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Abstract001

Reinforcement Learning with Human Feedback002
is an increasingly popular post-training proce-003
dure for Large Language Models (LLMs) to004
better align outputs with human values and005
increase output quality. As LLMs continue006
to be incorporated and improved for various007
modes of natural language communication, one008
might expect this audience-driven optimiza-009
tion to make their language increasingly con-010
verge toward that of human speakers. Thus, we011
investigate, through an information-theoretic012
lens, the changes in the "naturalness" of lan-013
guage in newer LLMs induced by fine-tuning014
and RLHF methods. On the basis of the Uni-015
form Information Density (UID) Hypothesis,016
which posits that humans optimize their pro-017
duction of language to transfer information018
uniformly across a noisy channel, we analyze019
and compare how information is distributed020
within model-generated and human-generated021
text belonging to various domains. With two022
primary metrics of information uniformity, sur-023
prisal variance and local consistency, we find024
that RLHF seems to encourage less variance025
in information rates across generations, while026
fine-tuning decreases uniformity, shifting dis-027
tributions slightly in the direction of human-028
generated text. However, models still exhibit029
significantly superhuman uniformity across var-030
ious domains of text. Our results reveal that031
while modern LLM training and fine-tuning032
paradigms have made progress in approximat-033
ing human-like information distributions, sys-034
tematic differences persist.035

1 Introduction036

An increasing amount of the online text we con-037

sume in our daily lives is either entirely generated038

by LLMs or written with LLM-assistance tools.039

For instance, Brigham et al. (2024) determined that040

there was a notable increase in LLM-generated041

news articles from two different agencies, finding042

that the majority of journalists in their study were043

using LLM tools to generate articles from scratch 044

with minimal editing. Since March 2023, there has 045

also been a marked increase in LLM-generated text 046

on active web pages (Spennemann, 2025). Signifi- 047

cant increases in LLM-influenced texts have also 048

appeared in scientific writing (Liang et al., 2024) 049

and Wikipedia articles (Brooks et al., 2024). 050

As LLM-generated content becomes increas- 051

ingly prevalent, studying differences between ma- 052

chine outputs and human-authored text has become 053

more crucial. While LLM-generated text shares 054

many characteristics with human-written text, to 055

the point where humans are unable to distinguish 056

them from other humans in short conversations 057

(Jones and Bergen, 2025), previous studies have 058

shown a significant decrease in linguistic diver- 059

sity (Guo et al., 2024) and increase in production 060

variability (Giulianelli et al., 2023), and major dif- 061

ferences in other linguistic features (Muñoz-Ortiz 062

et al., 2024). This suggests a potentially concerning 063

divergence from natural human usage. 064

In this study, we adopt an information-theoretic 065

perspective to quantify the "naturalness" of modern 066

LLM outputs, and how they have evolved across 067

modern LLM training methods. In particular, we 068

analyze the effect of alignment techniques such as 069

RLHF on the human likeness of their productions 070

on the basis of the Uniform Information Density 071

(UID) Hypothesis. The UID Hypothesis holds that 072

speakers strive to maintain a constant rate of in- 073

formation throughout an utterance, in order to fa- 074

cilitate listener comprehension (Jaeger and Levy, 075

2006). Therefore, we ask whether alignment tech- 076

niques, which are optimized for listener preference, 077

lead models to generate texts with higher informa- 078

tion uniformity. We find that RLHF techniques 079

actually have little effect on the level of uniformity, 080

but rather generally reduce the variance of unifor- 081

mity in model generations, showing a constraint 082

on information rate patterns. Domain adaptation 083

through supervised fine-tuning, on the other hand, 084

1



has mixed effects on variance between different085

text domains, but generally decreases uniformity,086

aligning generations closer to human texts.087

We make the following contributions:088

1. A corpus of roughly 12,000 generated texts089

annotated with token-level surprisal values.1090

2. A thorough analysis of different training strate-091

gies, including RLHF, instruction tuning, and092

domain adaptation, and their effects on the093

information rate of model generations.094

2 Background095

2.1 Uniform Information Density096

The Uniform Information Density (UID) hypothe-097

sis holds that humans optimize their production of098

language to transfer information uniformly across099

a noisy channel (Fenk and Fenk, 1980; Jaeger and100

Levy, 2006). UID has been shown to affect choices101

in language production across many domains of102

language, including phonology (Aylett and Turk,103

2004), syntax (Jaeger, 2010), and discourse (Gen-104

zel and Charniak, 2002). Cross-linguistic studies105

(Clark et al., 2023) have also suggested grammat-106

ical rules are optimized for UID, reinforcing its107

importance as a foundational property of human108

language and cognition.109

Previous work examining the UID of LLM out-110

puts has revealed significant differences between111

base LLMs (without RLHF) and human-generated112

texts. Venkatraman et al. (2024) demonstrated113

that text generated by LLMs is significantly114

more uniform than comparable human texts, so115

much so that UID-based features can be used to116

detect machine-generated texts. This emphasizes117

that the information rate current LLMs exhibit118

is unnaturally uniform compared to humans.119

Nonetheless, UID measures have also been120

implemented as regularizers for training, resulting121

in LMs producing text with higher entropy, greater122

lexical diversity, and a qualitative increase in123

"naturalness," suggesting that accounting for UID124

in language generation could be the pathway to125

more human-like texts (Wei et al., 2021).126

2.2 RLHF127

Reinforcement Learning from Human Feedback128

(RLHF) is a strategy for reinforcement learning that129

incorporates abstract human preferences through a130

reward model trained on human feedback of LLM131

1https://github.com/anon/dataset_repo

outputs (Kaufmann et al., 2023). When applied 132

in post-training, this method has been especially 133

successful for improving LLM performance on 134

in-context learning and instruction following, re- 135

sulting in the development of more effective and 136

user-facing chatbots that are optimized for conver- 137

sation and dialogue rather than straight generation 138

of language (OpenAI, 2022; OpenAI et al., 2024). 139

Though RLHF seems to improve safety and per- 140

formance, this method can lead to an "alignment 141

tax", wherein the diversity and natural variability of 142

outputs is reduced (Askell et al., 2021; Kirk et al., 143

2024; Go et al., 2023; Lin et al., 2024). However, 144

this is hard to measure objectively. 145

Various studies have made efforts to measure the 146

improvements in the generations of the language 147

model. Ouyang et al. (2022) introduced Instruct- 148

GPT, OpenAI’s first model fine-tuned with RLHF, 149

where they received direct feedback from human 150

annotators on LLM outputs, including qualitative 151

measures of instructions outside the RLHF distri- 152

bution and judgments of toxicity and bias. The au- 153

thors reported quantitative improvements on certain 154

benchmark datasets measuring truthfulness and tox- 155

icity, with a notable lack of improvement on LLM 156

bias benchmarks such as Winogender (Rudinger 157

et al., 2018) and CrowSPairs (Nangia et al., 2020). 158

Other past methods evaluate the effect of RLHF on 159

the reward models’ performance (Kaufmann et al., 160

2023) or on the LLM’s generalisability and output 161

diversity (Kirk et al., 2024). However, these met- 162

rics do not directly measure the human-likeness of 163

the LLM outputs or explicitly compare the outputs 164

to human-generated text. Instead, these compar- 165

isons remain implicit, assuming that human anno- 166

tators prefer more "human-like" productions. 167

Under the UID hypothesis, humans may engage 168

in audience design by optimizing for a more uni- 169

form information rate in consideration of process- 170

ing constraints on the comprehender (Jaeger, 2010). 171

Thus, we hypothesize that the addition of RLHF 172

fine-tuning to a BASE model increases the unifor- 173

mity of model outputs. With RLHF fine-tuning, a 174

model would learn similar facets of audience de- 175

sign from training on abstract human preferences, 176

and thus an increase in uniformity in consideration 177

of the end user. Due to human production con- 178

straints, an LLM would also be better positioned 179

than a human producer to optimize its information 180

rate for a comprehender. In this way, RLHF would 181

diverge the model from human-like information 182

rates, making outputs less similar to natural lan- 183
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guage from a UID perspective.184

3 Dataset Generation185

To investigate information density patterns across186

human and LLM-generated text, we create paral-187

lel corpora of comparable texts produced by both.188

Rather than asking models to imitate human writ-189

ing explicitly, we follow a minimal-intervention190

approach similar to previous ’Turing Test’ bench-191

marks (Liu et al., 2023; Uchendu et al., 2021). For192

each domain, we collect human-generated texts and193

then prompt LLMs to generate starting from the194

same initial context (typically the first sentence/few195

sentences). We perform a minimal amount of196

prompt engineering to get LLM generations that are197

comparable to the corresponding human-written198

text, seeking to reduce generation artifacts while199

allowing us to generate from near-identical starting200

points without explicitly biasing models towards201

human-like information flow patterns.2202

3.1 Datasets and Prompting203

To rigorously test the information density of model204

generations across multiple text domains, we205

source human-generated text from four different206

datasets. All datasets are in English, or we subsam-207

ple the English texts only.3We discuss prompting208

strategies and their possible effects on analysis in209

more detail in section 6.210

CNN/DailyMail. To explore UID in model com-211

pletions in the domain of professional writing, we212

use the CNN/DailyMail dataset introduced by (Nal-213

lapati et al., 2016), which consists of news articles214

written by journalists from CNN and the Daily-215

Mail. Articles from CNN were written between216

April 2007 and April 2015, while those from the217

DailyMail were written between June 2010 and218

April 2015. We choose this dataset because the219

articles all predate the release of ChatGPT and the220

widespread use of LLMs in writing news articles,221

limiting data contamination.4 For prompting, the222

2One notable exception was the Llama 2 7b 32k In-
struct model. Examples and explanations are included in
Appendix A.

3While the datasets we use were originally intended for
tasks such as text summarization, sentiment analysis, etc, we
use them here as comparable, human-generated text.

4It is possible, and even highly likely, that this data was
used in the training of the models used in these experiments.
However, it is more important in our case to avoid the inclu-
sion of LLM-generated or LLM-assisted text in our human-
generated data to avoid misconceptions about natural human
uniformity.

source and first sentence of each article was given 223

to each model as past context, with no explicit 224

prompt or instruction template. The model was 225

then allowed to fill in the rest of the article. 226

WritingPrompts. To extend our analysis to the 227

creative writing domain, we use the Writing- 228

Prompts dataset (Fan et al., 2018), a corpus contain- 229

ing pairs of prompts and stories written by Reddit 230

users in the subreddit r/WritingPrompts. Each story 231

is loosely inspired by its associated prompt. For 232

our purposes, we ignore the prompts, and feed the 233

first sentence of each story to the model in a sim- 234

ilar fashion to the CNN/DailyMail dataset. Since 235

a writing prompt could spawn multiple different 236

stories, this completion prompting method encour- 237

ages more similarity between the model-generated 238

story and the human-generated story. 239

DailyDialog. We use the DailyDialog dataset (Li 240

et al., 2017) to test the uniformity of model gener- 241

ations in dialog completions, consisting of multi- 242

turn, human-to-human dialog designed to reflect ev- 243

eryday communication, and manually transcribed 244

to limit noise. Each dialogue d consists of a se- 245

quence of turns d = {t1, t2, ..., tn} where n repre- 246

sents the total number of turns in dialogue d. 247

For each dialogue d, we use a sliding context 248

window approach, where our minimum context 249

length is kmin = 5 to ensure sufficient dialogue 250

history. For i > kmin turns, we created multiple 251

prompts by having incremental sliding windows. 252

For each prompt, we extracted the dialogue up to 253

turn i, where i is an increasing odd number from 254

kmin to the total number of turns in our dialogue. 255

Our set P of prompts P = {p1, ..., p2} ∈ P can 256

be represented as: 257

{{t1, ..., t5}, {t1, ..., t7}, {t1, ..., t9}, ...pn} 258

The model is given each dialogue stub, and allowed 259

to complete the rest of the dialogue (with no ex- 260

plicit prompting). Finally, all the generations from 261

all stubs of a dialogue are combined to represent 262

the model-generated dialogue. 263

WildChat. Finally, to test the UID of model 264

outputs in a human-chatbot dialog environment, 265

we used the WildChat dataset (Zhao et al., 2024), 266

which consists of full conversations between users 267

and ChatGPT. While multiple languages exist in 268

the dataset, only English language prompts were 269

used. WildChat differs from the others in that there 270

is no "human-generated text" to compare to. The 271
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motivation for including this dataset is to compare272

the UID of model responses in the above domains273

to the UID in response to diverse human prompts274

that were meant for LLMs.275

3.2 Models276

We prepare generations from various language277

models, categorized into base, instruction tuned,278

domain-adapted to specific domains, and chat279

(RLHF) models. For our first experiment, we com-280

pare base, instruction-tuned, and RLHF models281

from the Llama 2 (Touvron et al., 2023) and Mis-282

tral (Jiang et al., 2023; Zheng et al., 2024) families283

of models.5284

BASE models. As a baseline, we generate com-285

pletions with the base versions of each model fam-286

ily, trained on next-token generation alone. In our287

first experiment, these models are used out-of-the-288

box, without further fine-tuning.289

INSTRUCTION-TUNED models. INSTRUCTION-290

TUNED models are LLMs fine-tuned on corpora of291

instruction-output pairs. This is done to improve292

the LLM’s ability to follow instructions from a user293

and to adapt to a variety of tasks in-context. To294

preserve comparability, we use instruction-tuned295

versions of the same BASE models used above.296

RLHF models. To analyze the effect of RLHF297

on model UID, we used models fine-tuned using298

RLHF, called chat models (see section 2 for more299

on RLHF). We choose the RLHF fine-tuned ver-300

sions of the same BASE models as above.301

3.3 UID Calculation302

For each text, we first calculate token-level sur-303

prisal. Surprisal, sometimes called the Shannon304

information following (Shannon, 1948), is defined305

as the negative log-probability. We measure the sur-306

prisal of each token, conditioned on some previous307

context window. We estimate conditional proba-308

bilities using GPT-2 (Radford et al., 2019) with a309

context size of 1024 tokens.310

I(wi) = − log2(P (wi|w<i))311

With the surprisal values, we then evaluated the312

UID of the generated texts using three classes of313

metrics, following Meister et al. (2021) and Venka-314

traman et al. (2024):315

5The specific models from the Mistral family are Mistral
7b v0.1, Mistral 7b Instruct v0.1, and Mistral Plus 7b. The
models from the Llama family are Llama 2, Llama 2 7b, Llama
2 7b 32k Instruct, and Llama 2 7b Chat.

Mean Surprisal Mean surprisal measures the 316

average information content in a document w⃗: 317

µsurprisal (w⃗) =
1

|w⃗|

|w⃗|∑
i=1

I(wi). (1) 318

While not itself a measure of UID, it nevertheless 319

can be analyzed to demonstrate the tendencies of 320

a generation method in terms of information con- 321

tent. In this case, |w⃗| is the size of the document, 322

meaning the number of tokens in the document, 323

whereas I(wi) is the surprisal of the ith token in 324

the document. 325

Pairwise Surprisal Distance/Local Consistency. 326

Local consistency, defined by Wei et al. (2021), 327

measures the average change in surprisal between 328

every pair of tokens wi−1 and wi in a document 329

w⃗, measured by some distance function ∆(x1, x2) 330

(see Equation 4): 331

UIDpair (w⃗) =
1

|w⃗|

|w⃗|∑
i=2

∆(I(wi−1), I(wi)). (2) 332

In other words, a document is considered uniform 333

if it has a lower average pairwise distance, meaning 334

it has consistently small changes in surprisal go- 335

ing from one word to the next. This metric aligns 336

with a hypothesis of optimizing for locally smooth 337

information contours. Information rate could vary 338

widely on a more macro scale, but uniformity 339

would be upheld so long as the local transitions 340

are small. 341

Surprisal Variance. Surprisal variance measures 342

the mean distance between the surprisal of each 343

word wi in a document w⃗ and the mean surprisal 344

of that document µsurprisal (w⃗), according to a dis- 345

tance function ∆(x1, x2): 346

UIDvariance(w⃗) =
1

|w⃗|

|w⃗|∑
i=2

∆(I(wi), µ). (3) 347

A document is considered uniform if it has low 348

variance in surprisal, meaning the surprisal values 349

of all words in the document are close to the mean 350

surprisal of the document. Surprisal variance fits a 351

hypothesis of optimizing for an overall information 352

rate, rather than local consistency in information. 353

For this metric, surprisal values can vary quite a 354

lot between words without harming uniformity, as 355

long as they do not deviate too far from the mean. 356

4



Distance Function. We use the Squared Differ-357

ence function for ∆, following (Meister et al.,358

2021):359

∆(x1, x2) = (x1 − x2)
2. (4)360

4 Experiment 1 - Instruction-tuning and361

RLHF362

We hypothesize that RLHF confers some influence363

of audience design to the model through human364

feedback, which would increase the uniformity of365

its generations. We test this hypothesis by compar-366

ing RLHF and BASE models. Additionally, we ask367

whether there are similar effects due to the align-368

ment of the model to more chatbot-like through369

instruction-tuning, or whether human feedback is370

unique. In our first experiment, we test this by com-371

paring the uniformity of generations across RLHF,372

INSTRUCTION-TUNED, and BASE models.373

4.1 Methods374

We sample 300 human-generated documents from375

each dataset, and extract prompts using the de-376

scribed strategies in subsection 3.1. Each prompt377

is passed to each model for generation. In total,378

300 documents are generated by each model per379

dataset, for a total of 1200 documents per model.380

Outliers and empty generations are removed from381

consideration.6 The human sources used to gener-382

ate each prompt are saved for all datasets except383

for WildChat, totaling 900 human-generated docu-384

ments. Then, we calculate mean surprisal, surprisal385

variance, and local consistency for each document386

using the equations from subsection 3.3.387

4.2 Results388

4.2.1 Mean Surprisal389

Mean surprisal values are shown in Table 1. Mean390

surprisal varied greatly between models and hu-391

mans. All models produced generations with lower392

average mean surprisal than human generations, in-393

dicating that models typically generate more stereo-394

typical texts than humans.395

4.2.2 UID Metrics396

Model Class Analysis. Generally, all classes of397

model had much higher uniformity than human398

texts, as shown by Figure 1. Differences between399

model classes within families are somewhat con-400

sistent but smaller in magnitude. Generally, both401

6More on outlier removal can be found in Appendix B.

Model Median Mean Std

Human Texts 4.83 4.93 0.80
Llama Base 4.01 4.02 0.94
Llama Instruct 3.77 3.85 1.08
Llama RLHF 3.79 3.93 0.88
Mistral Base 4.00 4.07 0.87
Mistral Instruct 3.72 3.95 1.07
Mistral RLHF 4.05 4.15 0.74

Table 1: Summary statistics of surprisals of documents
across models. Human texts had the highest mean, while
Llama 2 7b 32k Instruct had the highest variance.

Model Median Mean Std

Human Texts 17.48 18.66 4.79
Llama Base 11.87 13.44 5.88
Llama Instruct 12.14 13.22 5.19
Llama RLHF 12.48 13.41 5.17
Mistral Base 12.17 13.21 5.46
Mistral Instruct 11.60 12.75 4.98
Mistral RLHF 12.53 13.61 5.07

Table 2: Summary statistics for surprisal variance.
Higher values mean less uniformity.

instruction tuning and RLHF decrease uniformity 402

in the model generations. Table 2 and Table 3 dis- 403

play the standard deviations of each metric for each 404

model, that is, how much a document’s UID devi- 405

ates on average from the mean UID score. Within 406

each family, the RLHF model had a much lower 407

standard deviation for both metrics than its corre- 408

sponding BASE model. The effect of instruction 409

tuning was less consistent. 410

Figure 2 breaks these comparisons down by 411

dataset, aggregating across model families. Across 412

all datasets, the human-model relationship seems to 413

hold true: human texts are, in general, less uniform, 414

no matter the text domain. Additionally, BASE mod- 415

els in the dialog dataset are more more uniform than 416

their instruction-tuned counterparts when looking 417

at local consistency, but close to equally uniform in 418

surprisal variance. The same is true of WildChat. 419

Model Family Analysis. Differences in center 420

between model families are minimal in both met- 421

rics, as seen in Figure 1. However, differences in 422

spread are more evident. Across metrics and for all 423

model classes, models of the Llama family had a 424

slightly higher variance in uniformity than Mistral. 425
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Model Median Mean Std

Human Texts 33.80 35.63 9.03
Llama Base 21.64 24.82 12.89
Llama Instruct 22.89 25.12 11.06
Llama RLHF 24.22 26.78 11.56
Mistral Base 21.86 24.42 12.60
Mistral Instruct 22.59 25.71 13.34
Mistral RLHF 23.82 25.98 10.01

Table 3: Summary statistics for local consistency.
Higher values mean less uniformity.

Figure 1: UID metrics for each model family, aggre-
gated across all datasets and compared to human-UID.

4.3 Discussion426

The effects of RLHF on information uniformity do427

not align with our initial hypothesis that RLHF428

would increase uniformity. If anything, RLHF429

tends to result in slightly less uniform information430

rate compared to the base models. Several expla-431

nations are possible: First, UID is in tension with432

other desirable properties, such as brevity, which433

human annotators might prioritize. Second, UID434

in model-generated texts is already consistently435

higher than in human texts, so if humans prefer436

more human-like texts, then RLHF should decrease437

UID. Or, perhaps there is a ceiling above which hu-438

mans do not prefer higher UID.439

When we consider all the texts generated by a440

model, the RLHF models generate texts with more441

similar UID scores than the base models. Thus442

RLHF may constrain the range of information pat-443

terns a model produces, creating more consistent444

(though not necessarily uniform) information flow445

patterns. The effect of instruction tuning, on the446

other hand, is more sensitive to model family, likely447

Figure 2: UID metrics for each dataset and model class,
aggregated for each model family.

due to specific datasets or strategies in supervised 448

fine-tuning. 449

The results for specific domains reveal that 450

INSTRUCTION-TUNED and RLHF models have 451

more varied information contours than BASE mod- 452

els in conversational contexts (via the DailyDia- 453

log dataset), potentially reflecting more naturalistic 454

turn-taking patterns. This suggests that while these 455

models may not fully replicate human information 456

density patterns, these training methods do produce 457

domain-appropriate information structuring. 458

5 Experiment 2: Domain Adaptation and 459

Audience Design 460

Our initial analysis reveals that all language models, 461

regardless of training method, produce text with 462

significantly higher information uniformity than 463

human-written text. However, subtle differences 464

between model classes warrant a deeper investiga- 465

tion into the role of text generation across different 466

domains. A potential confound in the above ex- 467

periments is that the effects we observe could be 468

due to fine-tuning on the chat domain, rather than 469

learning to optimize human preferences or perform 470

in-context learning. To determine the impact of 471

this potential confound, we examine variants of the 472

BASE models that have undergone domain-specific 473

fine-tuning, or domain adaptation. 474

While our first experiment focused primarily on 475

comparing BASE models with models, we extended 476

our analysis to include fine-tuned models as a dis- 477

tinct category, exploring two competing hypothe- 478

ses: 479
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1. Any form of domain-specific fine-tuning (in-480

struction tuning or domain adaptation) im-481

pacts information density patterns in similar482

ways.483

2. RLHF and to a lesser extent instruction tuning484

induce distinct changes in information rate485

that cannot be fully replicated through other486

fine-tuning approaches.487

5.1 Methods488

For Experiment 2, we create several custom fine-489

tuned models based on the Llama 2 7B architec-490

tures. We fine-tune the Llama 2 7B full model on491

each domain before encoding the models into an492

8-bit quantization, in the GGUF weights format for493

inference in ‘llama.cpp‘. Then, we test the four494

resulting fine-tuned models.495

Experimental Setup. We use the same datasets496

and surprisal calculation methodology as in Exper-497

iment 1. For each domain (news, dialogue, creative498

writing), we compare the following models: (1)499

BASE models (no fine-tuning), (2) INSTRUCTION-500

TUNED models (general instruction following), (3)501

DOMAIN-ADAPTED models (trained on target do-502

main), (4) CROSS-DOMAIN FINE-TUNED models503

(trained on other domains).504

5.2 Results505

5.2.1 Mean Surprisal506

Model WC CNN DD WP

Human Texts N/A 4.29 5.22 5.04
Llama Base 4.09 4.11 3.82 4.03
Llama Instruct 3.50 3.91 3.72 3.94
Llama RLHF 3.49 3.51 4.27 3.93
Llama WC 3.91 4.16 4.17 4.51
Llama CNN 4.20 3.91 4.52 4.55
Llama DD 4.10 4.50 4.40 4.51
Llama WP 4.18 4.28 4.33 4.50

Table 4: Median values for mean surprisal across fine-
tuned models on the WildChat (WC), CNN/DailyMail
(CNN), Daily Dialog (DD), and WritingPrompts (WP)
datasets.

Table 4 shows median values for mean surprisal507

for the models in Experiment 2 on each of the data508

domains. Across the domains, we fail to find con-509

sistent evidence that supervised domain adaptation510

meaningfully alters mean surprisal. The broader511

UID picture echoes this null result: fine-tuned mod- 512

els do not appear to have an effect in correcting for 513

this information-rate disparity; they remain sub- 514

stantially more uniform than human texts, and the 515

degree of deviation is unaffected by whether the 516

domain is domain-matched or cross-domain.

Model WC CNN DD WP

Human Texts N/A 16.17 20.80 17.28
Llama Base 14.92 14.06 10.74 10.38
Llama Instruct 13.20 12.34 11.75 11.19
Llama RLHF 13.58 11.95 13.20 11.66
Llama WC 14.23 13.09 13.05 13.07
Llama CNN 15.07 12.42 14.38 13.39
Llama DD 13.84 14.99 12.84 12.17
Llama WP 14.33 13.01 13.94 12.01

Table 5: Median values for surprisal variance across
fine-tuned models and datasets.

517

5.2.2 UID Metrics 518

Model WC CNN DD WP

Human Texts N/A 31.09 36.76 34.52
Llama Base 24.54 25.80 18.56 20.18
Llama Instruct 25.19 23.50 21.19 22.42
Llama RLHF 26.57 23.14 26.45 23.67
Llama WC 25.61 26.88 23.94 25.48
Llama CNN 26.57 21.98 25.93 24.24
Llama DD 24.83 27.26 22.42 24.38
Llama WP 24.71 24.87 25.05 22.55

Table 6: Median values for local consistency across fine-
tuned models and datasets.

Table 6 and Table 5 show that the DOMAIN- 519

ADAPTED models and CROSS-DOMAIN FINE- 520

TUNED models tended to be about as uniform, if 521

slightly less, than their BASE counterparts, suggest- 522

ing similar information rates. This matches the 523

effect seen in RLHF models in Table 3. However, 524

unlike RLHF models in Experiment 1, there is no 525

evidence for a reduction in variance due to domain 526

adaptation, as seen in Figure 3 Humans still tended 527

to be less uniform than DOMAIN-ADAPTED and 528

CROSS-DOMAIN FINE-TUNED models both within 529

individual datasets (Figure 3) and when aggregated 530

across datasets (Figure 4), which is consistent with 531

our results from Experiment 1. 532
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Figure 3: UID metrics for Llama models (including fine-tuned models) across datasets.

Figure 4: UID metrics for Llama models (including fine-tuned models), aggregated across datasets.

5.3 Discussion533

We observe that DOMAIN-ADAPTED models ex-534

hibit a similar lack of effect on the center of unifor-535

mity distributions as RLHF models in Experiment536

1. This confirms that the lack of shift in center537

was not due to any special effects in Experiment 1538

from fine-tuning on a dialogue domain; fine-tuning539

in general seems to have little-to-no effect on the540

uniformity of model generations. However, there541

were differences in the effect on variance in unifor-542

mity. Our results show that domain adaptation does543

not increase consistency in information flow when544

comparing to their base counterparts. This suggests545

that human preferences push not for more or less546

uniform text, but rather for a more consistent rate547

of information across different generations.548

6 Conclusion549

Our study investigated how different fine-tuning550

paradigms – particularly, instruction tuning and551

Reinforcement Learning with Human Feedback552

(RLHF) – affect the distribution of information in553

language model outputs, as measured by the Uni-554

form Information Density (UID) hypothesis. Con-555

trary to our initial hypothesis, RLHF did not uni-556

formly increase information uniformity. Rather, it557

constrained the range of UID patterns a model pro-558

duces by reducing variance across generated texts,559

while leaving central tendencies relatively the same560

from the BASE model, or even lowering uniformity561

slightly. Our domain adaptation experiments re-562

vealed that the effects of RLHF are not replicable563

by simply to fine-tuning on a dialogue domain or564

any other domain, suggesting that training on hu- 565

man preference exhibits some special effect on the 566

consistency of uniformity. Furthermore, aligning 567

models to particular text genres typically has little 568

effect on uniformity. 569

Overall, we corroborate earlier findings that 570

modern LLMs exhibit higher information unifor- 571

mity than human-authored text across domains, and 572

demonstrate that even more modern fine-tuning 573

paradigms have little to no effect on the unifor- 574

mity of model generations. While RLHF does 575

have an effect of information uniformity, it nei- 576

ther increases uniformity as predicted if the model 577

is learning audience design principles, nor signifi- 578

cantly decreases uniformity to human-like levels. 579

Limitations 580

Model Prompting 581

In this paper, we adopt specific prompting strate- 582

gies to encourage the model to produce comparable 583

generations without explicitly instructing it to gen- 584

erate human-like texts. We devise these prompting 585

strategies heuristically, and we do not conduct a 586

comprehensive comparison of strategies and their 587

overall effect on information rate. Future work 588

could expand on this limitation by measuring the 589

effect of giving each model more explicit instruc- 590

tions, rather than providing it with context and 591

allowing it to "fill in" the remaining documents, 592

as was done for the CNN/DailyMail and Writing- 593

Prompts datasets. 594
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Language limitations595

As mentioned in subsection 3.1, we use only596

English-language datasets in our analysis. While597

studies have upheld the UID hypothesis cross-598

linguistically (Clark et al., 2023), the behavior of599

LLMs in different languages could differ, espe-600

cially for low-resource languages.601

UID Calculation602

We calculate UID using GPT-2 surprisal values, fol-603

lowing the practice of (Venkatraman et al., 2024).604

We chose GPT-2 partly because it has higher pre-605

dictive power for human reading times than very606

large LMs (Lopes Rego et al., 2024), making it a de-607

cent estimate for human cognitive load. However,608

each model has its own predictions for next-token609

probability. It is possible that the internal measure610

of information rate of each model differs from the611

estimation according to GPT-2’s probability mea-612

sures. This raises the more important question of613

what the best method for estimating information614

rate is. Biases have been observed in LLMs as615

models for human cognitive behavior (Haller et al.,616

2024). Future work could delve deeper into cog-617

nitive modeling for a more accurate estimation of618

information rate.619

Fine Tuning620

Due to computational restraints, we use 8-bit621

quantizations of the models through GGUF and622

llama.cpp, and fine-tuned using parameter efficient623

methods via low rank adaptation (LoRA). LoRA624

allows us to specialize Llama-7B cheaply, but its625

low-rank updates touch on only a fraction of the626

network, so deeper discourse patterns and UID are627

not as affected as if we had used a broader architec-628

ture, longer full-precision or LoRA runs, and a loss629

that directly rewarded UID for fuller experimenta-630

tion.631

Potential Risks632

Due to the language limitations described above,633

this research is at risk of overgeneralizing. It should634

be noted that the results have not been shown to635

generalize to languages other than English, and636

further analysis would be needed before drawing637

such conclusions.638

Another potential risk of this research is in guid-639

ing the obfuscation of LLM-generated text. Since640

we have established known disparities in unifor-641

mity between human text and model generations,642

work could be done to account for this in pursuit643

of hiding LLM use. We hope to mitigate this risk 644

by presenting no clear answer as to how to produce 645

generations with more human-like UID. It should 646

also be noted that UID metrics are not a stand-alone 647

authenticity metric of human natural language in 648

the absolute. Our UID metrics were measured us- 649

ing GPT-2 probabilities; mismatches between that 650

lens and real-world comprehension may mislead 651

less informed readers. 652

Additionally, the adapters we used were trained 653

on news and fictional pieces that inherently con- 654

tains bias. 655
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2 7b 32k Instruct model produced artifacts such as 879
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in its generations. In order to clean up generations, 881

the Llama 2 chat template was applied to every 882

prompt with an instruction preceding the text snip- 883

pet. Special strings such as [INST] and [/INST] 884

were added as stop strings, such that the model 885

generation was halted upon observation of these 886

strings. 887

B Outlier Removal 888

In our dataset generation, we tried to remove as 889

many unreasonable generations as possible through 890

a minimal prompt engineering process. However, 891

there still remained texts that had unreasonable 892

surprisal values, leading to extremely low or high 893

uniformity. Qualitative assessment of these outliers 894

revealed that many were nonsensical generations 895

or, in the case of many WildChat generations, not 896

in English. This led to the generation of tokens 897

that had extreme surprisal values, such as charac- 898

ters in another language or programming language 899

syntax. Some prompts also led to empty genera- 900

tions, from which a uniformity calculation would 901

be impossible. 902

To clean our dataset, we removed any documents 903

that displayed above two times the human maxi- 904

mum or below one-half the human minimum for ei- 905

ther of the two uniformity metrics, including empty 906

generations. This was done with consideration of 907

our overall motivation of concerns over unnatural- 908

ness in LLM-generated content. If a human were 909

trying to generate, say, a news article with an LLM, 910

such outliers would immediately stand out to them 911

and be discarded. Removing such outliers reduced 912

our total number of generations from 12,000 to 913
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Batch Size 8
Gradient Accumulation 4

Epochs 5
Optimizer AdamW (fused)

Learning Rate 2× 10−5 (cosine decay)
Warm-up 10% of steps

Weight Decay 0.01
FP16 Enabled

Early Stopping Patience=3 evaluation steps

Table 7: Hyperparameter Configuration

11,674. On average, less than 3% of texts were914

removed, and the distribution of removed texts915

was even across models and datasets. Much of916

the analysis was unchanged, but this corrected for917

over-estimations of variance in uniformity for the918

INSTRUCTION-TUNED models in particular.919

C Fine Tuning920

For each target domain (news, human-human &921

human-chatbot dialogue, creative writing), we col-922

lected n > 2000 documents, cleaned whitespace923

and removed instances shorter than 50 characters.924

Datasets were shuffled and split 80/10/10 into train,925

validation, and test sets.926

We fine-tuned the Llama-2-7B base checkpoint,927

with the following configuration for parameter-928

efficient updates via LoRA (low rank adaptation):929

• Target modules: q_proj, k_proj, v_proj,930

o_proj, gate_proj, up_proj, down_proj.931

• Rank r = 24, α = 48, dropout = 0.05.932

For tokenization, we used the HuggingFace Llama-933

2 tokenizer and default settings. We performed a934

heuristic search before a grid search over smaller935

parameter ranges to optimize for hyperparameters.936

For inference, we merged the LoRA adapters onto937

the Base GGUF weights before converting to an938

8-bit quantization, using the same generation pa-939

rameters as the base model.940

12


	Introduction
	Background
	Uniform Information Density
	RLHF

	Dataset Generation
	Datasets and Prompting
	Models
	UID Calculation

	Experiment 1 - Instruction-tuning and RLHF
	Methods
	Results
	Mean Surprisal
	UID Metrics

	Discussion

	Experiment 2: Domain Adaptation and Audience Design
	Methods
	Results
	Mean Surprisal
	UID Metrics

	Discussion

	Conclusion
	Llama Instruct Prompting
	Outlier Removal
	Fine Tuning

