

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PHYSICS-INFORMED LEARNING UNDER MIXING: HOW PHYSICAL KNOWLEDGE SPEEDS UP LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

A major challenge in physics-informed machine learning is to understand how the incorporation of prior domain knowledge affects learning rates when data are dependent. Focusing on empirical risk minimization with physics-informed regularization, we derive complexity-dependent bounds on the excess risk in probability and in expectation. We prove that, when the physical prior information is aligned, the learning rate improves from the (slow) Sobolev minimax rate to the (fast) optimal i.i.d. one without any sample-size deflation due to data dependence.

1 INTRODUCTION

Physics-informed machine learning encompasses a wide taxonomy of approaches that combine physical knowledge and learning algorithms to address two main tasks: (i) enhancing physical models (given, e.g., by systems of partial differential equations) through data-driven methods to improve their accuracy and numerical solvability; (ii) improve the learning algorithms' performance by including physical information, e.g., as additional constraint (Karniadakis et al., 2021; Meng et al., 2025). Focusing on the second class of methods, surveyed in Rai & Sahu (2020); von Rueden et al. (2023b), the resulting approaches turn out to be practically effective in terms of data efficiency, generalization capability and interpretability, especially in view of downstream tasks such as safe learning-based control (Nghiem et al., 2023; Drgona et al., 2025). However, theoretically quantifying the beneficial impact of physical information into learning algorithms is technically challenging and still an active research question (see von Rueden et al. (2023a) and references therein).

In this paper, we tackle this question by considering a statistical learning set-up and focusing on regularized empirical risk minimization problems of the following form:

$$\hat{f} = \arg \min_{\substack{f \in \text{ball in} \\ \text{Sobolev space}}} \text{data-fit squared loss}(f) + \lambda_T \text{physics-informed regularizer}(f), \quad (1.1)$$

where data entering the fit term are *dependent*, derived from observations of a ground-truth nonlinear dynamical system $X_{t+1} = f_*(X_t) + W_t$, with W_t being a sub-Gaussian noise martingale difference sequence. The regularizer in (1.1) encodes the information that the true function to be estimated, f_* , approximately satisfies a known partial differential equation induced by a linear operator \mathcal{D} — i.e., we have that the regularizer takes the form $\|\mathcal{D}(f)\|_{\mathcal{L}^2}^2$, and we say that *knowledge alignment* occurs if it holds that $\|\mathcal{D}(f_*)\|_{\mathcal{L}^2}^2 \simeq 0$.

The main results of this paper are *complexity-dependent* bounds — i.e., bounds that depend on $\|\mathcal{D}(f_*)\|_{\mathcal{L}^2}$ (Lecué & Mendelson, 2017) — for the *excess risk* $\|\hat{f} - f_*\|_{\mathcal{L}^2}^2$ in physics-informed and non-parametric learning with dependent data. Informally, our results (both in high probability and expectation) will look like this:

Theorem (Informal). For a suitable choice of the regularization parameter λ_T , for a sufficiently large number of samples T , and letting $d < 1$ be the *Sobolev minimax rate* (Ibragimov & Has'minskii, 1981; Nussbaum, 2006), it holds that

$$\text{(Excess risk)} \quad \|\hat{f} - f_*\|_{\mathcal{L}^2}^2 \leq C_{\text{slow}} \frac{\|\mathcal{D}(f_*)\|_{\mathcal{L}^2}^{\text{some power}}}{T^d} + C_{\text{fast}} \frac{\text{noise level}}{T}.$$

Thanks to this we show that, under knowledge alignment, the regularized estimate \hat{f} converges to the true, unknown function f_* at the i.i.d. rate of $\mathcal{O}(1/T)$: in other words, it behaves like classic optimal rates for i.i.d. learning *even if the data are dependent* after a suitable burn-in time.

The remainder of the paper unfolds as follows: Section 2 provides the set-up of the learning problem, introducing the *weighted, vector-valued* function spaces that will be used throughout the paper. Next, the learning problem is stated in Section 3, and in Section 4 we provide the general statement for the excess risk bounds, both in probability and in expectation. Our analysis culminates in Section 5, where we prove how knowledge alignment leads to optimal i.i.d. rates even if data are dependent. We discuss our results in juxtaposition with related works in Section 6, and present some concluding remarks in Section 7.

2 PROBLEM SET-UP

This section collects preliminary concepts, defining the probability set-up of the data-generation mechanism (Section 2.1) and the involved weighted, vector-valued function spaces (Section 2.2).

2.1 INPUT DOMAIN AND TRAJECTORY DISTRIBUTION

Let $\Omega \subseteq [-L, L]^{d_X} \subset \mathbb{R}^{d_X}$ be the input domain whose boundary is locally Lipschitz (Adams & Fournier, 2003, Definition 4.9). Suppose we have a horizon length T , the input trajectories denoted by $X \doteq (X_0, X_1, \dots, X_{T-1})$ belong to the metric space $(\Omega^T, \{\mathcal{X}_t\}_{t=0}^{T-1}, \mathbb{P}_X)$, where $\Omega^T \doteq \times_{t=0}^{T-1} \Omega$ is the Cartesian product of the single-component input domains Ω ; $\{\mathcal{X}_t\}_{t=0}^{T-1}$ is the *filtration* given by a sequence of increasing σ -algebras $\mathcal{X}_{t+1} \subset \mathcal{X}_t$ with respect to which X is *adapted* (Rogers & Williams, 2000, Chapter II.45); and \mathbb{P}_X is the joint probability distribution of the input trajectory. As detailed in Appendix A.1, there exists a probability distribution associated with every component of X — we denote it by μ_t for each $t = 0, \dots, T-1$, and we mostly work with a *known* initial distribution μ_0 for X_0 (typically, a Dirac measure centered at the observed initial state X_0). Overall, we make use of the following:

Assumption 1. Let μ_λ be the Lebesgue measure defined on $\Omega \subset \mathbb{R}^{d_X}$. For all $t = 0, \dots, T-1$, each measure $\mu_t: \mathcal{X}_t \rightarrow \mathbb{R}_{\geq 0}$ is assumed to admit a density with respect to μ_λ . We denote such density by $p_t(\cdot)$, and we assume that there exist $0 < \underline{\kappa} < \bar{\kappa} < \infty$ such that, for all $t = 0, \dots, T-1$, $\underline{\kappa} \leq p_t(\cdot) \leq \bar{\kappa}$.

Note that Assumption 1 accounts for many cases of practical relevance, such as the uniform, the truncated Gaussian and the beta distributions (Krishnamoorthy, 2016).

2.2 SPACES OF FUNCTIONS

Space of square-integrable functions \mathcal{L}^2 . We will focus on the Hilbert space $\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})$ of vector-valued, square-integrable functions that consist of multiple evaluations of a function $f: \Omega \rightarrow \mathbb{R}^{d_Y}$ along the input trajectory X . Such a space allows us to consider the trajectory X and is endowed with the inner product defined as follows: given $f, g: \Omega \rightarrow \mathbb{R}^{d_Y}$, we have

$$\begin{aligned} \langle f, g \rangle_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})} &\doteq \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}_{\mathbb{P}_X} [\langle f(X_t), g(X_t) \rangle_2] = \frac{1}{T} \sum_{t=0}^{T-1} \int_{\Omega^T} \langle f(X_t), g(X_t) \rangle_2 d\mathbb{P}_X \\ &= \frac{1}{T} \sum_{t=0}^{T-1} \int_{\Omega} \langle f(X_t), g(X_t) \rangle_2 \mu_t(dX_t), \end{aligned} \quad (2.1)$$

where $\langle \cdot, \cdot \rangle_2$ is the standard inner product defined in the Euclidean space \mathbb{R}^{d_Y} , and μ_t is the probability measure of the t -th component of X introduced in Section 2.1. The inner product (2.1) induces the trajectory norm $\|f\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}$ such that $\|f\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 = \langle f, f \rangle_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}$. Furthermore, it follows by construction that one can write $\|f\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 = \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}_{\mathbb{P}_X} [\|f(X_t)\|_2^2]$. Note in addition that, thanks to the separability of \mathbb{R}^{d_Y} , the vector-valued space $\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y}) = \{f: \Omega \rightarrow \mathbb{R}^{d_Y} \mid \|f\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})} < \infty\}$ can be written as the direct sum $\bigoplus_{i=1}^{d_Y} \mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R})$ (Conway, 2007, Chapter I.6): indeed, following (2.1), we can write

$$\|f\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 = \sum_{i=1}^{d_Y} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}_{\mathbb{P}_X} [f_i(X_t)^2] = \sum_{i=1}^{d_Y} \|f_i\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R})}^2.$$

108 **General \mathcal{L}^p spaces.** In general, one can define the space $\mathcal{L}^p(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})$ for any $p \in \mathbb{Z}_{\geq 0}$
 109 endowed with the norm $\|f\|_{\mathcal{L}^p(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^p = \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}_{\mathbb{P}_X} [\|f(X_t)\|_2^p]$. Of particular interest
 110 will be the Banach space of bounded functions $\mathcal{L}^\infty(\Omega^T; \mathbb{R}^{d_Y})$ equipped with the norm
 111 $\|f\|_{\mathcal{L}^\infty(\Omega^T; \mathbb{R}^{d_Y})} \doteq \sup_{x \in \Omega} \|f(x)\|_2$.
 112

113 **Sobolev space \mathcal{H}^s .** Another fundamental function space derived from $\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})$ is the
 114 multi-output, weighted Sobolev space of order $s \in \mathbb{Z}_{\geq 0}$, which is defined as follows:
 115

$$116 \quad \mathcal{H}^s(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y}) \doteq \left\{ f \in \mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y}) \mid \|f\|_{\mathcal{H}^s(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})} < \infty \right\},$$

117 where the norm is induced by the inner product
 118

$$119 \quad \langle f, g \rangle_{\mathcal{H}^s(\Omega, \mathbb{P}_X; \mathbb{R}^{d_Y})} \doteq \sum_{|\alpha| \leq s} \langle D^\alpha f, D^\alpha g \rangle_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})},$$

120 with $D^\alpha f$ being the differential given by the multi-index $\alpha \doteq (\alpha_1, \dots, \alpha_{d_X})$ of non-negative integers
 121 with order $|\alpha| \doteq \sum_{i=1}^{d_X} \alpha_i$, i.e., $D^\alpha \doteq \partial^{|\alpha|} f / \partial x_1^{\alpha_1} \dots \partial x_{d_X}^{\alpha_{d_X}}$. Regarding the order of the Sobolev
 122 spaces we will consider, we will rely on the following:
 123

124 *Assumption 2.* The order s of $\mathcal{H}^s(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})$ is a non-negative integer that satisfies $s \geq 2d_X$.
 125 Finally, note that also the space $\mathcal{H}^s(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})$ admits the representation as the direct sum
 126 $\bigoplus_{i=1}^{d_Y} \mathcal{H}^s(\Omega^T, \mathbb{P}_X; \mathbb{R})$ thanks to the separability of \mathbb{R}^{d_Y} . This allows us to extend key results of
 127 scalar Sobolev spaces to our vector-valued ones, as detailed in Appendix B. In particular, we show
 128 that the Sobolev Imbedding Theorem (Adams & Fournier, 2003, Theorem 4.12) holds in our set-up,
 129 which will provide the necessary structure for the hypothesis space involved in the learning problem.
 130

131

3 PROBLEM STATEMENT

132 **Measurement model.** Assume to collect T data points, $\mathcal{D} \doteq \{X_t, Y_t\}_{t=0}^{T-1}$, generated according
 133 to the measurement model

$$134 \quad Y_t \doteq X_{t+1} = f_*(X_t) + W_t, \quad (3.1)$$

135 where the noise sequence satisfies the following:

136 *Assumption 3.* The additive noise $\{W_t\}_{t \in \mathbb{Z}_{\geq 0}}$ is a martingale difference sequence with respect to
 137 the filtration $\{\mathcal{X}_t\}_{t \in \mathbb{Z}_{\geq 0}}$: thus, $\mathbb{E}_{W_t} [W_t | \mathcal{X}_{t-1}] = 0$ for all $t = 0, \dots, T-1$. Moreover, each W_t is
 138 also assumed to be σ_W^2 -conditionally sub-Gaussian given \mathcal{X}_{t-1} : i.e., it holds that, for every $\xi \in \mathbb{R}$
 139 and every u in the unit sphere in $(\mathbb{R}^{d_Y}, \|\cdot\|_2)$,

$$140 \quad \mathbb{E} [\exp \{\xi \langle W_t, u \rangle_2\} \mid \mathcal{X}_{t-1}] \leq \exp \left\{ \frac{\xi^2 \sigma_W^2}{2} \right\}. \quad (3.2)$$

141

142 **The learning problem.** In general, the learning problem can be stated as that of minimizing the
 143 excess risk $\|\hat{f} - f_*\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2$, searching for the estimate \hat{f} within a chosen hypothesis space
 144 \mathcal{F} (which we specify later). However, since the underlying probability measures are unknown, the
 145 amount of data in \mathcal{D} is finite and the hypothesis space \mathcal{F} might be large, the estimate \hat{f} is typically
 146 computed through (regularized) empirical risk minimization:

$$147 \quad \hat{f} \doteq \arg \min_{f \in \mathcal{F}} \frac{1}{T} \sum_{t=0}^{T-1} \|Y_t - f(X_t)\|_2^2 + \lambda_T \Psi(f). \quad (3.3)$$

148

149 **Focus on the physics-informed regularizer.** In the set-up of our interest, the regularizer
 150 $\Psi(\cdot): \mathcal{F} \rightarrow \mathbb{R}_{\geq 0}$ encodes available prior physical information on the “true” function f_* — in
 151 other words, $\Psi(\hat{f})$ penalizes the physical inconsistency of \hat{f} with respect to the prior on f_* . Such
 152 physical information is conveyed by the fact that f_* is assumed to approximately satisfy a known
 153 partial differential equation given by the linear operator $\mathcal{D}: \mathcal{H}^s(\Omega, \mu_\lambda; \mathbb{R}^{d_Y}) \rightarrow \mathcal{L}^2(\Omega, \mu_\lambda; \mathbb{R}^{d_Y})$.
 154 Such an operator is defined component-wise as

$$155 \quad [\mathcal{D}(f)]_i \doteq \sum_{|\alpha| \leq s} p_{i,\alpha} D^\alpha f_i \text{ for all } i = 1, \dots, d_Y, \quad (3.4)$$

162 where each $p_{i,\alpha} : \Omega \rightarrow \mathbb{R}$ is a bounded function — therefore, if we denote by p the collection of all
 163 $p_{i,\alpha}$, then we have that $\|p\|_\infty$ is finite. To describe the regularity of the differential operator in (3.4),
 164 we make the following:

165 *Assumption 4.* The differential operator $\mathcal{D}(f)$ is *elliptic* — that is, for all $i = 1, \dots, d_Y$ and any
 166 $\xi \in \mathbb{R}^{d_X} \setminus \{0\}$, it holds that $\sum_{|\alpha|=s} p_{i,\alpha} \xi_1^{\alpha_1} \cdots \xi_{d_X}^{\alpha_{d_X}} \neq 0$.

167 Elliptic partial differential equations abound in practical applications, as they can be seen as generalizations
 168 of the Laplace and Poisson operators (Evans, 2010, Chapter 6). The differential operator
 169 \mathcal{D} enters the definition of the regularizer in (3.3), where we have

$$171 \quad \Psi(f) \doteq \|\mathcal{D}(f)\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2, \quad (3.5)$$

173 which is a 2-proper regularizer (Lecué & Mendelson, 2017, Assumption 1.1) — see Appendix E for
 174 the definition and further insights.

175 **Hypothesis space.** Let us now focus on the hypothesis space \mathcal{F} . We consider it as the ball of
 176 radius ρ_f in the Sobolev space, i.e.,

$$179 \quad \mathcal{F} \doteq \left\{ f \in \mathcal{H}^s(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y}) \mid \|f\|_{\mathcal{H}^s(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})} \leq \rho_f \right\}. \quad (3.6)$$

181 Alternatively, as pointed out in (Cucker & Zhou, 2007, Theorem 8.21)), one could write the
 182 cost in (3.3) as $\frac{1}{T} \sum_{t=0}^{T-1} (Y_t - f(X_t))^2 + \tilde{\lambda}_T \|f\|_{\mathcal{H}^s(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 + \lambda_T \Psi(f)$, and the minimization
 183 would be performed for $f \in \mathcal{H}^s(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})$, thanks to the equivalence yielding $\rho_f = \rho_f(\tilde{\lambda}_T)$.
 184 In this paper, we will rely on the following:

185 *Assumption 5.* The hypothesis space \mathcal{F} contains the unknown function to be estimated, f_* .

186 The case in which such an assumption is violated is dealt with in the literature on *approximation*
 187 theory — see, e.g., Cucker & Smale (2002); Cucker & Zhou (2007); however, these discussions are
 188 beyond the scope of this paper.

190 Additionally, we will also consider the *effective hypothesis space* induced by the regularizer, namely

$$191 \quad \mathcal{F}^\rho = \left\{ f \in \mathcal{F} \mid \Psi(f - f_*) \leq \rho \right\}. \quad (3.7)$$

193 For a visualization of these hypothesis spaces, please refer to Figure 1. Finally, we will sometimes
 194 simplify notation by considering the shifted hypothesis space $\mathcal{H}_* \doteq \mathcal{H} - f_* = \{f - f_* \mid f \in \mathcal{H}\}$,
 195 with \mathcal{H} being for instance \mathcal{F} or \mathcal{F}^ρ .

197 **Modelling sample dependence in trajectories.** Finally, we assume regularity in the trajectory X
 198 given by the following one-sided exponential inequality (Samson, 2000):

199 *Assumption 6.* The trajectory X governed by the law \mathbb{P}_X in the hypothesis class \mathcal{F} is S -persistent
 200 for some $S \in [1, \infty)$. Specifically, for every $\xi \geq 0$ and every $f \in \mathcal{F}$, we have that

$$201 \quad \mathbb{E} \left[\exp \left(-\xi \sum_{t=0}^{T-1} \|f(X_t)\|_2^2 \right) \right] \leq \exp \left(-\xi \sum_{t=0}^{T-1} \mathbb{E} \left[\|f(X_t)\|_2^2 \right] + \frac{\xi^2 S}{2} \sum_{t=0}^{T-1} \mathbb{E} \left[\|f(X_t)\|_2^4 \right] \right).$$

204 Typically, S is expressed in terms of the *dependence matrix* of X (see Appendix A.2 for its
 205 definition), and such a parameter attains higher values the more dependent X_t is on its past. In general,
 206 S might depend on T ; however, in this paper we will focus on the case in which S is a constant: as
 207 pointed out in (Samson, 2000, Section 2), this is a rather weak condition satisfied by a large class of
 208 Markov chains and of ϕ -mixing processes — see Appendix A.2 for more details.

209 **Contribution.** Our results demonstrate that the physics-informed regularization in the empirical
 210 risk minimization problem (3.3) can speed-up the learning even in presence of dependent data. In
 211 particular, we derive complexity-dependent bounds for the excess risk $\|\hat{f} - f_*\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2$,
 212 both in probability and in expectation, for learning under mixing, and prove that the rate of the
 213 excess risk matches the one from i.i.d learning in presence of knowledge alignment. Therefore, our
 214 results theoretically quantify the beneficial impact of physical knowledge in learning algorithms,
 215 even in the challenging scenario of learning with dependent data.

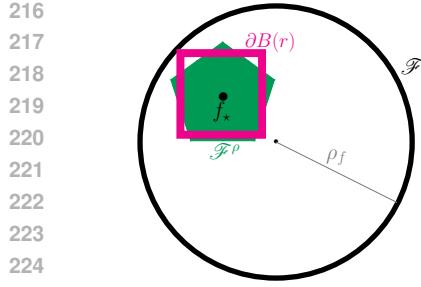


Figure 1: Visualization of the involved hypothesis spaces. Note that the set $\partial B(r) = \{f \in \mathcal{F} \mid \|f\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 = r^2\}$ introduced in Section 4.1 is represented as a square to highlight the fact that the norm therein involved is different to the one defining \mathcal{F} (3.6). Similarly, we represented \mathcal{F}^ρ (3.7) as a convex set that is not necessarily a ball in the Sobolev norm.

4 ERROR BOUNDS

We now present the bounds for the excess risk, both in probability and in expectation. We start in Section 4.1 by conveying the underlying ideas that lead to those results, and then provide the result in probability (Section 4.2) and in expectation (Section 4.3). These results will be further analyzed in Section 5 to obtain our main claims on the convergence rate of learning with physics-informed regularization. Before proceeding, we emphasize that the excess risk is a random quantity depending on the distribution of the input sequence X and of the noises $\{W_t\}_{t=0}^{T-1}$: therefore, often we will simply write \mathbb{P} and \mathbb{E} instead of $\mathbb{P}_{\mathbb{P}_X, W}$ and $\mathbb{E}_{\mathbb{P}_X, W}$ to streamline notation.

4.1 THE IDEA

The main idea consists of identifying an event according to which, with high probability and for some parameter θ ,

$$\|f - f_\star\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 \leq \frac{\theta}{T} \sum_{t=0}^{T-1} \|f(X_t) - f_\star(X_t)\|_2^2. \quad (4.1)$$

This kind of one-sided concentration inequality was studied for the i.i.d. setting in Mendelson (2014), to which we defer for a thorough discussion. The proof that (4.1) holds with high probability in the i.i.d. case is given in Mendelson (2014) thanks to the *small-ball condition*, which is a rather weak assumption from a statistical point of view: see the discussion after Assumption 1.2 in Lecué & Mendelson (2017), together with its interpretation in terms of identifiability. In our data-dependent setting, the small-ball condition will be imposed by (C, α) -hypercontractivity with $\alpha = 2$ (see Appendix D.2), and we show that it holds in the set $\partial B(r) \doteq \{f \in \mathcal{F} \mid \|f - f_\star\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 = r^2\}$ for any fixed $r > 0$. Therefore, the probability level of the event in (4.1) will be controlled by the radius r . We present a visualization of $B(r)$, together with all the hypothesis spaces, in Figure 1.

Crucially, inequality (4.1) allows us to shift the analysis of the excess risk to that of its empirical version. The next step consists then in upper-bounding the latter (i.e., the right-hand side in (4.1)) by the *martingale offset complexity* of the effective hypothesis space $\mathbf{M}_T[\mathcal{F}_\star^\rho]$. In particular, for every $f \in \mathcal{F}_\star^\rho$ (i.e., $f = f' - f_\star$ for some $f' \in \mathcal{F}^\rho$), one has that

$$\frac{1}{T} \sum_{t=0}^{T-1} \|f(X_t)\|_2^2 \leq \sup_{f \in \mathcal{F}^\rho} \frac{1}{T} \sum_{t=0}^{T-1} 4 \langle W_t, f(X_t) \rangle_2 - \|f(X_t)\|_2^2 \doteq \mathbf{M}_T[\mathcal{F}_\star^\rho]. \quad (4.2)$$

We defer to Lemma G.1 for a derivation of such an inequality. Along the lines of Liang et al. (2015), we would like to stress that the term $\|f(X_t)\|_2^2$ in the right-hand side introduces a self-normalizing effect that compensates the fluctuations of the term $\langle W_t, f(X_t) \rangle_2$. This fact is key in making the martingale offset complexity *not depend on mixing*, as discussed in Section 5. One can provide bounds in probability and in expectation for the martingale offset complexity (see Appendix G), and these will play a key role in the excess risk bounds that we present in the remainder of the section and further discuss in Section 5.

Before presenting the aforementioned bounds, let us formally introduce the *lower isometry event*, which is the complement of (4.1), whose probability we bound in Appendix F:

$$\mathcal{A}_r \doteq \sup_{f \in \mathcal{F}_\star^\rho \setminus B(r)} \left\{ \frac{1}{T} \sum_{t=0}^{T-1} \|f(X_t)\|_2^2 - \frac{1}{\theta} \|f\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 \leq 0 \right\}.$$

270 4.2 RESULT IN PROBABILITY
271

272 **Theorem 4.1.** *Let Assumptions 1 to 3, 5 and 6 hold. Consider a parameter $\theta > 8$, and let \hat{f} be
273 the solution of the estimation problem (3.3) with $\lambda_T > 0$, and let the radius ρ defining the effective
274 hypothesis class \mathcal{F}^ρ be such that $\rho \geq 10\Psi(f_*)$. Then, on the event*

$$275 \mathcal{A}_r^C \cap \left\{ \lambda_T \geq \frac{40}{3\rho} \mathbf{M}_T [\mathcal{F}^\rho] \right\} \\ 276$$

277 we have that

$$278 \left\| \hat{f} - f_* \right\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 \leq \theta \mathbf{M}_T [\mathcal{F}^\rho] + 2\lambda_T \Psi(f_*) + r^2. \quad (4.3)$$

280 *Proof.* (Sketch). The proof follows Lecué & Mendelson (2017); Ziemann & Tu (2022) and it con-
281 sists in characterizing the scenarios that lead to the event \mathcal{A}_r^C , showing that the case for which
282 $\hat{f} \in \mathcal{F} \setminus \mathcal{F}^\rho$ cannot occur for λ_T sufficiently large. The detailed proof is given in Appendix H.1. \square
283

284 4.3 RESULT IN EXPECTATION
285

286 **Theorem 4.2.** *Let Assumptions 1 to 3, 5 and 6 hold. Consider a parameter $\theta > 8$, a radius
287 $r > 0$, and let \mathcal{F}_r be a $r/\sqrt{\theta}$ -cover in the infinity norm of $\partial B(r)$ that is $(C(r), 2)$ -hypercontractive.
288 Consider the regularized empirical risk minimization problem in (3.3) with regularization parameter
289 satisfying $\lambda_T \geq \frac{40}{3\rho} \mathbb{E}_W [\mathbf{M}_T [\mathcal{F}^\rho]]$, where $\rho \geq 10\Psi(f_*)$. Then, letting B be the positive constant
290 such that $\|f\|_{\mathcal{L}^\infty(\Omega^T; \mathbb{R}^{d_Y})} \leq B$ for all $f \in \mathcal{F}$, the estimate \hat{f} satisfies*

$$291 \mathbb{E} \left[\left\| \hat{f} - f_* \right\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 \right] \leq 4B^2 \mathcal{N}_\infty \left(\partial B(r), \frac{r}{\sqrt{\theta}} \right) \exp \left\{ -\frac{8T}{\theta^2 C_r S} \right\} \\ 292 + \theta \mathbb{E} [\mathbf{M}_T [\mathcal{F}^\rho]] + \lambda_T \Psi(f_*) + r^2.$$

295 *Proof.* (Sketch). The idea consists in decomposing the expected value according to the
296 lower-isometry event \mathcal{A}_r and its complement: informally, we would write $\mathbb{E} [\text{excess risk}] =$
297 $\mathbb{E} [\text{excess risk} \cap \mathcal{A}_r] + \mathbb{E} [\text{excess risk} \cap \mathcal{A}_r^C]$. The first term would then be bounded thanks to S -
298 persistence, $(C, 2)$ -hypercontractivity and B -boundedness, which allow us to quantify the proba-
299 bility of the lower-isometry event \mathcal{A}_r (see Appendix F). The bound for the second term is derived along
300 the lines of the proof of Theorem 4.1. The full details are presented in Appendix H.2. \square
301

302 Overall, our analysis deploys the concepts of S -persistence and (C, α) -hypercontractivity to adapt
303 the small-ball argument of Mendelson (2014) to the data-dependent case. Thanks to this construc-
304 tion, we can identify the lower-isometry event, which enables the derivation of our bounds depending
305 on the martingale offset complexity, the ground-truth regularizer $\Psi(f_*)$ and the critical radius r . In
306 the next section, we will characterize the behavior of these terms to obtain the desired convergence
307 rates for physics-informed learning.

308 5 CONVERGENCE RATES
309

310 We finally provide our main results in terms of convergence rates for the excess risk, whose detailed
311 proofs are deferred to Appendix I. Throughout this section, we will denote by $d = 2s/2s+d_X$ the
312 Sobolev minimax rate, and $d' = 2d_X/2s+d_X$.

313 5.1 BOUND IN PROBABILITY

314 **Theorem 5.1.** *Let Assumptions 1 to 6 hold, and let \hat{f} be the solution of (3.3). Fix a probability of
315 failure $\delta \in (0, 1)$, and assume the regularization parameter λ_T satisfies*

$$316 \lambda_T \geq \frac{4}{3T^d} \left[\frac{C_I \sigma_W^{1+d}}{\Psi(f_*)^{1-\frac{d'}{4}}} + \frac{(C_{II} + C_{IV}) \sigma_W^{2d}}{\Psi(f_*)^{1-\frac{d'}{2}}} + \frac{C_{III} \sigma_W^2 \log(1/\delta)}{\Psi(f_*)} \right],$$

324 where C_I, C_{II}, C_{III} and C_{IV} are constants depending only on s, d_X, d_Y and $\sqrt{\log(1/\delta)}$. If the
 325 number of samples T satisfies

$$327 \quad T \geq \frac{\theta^2 C_h S}{8} \left[C_M \left(\frac{1}{r} \right)^{\frac{6d_X}{2s-d_X}} \log \left(1 + C_L \left(\frac{1}{r} \right)^{\frac{4s-d_X}{2s-d_X}} \right) + \left(\frac{1}{r} \right)^{\frac{4d_X}{2s-d_X}} \log(1/\delta) \right]$$

330 for $r^2 = \lambda_T \Psi(f_\star) + \sigma_W^2/T$ and C_h, C_M, C_L being uniform constants depending on $\rho_f, \bar{\kappa}, \theta, s, d_X$
 331 and Ω , then, with probability at least $1 - 6\delta$, the excess risk enjoys the following convergence rate:
 332

$$333 \quad \left\| \hat{f} - f_\star \right\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 \leq C_{slow} \frac{\max \left\{ \Psi(f_\star)^{d'/4}, \Psi(f_\star)^{d'/2} \right\}}{T^d} + C_{fast} \frac{\sigma_W^2 \log(1/\delta)}{T},$$

336 where C_{slow} is a constant that depends on $s, d_X, d_Y, \sigma_W^2, \sqrt{\log(1/\delta)}$, and C_{fast} is a constant that
 337 depends on s, d_X, d_Y .

338 *Proof.* (Sketch). The result builds upon the bound in probability on the excess risk of Theorem 4.1,
 339 and its crux consists in conveniently setting the values for the critical radius r , the radius ρ of the
 340 effective hypothesis class \mathcal{F}^ρ , and the regularization parameter λ_T . This allows us to rewrite the
 341 excess risk bound (4.3) in terms of the martingale offset complexity, which can in turn be bounded
 342 according to (Ziemann, 2022, Theorem 4.2.2) (see Theorem G.2 for its detailed proof). Finally, the
 343 characterization of the burn-in follows from the probability of the lower-isometry event. The full
 344 proof is reported in Appendix I.1, where the value of all of the involved constants is given. \square

345 5.2 BOUND IN EXPECTATION

347 **Theorem 5.2.** *Let Assumptions 1 to 6 hold, and let \hat{f} be the solution of (3.3) with regularization
 348 parameter λ_T satisfying*

$$349 \quad \lambda_T \geq \frac{4(C_I + C_{II})(\sigma_W^2)^d}{3T\Psi(f_\star)^{1-\frac{d'}{2}}},$$

351 where C_I and C_{II} are constants depending only on s, d_X and d_Y . If T satisfies

$$353 \quad T \geq \frac{\theta^2 C_h S}{8} \left(\frac{1}{r} \right)^{\frac{4d_X}{2s-d_X}} \left[C_M \left(\frac{1}{r} \right)^{\frac{2d_X}{2s-d_X}} \log \left(4B^2 \left(1 + C_L \left(\frac{1}{r} \right)^{\frac{4s-d_X}{2s-d_X}} \right) \right) + \log \left(\frac{\sigma_W^2}{T} \right) \right],$$

356 where B is such that $\|f\|_{\mathcal{L}^\infty(\Omega^T; \mathbb{R}^{d_Y})} \leq B$ for all $f \in \mathcal{F}$ and C_M, C_h, C_L are constants depending
 357 on $\rho_f, \bar{\kappa}, \theta, s, d_X$ and Ω , then the excess risk enjoys the following convergence rate:
 358

$$359 \quad \mathbb{E} \left[\left\| \hat{f} - f_\star \right\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 \right] \leq C_{slow} \frac{\Psi(f_\star)^{d'/2}}{T^d} + C_{fast} \frac{\sigma_W^2 \log(1/\delta)}{T},$$

362 where C_{slow} and C_{fast} are constants that depend on s, d_X, d_Y and σ_W^2 .

363 *Proof.* (Sketch). Similarly to Theorem 5.1, one starts from Theorem 4.2 to set the values for ρ and
 364 λ_T , and then deploys the bound on the expected martingale offset complexity of (Ziemann, 2022,
 365 Theorem 3.2.1) (see Theorem G.3 for its detailed proof). Ultimately, the claim is obtained by suit-
 366 ably choosing the critical radius r and accordingly characterizing the lower-isometry event probabili-
 367 ty, leading to the expression for the burn-in. The detailed proof can be found in Appendix I.2. \square

368 Notably, our analysis allows us to transfer the contribution of data dependence from the excess risk
 369 bound to the burn-in time condition. Moreover, our bounds feature a fast, i.i.d.-like term ($\mathcal{O}(T^{-1})$)
 370 and a slower Sobolev rate term ($\mathcal{O}(T^{-d})$) that becomes annihilated when $\Psi(f_\star) \simeq 0$: this proves
 371 that, under knowledge alignment, the learning rate speeds up to $\mathcal{O}(T^{-1})$ even if data are dependent.
 372

373 6 RELATED WORK AND DISCUSSION

375 **General statistical learning framework.** The general theory of statistical learning rates has de-
 376 veloped along two main streams, as identified by Fischer & Steinwart (2020). The first relies on the
 377 spectral analysis of integral operators in reproducing kernel Hilbert spaces (Smale & Zhou, 2007;

378 Caponnetto & De Vito, 2007; Steinwart et al., 2009), while the second builds on empirical process
 379 techniques and the small-ball method (Mendelson, 2014; 2018; Lecué & Mendelson, 2017). Our
 380 work belongs to the latter stream, adapting the small-ball method to the *dependent-data* case along
 381 the lines of the localization analysis of Ziemann & Tu (2022).

383 **Learning rates for dependent data.** A common approach to handle dependence is through *blocking*
 384 techniques (Yu, 1994; Sancetta, 2021), where the trajectory is divided into blocks of length k
 385 so that consecutive blocks can be treated as independent. However, this deflates the effective sam-
 386 ple size, leading to suboptimal rates. Similar rates appear also in Steinwart & Christmann (2009);
 387 Zou et al. (2009); Agarwal & Duchi (2012); Kuznetsov & Mohri (2017), and Nagaraj et al. (2020)
 388 shows that such a deflation in a worst-case agnostic model set-up is unavoidable. To contrast this
 389 phenomenon, a significant line of work has studied learning under dependent data *without regularization*.
 390 In the linear setting, Simchowitz et al. (2018) and Nagaraj et al. (2020) established sample
 391 complexity bounds for system identification and stochastic gradient descent. Moreover, Roy et al.
 392 (2021) extended the small-ball method to dependent processes, but without using one-sided con-
 393 centration, leading to slower rates. Similar slower-rate phenomena also appear in Ziemann et al.
 394 (2022). More recently, Ziemann & Tu (2022) proposed an adaptation of the small-ball method and
 395 offset complexity technique of Liang et al. (2015) to obtain optimal rates for nonlinear settings. Our
 396 work builds upon this line of thought, extending the analysis to *physics-informed regularization*.
 397 However, the results in this paper are not a mere adaptation: the physics-informed regularizer intro-
 398 duces additional challenges, such as characterizing the entropy numbers of the effective hypothesis
 399 class (e.g., under ellipticity, non-trivial nullspaces of the operator, and boundary conditions), deter-
 400 mining trajectory hypercontractivity and working with weighted, vector-valued Sobolev spaces.

401 **Theoretical analysis of physics-informed machine learning.** Our work belongs to the branch of
 402 physics-informed machine learning that aims at enhancing learning algorithms with available physi-
 403 cal knowledge — a class of models also known as *hybrid modeling* (Rai & Sahu, 2020; von Rueden
 404 et al., 2023b). To the best of the authors’ knowledge, results aimed at quantifying the beneficial
 405 impact of physical priors in learning algorithms are von Rueden et al. (2023a) and Doumèche et al.
 406 (2024). The present paper is very similar in spirit to the latter work in the way complexity-dependent
 407 rates are derived, but crucially deals with non-i.i.d. data and presents bounds for the excess risk not
 408 only just in expectation, but also in probability. We further summarize related work in Table 1.

409
 410 Table 1: Comparison of convergence rates for non-parametric regression with and without regularization. The
 411 rate from Ziemann & Tu (2022) follows from its Corollary 4.1 with $q = d_X/s$ under the metric entropy bound
 412 $\log \mathcal{N}_\infty(\mathcal{F}, \varepsilon) \sim (1/\varepsilon)^q$. The rate from Lecué & Mendelson (2017) follows from its Lemma 2.1 assuming
 413 $r^2(\rho) \sim \sigma_W^2 T^{-1}$, with $\lambda_T \sim T^{-d}$.

Work	Hypothesis class	Data	Regularization	Assumption	Rate
Nussbaum (2006)	\mathcal{L}^2 Sobolev space	i.i.d.	\times	σ_W^2 -Gaussian, $d_X = 1$	$\sigma_W^2 T^{-2s/(2s+1)}$
Farahmand & Szepesvári (2012)	General Sobolev space	non-i.i.d.	\times	Exponential mixing, $d_Y = 1$	$T^{-d} \log(T)$
Lecué & Mendelson (2017)	General	i.i.d.	Proper regularizer	σ_W^2 -sub-Gaussian, $d_Y = 1$	$\Psi(f_*) T^{-d} + \sigma_W^2 T^{-1}$
Ziemann & Tu (2022)	General (not too large)	non.i.i.d.	\times	σ_W^2 -sub-Gaussian	$\sigma_W^2 T^{-d}$
Doumèche et al. (2024)	Periodic Sobolev space	i.i.d.	Physics-informed	σ_W^2 -sub-Gamma, $d_Y = 1$	$\Psi(f_*) T^{-d} + \sigma_W^2 T^{-1}$
Our work	\mathcal{L}^2 Sobolev space	non-i.i.d.	Physics-informed	σ_W^2 -sub-Gaussian, $s \geq 2d_X$	$\Psi(f_*)^{d'/2} T^{-d} + \sigma_W^2 T^{-1}$

414
 415
 416
 417
 418 **Quantifying the impact of knowledge alignment.** We now showcase the impact of knowledge
 419 alignment $\Psi(f_*) \simeq 0$ in contrast with the rates of empirical risk minimization *without regularization*
 420 — i.e., considering \hat{f}' as the solution of (3.3) when $\lambda_T = 0$. As shown in detail in Appendix J, the
 421 excess risk for \hat{f}' behaves, both in probability and in expectation, in the following way (informally):
 422

$$(Excess risk) \quad \|\hat{f}' - f_*\|_{\mathcal{L}^2(\Omega^T, \mathbb{P}_X; \mathbb{R}^{d_Y})}^2 \leq \frac{C'_{\text{slow}}}{T^d} + C'_{\text{fast}} \frac{\sigma_W^2}{T}.$$

423 We can notice how, for the result without regularization, the term decaying according to the Sobolev
 424 rate is not modulated by any design parameter (as happened with $\Psi(f_*)$ in Theorems 5.1 and 5.2),
 425 and is thus the dominant term dictating the slow Sobolev convergence rate of the excess risk.

426
 427 **On the behavior of λ_T .** It is worth emphasizing that, in both the expectation and probability
 428 analyses, the condition on the regularization parameter depends on $1/\Psi(f_*)^\beta$ for some $\beta > 1$.

This condition reflects the well-known regularization-complexity trade-off: as the hypothesis class is restricted (i.e., as ρ becomes small), one must increase λ_T to compensate for the reduced richness of the class and the potentially higher sensitivity to noise or variance, as discussed in (Lecu   & Mendelson, 2017, Section 2) and also displayed in (Doum  che et al., 2024, Theorem 5.3). Even if such a phenomenon prevents us from considering the case $\Psi(f_*) = 0$, our bounds still capture the (practical) annihilation of the Sobolev rate term in presence of knowledge alignment. Finally, as pointed out in Doum  che et al. (2024), even if λ_T depends on the unknown $\Psi(f_*)$, it can still be estimated via, e.g., cross-validation (Wahba, 1990).

On the burn-in condition and the Sobolev order s . In Theorems 5.1 and 5.2, the burn-in time scales as $(1/r)^{6d_X/2s-d_X}$, and r in turn scales as $T^{-1/2}$. Therefore, to ensure well-posedness of the burn-in time condition, we have to impose that $3d_X/2s-d_X \leq 1$, which yields Assumption 2. Thus, our results come at the price of a stronger requirement on s with respect to the standard $s \geq d_X/2$ needed, e.g., for the Sobolev imbedding theorem (Appendix B).

Numerical experiment. We complement our theoretical analysis with an example showcasing the benefit of prior domain knowledge in learning a nonlinear dynamical system.

In this experiment, whose full details can be found in Appendix K, we consider the dynamics of a unicycle robot described by the differential equations $\dot{x}_1(t) = \nu(t) \cos \vartheta(t)$, $\dot{x}_2(t) = \nu(t) \sin \vartheta(t)$, $\dot{\vartheta}(t) = \omega(t)$, where $(x_1, x_2) \in \mathbb{R}^2$ is the position of the robot on the plane, $\vartheta \in [0, \pi/2]$ is the orientation angle, and (ν, ω) are the translational and angular velocities, respectively. The physical information we want to incorporate is that the velocity has no lateral component, enforcing the non-slip behavior of the unicycle kinematics. Such a constraint is embedded in the learning problem (3.3) as a (discretized) \mathcal{L}^2 -regularization term, and we perform estimation by deploying a multilayer perceptron with two hidden layers featuring 64 nodes and ReLU activation functions.

The experiment, whose results are displayed in Figure 2, compares the empirical rates obtained with and without physics-informed regularization. We can notice that both estimators eventually return an accurate model for the ground-truth dynamics. However, without physics knowledge the rate of decay of the estimation error is relatively slow, with an empirical slope of approximately $\mathcal{O}(T^{-0.681})$. In contrast, incorporating physics-informed regularization yields a markedly faster decay, with an empirical slope of approximately $\mathcal{O}(T^{-1.086})$, as the model is explicitly constrained by the domain knowledge that unicycle dynamics do not admit lateral velocity. This experiment demonstrates how embedding physics-based operators into the training objective leads to provable improvements in sample efficiency, consistent with our theoretical trends predicted in Section 5 – especially the result in expectation presented in Theorem 5.2.

7 CONCLUSIONS

This work focused on vector-valued function estimation from dependent data, and studied the excess risk of the estimate \hat{f} obtained through regularized empirical risk minimization, where regularization is induced by physical knowledge (namely, that the unknown function approximately satisfies a partial differential equation). The main message of this work is that knowledge alignment (i.e., the regularizer is approximately zero when evaluated at the ground-truth function f_*) allows to speed up the learning rate from the slow, Sobolev rate $\mathcal{O}(T^{-d})$, with $d = 2s/2s+d_X < 1$, to the fast, optimal i.i.d. one $\mathcal{O}(T^{-1})$. Taken together, our results provide the first convergence rates for physics-informed learning under dependent data that avoid the sample-size deflation inherent to blocking techniques, and reveal a transition from Sobolev minimax rates to fast i.i.d.-optimal rates through knowledge alignment. This bridges classical statistical learning theory, physics-informed regularization, and learning with dependent data.

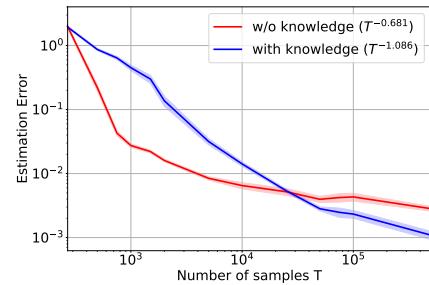


Figure 2: Log-log plot of the empirical excess risk (estimation error) with respect to the number of samples T for the unicycle dynamics after the burn-in period. Each curve is obtained by averaging over 20 independent random realizations of the training data, with solid lines indicating the mean estimation error and shaded regions denoting 95% confidence intervals.

486 REFERENCES
487

488 Robert Adams and John Fournier. *Sobolev Spaces*. Academic Press, 2003.

489 Alekh Agarwal and John C. Duchi. The Generalization Ability of Online Algorithms for Dependent
490 Data, June 2012. URL <http://arxiv.org/abs/1110.2529>. arXiv:1110.2529 [stat].
491

492 Alain Berlinet and Christine Thomas-Agnan. *Reproducing Kernel Hilbert Spaces in Probability and*
493 *Statistics*. Springer US, Boston, MA, 2004. ISBN 978-1-4613-4792-7 978-1-4419-9096-9. doi:
494 10.1007/978-1-4419-9096-9. URL <http://link.springer.com/10.1007/978-1-4419-9096-9>.
495

496 Patrick Billingsley. *Probability and Measure*. John Wiley and Sons, anniversary edition, 2012.
497

498 Vladimir I. Bogachev and Oleg G. Smolyanov. The Fourier Transform and Sobolev Spaces. In
499 Vladimir I. Bogachev and Oleg G. Smolyanov (eds.), *Real and Functional Analysis*, pp. 397–
500 432. Springer International Publishing, Cham, 2020. ISBN 978-3-030-38219-3. doi: 10.1007/978-3-030-38219-3_9.
501 URL https://doi.org/10.1007/978-3-030-38219-3_9.

502 Adam Bowers and Nigel J. Kalton. *An Introductory Course in Functional Analysis*. Universitext.
503 Springer, New York, NY, 2014. ISBN 978-1-4939-1944-4 978-1-4939-1945-1. doi: 10.1007/978-1-4939-1
504 945-1. URL <https://link.springer.com/10.1007/978-1-4939-1945-1>. ISSN: 0172-5939, 2191-6675.
505

506 Richard C. Bradley. Basic Properties of Strong Mixing Conditions. In Ernst Eberlein and Murad S.
507 Taqqu (eds.), *Dependence in Probability and Statistics: A Survey of Recent Results*, pp. 165–192.
508 Birkhäuser, Boston, MA, 1986. ISBN 978-1-4615-8162-8. doi: 10.1007/978-1-4615-8162-8_8.
509 URL https://doi.org/10.1007/978-1-4615-8162-8_8.
510

511 Richard C. Bradley. Basic Properties of Strong Mixing Conditions. A Survey and Some Open
512 Questions. *Probability Surveys*, 2(none), January 2005. ISSN 1549-5787. doi: 10.1214/154957
513 805100000104. URL <http://arxiv.org/abs/math/0511078>. arXiv:math/0511078.
514

515 Haim Brezis. *Functional Analysis, Sobolev Spaces and Partial Differential Equations*. Springer,
516 New York, NY, 2011. ISBN 978-0-387-70913-0 978-0-387-70914-7. doi: 10.1007/978-0-387-7
517 0914-7. URL <https://link.springer.com/10.1007/978-0-387-70914-7>.

518 Robert Bush and Frederick Mosteller. A Stochastic Model with Applications to Learning. *The
519 Annals of Mathematical Statistics*, 1953. URL <https://www.jstor.org/stable/2236781?seq=1>.
520

521 A. Caponnetto and E. De Vito. Optimal Rates for the Regularized Least-Squares Algorithm. *Foundations of Computational Mathematics*, 7(3):331–368, July 2007. ISSN 1615-3383. doi: 10.1007/s10208-006-0196-8. URL <https://doi.org/10.1007/s10208-006-0196-8>.
522

523 Seng-Kee Chua. On Weighted Sobolev Spaces. *Canadian Journal of Mathematics*, 48(3):527–541,
524 June 1996. ISSN 0008-414X, 1496-4279. doi: 10.4153/CJM-1996-027-5. URL <https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/on-weighted-sobolev-spaces/4EB5795BBCA448EBC767B7E05BF6D187>.
525

526 John B. Conway. *A Course in Functional Analysis*. Graduate Texts in Mathematics. Springer, New
527 York, NY, 2007. ISBN 978-1-4419-3092-7 978-1-4757-4383-8. doi: 10.1007/978-1-4757-4383-8.
528 URL <http://link.springer.com/10.1007/978-1-4757-4383-8>. ISSN:
529 0072-5285.
530

531 Felipe Cucker and Steve Smale. On the mathematical foundations of learning. *Bulletin of the
532 American Mathematical Society*, 39:1–49, 2002.
533

534 Felipe Cucker and Ding Xuan Zhou. *Learning Theory: An Approximation Theory Viewpoint*. Cambridge
535 Monographs on Applied and Computational Mathematics. Cambridge University Press,
536 2007. doi: 10.1017/CBO9780511618796.

540 Victor De La Pena and Evarist Gine. *Decoupling: From Dependence to Independence*. Probability
 541 and its Applications. Springer, New York, NY, 1999. ISBN 978-1-4612-6808-6 978-1-4612-0537-
 542 1. doi: 10.1007/978-1-4612-0537-1. URL <http://link.springer.com/10.1007/978-1-4612-0537-1>.

543

544 P. H. Diananda and M. S. Bartlett. Some probability limit theorems with statistical applications.
 545 *Mathematical Proceedings of the Cambridge Philosophical Society*, 49(2):239–246, April 1953.
 546 ISSN 1469-8064, 0305-0041. doi: 10.1017/S0305004100028334. URL <https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/some-probability-limit-theorems-with-statistical-applications/3FD6E7D20E03C8FD10B877CD9ADB3B1F>.

547

548 Paul Doukhan. *Mixing*, volume 85 of *Lecture Notes in Statistics*. Springer, New York, NY, 1994.
 549 ISBN 978-0-387-94214-8 978-1-4612-2642-0. doi: 10.1007/978-1-4612-2642-0. URL <http://link.springer.com/10.1007/978-1-4612-2642-0>.

550

551 Nathan Doumèche, Francis Bach, Gérard Biau, and Claire Boyer. Physics-informed machine learning
 552 as a kernel method. In *Proceedings of Thirty Seventh Conference on Learning Theory*, pp.
 553 1399–1450. PMLR, June 2024. URL <https://proceedings.mlr.press/v247/doumache24a.html>. ISSN: 2640-3498.

554

555 Jan Drgona, Truong X. Nghiem, Thomas Beckers, Mahyar Fazlyab, Enrique Mallada, Colin Jones,
 556 Draguna Vrabie, Steven L. Brunton, and Rolf Findeisen. Safe Physics-Informed Machine Learning
 557 for Dynamics and Control, June 2025. URL <http://arxiv.org/abs/2504.12952>.
 558 arXiv:2504.12952 [eess].

559

560 D. E. Edmunds and H. Triebel. *Function Spaces, Entropy Numbers, Differential Operators*. Cambridge
 561 Tracts in Mathematics. Cambridge University Press, Cambridge, 1996. ISBN 978-0-521-
 562 56036-8. doi: 10.1017/CBO9780511662201. URL <https://www.cambridge.org/core/books/function-spaces-entropy-numbers-differential-operators/386A287CACFD61C15A8C1021A5A9E6CD>.

563

564 Lawrence C. Evans. *Partial Differential Equations*. American Mathematical Soc., 2010. ISBN
 565 978-0-8218-4974-3. Google-Books-ID: Xnu0o_EJrCQC.

566

567 Amir-massoud Farahmand and Csaba Szepesvári. Regularized least-squares regression: Learning
 568 from a β -mixing sequence. *Journal of Statistical Planning and Inference*, 142(2):493–
 569 505, February 2012. ISSN 0378-3758. doi: 10.1016/j.jspi.2011.08.007. URL <https://www.sciencedirect.com/science/article/pii/S0378375811003181>.

570

571 Douglas Farenick. *Fundamentals of Functional Analysis*. Universitext. Springer International Publishing,
 572 Cham, 2016. ISBN 978-3-319-45631-7 978-3-319-45633-1. doi: 10.1007/978-3-319-
 573 45633-1. URL <http://link.springer.com/10.1007/978-3-319-45633-1>.
 574 ISSN: 0172-5939, 2191-6675.

575

576 Simon Fischer and Ingo Steinwart. Sobolev Norm Learning Rates for Regularized Least-Squares
 577 Algorithms. *Journal of Machine Learning Research*, 2020.

578

579 V. Gol'dshtein and A. Ukhlov. Weighted Sobolev spaces and embedding theorems, September 2007.
 580 URL <http://arxiv.org/abs/math/0703725>. arXiv:math/0703725.

581

582 Pierre Grisvard. *Elliptic Problems in Nonsmooth Domains*. Classics in Applied Mathematics. So-
 583 ciety for Industrial and Applied Mathematics, January 2011. ISBN 978-1-61197-202-3. doi:
 584 10.1137/1.9781611972030. URL <https://epubs.siam.org/doi/book/10.1137/1.9781611972030>.

585

586 Ying Guo, P.L. Bartlett, J. Shawe-Taylor, and R.C. Williamson. Covering numbers for support vector
 587 machines. *IEEE Transactions on Information Theory*, 48(1):239–250, January 2002. ISSN 1557-
 588 9654. doi: 10.1109/18.971752. URL <https://ieeexplore.ieee.org/document/971752>.

589

594 Joachim Gwinner and Ernst Peter Stephan. A Fourier Series Approach. In Joachim Gwinner and
 595 Ernst Peter Stephan (eds.), *Advanced Boundary Element Methods: Treatment of Boundary Value,*
 596 *Transmission and Contact Problems*, pp. 43–62. Springer International Publishing, Cham, 2018.
 597 ISBN 978-3-319-92001-6. doi: 10.1007/978-3-319-92001-6_3. URL https://doi.org/10.1007/978-3-319-92001-6_3.

599 Paul R. Halmos. *Measure Theory*. Graduate Texts in Mathematics. Springer, New York, NY, 1950.
 600 ISBN 978-1-4684-9442-6 978-1-4684-9440-2. doi: 10.1007/978-1-4684-9440-2. URL <http://link.springer.com/10.1007/978-1-4684-9440-2>. ISSN: 0072-5285, 2197-
 601 5612.

603 T. E. Harris. On chains of infinite order. *Pacific Journal of Mathematics*, 5(S1):707–724, January
 604 1955. ISSN 0030-8730. URL <https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-5/issue-S1/On-chains-of-infinite-order/pjm/1171984831.full>. Publisher: Pacific Journal of Mathematics, A Non-profit
 605 Corporation.

609 I. A. Ibragimov. Some Limit Theorems for Stationary Processes. *Theory of Probability & Its
 610 Applications*, 7(4):349–382, January 1962. ISSN 0040-585X. doi: 10.1137/1107036. URL
 611 <https://pubs.siam.org/doi/abs/10.1137/1107036>. Publisher: Society for
 612 Industrial and Applied Mathematics.

613 I. A. Ibragimov and R. Z. Has'minskii. *Statistical Estimation*. Springer, New York, NY, 1981.
 614 ISBN 978-1-4899-0029-6 978-1-4899-0027-2. doi: 10.1007/978-1-4899-0027-2. URL <http://link.springer.com/10.1007/978-1-4899-0027-2>.

616 Jr Iorio, Rafael José and Valéria de Magalhães Iorio. *Fourier Analysis and Partial Differential Equations*. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2001. ISBN 978-0-521-62116-8. doi: 10.1017/CBO9780511623745. URL <https://www.cambridge.org/core/books/fourier-analysis-and-partial-differential-equations/39312A08B4D4F25F65F39581D229285B>.

622 George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 623 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, June 2021. ISSN
 624 2522-5820. doi: 10.1038/s42254-021-00314-5. URL <https://www.nature.com/articles/s42254-021-00314-5>. Publisher: Nature Publishing Group.

626 Tero Kilpelainen. Weighted Sobolev spaces and capacity. *Annales Academiae Scientiarum Fennicæ*,
 627 19:95–113, 1994.

628 K. Krishnamoorthy. *Handbook of Statistical Distributions with Applications*. Chapman and
 629 Hall/CRC, New York, 2 edition, January 2016. ISBN 978-0-429-15581-9. doi: 10.1201/b19191.

631 Alois Kufner. *Weighted Sobolev Spaces*. Wiley, July 1985. ISBN 978-0-471-90367-3. Google-
 632 Books-ID: V1mqAAAAIAAJ.

633 Vitaly Kuznetsov and Mehryar Mohri. Generalization bounds for non-stationary mixing processes.
 634 *Machine Learning*, 106(1):93–117, January 2017. ISSN 1573-0565. doi: 10.1007/s10994-016-5
 635 588-2. URL <https://doi.org/10.1007/s10994-016-5588-2>.

636 John Lamperti and Patrick Suppes. Chains of infinite order and their application to learning theory.
 637 *Pacific Journal of Mathematics*, 9(3):739–754, January 1959. ISSN 0030-8730. URL <https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-9/issue-3/Chains-of-infinite-order-and-their-application-to-learning-theory/pjm/1103039115.full>. Publisher: Pacific Journal of
 638 Mathematics, A Non-profit Corporation.

642 Guillaume Lecué and Shahar Mendelson. Regularization and the small-ball method II: complexity
 643 dependent error rates. *Journal of Machine Learning Research*, 18(146):1–48, 2017. ISSN 1533-
 644 7928. URL <http://jmlr.org/papers/v18/16-422.html>.

646 Tengyuan Liang, Alexander Rakhlin, and Karthik Sridharan. Learning with Square Loss: Localiza-
 647 tion through Offset Rademacher Complexity, June 2015. URL <http://arxiv.org/abs/1502.06134>. arXiv:1502.06134 [stat].

648 K. Marton. A measure concentration inequality for contracting markov chains. *Geometric & Func-*
 649 *tional Analysis GAFA*, 6(3):556–571, May 1996. ISSN 1420-8970. doi: 10.1007/BF02249263.
 650 URL <https://doi.org/10.1007/BF02249263>.

651 Shahar Mendelson. Learning without concentration. In *Proceedings of The 27th Conference*
 652 *on Learning Theory*, volume 35 of *Proceedings of Machine Learning Research*, pp. 25–39,
 653 Barcelona, Spain, 2014. PMLR.

654 Shahar Mendelson. Learning without concentration for general loss functions. *Probability Theory*
 655 *and Related Fields*, 171(1):459–502, June 2018. ISSN 1432-2064. doi: 10.1007/s00440-017-0
 656 784-y. URL <https://doi.org/10.1007/s00440-017-0784-y>.

657 Chuizheng Meng, Sam Griesemer, Defu Cao, Sungyong Seo, and Yan Liu. When physics meets
 658 machine learning: a survey of physics-informed machine learning. *Machine Learning for Com-*
 659 *putational Science and Engineering*, 1(1):20, May 2025. ISSN 3005-1436. doi: 10.1007/s44379
 660 -025-00016-0. URL <https://doi.org/10.1007/s44379-025-00016-0>.

661 Sean Meyn and Richard L. Tweedie. *Markov Chains and Stochastic Stability*. Cambridge Mathemat-
 662 ical Library. Cambridge University Press, Cambridge, 2 edition, 2009. ISBN 978-0-521-73182-9.
 663 doi: 10.1017/CBO9780511626630. URL <https://www.cambridge.org/core/books/markov-chains-and-stochastic-stability/E2B82BFB409CD2F7D67AFC5390C565EC>.

664 Dheeraj Nagaraj, Xian Wu, Guy Bresler, Prateek Jain, and Praneeth Netrapalli. Least Squares
 665 Regression with Markovian Data: Fundamental Limits and Algorithms. In *Advances in Neural*
 666 *Information Processing Systems*, volume 33, pp. 16666–16676. Curran Associates, Inc., 2020.
 667 URL <https://proceedings.neurips.cc/paper/2020/hash/c22abfa379f38b5b0411bc11fa9bf92f-Abstract.html>.

668 Truong X. Nghiem, Ján Drgoňa, Colin Jones, Zoltan Nagy, Roland Schwan, Biswadip Dey, Ankush
 669 Chakrabarty, Stefano Di Cairano, Joel A. Paulson, and Andrea Carron. Physics-informed machine
 670 learning for modeling and control of dynamical systems. In *2023 American Control Conference*
 671 (ACC), pp. 3735–3750. IEEE, 2023. URL <https://ieeexplore.ieee.org/abstract/document/10155901/>.

672 Michael Nussbaum. Minimax Risk, Pinsker Bound for. In *Encyclopedia of Statistical*
 673 *Sciences*. John Wiley & Sons, Ltd, 2006. ISBN 978-0-471-66719-3. doi: 10.1002/0471667196.ess1098.pub2. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/0471667196.ess1098.pub2>. eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471667196.ess1098.pub2>.

674 Daniel Paulin. Concentration inequalities for Markov chains by Marton couplings and spectral
 675 methods, November 2018. URL <http://arxiv.org/abs/1212.2015>. arXiv:1212.2015
 676 [math].

677 Johanna Penteker. Sobolev Spaces. Lecture Notes, Institute of Analysis, Johannes Kepler University
 678 Linz, 2015.

679 Rahul Rai and Chandan K. Sahu. Driven by Data or Derived Through Physics? A Review of Hybrid
 680 Physics Guided Machine Learning Techniques With Cyber-Physical System (CPS) Focus. *IEEE*
 681 *Access*, 8:71050–71073, 2020. ISSN 2169-3536. doi: 10.1109/ACCESS.2020.2987324. URL
 682 <https://ieeexplore.ieee.org/document/9064519/>.

683 Michael Renardy and Robert Rogers. *An Introduction to Partial Differential Equations*, volume 13
 684 of *Texts in Applied Mathematics*. Springer-Verlag, New York, 2004. ISBN 978-0-387-00444-0.
 685 doi: 10.1007/b97427. URL <http://link.springer.com/10.1007/b97427>.

686 L. C. G. Rogers and David Williams. *Diffusions, Markov Processes, and Martingales: Volume*
 687 *1: Foundations*, volume 1 of *Cambridge Mathematical Library*. Cambridge University Press,
 688 Cambridge, 2 edition, 2000. ISBN 978-0-521-77594-6. doi: 10.1017/CBO9781107590120.
 689 URL <https://www.cambridge.org/core/books/diffusions-markov-processes-and-martingales/188B6A2BAABF735E61796C3CD18114B>.

702 Abhishek Roy, Krishnakumar Balasubramanian, and Murat A. Erdogdu. On Empirical Risk Mini-
 703 mization with Dependent and Heavy-Tailed Data, September 2021. URL <http://arxiv.org/abs/2109.02224>. arXiv:2109.02224 [math].
 704

705 Julien Royer. A brief introduction to Sobolev spaces and applications, 2020. URL <https://www.math.univ-toulouse.fr/~jroyer/TD/2020-21-M1/M1-Ch5.pdf>.
 706

707 Walter Rudin. *Principles of Mathematical Analysis*. McGraw-Hill, 1976. ISBN 978-0-07-085613-4.
 708

709 Paul-Marie Samson. Concentration of measure inequalities for Markov chains and Φ -mixing
 710 processes. *The Annals of Probability*, 28(1):416–461, January 2000. ISSN 0091-1798, 2168-
 711 894X. doi: 10.1214/aop/1019160125. URL <https://projecteuclid.org/journals/annals-of-probability/volume-28/issue-1/Concentration-of-measure-inequalities-for-Markov-chains-and-Phi-mixing/10.1214/aop/1019160125.full>. Publisher: Institute of Mathematical Statistics.
 712

713 Alessio Sancetta. Estimation in Reproducing Kernel Hilbert Spaces With Dependent Data. *IEEE
 714 Transactions on Information Theory*, 67(3):1782–1795, March 2021. ISSN 1557-9654. doi:
 715 10.1109/TIT.2020.3045290. URL <https://ieeexplore.ieee.org/document/9296271>. Conference Name: IEEE Transactions on Information Theory.
 716

717 Max Simchowitz, Horia Mania, Stephen Tu, Michael I. Jordan, and Benjamin Recht. Learning
 718 Without Mixing: Towards A Sharp Analysis of Linear System Identification. In *Proceedings
 719 of the 31st Conference On Learning Theory*, pp. 439–473. PMLR, July 2018. URL <https://proceedings.mlr.press/v75/simchowitz18a.html>. ISSN: 2640-3498.
 720

721 Steve Smale and Ding-Xuan Zhou. Learning Theory Estimates via Integral Operators and Their
 722 Approximations. *Constructive Approximation*, 26(2):153–172, August 2007. ISSN 1432-0940.
 723 doi: 10.1007/s00365-006-0659-y. URL <https://doi.org/10.1007/s00365-006-0659-y>.
 724

725 Elias M. Stein. *Singular Integrals and Differentiability Properties of Functions*. Princeton University
 726 Press, 1970. ISBN 978-1-4008-8388-2. doi: 10.1515/9781400883882. URL <https://www.degruyterbrill.com/document/doi/10.1515/9781400883882/html>.
 727

728 Ingo Steinwart and Andreas Christmann. Fast Learning from Non-i.i.d. Observations. In *Advances in
 729 Neural Information Processing Systems*, volume 22. Curran Associates, Inc., 2009. URL <https://papers.nips.cc/paper/2009/hash/a89cf525e1d9f04d16ce31165e139a4b-Abstract.html>.
 730

731 Ingo Steinwart, D. Hush, and C. Scovel. Optimal Rates for Regularized Least Squares Regression.
 732 2009. URL <https://www.semanticscholar.org/paper/Optimal-Rates-for-Regularized-Least-Squares-Steinwart-Hush/1dc0f2c3068eb4b56a7208b0cd3e42f8b79e5660>.
 733

734 Michel Talagrand. *The Generic Chaining*. Springer Monographs in Mathematics. Springer-Verlag,
 735 Berlin/Heidelberg, 2005. ISBN 978-3-540-24518-6. doi: 10.1007/3-540-27499-5. URL <http://link.springer.com/10.1007/3-540-27499-5>.
 736

737 Michael E. Taylor. *Partial Differential Equations I: Basic Theory*, volume 115 of *Applied Mathematical Sciences*. Springer International Publishing, Cham, 2023. ISBN 978-3-031-33858-8
 738 978-3-031-33859-5. doi: 10.1007/978-3-031-33859-5. URL <https://link.springer.com/10.1007/978-3-031-33859-5>.
 739

740 Roger Temam. *Navier-Stokes Equations and Nonlinear Functional Analysis*. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, January 1995. ISBN 978-0-89871-340-4. doi: 10.1137/1.9781611970050. URL <https://pubs.siam.org/doi/book/10.1137/1.9781611970050>.
 741

742 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*. Cambridge University Press, 2024.
 743

756 Laura von Rueden, Jochen Garcke, and Christian Bauckhage. How Does Knowledge Injection Help
 757 in Informed Machine Learning? In *2023 International Joint Conference on Neural Networks*
 758 (*IJCNN*), pp. 1–8, June 2023a. doi: 10.1109/IJCNN54540.2023.10191994. URL <https://ieeexplore.ieee.org/document/10191994/?arnumber=10191994>. ISSN:
 759 2161-4407.

760

761 Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul
 762 Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, Michal Walczak,
 763 Jochen Garcke, Christian Bauckhage, and Jannis Schuecker. Informed Machine Learning – A
 764 Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems. *IEEE Transactions*
 765 on Knowledge and Data Engineering

766 35(1):614–633, January 2023b. ISSN 1558-2191. doi:
 767 10.1109/TKDE.2021.3079836. URL <https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?arnumber=9429985>. Conference Name: IEEE Transactions on Knowledge
 768 and Data Engineering.

769

770 Grace Wahba. *Spline Models for Observational Data*. SIAM, September 1990. ISBN 978-0-89871-
 771 244-5.

772 Martin J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge Se-
 773 ries in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019.
 774 ISBN 978-1-108-49802-9. doi: 10.1017/9781108627771. URL [https://www.cambridg
 e.org/core/books/highdimensional-statistics/8A91ECEEC38F46DAB53E
 9FF8757C7A4E](https://www.cambridg

 775 e.org/core/books/highdimensional-statistics/8A91ECEEC38F46DAB53E

 776 9FF8757C7A4E).

777

778 Jianjun Wang, Hua Huang, Zhangtao Luo, and Baili Chen. Estimation of Covering Number in
 779 Learning Theory. In *2009 Fifth International Conference on Semantics, Knowledge and Grid*, pp.
 780 388–391, October 2009. doi: 10.1109/SKG.2009.27. URL <https://ieeexplore.ieee.org/document/5370097/>.

781

782 Yuhong Yang and Andrew Barron. Information-theoretic determination of minimax rates of conver-
 783 gence. *The Annals of Statistics*, 27(5):1564–1599, October 1999. ISSN 0090-5364, 2168-8966.
 784 doi: 10.1214/aos/1017939142. URL [https://projecteuclid.org/journals/ann
 785 als-of-statistics/volume-27/issue-5/Information-theoretic-deter
 786 mination-of-minimax-rates-of-convergence/10.1214/aos/1017939142.full](https://projecteuclid.org/journals/annals-of-statistics/volume-27/issue-5/Information-theoretic-determination-of-minimax-rates-of-convergence/10.1214/aos/1017939142.full). Publisher: Institute of Mathematical Statistics.

787

788 Bin Yu. Rates of Convergence for Empirical Processes of Stationary Mixing Sequences. *The Annals*
 789 of *Probability*, 22(1):94–116, 1994. ISSN 0091-1798. URL [https://www.jstor.org/st
 790 able/2244496](https://www.jstor.org/stable/2244496). Publisher: Institute of Mathematical Statistics.

791

792 Ding-Xuan Zhou. The covering number in learning theory. *Journal of Complexity*, 18(3):739–
 793 767, September 2002. ISSN 0885-064X. doi: 10.1006/jcom.2002.0635. URL <https://www.sciencedirect.com/science/article/pii/S0885064X02906357>.

794

795 Ding-Xuan Zhou. Capacity of reproducing kernel spaces in learning theory. *IEEE Transactions on*
 796 *Information Theory*, 49(7):1743–1752, July 2003. ISSN 1557-9654. doi: 10.1109/TIT.2003.813
 797 564. URL <https://ieeexplore.ieee.org/document/1207372>. Conference Name:
 798 IEEE Transactions on Information Theory.

799

800 Ingvar Ziemann. *Statistical Learning, Dynamics and Control : Fast Rates and Fundamental Limits*
 801 for Square Loss. PhD thesis, KTH Royal Institute of Technology, 2022. URL <https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-320345>. Publisher: KTH Royal
 802 Institute of Technology.

803

804 Ingvar Ziemann and Stephen Tu. Learning with little mixing. In *Advances in Neural Information*
 805 *Processing Systems 35 (NeurIPS 2022)*. Curran Associates, Inc., 2022. doi: 10.48550/arXiv.220
 806 6.08269. URL <http://arxiv.org/abs/2206.08269>. arXiv:2206.08269 [cs].

807

808 Ingvar Ziemann, Henrik Sandberg, and Nikolai Matni. Single Trajectory Nonparametric Learning
 809 of Nonlinear Dynamics, February 2022. URL <http://arxiv.org/abs/2202.08311>. arXiv:2202.08311 [cs].

810 Bin Zou, Luoqing Li, and Zongben Xu. The generalization performance of ERM algorithm
811 with strongly mixing observations. *Machine Learning*, 75(3):275–295, June 2009. ISSN 1573-
812 0565. doi: 10.1007/s10994-009-5104-z. URL <https://doi.org/10.1007/s10994-009-5104-z>.

813
814 Erhan Çinlar. *Probability and Stochastics*. Springer International Publishing, New York, 2011.

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863