′min

. (111)

Thus, we have∣∣∣∣ u⊤Mv

∥u∥∥v∥
− z⊤

uMzv
∥zu∥∥zv∥

∣∣∣∣ ≤ ∣∣∣∣ u⊤Mv

∥u∥∥v∥
− u⊤Mzv

∥u∥∥zv∥

∣∣∣∣+ ∣∣∣∣ u⊤Mzv
∥u∥∥zv∥

− z⊤
uMzv

∥zu∥∥zv∥

∣∣∣∣
≤ ∥M∥∥v − zv∥

∥zv∥
+

∥M∥∥u− zu∥
∥zu∥

≤ 4
(δ + δ′)σ1(M)

γ′min

. (112)

The remaining proof is similar to that of Theorem 3. Now we set δ = δ′ = εγ′
min

16σ1(M) ,∣∣∣ u⊤Mv
∥u∥∥v∥ − z⊤

u Mzv

∥zu∥∥zv∥

∣∣∣ ≤ ε/2. Therefore,
∣∣∣ u⊤Mv
∥u∥∥v∥ − σ1(M)

∣∣∣ ≤ ε. The time complexity is

Õ(T (U1)d/(δ
′)2) = Õ(

√
rσ4

1(M)d

(1−σ1(M))γ′3
minε

3 ), where r is the rank of the gradient matrix. ■
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E LLM USAGE

Large Language Models (LLMs) were used solely to aid or polish writing. This includes polishing
sentences, improving grammar, and enhancing the readability and fluency of the text.
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