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ABSTRACT

A major challenge in physics-informed machine learning is to understand how
the incorporation of prior domain knowledge affects learning rates when data are
dependent. Focusing on empirical risk minimization with physics-informed reg-
ularization, we derive complexity-dependent bounds on the excess risk in proba-
bility and in expectation. We prove that, when the physical prior information is
aligned, the learning rate improves from the (slow) Sobolev minimax rate to the
(fast) optimal i.i.d. one without any sample-size deflation due to data dependence.

1 INTRODUCTION

Physics-informed machine learning encompasses a wide taxonomy of approaches that combine
physical knowledge and learning algorithms to address two main tasks: (i) enhancing physical mod-
els (given, e.g., by systems of partial differential equations) through data-driven methods to improve
their accuracy and numerical solvability; (ii) improve the learning algorithms’ performance by in-
cluding physical information, e.g., as additional constraint (Karniadakis et al., 2021; Meng et al.,
2025). Focusing on the second class of methods, surveyed in Rai & Sahu (2020); von Rueden et al.
(2023b), the resulting approaches turn out to be practically effective in terms of data efficiency,
generalization capability and interpretability, especially in view of downstream tasks such as safe
learning-based control (Nghiem et al., 2023; Drgona et al., 2025). However, theoretically quantify-
ing the beneficial impact of physical information into learning algorithms is technically challenging
and still an active research question (see von Rueden et al. (2023a) and references therein).

In this paper, we tackle this question by considering a statistical learning set-up and focusing on

regularized empirical risk minimization problems of the following form:
P : data-fit physics-informed |
/ z}reg o | squared loss(f) | AT | regularizer  f)

Sobolev space (1 1 )
where data entering the fit term are dependent, derived from observations of a ground-truth nonlinear

dynamical system X;11 = f,(X;)+ W, with W, being a sub-Gaussian noise martingale difference
sequence. The regularizer in (1.1) encodes the information that the true function to be estimated, f,,
approximately satisfies a known partial differential equation induced by a linear operator ¥ — i.e.,
we have that the regularizer takes the form || Z( f) ||i,)2, and we say that knowledge alignment occurs

if it holds that || 2(f,)|| %= =~ 0.

The main results of this paper are complexity-dependent bounds — i.e., bounds that depend on
12(f.)||.2> (Lecué & Mendelson, 2017) — for the excess risk ||f — f.||% in physics-informed
and non-parametric learning with dependent data. Informally, our results (both in high probability
and expectation) will look like this:

Theorem (Informal). For a suitable choice of the regularization parameter Ap, for a suffi-

ciently large number of samples 7', and letting d < 1 be the Sobolev minimax rate (Ibragimov
& Has’minskii, 1981; Nussbaum, 2006), it holds that

. 5 D(f)| e PV noise level
(Excess risk)  ||f — ful|%2 < Cslow% + Cfast#

Thanks to this we show that, under knowledge alignment, the regularized estimate f converges to
the true, unknown function f, at the i.i.d. rate of O(1/7): in other words, it behaves like classic
optimal rates for i.i.d. learning even if the data are dependent after a suitable burn-in time.
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The remainder of the paper unfolds as follows: Section 2 provides the set-up of the learning prob-
lem, introducing the weighted, vector-valued function spaces that will be used throughout the paper.
Next, the learning problem is stated in Section 3, and in Section 4 we provide the general state-
ment for the excess risk bounds, both in probability and in expectation. Our analysis culminates
in Section 5, where we prove how knowledge alignment leads to optimal i.i.d. rates even if data are
dependent. We discuss our results in juxtaposition with related works in Section 6, and present some
concluding remarks in Section 7.

2 PROBLEM SET-UP

This section collects preliminary concepts, defining the probability set-up of the data-generation
mechanism (Section 2.1) and the involved weighted, vector-valued function spaces (Section 2.2).

2.1 INPUT DOMAIN AND TRAJECTORY DISTRIBUTION

Let Q C [-L, L)%™ C R9x be the input domain whose boundary is locally Lipschitz (Adams
& Fournier, 2003, Definition 4.9). Suppose we have a horizon length 7T, the input trajectories

denoted by X = (X, X1, -+, X7_1) belong to the metric space (Q7, {Xt};‘tol ,Px), where
Or = XtT:BlQ is the Cartesian product of the single-component input domains ; {X; Z:01 is

the filtration given by a sequence of increasing o-algebras X;; C X; with respect to which X
is adapted (Rogers & Williams, 2000, Chapter I1.45); and Px is the joint probability distribution
of the input trajectory. As detailed in Appendix A.1, there exists a probability distribution associ-
ated with every component of X — we denote it by p; foreach ¢ = 0,--- ,T — 1, and we mostly
work with a known initial distribution po for X (typically, a Dirac measure centered at the observed
initial state X¢). Overall, we make use of the following:

Assumption 1. Let p be the Lebesgue measure defined on Q € R4x, Forallt = 0,---,T — 1,
each measure (;: Xy — R>¢ is assumed to admit a density with respect to p1y. We denote such
density by p;(-), and we assume that there exist 0 < k£ < K < oo such that, forallt =0,--- , T —1,
E<p () <R

Note that Assumption 1 accounts for many cases of practical relevance, such as the uniform, the
truncated Gaussian and the beta distributions (Krishnamoorthy, 2016).

2.2 SPACES OF FUNCTIONS

Space of square-integrable functions .#2. We will focus on the Hilbert space % (Q7, Px; R%Y)
of vector-valued, square-integrable functions that consist of multiple evaluations of a function
f:Q — R? along the input trajectory X. Such a space allows us to consider the trajectory X
and is endowed with the inner product defined as follows: given f, g: © — R% we have

(F. 0) o) = e 3 B [(FX0), (X)) = £ 3 [ 0. a(X0), dex

23 [ ). g0, ) 1)

where (-, -), is the standard inner product defined in the Euclidean space R®», and p, is
the probability measure of the ¢-th component of X introduced in Section 2.1. The inner
. . 2
product (2.1) induces the trajectory norm |[|f|| g2(gr py.gayy such that [|f['peor p gay) =
(f, ) 22(QT Py iRIY): Furthermore, it follows by construction that one can write
Hf”i/ﬂ?(QT’PX;Rdy) = LS Ee [|£(X0)]3]. Note in addition that, thanks to the separability
of R%, the vector-valued space Z2(Q7, Px; RY) = {f: Q = R | ||l g2(qr pypavy < 00}
can be written as the direct sum @fil Z2(0T Px;R) (Conway, 2007, Chapter 1.6): indeed,
following (2.1), we can write

dy T—1 dy
2 1 2
||fH;f2(QT,1P>X;Rdy) = Z T Z Ep, [fi(Xt)g] = Z ||fi||.$2(QT,]PX;R) :
i=1 " t=0 i=1
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General £” spaces. In general, one can define the space .Z?(Q7,Px;R%) for any p € Zx
endowed with the norm ”fH?ﬁ(QT,PX;Rdy) = LS Eey [ f(X0)|5). Of particular inter-
est will be the Banach space of bounded functions .#>°(Q7;R%") equipped with the norm

£l oo 7 mavy = suPseq [[f (@)l

Sobolev space s#.  Another fundamental function space derived from .#%(Q7, Px;R%") is the
multi-output, weighted Sobolev space of order s € Z>(, which is defined as follows:

H°(QT Px; RY) = {f € 2207 Px;RY) | ||f||3305(QT,]PX;]RdY) < oo},
where the norm is induced by the inner product

<f7 g>,;fs(Q,PX;RdY) = Z <Dafa Da9>,<£2(QTA,Px;RdY)’

lor|<s
with D f being the differential given by the multi-index o = («v1, - - , g, ) Of non-negative inte-
gers with order || = S°%, a;, i.e., DY = 91°f/a,51 ~0x,%% . Regarding the order of the Sobolev

spaces we will consider, we will rely on the following:

Assumption 2. The order s of 7°(Q7, Px; R% ) is a non-negative integer that satisfies s > 2dx.
Finally, note that also the space .#*(QT,Px;R%) admits the representation as the direct sum
@?:Yl 2507 Px;R) thanks to the separability of R%. This allows us to extend key results of
scalar Sobolev spaces to our vector-valued ones, as detailed in Appendix B. In particular, we show
that the Sobolev Imbedding Theorem (Adams & Fournier, 2003, Theorem 4.12) holds in our set-up,
which will provide the necessary structure for the hypothesis space involved in the learning problem.

3 PROBLEM STATEMENT

Measurement model. Assume to collect 7" data points, D = {X,,Y;}7 !, generated according
to the measurement model

Yi = Xon = fu(X0) + Wh, 3.1
where the noise sequence satisfies the following:
Assumption 3. The additive noise {W,}:cz., is a martingale difference sequence with respect to
the filtration {X; }1cz. ,: thus, Eyy, [Wt|Xt_I] =O0forallt =0,---,T — 1. Moreover, each W, is
also assumed to be a%,—conditionally sub-Gaussian given X;_;: i.e., it holds that, for every £ € R
and every u in the unit sphere in (R%, |-|,),

oty
E [exp{& (W, u)o} | Xio1] < exp {2} . (3.2)

The learning problem. In general, the learning problem can be stated as that of minimizing the

excess risk || f—f. ) searching for the estimate f within a chosen hypothesis space

2
Hf?(QT,PX;RdY
Z (which we specify later). However, since the underlying probability measures are unknown, the
amount of data in D is finite and the hypothesis space .% might be large, the estimate f is typically
computed through (regularized) empirical risk minimization:

R 1 T-1
f=argmin g 3 Ve = f(X0) 15+ 29 (33)

Focus on the physics-informed regularizer. In the set-up of our interest, the regularizer
U(-): F — Rsg encodes available prior physical information on the “true” function f, — in
other words, U(f) penalizes the physical inconsistency of f with respect to the prior on f,. Such
physical information is conveyed by the fact that f, is assumed to approximately satisfy a known
partial differential equation given by the linear operator 2: J%(SQ, px; R¥ ) — Z2(Q, puy; RY).

Such an operator is defined component-wise as

[2(F)i = Y piaD*fiforalli=1,--- dy, (34)

la|<s
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where each p; o : 2 — R is a bounded function — therefore, if we denote by p the collection of all
Pi,a» then we have that ||p|| _ is finite. To describe the regularity of the differential operator in (3.4),
we make the following:

Assumption 4. The differential operator Z(f) is elliptic — that is, forall¢ = 1,--- ,dy and any

¢ € R4\ {0}, it holds that 37, _ pia&f -+ §52% #0.
Elliptic partial differential equations abound in practical applications, as they can be seen as gener-

alizations of the Laplace and Poisson operators (Evans, 2010, Chapter 6). The differential operator
2 enters the definition of the regularizer in (3.3), where we have

U(f) = 2oz ar pymavy » (3.5)

which is a 2-proper regularizer (Lecué & Mendelson, 2017, Assumption 1.1) — see Appendix E for
the definition and further insights.

Hypothesis space. Let us now focus on the hypothesis space .%. We consider it as the ball of
radius py in the Sobolev space, i.e.,

7 = {1 € #°QT P RY) | |l opeiar prov) < o1} - (3.6)

Alternatively, as pointed out in (Cucker & Zhou, 2007, Theorem 8.21)), one could write the
costin (3.3) as & 31 ' (V; — f(Xe))% + Azl f]1%,. (@ py vy + ATP(f), and the minimization

would be performed for f € 7#°(QT, Px; R ), thanks to the equivalence yielding py = ps(Ar).
In this paper, we will rely on the following:

Assumption 5. The hypothesis space .% contains the unknown function to be estimated, f,.

The case in which such an assumption is violated is dealt with in the literature on approximation
theory — see, e.g., Cucker & Smale (2002); Cucker & Zhou (2007); however, these discussions are
beyond the scope of this paper.

Additionally, we will also consider the effective hypothesis space induced by the regularizer, namely
Fr={feF[V(f~f)<p}. 3.7

For a visualization of these hypothesis spaces, please refer to Figure 1. Finally, we will sometimes
simplify notation by considering the shifted hypothesis space Hy, = H — fo = {f — f« | f € H},
with A being for instance .% or % *.

Modelling sample dependence in trajectories. Finally, we assume regularity in the trajectory X
given by the following one-sided exponential inequality (Samson, 2000):

Assumption 6. The trajectory X governed by the law [Px in the hypothesis class .# is S-persistent
for some S € [1,00). Specifically, for every & > 0 and every f € .%, we have that

T—1 T—1 £28 T-1
exp <5 > IIf(Xt)Ilﬁﬂ < exp (s S E[IfI3] +25 2 E [|f<xt>||;*]> :
t=0 t=0 t=0

Typically, S is expressed in terms of the dependence matrix of X (see Appendix A.2 for its defini-
tion), and such a parameter attains higher values the more dependent X, is on its past. In general,
S might depend on 7'; however, in this paper we will focus on the case in which S is a constant: as
pointed out in (Samson, 2000, Section 2), this is a rather weak condition satisfied by a large class of
Markov chains and of ¢-mixing processes — see Appendix A.2 for more details.

E

Contribution. Our results demonstrate that the physics-informed regularization in the empirical
risk minimization problem (3.3) can speed-up the learning even in presence of dependent data. In

particular, we derive complexity-dependent bounds for the excess risk ||f — f*||f$2(QT By RAY )’
both in probability and in expectation, for learning under mixing, and prove that the rate of the
excess risk matches the one from i.i.d learning in presence of knowledge alignment. Therefore, our
results theoretically quantify the beneficial impact of physical knowledge in learning algorithms,

even in the challenging scenario of learning with dependent data.
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Figure 1: Visualization of the involved hypothesis spaces. Note that
the set 0B(r) = {f € Z. | Hf||§£2(QT7PX;Rdy) = r?} introduced
in Section 4.1 is represented as a square to highlight the fact that the
norm therein involved is different to the one defining .% (3.6). Simi-
larly, we represented .%* (3.7) as a convex set that is not necessarily a
ball in the Sobolev norm.

4 ERROR BOUNDS

We now present the bounds for the excess risk, both in probability and in expectation. We start
in Section 4.1 by conveying the underlying ideas that lead to those results, and then provide the
result in probability (Section 4.2) and in expectation (Section 4.3). These results will be further
analyzed in Section 5 to obtain our main claims on the convergence rate of learning with physics-
informed regularization. Before proceeding, we emphasize that the excess risk is a random quantity
depending on the distribution of the input sequence X and of the noises {IV; tT;Ol: therefore, often
we will simply write P and [E instead of Pp, - and Ep, w to streamline notation.

4.1 THE IDEA

The main idea consists of identifying an event according to which, with high probability and for
some parameter 6,

g T=1
If = fell o pyipavy < T D) = F(Xa)ll3 - .1
=0

This kind of one-sided concentration inequality was studied for the i.i.d. setting in Mendelson
(2014), to which we defer for a thorough discussion. The proof that (4.1) holds with high
probability in the i.i.d. case is given in Mendelson (2014) thanks to the small-ball condition,
which is a rather weak assumption from a statistical point of view: see the discussion after As-
sumption 1.2 in Lecué & Mendelson (2017), together with its interpretation in terms of iden-
tifiability. In our data-dependent setting, the small-ball condition will be imposed by (C,«)-
hypercontractivity with o« = 2 (see Appendix D.2), and we show that it holds in the set
OB(ry={feZ | |f - f*||?(£2(QT7]PX;Rdy) =12} for any fixed r > 0. Therefore, the proba-
bility level of the event in (4.1) will be controlled by the radius ». We present a visualization of
B(r), together with all the hypothesis spaces, in Figure 1.

Crucially, inequality (4.1) allows us to shift the analysis of the excess risk to that of its empirical
version. The next step consists then in upper-bounding the latter (i.e., the right-hand side in (4.1))
by the martingale offset complexity of the effective hypothesis space My [#f]. In particular, for
every f € #f (e, f = f' — f. for some f’ € .Z7), one has that

= =
L IFIE< sup = AW, FC0), — IFCRIE = Mr (F2]. 42)
t=0 feFl * oo

We defer to Lemma G.1 for a derivation of such an inequality. Along the lines of Liang et al. (2015),
we would like to stress that the term || f(X;) ||§ in the right-hand side introduces a self-normalizing
effect that compensates the fluctuations of the term (W;, f(X;)),. This fact is key in making the
martingale offset complexity not depend on mixing, as discussed in Section 5. One can provide
bounds in probability and in expectation for the martingale offset complexity (see Appendix G), and
these will play a key role in the excess risk bounds that we present in the remainder of the section
and further discuss in Section 5.

Before presenting the aforementioned bounds, let us formally introduce the lower isometry event,
which is the complement of (4.1), whose probability we bound in Appendix F:

T-1
. 1 2 1 2
A= sup 95 > F(XDI; = 5 [1f[len vy <00

feﬂf\B(r){th—; 2 g W IZHOTPxRY)
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4.2 RESULT IN PROBABILITY

Theorem 4.1. Let Assumptions 1 to 3, 5 and 6 hold. Consider a parameter 0 > 8, and let f be
the solution of the estimation problem (3.3) with Ap > 0, and let the radius p defining the effective
hypothesis class P be such that p > 10U ( f,). Then, on the event

4
Al n {)\T > %MT [W]}

we have that )

< OMy [FP] + 200U (f,) + 12 (4.3)

A .
Proof. (Sketch). The proof follows Lecué & Mendelson (2017); Ziemann & Tu (2022) and it con-
sists in characterizing the scenarios that lead to the event AE, showing that the case for which
f € Z\.Z* cannot occur for A7 sufficiently large. The detailed proof is given in Appendix H.1. [

4.3 RESULT IN EXPECTATION

Theorem 4.2. Let Assumptions 1 to 3, 5 and 6 hold. Consider a parameter 0 > 8, a radius
r > 0, and let F, be ar/\/0-cover in the infinity norm of OB(r) that is (C (r), 2)-hypercontractive.
Consider the regularized empirical risk minimization problem in (3.3) with regularization parameter
satisfying \p > g—gEW [Mr [%#7]], where p > 109(f,). Then, letting B be the positive constant

such that ||f|\$x(QT;Rdy) < Bforall f € F, the estimate f satisfies

’ < 4B*N,, | 0B(r) L) ex __ 8T
L2(QT PxRIv) | — e /] P 92C,.S
+ 0E My [Z°]] + A\rU(fy) + r2.

Proof. (Sketch). The idea consists in decomposing the expected value according to the
lower-isometry event 4, and its complement: informally, we would write E [excess risk] =

E [excessrisk N A,] + E [excess risk N AE} The first term would then be bounded thanks to S-

persistence, (C, 2)-hypercontractivity and B-boundedness, which allow us to quantify the probabil-
ity of the lower-isometry event A,. (see Appendix F). The bound for the second term is derived along
the lines of the proof of Theorem 4.1. The full details are presented in Appendix H.2. O

E [Hf—f*

Overall, our analysis deploys the concepts of S-persistence and (C, «)-hypercontractivity to adapt
the small-ball argument of Mendelson (2014) to the data-dependent case. Thanks to this construc-
tion, we can identify the lower-isometry event, which enables the derivation of our bounds depending
on the martingale offset complexity, the ground-truth regularizer ¥( f,) and the critical radius r. In
the next section, we will characterize the behavior of these terms to obtain the desired convergence
rates for physics-informed learning.

5 CONVERGENCE RATES

We finally provide our main results in terms of convergence rates for the excess risk, whose detailed
proofs are deferred to Appendix 1. Throughout this section, we will denote by d = 25/2s+dx the
Sobolev minimax rate, and d’ = 2dx/2s+dx.

5.1 BOUND IN PROBABILITY

Theorem 5.1. Let Assumptions I to 6 hold, and let f be the solution of (3.3). Fix a probability of
failure 6 € (0,1), and assume the regularization parameter At satisfies

T>i Crop? (Crr + Crv)oyt | Crrogy log(1/6)
T lw(p) -t w(f)f v




Under review as a conference paper at ICLR 2026

where Ct, Cry, Crrr and Cry are constants depending only on s,dx,dy and \/log(1/0). If the
number of samples T' satisfies

4s—dx

6dx 4dy
2 1\ T-dx 1\ Zo=dx 1\ T-dx
T> o ghS Cy < ) log |1+ C (7”) + (T‘) log(1/0)

r

forr® = \p¥U(f,) + 03, /T and Cy,, Cpr, Cr, being uniform constants depending on py, %, 0, s, dx
and S, then, with probability at least 1 — 60, the excess risk enjoys the following convergence rate:

2 max {W(£.) 7/, w(£)7/ ]
<
$2(QT,]P’X;]R‘1Y) ~ Cslow Td

ig o, log(1/9)

+ Cfast T ’

where Cs1 o, is a constant that depends on s, dx, dy , 0%, \/10og(1/6), and Cy.s; is a constant that
depends on s,dx,dy.

Proof. (Sketch). The result builds upon the bound in probability on the excess risk of Theorem 4.1,
and its crux consists in conveniently setting the values for the critical radius r, the radius p of the
effective hypothesis class .%”, and the regularization parameter Az. This allows us to rewrite the
excess risk bound (4.3) in terms of the martingale offset complexity, which can in turn be bounded
according to (Ziemann, 2022, Theorem 4.2.2) (see Theorem G.2 for its detailed proof). Finally, the
characterization of the burn-in follows from the probability of the lower-isometry event. The full
proof is reported in Appendix 1.1, where the value of all of the involved constants is given. O

5.2 BOUND IN EXPECTATION

Theorem 5.2. Let Assumptions 1 to 6 hold, and let f be the solution of (3.3) with regularization
parameter A satisfying
(C1 + Crr) (o)

3TU(f,) %
where Ct and Cy are constants depending only on s, dx and dy. If T satisfies

92ChS 1 ﬁifz(x 1 ﬁigx 1 % 02
T > (> Cwm < ) log 4B% 1+ C} (> + log (1‘:‘/) ,
r

8 r r

4
T2

)

where B is such that ||f||$m(QT,Rdy) < Bforall f € % and Cyy, Cy, Cr are constants depending
onp¢,k,0,5,dx and (), then the excess risk enjoys the following convergence rate:

U(f )4 /2 oy log(1/9)
T + Cfast #7

2

B[] - % | <

gz(QT,Px;RdY)

where Cs;o,, and Cr.se are constants that depend on s, dx , dy and U‘Q,V.

Proof. (Sketch). Similarly to Theorem 5.1, one starts from Theorem 4.2 to set the values for p and
Ar, and then deploys the bound on the expected martingale offset complexity of (Ziemann, 2022,
Theorem 3.2.1) (see Theorem G.3 for its detailed proof). Ultimately, the claim is obtained by suit-
ably choosing the critical radius r and accordingly characterizing the lower-isometry event probabil-
ity, leading to the expression for the burn-in. The detailed proof can be found in Appendix 1.2. [

Notably, our analysis allows us to transfer the contribution of data dependence from the excess risk
bound to the burn-in time condition. Moreover, our bounds feature a fast, i.i.d.-like term (O(T~1))
and a slower Sobolev rate term (O(7~%)) that becomes annihilated when W(f,) ~ 0: this proves
that, under knowledge alignment, the learning rate speeds up to O(7~!) even if data are dependent.

6 RELATED WORK AND DISCUSSION

General statistical learning framework. The general theory of statistical learning rates has de-
veloped along two main streams, as identified by Fischer & Steinwart (2020). The first relies on the
spectral analysis of integral operators in reproducing kernel Hilbert spaces (Smale & Zhou, 2007;
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Caponnetto & De Vito, 2007; Steinwart et al., 2009), while the second builds on empirical process
techniques and the small-ball method (Mendelson, 2014; 2018; Lecué¢ & Mendelson, 2017). Our
work belongs to the latter stream, adapting the small-ball method to the dependent-data case along
the lines of the localization analysis of Ziemann & Tu (2022).

Learning rates for dependent data. A common approach to handle dependence is through block-
ing techniques (Yu, 1994; Sancetta, 2021), where the trajectory is divided into blocks of length %
so that consecutive blocks can be treated as independent. However, this deflates the effective sam-
ple size, leading to suboptimal rates. Similar rates appear also in Steinwart & Christmann (2009);
Zou et al. (2009); Agarwal & Duchi (2012); Kuznetsov & Mohri (2017), and Nagaraj et al. (2020)
shows that such a deflation in a worst-case agnostic model set-up is unavoidable. To contrast this
phenomenon, a significant line of work has studied learning under dependent data without regular-
ization. In the linear setting, Simchowitz et al. (2018) and Nagaraj et al. (2020) established sample
complexity bounds for system identification and stochastic gradient descent. Moreover, Roy et al.
(2021) extended the small-ball method to dependent processes, but without using one-sided con-
centration, leading to slower rates. Similar slower-rate phenomena also appear in Ziemann et al.
(2022). More recently, Ziemann & Tu (2022) proposed an adaptation of the small-ball method and
offset complexity technique of Liang et al. (2015) to obtain optimal rates for nonlinear settings. Our
work builds upon this line of thought, extending the analysis to physics-informed regularization.
However, the results in this paper are not a mere adaptation: the physics-informed regularizer intro-
duces additional challenges, such as characterizing the entropy numbers of the effective hypothesis
class (e.g., under ellipticity, non-trivial nullspaces of the operator, and boundary conditions), deter-
mining trajectory hypercontractivity and working with weighted, vector-valued Sobolev spaces.

Theoretical analysis of physics-informed machine learning. Our work belongs to the branch of
physics-informed machine learning that aims at enhancing learning algorithms with available physi-
cal knowledge — a class of models also known as hybrid modeling (Rai & Sahu, 2020; von Rueden
et al., 2023b). To the best of the authors’ knowledge, results aimed at quantifying the beneficial
impact of physical priors in learning algorithms are von Rueden et al. (2023a) and Doumeche et al.
(2024). The present paper is very similar in spirit to the latter work in the way complexity-dependent
rates are derived, but crucially deals with non-i.i.d. data and presents bounds for the excess risk not
only just in expectation, but also in probability. We further summarize related work in Table 1.

Table 1: Comparison of convergence rates for non-parametric regression with and without regularization. The
rate from Ziemann & Tu (2022) follows from its Corollary 4.1 with ¢ = dx /s under the metric entropy bound
log Noo (F,€) ~ (1/£)?. The rate from Lecué & Mendelson (2017) follows from its Lemma 2.1 assuming
r2(p) ~ 0% T, with A\p ~ T79,

Work Hypothesis class Data Regularization Assumption Rate
Nussbaum (2006) £? Sobolev space iid. x o2,-Gaussian, dy =1 o, T2/ (2s+1)
Farahmand & Szepesviri (2012)  General Sobolev space  non-i.i.d. X Exponential mixing, dy =1 T~ %log(T)
Lecué & Mendelson (2017) General iid. Proper regularizer o3, -sub-Gaussian, dy = 1 U(f) T~ + 0,77t
Ziemann & Tu (2022) General (not too large)  non.i.i.d. X o%,-sub-Gaussian o3, T4
Doumeéche et al. (2024) Periodic Sobolev space i.i.d. Physics-informed Jﬁ,r—sub-Gamma, dy =1 \I'(fx)T’d + Jﬁ,T’1
Our work £? Sobolev space non-i.id. Physics-informed o3, -sub-Gaussian, s > 2dx  W(f,)*/2T~¢ + o2, T!

Quantifying the impact of knowledge alignment. We now showcase the impact of knowledge
alignment ¥( f,) ~ 0 in contrast with the rates of empirical risk minimization without regularization

— i.e., considering f’ as the solution of (3.3) when A = 0. As shown in detail in Appendix J, the
excess risk for f’ behaves, both in probability and in expectation, in the following way (informally):

' ~ ! 02
(Excess risk) || f" — f*H?gQ(QT’IpX;Rdy) < ,}l;w + C;astTW'

We can notice how, for the result without regularization, the term decaying according to the Sobolev
rate is not modulated by any design parameter (as happened with W( f,) in Theorems 5.1 and 5.2),
and is thus the dominant term dictating the slow Sobolev convergence rate of the excess risk.

On the behavior of \r. It is worth emphasizing that, in both the expectation and probability
analyses, the condition on the regularization parameter depends on 1/¥(f,)” for some 3 > 1.
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This condition reflects the well-known regularization-complexity trade-off: as the hypothesis class
is restricted (i.e., as p becomes small), one must increase A\ to compensate for the reduced richness
of the class and the potentially higher sensitivity to noise or variance, as discussed in (Lecué &
Mendelson, 2017, Section 2) and also displayed in (Doumeche et al., 2024, Theorem 5.3). Even
if such a phenomenon prevents us from considering the case ¥(f,) = 0, our bounds still capture
the (practical) annihilation of the Sobolev rate term in presence of knowledge alignment. Finally,
as pointed out in Doumeche et al. (2024), even if Ay depends on the unknown ¥( f, ), it can still be
estimated via, e.g., cross-validation (Wahba, 1990).

On the burn-in condition and the Sobolev order s. In Theorems 5.1 and 5.2, the burn-in time
scales as (1/7)°"X/>*=¢x and r in turn scales as T~ '/2. Therefore, to ensure well-posedness of the
burn-in time condition, we have to impose that 3dx/2s—dx < 1, which yields Assumption 2. Thus,
our results come at the price of a stronger requirement on s with respect to the standard s > dx /2
needed, e.g., for the Sobolev imbedding theorem (Appendix B).

Numerical experiment. We complement our theoretical analysis with an example show-
casing the benefit of prior domain knowledge in learning a nonlinear dynamical system.
In this experiment, whose full details can be found
in Appendix K, we consider the dynamics of a unicy-
cle robot described by the differential equations &1 (t) =
v(t)cosI(t), io(t) = v(t)sind(t), I(t) = w(t),
where (71, 22) € R? is the position of the robot on the
plane, ¢ € [0, /2] is the orientation angle, and (v, w) are
the translational and angular velocities, respectively. The
physical information we want to incorporate is that the
velocity has no lateral component, enforcing the non-slip
behavior of the unicycle kinematics. Such a constraint is
embedded in the learning problem (3.3) as a (discretized)
#?-regularization term, and we perform estimation by
deploying a multilayer perceptron with two hidden layers

—— wj/o knowledge (T-0-681)
—— with knowledge (T-1:086)

=
o
&)

=
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i
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Figure 2: Log-log plot of the empirical

featuring 64 nodes and ReL.U activation functions.
The experiment, whose results are displayed in Figure 2,
compares the empirical rates obtained with and with-

excess risk (estimation error) with respect
to the number of samples 71" for the unicy-
cle dynamics after the burn-in period. Each
curve is obtained by averaging over 20 inde-

out physics-informed regularization. We can notice that
both estimators eventually return an accurate model for
the ground-truth dynamics. However, without physics
knowledge the rate of decay of the estimation error is
relatively slow, with an empirical slope of approximately
O(T~9581) In contrast, incorporating physics-informed
regularization yields a markedly faster decay, with an empirical slope of approximately O (71986,
as the model is explicitly constrained by the domain knowledge that unicycle dynamics do not ad-
mit lateral velocity. This experiment demonstrates how embedding physics-based operators into the
training objective leads to provable improvements in sample efficiency, consistent with our theoret-
ical trends predicted in Section 5 — especially the result in expectation presented in Theorem 5.2.

pendent random realizations of the training
data, with solid lines indicating the mean es-
timation error and shaded regions denoting
95% confidence intervals.

7 CONCLUSIONS

This work focused on vector-valued function estimation from dependent data, and studied the excess
risk of the estimate f obtained through regularized empirical risk minimization, where regularization
is induced by physical knowledge (namely, that the unknown function approximately satisfies a
partial differential equation). The main message of this work is that knowledge alignment (i.e.,
the regularizer is approximately zero when evaluated at the ground-truth function f,) allows to
speed up the learning rate from the slow, Sobolev rate O(T~%), with d = 2s/2s+dx < 1, to the
fast, optimal i.i.d. one O(T~1). Taken together, our results provide the first convergence rates for
physics-informed learning under dependent data that avoid the sample-size deflation inherent to
blocking techniques, and reveal a transition from Sobolev minimax rates to fast i.i.d.-optimal rates
through knowledge alignment. This bridges classical statistical learning theory, physics-informed
regularization, and learning with dependent data.
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