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Abstract

Advancements in Large Language Mod-001
els (LLMs) have significantly enhanced002
instruction-following capabilities. However,003
most Instruction Fine-Tuning (IFT) datasets004
are predominantly in English, limiting model005
performance in other languages. Tradi-006
tional methods for creating multilingual IFT007
datasets—such as translating existing En-008
glish IFT datasets or converting existing009
NLP datasets into IFT datasets by templat-010
ing—struggle to capture linguistic nuances and011
ensure prompt (instruction) diversity. To ad-012
dress this issue, we propose a novel method013
for collecting multilingual IFT datasets that014
preserves linguistic naturalness and ensures015
prompt diversity. This approach leverages016
English-focused LLMs, monolingual corpora,017
and a scoring function to create high-quality,018
diversified IFT datasets in multiple languages.019
Experiments demonstrate that LLMs finetuned020
using these IFT datasets show notable improve-021
ments in both generative and discriminative022
tasks, indicating enhanced language compre-023
hension by LLMs in non-English contexts.024
Specifically, on the multilingual summariza-025
tion task, LLMs using our IFT dataset achieved026
17.57% and 15.23% improvements over LLMs027
fine-tuned with translation-based and template-028
based datasets, respectively.029

1 Introduction030

Recent advancements in natural language process-031

ing (NLP) have showcased remarkable progress,032

particularly in its instruction-following capabili-033

ties. Notably, Large Language Models (LLMs) like034

GPT-4, Gemini-1.5, Claude-3, Llama-3, and Mis-035

tral (OpenAI, 2024; Team et al., 2024; AI@Meta,036

2024; Jiang et al., 2023) have demonstrated sig-037

nificant prowess in this area (Brown et al., 2020;038

Le Scao et al., 2023; Chowdhery et al., 2023). Af-039

ter the pretraining stage, LLMs are fine-tuned on040

Instruction Fine-Tuning (IFT) datasets followed by041

Figure 1: The incorrectly translated Telugu instruction-
response pair is from the Aya collection (Üstün et al.,
2024), which was translated from an English instruction-
response pair in the Dolly v2 dataset (Conover et al.,
2023). The correct Telugu instruction-response pair was
provided by a native Telugu speaker.

an optional Alignment Tuning (AT) based on the 042

availability of the training datasets. IFT datasets 043

consist of instruction prompt-response pairs and 044

have proven instrumental in enhancing the efficacy 045

and overall instruction-following abilities of LLMs 046

(Anil et al., 2023; Sanh et al., 2022; Wei et al., 047

2023; Iyer et al., 2023; Chung et al., 2022; Wang 048

et al., 2022a; Zhang et al., 2024a). However, a no- 049

table disparity persists between the abundance of 050

instruction prompts available in English compared 051

to other languages. While over 7k1 languages are 052

spoken worldwide, a staggering 73% of prevalent 053

IFT datasets primarily cater to English alone (Long- 054

pre et al., 2023). 055

While LLMs often demonstrate proficiency in 056

understanding and generating text across multi- 057

ple languages, the language imbalance in train- 058

ing datasets has led to suboptimal performance 059

in non-English contexts (Ahuja et al., 2023; Lai 060

et al., 2023a; Zhang et al., 2023c). To enhance 061

LLMs’ ability to follow non-English instructions, 062

various studies have explored fine-tuning LLMs on 063

1https://www.ethnologue.com/
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Figure 2: Lack of diversity in templated datasets: The
template created by human annotators has been repeated
several thousand times in the templated adversarial QA
dataset from the Aya collection (Üstün et al., 2024)

multilingual Instruction Fine-Tuning (IFT) datasets064

(Muennighoff et al., 2023; Wei et al., 2023; Lai065

et al., 2023b; Zhang et al., 2024b; Shaham et al.,066

2024; Chen et al., 2024a; Üstün et al., 2024). How-067

ever, creating such multilingual IFT datasets is chal-068

lenging. Previous efforts have primarily focused069

on two approaches: translating existing English070

IFT datasets or templating existing Natural Lan-071

guage Processing (NLP) datasets in non-English072

languages through native speakers to form IFT-073

style datasets. Each approach has its drawbacks,074

highlighting the need for more effective methods.075

Translating English IFT datasets poses signifi-076

cant challenges, primarily because it fails to capture077

the nuances and intricacies unique to each language078

(Liu et al., 2024; Zhang et al., 2023b). Additionally,079

the translation process often introduces errors, lead-080

ing to suboptimal performance when fine-tuning081

LLMs on these translated datasets, as the models082

absorb these errors during training (Xu et al., 2023;083

Zhou et al., 2023; Kong et al., 2023). For example,084

in Figure 1, the first translated response (red) is085

incorrect, even though it differs from the correct086

response (blue) by just one word. The red and blue087

words are used in different contexts in Telugu and088

do not have direct translations in English. Despite089

being generated by a state-of-the-art translation090

model, the first translation (red) fails to capture the091

correct meaning. Thus, relying entirely on trans-092

lated data poses significant challenges in accurately093

reflecting the nuances of non-English languages.094

Comparatively, the templating approach avoids095

the introduction of translation errors. However,096

achieving high diversity through templated ap-097

proaches is challenging and often tedious due to the098

manual effort required (Muennighoff et al., 2023;099

Sanh et al., 2022). For instance, as shown in Fig- 100

ure 2, one of the templated datasets contains the 101

same instruction repeated several thousand times, 102

resulting in a lack of diversity in the IFT dataset. 103

To address the issues of translation and tem- 104

plated approaches, we introduce an efficient 105

method to collect high-quality multilingual IFT 106

datasets. The proposed method preserves the nu- 107

ances of languages, avoids errors, and creates a 108

diverse set of IFT examples for multiple languages. 109

This is achieved by leveraging an English-focused 110

LLM and the availability of monolingual corpora 111

in each non-English language. We also employ 112

a scoring function to control the quality of gener- 113

ated IFT examples. By relying on English-focused 114

LLMs, we can tap into their extensive capabilities 115

and transfer these abilities across diverse linguis- 116

tic contexts. Utilizing monolingual corpora allows 117

us to capture the unique linguistic and cultural nu- 118

ances of each language, enhancing performance 119

and accuracy in multilingual applications. Addi- 120

tionally, the robust scoring function ensures that the 121

knowledge and capabilities derived from English- 122

centric LLMs are appropriately adapted and opti- 123

mized for non-English languages. 124

Extensive experiments on both generative and 125

discriminative tasks demonstrate the effectiveness 126

of the multilingual IFT datasets resulting from our 127

proposed method. Compared to models fine-tuned 128

on IFT datasets created using translation and tem- 129

plated approaches, the model fine-tuned on IFT 130

datasets from our method achieves an average im- 131

provement of 11.1% in generative tasks and 6.9% 132

in discriminative tasks. Furthermore, these im- 133

provements are obtained with an IFT dataset less 134

than half the size of those created using templated 135

and translation methods, highlighting the superior 136

quality and diversity of the IFT dataset generated 137

by our approach. 138

2 Method 139

A fundamental component in the development of 140

Multilingual Large Language Models (MLLMs) 141

lies in the acquisition of training datasets, cru- 142

cially needed throughout distinct phases: Pretrain- 143

ing (PT), Instruction fine-tuning (IFT), and Align- 144

ment Tuning (AT). 145

While obtaining the necessary monolingual 146

datasets for pretraining is relatively straightforward, 147

acquiring datasets for instruction fine-tuning and 148

alignment tuning presents significant challenges 149
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Figure 3: Overview of the proposed method: (A) Select Response, (B) Translating Response to English, (C)
Generating English instructions using the English Response and task-specific prompt, (D) Scoring the generated
English instruction against the translated response, and (E) Translating the English instruction back to the language
of the original response.

due to the costs and human effort involved. To ad-150

dress these challenges while maintaining linguistic151

characteristics and diversity, we propose a frame-152

work for creating IFT datasets for multiple lan-153

guages. The framework consists of five stages,154

illustrated in Figure 3 and described below:155

(A). Select Responses: We utilize a monolingual156

corpus as the primary source of response, supple-157

mented by answers from existing NLP datasets158

for each non-English language (x). We extract159

several thousand text fragments from these non-160

English corpora, deduplicate, and apply various161

heuristics to filter out potentially low-quality frag-162

ments. These heuristics include criteria such as163

the prevalence of capitalized letters and special-164

ized symbols. These text fragments are natural and165

most likely error-free output since they are from166

the monolingual corpus or human-curated answers167

from existing NLP datasets. Each fragment, de-168

noted as Rx, which varies in length to resemble169

responses in real-world scenarios, is then used to170

generate pseudo instructions through the following171

steps. By doing this, we ensure the output quality172

of the multilingual IFT data.173

(B). Translating Responses: Given the availabil-174

ity of competent English LLMs in both open-source175

and closed environments, we have chosen to gener-176

ate pseudo-instructions in English. This strategic 177

decision allows us to leverage the strength of these 178

models, ensuring the generation of high-quality and 179

diverse instructions that cater to a wide range of 180

NLP tasks, we translate the selected response (Rx) 181

into English. 182

Ren = MT x→en(Rx) 183

(C). Generating Instruction: We generate En- 184

glish instructions by utilizing English-focused 185

LLM, a translated response (Ren), and a randomly 186

selected prompt (PI ) from a pool of predefined 187

task prompts. Our approach involves designing a 188

range of prompts specifically tailored to support 189

various NLP tasks, including question-answering, 190

summarization, and sentiment analysis. Addition- 191

ally, the prompt allows for open-ended instruction 192

generation, providing LLMs with the opportunity 193

to produce the most plausible instructions for a 194

given response. Focusing on generating instruc- 195

tions in English enables us to tap into the exten- 196

sive resources and capabilities available for this 197

language, thereby enhancing the adaptability and 198

effectiveness of our approach across diverse lin- 199

guistic contexts. This emphasis on English instruc- 200

tion generation also ensures seamless integration 201

with existing English-centric NLP systems, further 202
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augmenting the versatility and applicability of our203

methodology in real-world scenarios. Formally, the204

English instruction (Ien) is generated by:205

Ien = LLM(PI ,Ren) (1)206

(D). Scoring The instructions generated through207

(1) do not always yield high-quality examples due208

to misalignment in the prompt-response pair or209

LLM’s failure to generate appropriate instruction.210

Thus we rely on a scoring function to filter and211

identify high-quality examples while maintaining212

diversity in the generated dataset.213

We use LLM as a judge, employing the prompt214

Ps to assess the quality of (Ien,Ren) pair. This215

results in a score, denoted as s:216

s = LLM(Ps, Ien,Ren) (2)217

Pairs with a score greater than or equal to a pre-218

defined threshold (λ) are used for fine-tuning, while219

those below this threshold are removed from fine-220

tuning phase.221

(E). Translating Instruction: Following the222

scoring phase, we proceed to translate Ien into223

the same language as Rx:224

Ix = MT en→x(Ien)225

Subsequently, we form a training pair (Ix,Rx).226

Here, Ix serves as a pseudo instruction, while Rx227

represents natural text in the same non-English lan-228

guage. During the LLM fine-tuning stage, despite229

potential unnaturalness and errors in Ix arising230

from the instruction generation and translation pro-231

cess, the model is trained to generate Rx, which232

is typically a natural and error-free output sourced233

from the monolingual corpus or existing human-234

curated NLP datasets. Leveraging such pairs en-235

hances the model’s ability to handle instruction236

errors and improves its overall language compre-237

hension.238

The sample task prompts (PI ) and scoring239

prompt (Ps) used in Equation 1 and Equation 2 are240

provided in Table 8 and Table 9 in the Appendix.241

3 Experimental Settings242

3.1 Dataset creation243

We utilize the CC-100 monolingual dataset (Con-244

neau et al., 2020). We also utilize answers from the245

templated examples in the aya dataset (Üstün et al.,246

2024). In both cases, the texts are written in the247

Language TM TR GR
Telugu 1,312,185 2,596,857 523,739
Hindi 1,171,530 2,540,447 570,467

Japanese 2,392,691 3,029,014 531,163
Spanish 1,220,649 2,560,149 557,563

Table 1: Total number of instruction-response pairs used
for fine-tuning the LLMs by Templated (TM), Transla-
tion (TR), and Generated (GR) approaches.

.

native language not derived from other languages 248

(Wenzek et al., 2020). We selected the text based 249

on the criteria described in Section 2. We choose 250

four languages: Telugu (tel), Hindi (hin), Japanese 251

(jpn), and Spanish (spa) to create IFT datasets 252

through our approach. According to Aya and Okapi 253

(Üstün et al., 2024; Lai et al., 2023b), Telugu and 254

Nepali are low-resource, Indonesian and Hindi are 255

mid-resource, and Japanese and Spanish are high- 256

resource languages. We collected approximately 257

one million text fragments for each language. 258

In creating multilingual datasets using the 259

proposed approach, we utilize open source meta- 260

llama/Meta-Llama-3-70B-Instruct (AI@Meta, 261

2024) as our LLM to generate instructions and 262

also to score instruction-response pairs. However, 263

this LLM can be replaced with more powerful 264

open-source or closed-source LLMs to improve 265

the quality of generated instructions further. 266

We utilize NLLB-200 (Costa-jussà et al., 2022)2, 267

which has support for 200 languages with state-of- 268

the-art translation quality. The same model is used 269

for translating the response (R) to English as well 270

as for translating (Ien) into the language of (R). 271

After the translation, we use the COMET score 272

(Rei et al., 2020) to remove low-quality translated 273

responses (Ren) and generated instructions (Ix). 274

Specifically, we use Unbabel/wmt23-cometkiwi-da- 275

xl model (Rei et al., 2023), which is a reference- 276

free model with 3.5 billion parameters. We retain 277

examples with COMET scores greater than or equal 278

to 0.7. 279

3.2 Training details 280

We use Meta-Llama-3-8B (AI@Meta, 2024)3 as 281

the base model to fine-tune on our multilingual IFT 282

dataset. We also fine-tune non-English focused 283

models such as Rakuten-ai-7B-Instrcut (Rakuten 284

Group et al., 2024), Aya-23 (Aryabumi et al., 2024). 285

2https://huggingface.co/facebook/nllb-200-3.3B
3https://huggingface.co/meta-llama/Meta-Llama-3-8B
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Language Templated Translated Generated
Instruction Response Instruction Response Instruction Response

Telugu (tel) 344(±312) 221(±297) 223(±295) 204(±179) 381(±917) 308(±482)
Hindi (hin) 401(±450) 290(±315) 228(±397) 203(±181) 475(±897) 358(±582)

Japanese (jpn) 67(±79) 95(±115) 94(±172) 86(±78) 162(±473) 98(±116)
Spanish (spa) 306(±280) 138(±215) 238(±435) 215(±196) 425(±723) 289(±475)

Table 2: Average lengths (#characters) of instruction-response pairs in templated, translated, and generated
approaches.

During training, we only optimize the loss on the286

output tokens, not the input tokens, thus deviat-287

ing from the standard language modeling loss. We288

apply the same hyperparameters as existing instruc-289

tion fine-tuning (IFT) methods (Zhou et al., 2023;290

Touvron et al., 2023): a learning rate of 1e−5 that291

linearly decays to 9e−6 by the end of the training,292

weight decay of 0.1, batch size of 128 examples,293

and dropout of 0.1. For generation, we use nucleus294

sampling (Holtzman et al., 2020) with a tempera-295

ture of T = 0.7 and p = 0.9. We use 8 NVIDIA296

H100 GPUs for fine-tuning the model.297

4 Results298

In Table 1, we present the statistics of datasets299

created using various approaches. The statis-300

tics of datasets created using the template-301

based and translation-based approaches are from302

aya collection (Üstün et al., 2024). Please see the303

Appendix for more details. Using our approach,304

we generated approximately 500K instruction-305

response pairs from the initial pool of 1M text306

fragments for each language.307

We evaluate the performance of models fine-308

tuned on datasets collected using our approach309

against models fine-tuned on datasets obtained310

through translation and template-based methods.311

Specifically, we compare the Aya-TM and Llama-312

3-8B-TM models, which are trained on template-313

based datasets as described in Üstün et al. (2024).314

Additionally, we assess the Aya-TR and Llama-3-315

8B-TR models, which are trained on translation-316

based datasets detailed in Üstün et al. (2024).317

Both types of datasets include the Aya-human318

annotated dataset4. Furthermore, we compare319

these with the Bactrian-X model (Li et al., 2023),320

fine-tuned on a dataset comprising translated En-321

glish instructions and their corresponding multi-322

lingual responses generated using ChatGPT. Our323

final model, Llama-3-8B-GR, is trained using the324

4https://huggingface.co/datasets/CohereForAI/aya dataset

RougeLsum
tel hin jpn spa

Templated Approaches
Aya-TM 18.0 33.8 7.9 24.2
Llama-3-8B-TM 19.6 36.4 17.8 26.8

Translated Approaches
Bactrian-X 12.1 23.5 5.2 15.7
Aya-TR 16.9 32.8 6.7 22.1
Llama-3-8B-TR 18.4 35.9 18.4 25.9

Ours
Llama-3-8B-GR 24.3 39.5 22.6 29.5

Table 3: Performance of models on XLSUM.

created instruction-response dataset along with 325

the Aya human-annotated dataset. In all the ap- 326

proaches, the percentage of training examples col- 327

lected through the human annotation process corre- 328

sponds to less than 0.1%. 329

4.1 Generative Tasks 330

We evaluated the models on two generative tasks: 331

summarization using XLSUM (Hasan et al., 2021) 332

and machine translation using FLORES-200 (Costa- 333

jussà et al., 2022). These tasks were selected be- 334

cause they include responses written in native lan- 335

guages, not derived from other languages. We 336

present the performance of our model, Llama-3-8B- 337

GR-H, and its variants, comparing them to baseline 338

models across the four languages used for creating 339

multilingual IFT datasets. For the summarization 340

task, we employed the RougeLsum metric (Lin, 341

2004), and for the translation task, we utilized sp- 342

BLEU (Goyal et al., 2021) and chrF++ (Popović, 343

2017)5. 344

Tables 3 and 4 present the results for the sum- 345

marization and machine translation tasks using 346

the XLSUM and FLORES-200 datasets, respec- 347

tively. From the results presented in both tables, 348

5https://github.com/mjpost/sacrebleu
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spBleu
tel hin jpn spa

Templated datasets
Aya-TM 21.9 22.7 18.2 27.1
LLama-3-8B-TM 24.6 25.3 21.6 30.7

Translated datasets
Bactrian-X 17.3 19.2 11.78 22.4
Aya-TR 21.0 22.8 14.7 28.4
Llama-3-8B-TR 23.5 24.9 20.2 31.2

Ours
Llama-3-8B-GR 27.2 28.4 24.8 33.9

chrF++
Templated datasets

Aya-TM 44.7 44.1 29.7 50.3
Llama-3-8B-TM 47.1 46.9 34.7 58.4

Translated datasets
Bactrian-X 35.8 36.9 22.1 42.8
Aya-TR 45.5 44.9 29.9 51.9
Llama-3-8B-TR 47.7 46.4 35.0 57.7

Ours
Llama-3-8B-GR 49.8 50.2 38.3 63.2

Table 4: Performance of models on FLORES-200 de-
vtest set (en→xxx).

models trained with translated datasets do not ex-349

hibit any improvement over those trained with tem-350

plate datasets. In contrast, the Llama-3-8B-GR351

model, fine-tuned on datasets created using our352

method, demonstrates significant performance en-353

hancements across both tasks compared to all other354

dataset types. Our dataset, free from translation355

errors and rich in diversity, enables the model to356

better capture the authentic form of language, lead-357

ing to superior performance.358

4.2 Discriminative Tasks359

We also evaluate the models on a discriminative360

task to assess whether introducing high-quality, di-361

versified, and native-written responses enhances362

the model’s language comprehension and overall363

performance. Specifically, we use the multilin-364

gual MMLU task (Lai et al., 2023b), a machine-365

translated version of the English MMLU task366

(Hendrycks et al., 2021), to compare the perfor-367

mance of models trained extensively on translated368

datasets versus those trained on native datasets cre-369

ated using our approach. This task was unseen370

during the models’ fine-tuning stage, so we employ371

a few-shot evaluation to compare performance. The372

tel hin spa
Translated datasets

Bactrian-X 24.5 26.2 27.2
Okapi 26.9 27.9 30.3
Aya-TR 32.1 38.7 39.7
Llama-3-8B-TR 34.1 41.4 42.9

Ours
Llama-3-8B-GR 36.3 44.7 45.6

Table 5: Performance of models on multilingual MMLU
task.

Figure 4: Instruction diversity in the generated IFT
dataset. The inner circle displays common root verbs,
while the outer circle shows the corresponding noun ob-
jects, based on approximately 15 percent of instructions
generated across 4 languages. The figure only repre-
sents 13.1% of verb-noun pairs since not all instructions
have the parsed verb-noun structure.

Llama-3-8B and Aya models use a 5-shot evalua- 373

tion, while the Bactrian-X and Okapi models use 374

a 25-shot evaluation. The task comprises 13,000 375

questions covering 57 topics, ranging from STEM 376

and humanities to social sciences. 377

Table 5 shows the multilingual results in three 378

languages. The model trained with our dataset 379

(Llama-3-8B-GR), outperforms the models trained 380

with datasets collected using other approaches. Our 381

model outperforms Okapi, Aya, and our baseline 382

by 48.74%, 13.8%, and 6.9%, respectively. These 383

results indicate that the diversity and quality of the 384

datasets lead to better performance. 385

Despite our dataset being 2.7 and 4.9 times 386

smaller than the templated and translated datasets, 387

respectively, the model fine-tuned on our dataset 388

achieved significant improvements in both genera- 389

6



Figure 5: Scores assigned by LLM judge on Instruction-
Response pairs. The scores are averaged across all lan-
guages.

tive and discriminative tasks. This underscores the390

importance of high-quality, diversified datasets in391

developing efficient multilingual LLMs.392

4.3 Analysis393

4.3.1 Instruction diversity394

To understand the diversity of the generated instruc-395

tions, we plot the verb-noun structure of instruc-396

tions in Figure 4. The figure visualizes the distri-397

bution of the most frequent root verbs and their398

corresponding most common direct noun objects399

from 15% of the generated instructions across four400

languages. These noun-verb pairs represent 8.1%401

of the entire set, which exhibits diverse intents and402

patterns in our generated instructions. We also pro-403

vide a few generated samples in the Appendix.404

We also report the average length of instructions405

and responses from all data creation approaches.406

As shown in Table 2, the average number of char-407

acters in the instructions generated using our ap-408

proach varies significantly compared to the other409

two approaches. This variation arises from using410

different types of task prompts when generating an411

instruction for a given response.412

4.3.2 Effect of Scoring Function:413

The frequency of average scores obtained using414

the LLM judge is shown in Figure 5. To evalu-415

ate the impact of the scoring function on the cre-416

ation of high-quality multilingual IFT datasets, we417

fine-tuned the Llama-3-8B-GR model on datasets418

filtered using different scoring thresholds, λ =419

{1, 2, 3, 4, 5}. For each specific threshold λi, all420

examples below that score were excluded from421

Figure 6: Importance of scoring function in creating
high-quality IFT dataset. The x-axis represents the
scoring threshold used to filter the IFT dataset. The
Y-axis represents the average RougeLsum score of Tel-
ugu, Hindi, Japanese, and Spanish languages from the
XLSUM summarization task.

Model
XLSUM MMLU
(Rouge-2) (Acc.)

RakutenAI-7B
14.1 61.3

(Rakuten Group et al., 2024)

RakutenAI-7B-GR 18.5 63.2
(w/ our IFT dataset)

Table 6: Performance of Japanese-focused LLMs on
XLSUM and MMLU Japanese tasks.

the training set. We then compared the perfor- 422

mance of the Llama-3-8B-GR model trained on 423

these filtered datasets against models (Llama-3- 424

8B-TM and Llama-3-8B-TR) trained on template- 425

based and translation-based datasets. As illustrated 426

in Figure 6, the performance of Llama-3-8B-GR 427

improves as the scoring threshold increases up to 428

λ = 3, achieving superior performance compared 429

to the Llama-3-8B-TM and Llama-3-8B-TR models. 430

Beyond λ = 3, performance declines due to the 431

reduced size of the training dataset. These results 432

underscore the critical role of the scoring function 433

in creating high-quality multilingual IFT datasets. 434

4.3.3 Effect on non-English focused models. 435

To evaluate the diversity and quality of our IFT 436

datasets, we conducted further fine-tuning on 437

two robust non-English-focused LLMs using our 438

IFT datasets. First, we assessed the impact 439

on the Japanese-focused model (Rakuten Group 440

et al., 2024). This model was initially pre-trained 441

on Japanese texts and fine-tuned on Japanese 442
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Model
XLSUM MMLU
(RougeL) (Acc.)

Aya-23-8B
29.7 45.3

(Aryabumi et al., 2024)

Aya-23-8B-GR 31.4 46.8
(w/ our IFT dataset)

Table 7: Performance of Aya-23-8B LLM on XLSUM
and MMLU Hindi and Spanish tasks. The Aya-23-8B-
GR model is obtained by further finetuning of Aya-23-8B
model on our Hindi and Spanish IFT datasets.

instruction-response pairs. Second, we evaluated443

the performance of a state-of-the-art multilingual444

LLM named Aya-23 (Aryabumi et al., 2024). This445

model is based on Cohere’s Command model6 and446

was instruction-tuned on 23 languages using the447

template-based dataset from Üstün et al. (2024).448

As shown in Table 6 and Table 7, fine-tuning fur-449

ther on our IFT dataset significantly enhances the450

performance of these non-English-focused LLMs.451

5 Related Work452

Multilingual LLMs. LLMs (Brown et al., 2020;453

Chowdhery et al., 2023; Touvron et al., 2023; Ope-454

nAI, 2024) have achieved remarkable results on455

various NLP tasks (Hendrycks et al., 2021; Sri-456

vastava et al., 2022). With over 7,000 languages457

spoken worldwide and approximately 2,500 classi-458

fied as low-resource by Joshi et al. (2020), which459

are spoken by more than 1 billion people, there is a460

growing need to expand the language coverage of461

LLMs. To develop LLMs with multilingual capa-462

bilities, one straightforward approach is to pretrain463

them on a diverse set of languages. For example,464

BLOOM (Le Scao et al., 2023) is pretrained on 46465

languages and 13 programming languages, while466

Llama-2 (Touvron et al., 2023) is pretrained pri-467

marily on English with additional data from 27468

other languages. Despite these efforts, the lan-469

guage coverage of these models remains limited470

and predominantly focused on English. Another ap-471

proach is to continually train LLMs with additional472

languages (Cui et al., 2023; Basile et al., 2023;473

ImaniGooghari et al., 2023). In particular, Chinese-474

Llama (Cui et al., 2023) continually trains Llama475

on Chinese corpora and integrates additional Chi-476

nese tokens into the original vocabulary to further477

improve the Chinese ability.478

Instruction Tuning. Instruction tuning has been a479

6https://cohere.com/command

key paradigm for LLMs to improve their general 480

performance and ability to follow instructions (Wei 481

et al., 2022; Wang et al., 2022b; Ding et al., 2023). 482

However, these models are predominantly tuned 483

using English, resulting in significant discrepan- 484

cies in performance across languages (Huang et al., 485

2023; Etxaniz et al., 2023). Multilingual instruction 486

tuning has effectively narrowed this performance 487

gap (Kew et al., 2023; Chen et al., 2024b). Typi- 488

cally, the data for multilingual instruction tuning is 489

derived through translation from English data (Li 490

et al., 2023; Zhang et al., 2023a; Üstün et al., 2024), 491

but this approach often misses cultural nuances 492

and can introduce unnatural responses. Some ef- 493

forts (Üstün et al., 2024) utilize templates to auto- 494

matically create large amounts of multilingual data, 495

but this method is constrained by limited diversity 496

in the instructions. We propose to generate instruc- 497

tions directly from original multilingual responses, 498

which preserves the naturalness of responses and 499

enhances the diversity of instructions. 500

6 Conclusion 501

In conclusion, our research addresses the notable 502

disparity in Instruction Fine-Tuning (IFT) datasets, 503

predominantly centered on English, by proposing 504

a novel method for collecting multilingual IFT 505

datasets. By leveraging English-focused LLMs and 506

monolingual corpora, our approach maintains the 507

naturalness of specific languages and ensures diver- 508

sity in the datasets. The quality control through a 509

scoring function further enhances the effectiveness 510

of the generated datasets. 511

Our extensive experiments on generative tasks 512

demonstrate that the models trained with our multi- 513

lingual IFT datasets significantly outperform those 514

trained on traditional translated and templated 515

datasets. Moreover, our models show substantial 516

improvements in discriminative tasks, indicating a 517

better comprehension of language. 518

These results underscore the importance of di- 519

verse and high-quality multilingual datasets in en- 520

hancing the performance of large language models 521

across various languages. Our method provides a 522

viable solution to the challenges faced in creating 523

effective multilingual IFT datasets, paving the way 524

for more inclusive and capable language models. 525

Future research can build upon this approach to 526

further refine and expand the capabilities of LLMs 527

in a broader range of linguistic contexts. 528
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Limitations529

Since the instructions were generated by LLMs,530

there may be inherent biases originating from the531

underlying models used in this study. Neverthe-532

less, the models used are open-source, extensively533

utilized by the community, and trained with the534

goals of reducing bias and enhancing safety and535

usefulness.536

This study aims to systematically assess the ef-537

fectiveness of generated instructions for given re-538

sponses in various languages. Due to limitations539

in computing resources, we were unable to extend540

the proposed data creation framework beyond four541

languages. However, we endeavored to cover low,542

medium, and high-resource languages and evalu-543

ated our approach on several NLP tasks.544

In our evaluation of LLMs using different IFT-545

style datasets, we selected two generative tasks and546

one discriminative task to demonstrate the impact547

of our dataset. The study was limited to three tasks548

due to computational and time constraints. How-549

ever, these tasks are popular and widely used in550

evaluating multilingual LLMs.551

In future work, we plan to extend our evaluation552

to LLMs optimized for additional languages and553

explore multiple benchmarks within each language554

to better understand the native aspects of LLM555

performance.556
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Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe667
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,668
et al. 2022. No language left behind: Scaling669
human-centered machine translation. arXiv preprint670
arXiv:2207.04672.671

Yiming Cui, Ziqing Yang, and Xin Yao. 2023. Efficient672
and effective text encoding for chinese llama and673
alpaca. arXiv preprint arXiv:2304.08177.674

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin,675
Shengding Hu, Zhiyuan Liu, Maosong Sun, and676
Bowen Zhou. 2023. Enhancing chat language mod-677
els by scaling high-quality instructional conversa-678
tions. In Proceedings of the 2023 Conference on679
Empirical Methods in Natural Language Processing,680
pages 3029–3051, Singapore. Association for Com-681
putational Linguistics.682

Julen Etxaniz, Gorka Azkune, Aitor Soroa, Oier Lopez683
de Lacalle, and Mikel Artetxe. 2023. Do multilin-684
gual language models think better in english? arXiv685
preprint arXiv:2308.01223.686

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-687
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-688
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,689
and Angela Fan. 2021. The flores-101 evaluation690
benchmark for low-resource and multilingual ma-691
chine translation.692

Tahmid Hasan, Abhik Bhattacharjee, Md Saiful Islam,693
Kazi Samin, Yuan-Fang Li, Yong-Bin Kang, M. So-694
hel Rahman, and Rifat Shahriyar. 2021. Xl-sum:695

Large-scale multilingual abstractive summarization 696
for 44 languages. Preprint, arXiv:2106.13822. 697

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 698
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 699
2021. Measuring massive multitask language under- 700
standing. In International Conference on Learning 701
Representations. 702

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 703
Yejin Choi. 2020. The curious case of neural text 704
degeneration. Preprint, arXiv:1904.09751. 705

Haoyang Huang, Tianyi Tang, Dongdong Zhang, Xin 706
Zhao, Ting Song, Yan Xia, and Furu Wei. 2023. Not 707
all languages are created equal in LLMs: Improv- 708
ing multilingual capability by cross-lingual-thought 709
prompting. In Findings of the Association for Com- 710
putational Linguistics: EMNLP 2023, pages 12365– 711
12394, Singapore. Association for Computational 712
Linguistics. 713

Ayyoob ImaniGooghari, Peiqin Lin, Amir Hossein Kar- 714
garan, Silvia Severini, Masoud Jalili Sabet, Nora 715
Kassner, Chunlan Ma, Helmut Schmid, André Mar- 716
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Maja Popović. 2017. chrF++: words helping charac- 806
ter n-grams. In Proceedings of the Second Confer- 807
ence on Machine Translation, pages 612–618, Copen- 808
hagen, Denmark. Association for Computational Lin- 809
guistics. 810

Rakuten Group, Aaron Levine, Connie Huang, Chen- 811
guang Wang, Eduardo Batista, Ewa Szymanska, 812
Hongyi Ding, Hou Wei Chou, Jean-François Pessiot, 813
Johanes Effendi, Justin Chiu, Kai Torben Ohlhus, 814
Karan Chopra, Keiji Shinzato, Koji Murakami, Lee 815
Xiong, Lei Chen, Maki Kubota, Maksim Tkachenko, 816
Miroku Lee, Naoki Takahashi, Prathyusha Jwalapu- 817
ram, Ryutaro Tatsushima, Saurabh Jain, Sunil Ku- 818
mar Yadav, Ting Cai, Wei-Te Chen, Yandi Xia, 819
Yuki Nakayama, and Yutaka Higashiyama. 2024. 820
Rakutenai-7b: Extending large language models for 821
japanese. Preprint, arXiv:2403.15484. 822

Ricardo Rei, Nuno M. Guerreiro, José Pombal, Daan 823
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The scoring prompt used to evaluate our generated 1188

instruction and given response pair is given in Table 1189

9. 1190

B Examples 1191

A few examples of multilingual IFT datasets cre- 1192

ated using our approach are shown in Figure 7, 1193

Figure 8. 1194

C Templated and Translated Datasets 1195

The templated and translated datasets in aya 1196

are constructed using Aya dataset, Aya collection 1197

datasets by following the ratios described in Ta- 1198

ble 10. The Aya dataset is created by using na- 1199
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tal Aya collection includes 513 million instances 1205

making it the largest open-source multilingual IFT 1206

dataset. For our experiments, we collected tem- 1207

plated and translated datasets from Aya collection 1208

for Telugu, Hindi, Chinese, and Spanish languages. 1209
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 Response:  �ద���  �  అర� ���   ��వర� ం  ప�ం�.  ప�  �� ం���   వర� ం  దం���� ం�.  ��� ���,  అ����, 
 పం��ట� ,  మ��ండ,  ����,  ��ంద� నగ�,  ��ం�� ��,  ��ంత��,  ��  ��  నగ�,  ఎ��నగ�  త�తర 
 �� ం���   వర� ం  ప�ం�.  గత  �ం�  ����  ఎడ�����  �న�  నగర���  ఇబ�ం��  ప�����.  ఇ�ళ 
 ఉదయం  �ం�  7.33  �ం��టర�   వర� �తం  న�ద��ం�.  ��  వర� ం�  �డ� ��  జలమయమ���.  ప� జల� 
 �క�కల� ఇబ�ం�కరం� ��ంద� ప� జ� ������. 

 Heavy  rain  fell  in  Hyderabad  at  midnight.  Rain  lashed  many  areas.  Jubilee  Hills,  Ameerpet,  Panjagutta, 
 Manikonda,  Madapur,  Rajendranagar,  Secunderabad,  Ramantapur,  Dil  Shukh  Nagar,  LB  Nagar  and  other 
 places  received  rain.  The  residents  of  the  city  are  suffering  due  to  incessant  rain  for  the  last  two  days.  7.33  cm 
 rainfall  has  been  recorded  since  this  morning.  All  the  roads  were  flooded  due  to  heavy  rain.  People  complain 
 that it has become difficult for people to travel. 

 Instruction:  దయ�� �� ం� ���  కథ��� సంగ� �ంచం�. 
 �ద���  నగరం�  అర� ���   �ం�  ��  వర� ం  ���� ం�,  ప�  �� ం���   ��  వ�� �  ���� ���.  ఎడ��� 
 ��ం�  ���� న�  వర� ం  �రణం�  నగరం��  ప�  �� ం���   ��  ఎద� �  �ల�ం�.  ���   ���,  ఒక  �గ�క  �� ంతం, 
 అత�ంత  ప� ��త�న  �� ం�ల�  ఒక��  ఉం�,  �����  వరదల�  ��న  ����   ����  �య��� 
 కష� ప�����.  అ�� ��  మ��  పం��ట�   స�పం��  �� ం�ల�  ��  ��  వ�� �  ����,  �� ���  
 �ం���� ���య�  మ��  ���   �ం�న�  �ర��య�  ���ంచబ�ం�.\n\nనగరం  �క�  ���  �గం  �� 
 �వ� ం�  ప� ��త�ం�,  మ��ండ  మ��  ����  వం�  �� ం���   ��  వ�� �  ���� ���.  వర� ం  �రణం� 
 ����  �వ���  అంత�యం  ఏర��ం�,  ��  మం�  ప� ����  తమ  గమ��� �ల�  ���వ��� 
 కష� ప�����.  ��రణం�  ర�� �  ఉం�  ��ంద� నగ�  మ��  ��ం�� ��  ���   ����ష�ం�  ���,  ��� 
 �హ��  �త� �  ��  వ�� ��  త�� ��  ��� ���.\n\n�మ�� ��  మ��  �� ��  నగ�  వం�  �� ం���   �� 
 వర� �తం  న�దవడం�  నగరం��  ద�� ణ  �గం  ��  అత��తల�ం�.  వర� ం  �రణం�  ���  �� ం���   ���� 
 సరఫ�  ����వడం�  ప� జ�  క�ం�  ��ం�  ���.  ఎ��నగ�,  జన�ంద� త  అ�కం�  ఉం�  �� ంతం,  ��  ఎద� � 
 మ��  వరదల  ���కల�  ��  ప� ��త�ం�.\n\n��  వర� �తం  నగ���  స� ం�ంప��ం�,  ��  మం� 
 �����  ఇళ� �  ఉండ���  ఇష� పడ��.  �ం�న�  ��న  �డ� �  �� య�  ��  ����  సరఫ�� 
 �న�ద� �ం�ం��  అ����  కసర��   ��� ���,  అ��  వర� ం  �వ� త�  ఆ  ప�  స���  ��ం�.  నగరం  �క� 
 �� ��  వ�వస�   ��� �  �ం���ం�,  ఇ�  �స� �త�న  ��  ఎద� �  మ��  వరదల�  ����ం�.  వర� ం  ���� �,  7.33 
 �ం��టర�  వర� ���� ���వడం�, ����� కష� తర�న �� �సం తమ� �� �ద� ం ���ం����. 

 Please summarize the following news article. 
 The  city  of  Hyderabad  has  been  experiencing  heavy  rainfall  since  midnight,  with  several  areas  receiving 
 significant  amounts  of  rain.  The  downpour  has  been  relentless,  causing  waterlogging  in  many  parts  of  the  city. 
 Jubilee  Hills,  a  posh  locality,  has  been  one  of  the  worst  affected  areas,  with  residents  struggling  to  navigate  the 
 flooded  streets.  The  nearby  areas  of  Amirpet  and  Panjagutta  have  also  received  heavy  rainfall,  with  reports  of 
 overflowing  drains  and  inundated  roads.\n\nThe  eastern  part  of  the  city  has  also  been  severely  affected,  with 
 areas  like  Maniconda  and  Madapur  receiving  heavy  rainfall.  The  rain  has  caused  disruptions  to  daily  life,  with 
 many  commuters  struggling  to  reach  their  destinations.  The  usually  busy  roads  of  Rajendranagar  and 
 Sikandrabad  have  been  deserted,  with  only  a  few  vehicles  braving  the  heavy  rain.\n\nThe  southern  part  of  the 
 city  has  also  been  hit  hard,  with  areas  like  Ramanatpur  and  Dilshuk  Nagar  experiencing  heavy  rainfall.  The 
 rain  has  caused  power  outages  in  some  areas,  leaving  residents  without  electricity.  Elbinagar,  a  densely 
 populated  area,  has  also  been  affected,  with  reports  of  waterlogging  and  flooding.\n\nThe  heavy  rainfall  has 
 brought  the  city  to  a  standstill,  with  many  residents  preferring  to  stay  indoors.  The  authorities  have  been 
 working  to  clear  the  flooded  roads  and  restore  power  supply,  but  the  task  has  been  challenging  due  to  the 
 intensity  of  the  rain.  The  city's  drainage  system  has  been  overwhelmed,  leading  to  widespread  waterlogging 
 and  flooding.  As  the  rain  continues  to  pour  down,  reaching  7.33  centimeters  of  rainfall,  residents  are  bracing 
 themselves for a difficult day ahead.                                                                                        (  Telugu Example  ) 

Figure 7: Telugu example based on summarization task
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 Response:  �ర�  �  క��  �కం�  ��  కలకలం  సృ�� �� ం�.  త�� న��   త�� న  క��  ఒక����  �జృం��� ం�.  �ం�  �శ 
 ��ప� ం�  ఆం�ళన  �ద�ం�.  �కం�  ��  �  క��  �ర�  �గం�  �స� ��� ం�.  ����� �  గత  24  గంట��   24  �ల� 
 ��  ���  న�ద���.  �ం�  �� డ��  �డ�ష�  ఆ�  ఇం��  ఆం�ళన  వ�క� ం  ��ం�.  ప� �త�ం  �ంట�  క�న 
 చర��  ����ల�  ���  �ఖ  ��ం�.  ���   ��� �ం�  గవర��,  �ఎం  ��� ��  �  ��  �ఖ  ���.  అం��  ఏమ� 
 ప�  �చన�  ���.  అం��  ఏమ�  �����రం�.  “క��  �కం�  ��  �గం�  �స� ��� ం�.  ఈ  ��  �  అ�� ��లం� 
 క�సం  15  ���  ��  ��  �  ��ం��.  ��� �  ����  అ��  ��� ల�  ����.  ���  �� ష�� ,  ���శ����  
 ��� �బంధనల� క�నం ���.” అ� ఆ� ఇం�� �� డ�� �డ�ష� �ఖ� ��ం�. 

 The  second  wave  of  Corona  is  creating  chaos  in  India.  Corona,  which  has  decreased,  is  suddenly  booming. 
 This  started  a  panic  across  the  country.  Corona  virus  is  spreading  rapidly  in  the  second  wave.  More  than  24 
 thousand  cases  have  been  reported  in  New  Delhi  in  the  last  24  hours.  Traders  Federation  of  India  has 
 expressed  concern  over  this.  The  government  has  written  a  letter  asking  to  take  strict  action  immediately.  They 
 wrote  a  letter  to  Lt  Governor  of  Delhi  and  CM  Kejriwal.  Many  suggestions  have  been  made  as  to  what  is  in  it. 
 What  is  mentioned  in  it.  “The  second  wave  of  Corona  is  spreading  rapidly.  At  least  15  days  of  lockdown  should 
 be  imposed  to  stop  this  wave.  All  roads  leading  to  Delhi  should  be  closed.  Covid  rules  should  be  tightened  at 
 railway stations and airports.” All India Traders Federation demanded in the letter. 

 Instruction:  �రత�శం�,  ప� ���ం�  ����� �  �ండవ  క��  ��  �క�  ప� �� త  ప��� �  ఏ��  మ��  �� �� 
 �డ�ష� ఆ� ఇం�� ఎ�ం� చర�� ���ం�ం�? 

 What  is  the  current  situation  of  the  second  wave  of  Corona  in  India,  especially  in  New  Delhi,  and  what  actions 
 are being taken by the Trades Federation of India? 

 (Telugu Example) 

 Response:  B 
 Instruction:  指示: ワシントン郡の名前の由来は何ですか? 
 [選択肢]: 
 A. 有名な探検家にちなんで名付けられました。 
 B. アメリカ合衆国の初代⼤統領ジョージ・ワシントンにちなんで名付けられました。 
 C. 地元の著名な⼀族にちなんで名付けられました。 
 D. ネイティブアメリカンの部族にちなんで名付けられました。 

 What is the origin of the name of Washington County? 
 [Choices]: 
 A. It was named after a famous explorer. 
 B. It was named after the first President of the United States, George Washington. 
 C. It was named after a prominent local family. 
 D. It was named after a Native American tribe. 

 (Japanese Example) 

 Response:  ワ  タ  リ  ウ  ム  美  術  館  （ワ  タ  リ  ウ  ム  び  じゅ  つ  か  ん、  Watari  Museum  of  Contemporary  Art  ）  は  東  京  都  渋 
 ⾕区の通称キラー通りにある、国際的なコンテンポラリーアートを多く展示する私設美術館である。 

 The  Watari  Museum  of  Contemporary  Art  is  a  private  art  museum  located  on  Killer  Street  in  Shibuya  Ward, 
 Tokyo, which exhibits a wide range of international contemporary art. 

 Instruction:  ワタリウム美術館とは何ですか？どこにありますか？ 

 What is the Watari Museum of Contemporary Art and where is it located? 
 (Japanese Example) 

Figure 8: Japanese and Telugu examples based on question-answering tasks.
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Response: {{response}}

Given the above response, generate an
appropriate instruction so that the given
response can become an answer to the
instruction. If required, include relevant
context in the instruction.

Instruction:

Response:{{response}}

Given the above response, generate a question
along with a related context so that by using
these two the given response becomes a correct
answer to the question.

Question with context:

Response:{{response}}

Given the above response, generate a longer
text related to the response so that the given
response is a summary of that longer text.

Longer Text:

Response:{{response}}

Given the above response, generate a question,
context related to the response if required,
four choices where one of the choices is the
same as the given response and correct answer.
Ensure that the given response is a correct
answer to the question. Also, ensure that
the choices are relevant to the question and
are not too similar to each other. Please
number the choices from A to D. Also output
the correct choice at the end.

Question:

A.

B.

C.

D.

Answer:

Response:{{response}}

Given the above response, generate a math
problem so that the given response is the
correct answer to the math problem.

Math Problem:

Table 8: Sample task prompts PI used to generate in-
struction Ien in Equation 1.

Below is an instruction from a user and a
candidate response. Evaluate whether or not
the response is a good example of how an
AI Assistant should respond to the user’s
instruction. Assign a score using the
following 5-point scale:
1: The response is incomplete, vague,
off-topic, controversial, or not exactly what
the user asked for. It may miss content, start
the numbered list incorrectly, or repeat the
user’s instruction. The response may come
from another person’s perspective, contain
personal experiences, or include promotional
or irrelevant text.
2: The response addresses most of the user’s
requests but does not directly fulfill the
instruction. It might provide a high-level
methodology instead of an exact solution.
3: The response is helpful, addressing
all the basic asks from the user. It
is complete and self-contained but written
from another person’s perspective rather
than an AI assistant’s. It may include
personal experiences, opinions, or references
to comments sections and social media.
4: The response is written from an AI
assistant’s perspective, clearly focused on
the instruction. It is complete, clear,
comprehensive, well-organized, self-contained,
and written in a helpful tone. Minor
improvements could make it more concise and
focused.
5: The response is perfect, with a clear focus
on being a helpful AI Assistant. It addresses
the user’s instruction without irrelevant
sentences, providing high-quality content that
demonstrates expert knowledge. It is very well
written, logical, easy to follow, engaging,
and insightful.
Please provide a brief reasoning for your
rating and then write "Score: <rating>" on
the last line.
Instruction: instruction
Response: response

Table 9: Scroing prompt Ps used in Equation 2 to eval-
uate the quality of a generated instruction and given
response pair in the dataset curation phase.
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Approach Aya collection
Human-annotation (%) Template datasets (%) Translation datasets (%)

Translation 10 20 70
Template 20 50 30

Table 10: Data sampling with different weighting schemes to create IFT datasets for translation-based and template-
based approaches as described in (Üstün et al., 2024).
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