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ABSTRACT

Model-based reinforcement learning (MBRL) has achieved remarkable success in
robotics due to its high sample efficiency and planning capability. However, ex-
tending MBRL to physical multi-robot cooperation remains challenging due to the
complexity of joint dynamics. To address this challenge, we propose the Sequential
World Model (SeqWM), a novel framework that integrates the sequential paradigm
into multi-robot MBRL. SeqWM employs independent, autoregressive agent-wise
world models to represent joint dynamics, where each agent generates its future
trajectory and plans its actions based on the predictions of its predecessors. This
design lowers modeling complexity and enables the emergence of advanced coop-
erative behaviors through explicit intention sharing. Experiments on Bi-DexHands
and Multi-Quadruped demonstrate that SeqWM outperforms existing state-of-the-
art model-based and model-free baselines in both overall performance and sample
efficiency, while exhibiting advanced cooperative behaviors such as predictive
adaptation, temporal alignment, and role division. Furthermore, SeqWM has been
successfully deployed on physical quadruped robots, validating its effectiveness in
real-world multi-robot systems. Demos and code are available at: SeqWM.

1 INTRODUCTION
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Figure 1: Comparison of SeqWM’s distributed sequential
paradigm with existing centralized/decentralized paradigms.

Model-based reinforcement learning
(MBRL) has been widely applied to
robotic systems due to its high sample
efficiency (Jiang et al., 2025) and planning
capability (Sun et al., 2023). However, ex-
tending MBRL to multi-robot cooperation
remains challenging. Early decentralized
approaches built independent world mod-
els for each agent (Egorov & Shpilman,
2022), overlooking inter-agent couplings
and hindering coordination. More recent
centralized methods, by contrast, assume
full observability (Liu et al., 2024b),
performing dynamics modeling and policy
optimization in the joint space. These
methods face challenges related to modeling complexity in robotic systems with high-dimensional
observation and action spaces, limiting their deployment in real-world scenarios.

Between centralized and decentralized paradigms, the distributed sequential paradigm has rapidly
developed in recent years and demonstrated unique advantages (Khan, 2025). It reformulates multi-
agent decision-making as an autoregressive process: agents communicate and act in a certain order,
with each updating its policy conditioned on messages and actions from predecessors (Wen et al.,
2022; Hu et al., 2025). This design enables more consistent joint reasoning (Ding et al., 2024) and
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finer-grained credit assignment (Kuba et al., 2022) without relying on full communication. From a
real-world deployment perspective, it reduces the reliance on communication synchronization and
offers improved robustness against packet loss or disturbances (Ding et al., 2024).

Motivated by these advantages, as shown in Figure 1, we propose the Sequential World Model
(SeqWM), which integrates the sequential paradigm into MBRL to structurally decompose dynamics
modeling and action planning. For trajectory prediction, SeqWM represents the joint dynamics
as sequential agent-wise rollouts, where each agent maintains an independent world model and
conditions on the predicted trajectories and actions of its predecessors. For action planning, each
agent performs multi-step lookahead conditioned on its predecessors’ predictions, thereby preserving
cooperative performance while constraining the search to a low-dimensional subspace consistent
with the sequential structure. We evaluate SeqWM in two challenging multi-robot cooperation
environments: Bi-DexHands (Chen et al., 2024a) and Multi-Quad (Xiong et al., 2024), and further
validate its effectiveness on physical multi-robot tasks using two Unitree Go2-W robots. The key
contributions are as follows:

(1) By integrating the sequential paradigm, SeqWM decomposes joint dynamics into autoregressive
agent-wise models, reducing modeling complexity, thereby extending MBRL to multi-robot
cooperation.

(2) Through explicit intention sharing, SeqWM enables the emergence of advanced cooperative
behaviors such as predictive adaptation, temporal alignment, and role division.

(3) SeqWM consistently outperforms all baseline methods on the simulated multi-robot benchmarks
and demonstrates successful real-world deployment on a physical multi-quadruped platform.

These results collectively demonstrate that SeqWM, by leveraging sequential world modeling and
planning, offers an effective pathway for multi-robot cooperation, balancing performance, efficiency,
and real-world applicability.

2 RELATED WORK

Model-based RL. In robotics, model-based RL has shown remarkable success due to its high sample
efficiency (Jiang et al., 2025), with several approaches (Sun et al., 2023) leveraging learned dynamics
models to predict trajectories and optimize actions for physical robots. In contrast, existing multi-robot
MBRL methods often rely on centralized paradigms (Zhao et al., 2025b), hindering their practical
deployment in multi-robot systems. For example, CoDreamer (Toledo, 2024) use transformers
or GNNs to integrate full state-action across all agents. Recent efforts such as MARIE (Zhang
et al., 2025a) explored decentralized dynamics modeling, but still require communication at each
prediction step for agent-wise aggregation. Different from these works, SeqWM assigns each agent an
independent world model and predicts trajectories sequentially, which structurally lowers modeling
complexity, thereby making it applicable to real-world scenarios.

Sequential Paradigm. Recent studies have highlighted the advantages of the sequential
paradigm (Khan, 2025), which enables fine-grained credit assignment (Kuba et al., 2022), effi-
cient dynamics modeling (Zhang et al., 2025b), and scalable coordination (Xu et al., 2025). For
example, MAT (Wen et al., 2022) and PMAT (Hu et al., 2025) model the multi-agent decision-making
process as a sequence prediction problem, employing transformers to autoregressively predict each
agent’s actions. HARL (Liu et al., 2024a; Zhong et al., 2024) further introduce the sequential update
scheme that bring clearer interpretability and ensure monotonic improvement. SeqComm (Ding
et al., 2024) extends this idea to the communication domain, where agents exchange information in a
sequential order, effectively mitigating non-stationarity. Motivated by these benefits, we integrate the
sequential paradigm into multi-robot world modelling to enhance planning and coordination.

3 PRELIMINARIES

Problem Formulation. We model the fully cooperative task as a decentralized partially observable
Markov decision process (dec-POMDP) (Zhao et al., 2025a), M = ⟨I,S,O,A,Ω,P,R, γ⟩, where
I = {v1, . . . , vn} is the set of agents, S is the global state space, O =

∏n
i=1O

i is the joint
observation space, and A =

∏n
i=1A

i is the joint action space. The observation function Ω : S×I →
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O defines each agent’s perception of the environment, while the transition function P : S ×A → S
specifies the environment dynamics. The reward function R : S ×A → R provides a shared scalar
signal, and γ is the discount factor. Each agent vi learns a local policy πi : Oi → Ai, which maps its
observation oi to an action ai. The objective is to learn a joint policy π =

∏n
i=1 π

i that maximizes
the expected discounted return

∑∞
τ=t γ

τrτ .

Sequential Decision-Making. In many real-world applications, multi-robot systems are often
distributed rather than fully decentralized (Negenborn & Maestre, 2014), allowing inter-agent commu-
nication to enhance cooperative performance. A Dec-POMDP can thus be extended to a multi-agent
POMDP (Oliehoek et al., 2016), where each agent vi receives messages eit from other agents and
updates its policy πi : Oi × E → Ai. To balance efficiency and decision quality, agents adopt
communication protocols, defined as ϕi : Oi ×E ×Ai → E. Among them, sequential protocols is
especially popular for its simplicity and effectiveness (Ding et al., 2024). It organizes agents in a
certain order, where each agent acts on its own observation and the message from its predecessor,
then passes information forward. Formally, the process is defined as:

ait = πi(oit, e
i
t), ei+1

t = ϕi(eit, o
i
t, a

i
t), (1)

Such a sequential structure naturally motivates us to design a world model that predicts trajectories in
the same manner, enabling efficient multi-agent planning.

4 METHODOLOGY

In this section, we propose SeqWM, which decomposes the joint dynamics into agent-wise models
arranged in a sequence. This design substantially reduces modeling complexity, enabling deployment
in physical multi-robot systems.

4.1 SEQUENTIAL WORLD MODELLING

Decomposed Joint Dynamics. At each timestep t, the observation-action pair of a single
agent (oit, a

i
t) can be regarded as a token, and the entire system as a sequence of such to-

kens. This perspective reformulates joint dynamics as a sequence modeling problem: given
the token sequence [(o1t , a

1
t ), . . . , (o

n
t , a

n
t )], the dynamics generates the next-step outcomes

[(o1t+1, r
1
t+1), . . . , (o

n
t+1, r

n
t+1)]. Unlike existing centralized world models, which fuse all tokens

simultaneously for prediction, as shown in Figure 1, our method adopts an autoregressive paradigm.
In this setup, agent 1 first predicts (o1t+1, r

1
t+1) from its local information (o1t , a

1
t ), and passes the

result to 2. Subsequently, each agent i conditions on its own observation–action pair (oit, a
i
t) to-

gether with the predictions of all predecessors {(ojt+1, r
j
t+1)}j<i to produce (oit+1, r

i
t+1). Such a

sequential design reduces modeling complexity in a structured, scalable manner, making the approach
well-suited for real-world deployment.

World Model. As noted in INTRODUCTION, multi-robot cooperative tasks involve high-dimensional
observation and action spaces, making it unsuitable to use reconstructing raw observations as the
learning objective of the world model (Hansen et al., 2022). Therefore we remove the explicit
decoder and instead perform dynamics prediction entirely in a latent space. To facilitate distributed
deployment, each agent maintains an independent world model without parameter sharing. Let zit
denote the latent state of agent vi at timestep t, the world model can be defined as follows:

Encoder: zit = Ei
(
oit
)

Dynamics: ẑit+1 = Di
(
zit, a

i
t, e

i
t

)
Reward: r̂t+1 = Ri

(
zit, a

i
t, e

i
t

)
Communication: ei+1

t = eit ⊕ ait
Critic: q̂it = Qi

(
zit, a

i
t, e

i
t

)
Actor: âit = πi,Act (zit, eit) .

(2)

All modules in SeqWM are implemented using MLPs, ensuring architectural simplicity and consis-
tency. For communication function, we adopt concatenation operator ⊕ to facilitate modular training.
As shown in Section 5.5, this concise design achieves more stable training performance compared to
alternatives such as cross-attention and recurrent neural networks (RNNs).
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Learning Objective. Let θE , θD, θR, θQ, and ψ denote the parameters of the encoder, dynamics
predictor, reward predictor, critic, and actor, respectively. Following the self-supervised training
framework (Hansen et al., 2024), the loss functions can be defined as:

Li(θ) =

H∑
t

λt

∥∥∥ẑit+1 − sg(zit+1)
∥∥∥2

︸ ︷︷ ︸
dynamics loss for θD,θE

+ Soft-CE
(
r̂it, rt

)
︸ ︷︷ ︸
reward loss for θR,θE

+ Soft-CE
(
q̂it, Gt

)
︸ ︷︷ ︸

Q Loss for θQ,θE

 , (3)

where θ = {θE , θD, θR, θQ}, H is the prediction horizon, λ ∈ (0, 1] is a constant that balances
the contribution of each rollout step, rt is the ground-truth reward, Gt is TD target, and ẑit+1 =

Di
(
zit, a

i
t, e

i
t

)
is the predicted latent state. The loss can be backpropagated to the encoder via

zit = Ei
(
oit
)
, so do the dynamics and reward losses. The latent target zit+1 = Ei

(
oit+1

)
is detached

with the stop-gradient operator sg(·) to prevent cyclic gradient flow. Soft Cross-Entropy loss is used
to match the discretized reward and Q-value predictions. Additionally, to ensure modularity and
scalability, each agent’s world model is trained independently, and the loss can not be backpropagated
through the communication channel.

Based on Eq. (3), the encoder learns a compact latent space, while the dynamics and reward predictors
minimize prediction errors in this space, ensuring alignment with real environment dynamics. The
actor generates initial action estimates in the latent space to warm-start planning and is trained using
the Heterogeneous-Agent Soft Actor-Critic (HASAC) (Liu et al., 2024a) algorithm:

L(ψ) =
H∑
t

λt
(
Qi

(
zit, â

i
t, e

i
t

)
− αH

[
πi,Act

(
·
∣∣∣zit, eit )]) , (4)

where α is the entropy coefficient, and H[·] denotes the entropy function.

We adopt the sequential update scheme (Kuba et al., 2022; Zhong et al., 2024) to train world models
in a manner aligned with its autoregressive structure. When training the agent vi+1, its inputs are
conditioned on the predictions of the first i agents, produced by their most recently updated models.
This preserves the sequential dependency, ensuring predictions exploit the most up-to-date outputs,
which stabilizes training and improves monotonicity across agent indices.

Inspired by Masked AutoEncoders (He et al., 2022), we randomly permute the order among agents and
allow each agent to skip communication with a certain probability. This random masking simulates
realistic interruptions and forces the world model to robustly adapt to uncertainties, significantly
enhancing the model’s resilience against communication failures.

4.2 SEQUENTIAL PLANNING
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Figure 2: Sequential planner: agents sequentially opti-
mize actions via local world models and share planned
trajectories.

Although Eq. (2) includes an actor, it does not
serve directly as an explicit decision policy; in-
stead, it provides initial action estimates for the
planner. We next propose a sequential multi-
agent planner based on Model Predictive Path In-
tegral (MPPI) (Williams et al., 2015) that lever-
ages the predictions of world models to optimize
each agent’s action. In this framework, the actor
contributes by narrowing the action search space
to promising regions, while the planner ensures
robust long-term decision-making and corrects
suboptimal proposals from the actor.

At each timestep t, agent vi samples N candi-
date action sequences of horizon H , denoted
ait:t+H , from the initial distribution guided by
the actor. Conditioned on its latent state and the
received message, the agent performs latent roll-
outs with its local world model to predict future
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trajectories. The value of each trajectory is then
estimated as

V i
t+H = γHQi(ẑit+H , a

i
t+H , e

i
t+H) +

t+H−1∑
h=t

γh−tRi(ẑih, a
i
h, e

i
h), (5)

where V i
t+H represents the value estimate of a sampled action sequence, computed as the sum of

predicted rewards over the horizon plus the terminal value given by the critic. Then, candidate
sequences are ranked according to their evaluated values, and the highest-scoring subset is selected as
the elite set. The action distribution is updated toward the statistics of these elite trajectories, thereby
concentrating future sampling around high-value regions and progressively refining the search space.
For further details, please refer to Appendix A.1.

After several iterations until convergence, the optimized action sequence and predicted trajectory
are transmitted as a message to the next agent, which repeats the same planning procedure. This
sequential planning paradigm substantially enhances multi-agent cooperation efficiency through
explicit intention sharing.

Low-pass Action Smoothing. To prevent mechanical wear caused by abrupt action changes, we inte-
grate a low-pass filtering strategy (Kicki, 2025). In each planning iteration, sampled action sequences
are filtered along the temporal dimension to suppress high-frequency fluctuations. This smoothing
enforces gradual action transitions across timesteps, reducing control discontinuities and promoting
stable, consistent behavior on physical robots. Further details are provided in Appendix A.2.

Heuristic Early-Stopping. Considering the computational constraints of physical robotic platforms,
we design a motion-planning heuristic that terminates iterations when the KL divergence between
consecutive action distributions falls below a threshold. This early-stopping criterion mitigates
diminishing returns (Kobilarov, 2012), reducing computation while preserving plan quality. Further
details and experiments are provided in Appendix C.2.

Communication Cache. Inspired by action-chunking (Li et al.) which reuses temporally extended
action units to improve decision efficiency, we introduce a cache that stores the predicted messages
from the previous agent, enabling the current agent to retrieve them when communication fails. For
instance, if communication fails at t+1, agent vi+1 retrieves the cached message zit+1 = Di(Ei(oit))

from agent vi instead of the ideally updated message ẑit+1 = Ei(oit+1).

5 EXPERIMENTS

Environments. We evaluate SeqWM and baselines in two challenging multi-robot cooperative
environments: Bimanual Dexterous Hands (Bi-DexHands) (Chen et al., 2024a) and Multi-Quadruped
Environment (Multi-Quad) (Xiong et al., 2024). In Bi-DexHands, two agents control a pair of
dexterous hands to accomplish high-dimensional manipulation tasks (up to O ∈ R229,A ∈ R26). In
Multi-Quad, multiple quadruped robots collaborate to solve coordination tasks, and we further deploy
SeqWM on real Unitree Go2-W robots to assess its sim-to-real transfer.

5.1 COMPARISONS

Baselines. We select several competitive baselines, including: HASAC (Liu et al., 2024a), a state-of-
the-art model-free method extending SAC to multi-agent settings; MARIE (Zhang et al., 2025a), a
model-based method employing a Transformer for dynamics prediction; MAT (Wen et al., 2022), a
method adopting the sequential decision-making paradigm; and MAPPO (Yu et al., 2022), a most
widely used algorithm, included as a general-purpose baseline.

Results on Bi-DexHands. The representative tasks in Bi-DexHands include object transfer tasks
(Over,CatchAbreast,CatchOver2Underarm), which require the two hands to transfer an
object under different relative positions and grasping postures; and functional manipulation tasks
(BottleCap,Pen,Scissors), which involve precise bimanual operations to achieve specific
functional goals, such as opening a bottle cap, removing a pen lid, or spreading a pair of scissors.

As shown in Figure 3, SeqWM achieves higher asymptotic returns and faster convergence across all
tasks. In several tasks (Over, CatchOver2Underarm, Scissors), SeqWM reaches near-

5

https://github.com/PKU-MARL/DexterousHands
https://github.com/ziyanx02/multiagent-quadruped-environment
https://github.com/ziyanx02/multiagent-quadruped-environment
https://github.com/PKU-MARL/HARL
https://github.com/breez3young/MARIE
https://github.com/PKU-MARL/Multi-Agent-Transformer
https://github.com/marlbenchmark/on-policy


Published as a conference paper at ICLR 2026

SeqWM (ours) MARIE MAPPOHASAC MAT

Figure 3: Performance comparisons on selected tasks of SeqWM with other baselines. Task in Bi-DexHands
report the episode return, while Multi-Quad (gray background) reports success rate. Bold lines indicate the mean
over multiple seeds, with shaded regions denoting the 95% confidence intervals. The results on all other tasks
are reported in Figure 12 in Appendix C.1.

optimal performance within 2–4M steps, while baselines require far more interactions or fail to match
it. In more challenging tasks (Pen, CatchAbreast), SeqWM steadily improves and achieves
the highest final returns with lower variance, demonstrating stability.

Results on Multi-Quad. In Gate, the robots are required to pass through a narrow gate as quickly
as possible without collision. In PushBox, they jointly push a large box to a designated target
location. In Shepherd„ the two quadruped robots (as sheepdogs) cooperatively guide another robot
(as sheep) to a target area (as sheep pen).

In Gate and Shepherd, it rapidly approaches near-100% success rates within the early phase,
significantly surpassing baselines in terms of sample efficiency. This superior performance stems
from SeqWM’s sequential structure, which enables each agent to plan actions conditioned on its
predecessors’ intentions, thereby enhancing coordination.

5.2 EMPOWERED COOPERATIVE BEHAVIORS

We further visualize the behaviors learned by SeqWM, showing that it not only acquires stable policies
in high-dimensional state and action spaces, but also achieves advanced cooperative behaviors,
including predictive adaptation, temporal alignment, and role division.

Bi-DexHands Behaviors. In Catch-Over2Underarm, the throwing hand first performs predic-
tion and planning, explicitly transmitting future trajectories to the catching hand. Guided by this
message, the catching hand then exhibits predictive adaptation by anticipating the object’s motion
and landing point and proactively adjusting its grasping posture. As shown in Frames C–D, the
catching hand lowers and opens in advance, aligning its posture with the predicted landing point to
enable a reliable grasp. In Pen, two hands achieve near-perfect temporal alignment by exchanging
predictions of future actions in advance. As a result, they grasp the pen body and cap almost simulta-
neously in Frame D and efficiently complete the extraction in Frames E–F, substantially enhancing
cooperative efficiency.

(a) Catch-Over2Underarm

(b) Pen

BA C D E F

BA C D E F

target

Figure 4: Trajectory visualizations of Catch-Over2Underarm and Pen with SeqWM.

Multi-Quad Behaviors. Figure 5 further shows the role division learned by SeqWM in the Multi-
Quad-PushBox. In Frames A–B (t = 1 → 2), the two quadruped robots navigate to opposite sides
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of the box, establishing an effective pushing configuration. In Frames B–D (t = 2 → 4)„ both
maintain high positive x-axis velocities, indicating continuous forward pushing force. At Frame
C (t = 3), Robot 2 produces a downward y-axis velocity, adjusting the push direction toward
the target, while Robot 1 gradually increases its negative y-axis velocity to assist in directional
control. As the box approaches the target, Robot 1 reduces its x-axis velocity to avoid overshooting.
These behaviors demonstrate that SeqWM supports not only effective force coordination but also
fine-grained directional adjustments, resulting in precise and efficient task completion.

①

②

①

②

①

②

①

②

Figure 5: Behavior visualizations in PushBox. The first row shows the execution process, where the box is
significantly larger than the robots, requiring coordinated efforts from both quadrupeds to complete the task.
The left side of second row visualizes the trajectories of the robots and the box, with the right side showing the
x-axis and y-axis velocities and orientations of each robot.

5.3 SCALABILITY TO MORE AGENTS

We extend the Gate to 5 agents to evaluate the scalability of SeqWM, and the behavioral visualiza-
tions of 5-robot-Gate are presented in Figure 6.

①
①

①
① ①

①

② ②
② ② ② ②

③ ③ ③
③③ ③④ ④ ④

④ ④ ④

⑤ ⑤ ⑤ ⑤
⑤

⑤

Figure 6: Visualization of the learned behaviors on 5-robot-Gate.

As the robots approach the narrow gate, they exhibit predictive adaptation, with certain agents
proactively decelerating or waiting to avoid potential congestion. For instance, at Frame B (t≈2),
Robot 3 maintains a near-unity positive x-command, while the other robots moderately reduce their
forward commands. In terms of temporal alignment, the x-command trajectories reveal a clear wave-
like alternation, where the peak sequence (3 → 2 → 1 → 4 → 5) mirrors the actual passing order,
reflecting a dynamic “first-pass–then-follow” sequence. Overall, the team establishes a coordinated
rhythm of “prediction–waiting–passing–yielding,” which enables efficient multi-robot traversal under
constrained environmental conditions.

5.4 REAL-WORLD DEPLOYMENT

The real-world experimental setup is detailed in Appendix C.3, and the results are shown in Figure 7.

In PushBox, the two quadrupeds approach the box from opposite sides and coordinate their pushing
forces and directions to move it toward the target. Between Frames D-F, Robot 1 moves forward
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A B C D E F
(a) Push Box

A B C D E F

A B C D E F

(b) Gate

(c) Shepherd

Figure 7: Real-world results of multi-robot cooperation tasks. The trajectories of Robot 1, Robot 2, and the
Sheep are marked in different colors.
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Figure 8: Dynamics (left) and reward (right) prediction errors across horizons.

to provide the main pushing force, while Robot 2 makes slight lateral adjustments to steer the box.
The overall pushing pattern, including the division of roles and the gradual directional adjustments,
closely matches the behavior observed in simulation, confirming a successful sim-to-real transfer.

In Gate, two clear yielding events are observed. Between Frames C-D, Robot 1 slows down and
waits for Robot 2 to pass first, demonstrating priority management in constrained spaces. After
crossing Frames E-F, Robot 2 actively veers aside to leave sufficient space for Robot 1, enabling
smooth passage without collisions. These behaviors reflect SeqWM’s trajectory prediction and
intention-sharing capabilities, allowing natural, efficient yielding.

In Shepherd, Robot 1 accelerates between Frames A-B, causing the Sheep to move left. To prevent
the Sheep from hitting the left gate frame, Robot 1 retreats while Robot 2 advances between Frames
C-D. This maneuver drives the Sheep away from Robot 2 and into the target area. The sequence
highlights SeqWM’s capacity for predictive coordination and adaptive role allocation, where the one
agent’s motion influences the sheep robot’s response and the another agent adapts accordingly to
achieve the common goal.

5.5 ABLATION STUDIES

Sequential Sample Generation. To evaluate the contribution of the sequential paradigm in SeqWM’s
world model, we replace it with centralized and decentralized architectures, ensuring all models
have an equal number of parameters for a fair comparison. Using BottleCap, we collect 50K
environment steps with random actions and train each model for 2.5K steps using the loss in Eq. (3).
After training, we gather 1K additional steps to measure dynamics and reward prediction errors across
different horizons. As shown in Figure 8, the sequential and centralized models achieve similarly low
errors, both substantially outperforming the decentralized model. The results confirm the advantage
of sequential prediction, where each agent conditions its output on the predictions of its predecessors,
yielding more accurate and coherent rollouts.

8
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Communication Function. We replaced the concat communication function in SeqWM with alterna-
tive fusion mechanisms, including MLP, cross-attn, and RNN, and evaluated them on BottleCap.
The results in Figure 9 (left) show that the simplest concat approach achieves the highest and most
stable performance. This advantage stems from two factors: (i) concat preserves the complete commu-
nication content, allowing the dynamics and reward predictors to autonomously identify and exploit
the most informative features during training; and (ii) it introduces no additional learnable parameters,
thereby maintaining stable gradient propagation in long-horizon prediction. Moreover, we observe
that RNN-based fusion even underperforms the no-communication baseline (dec), which we attribute
to its sensitivity to input ordering—an undesirable property in multi-agent communication scenarios
lacking a fixed semantic sequence.

Figure 9: (Left): Performance ablation of the communication functions. (Middle & Right): Ablation of sequential
intention sharing.

Sequential Intention Sharing. A key insight behind SeqWM is that cooperation becomes substan-
tially easier when an agent can access its partners’ future plans. To validate this mechanism, we
construct two ablation groups. DecWM removes sequential intention sharing and uses a decentralized
world model without inter-agent trajectory passing, while SeqFree removes the world model entirely
and allows agents to exchange only single-step messages.

As shown in Figure 9, SeqWM consistently achieves the best performance, followed by DecWM,
whereas SeqFree performs the worst. This indicates that both the world model for predicting future
trajectories (i.e., intentions) and the sequential communication for sharing these intentions are
indispensable. The gap between SeqWM and DecWM shows that explicit multi-step intention sharing
is crucial: without receiving communicated future trajectories from others, each agent can only plan
based on its own rollout, which makes coordinated patterns harder to acquire. At the same time,
DecWM still clearly outperforms SeqFree, since the decentralized world model implicitly learns
regularities in how other agents tend to respond when predicting future environment evolution under
joint actions, enabling more foresighted planning even without explicit intention exchange.

6 CONCLUSION

This paper presented SeqWM, a novel framework that integrates the sequential paradigm into world
model learning and planning. By structurally decomposing joint dynamics into autoregressive,
agent-wise models, SeqWM offers a principled approach that reduces modeling complexity and
naturally enables intention sharing through predicted trajectories. This methodological innovation
not only improves scalability but also facilitates the emergence of advanced cooperative behaviors
such as predictive adaptation, temporal alignment, and role division. Extensive experiments in
Bi-DexHands and Multi-Quad show that SeqWM achieves state-of-the-art performance with superior
sample efficiency, while real-world deployment on quadruped robots confirms that these cooperative
behaviors transfer reliably from simulation to physical platforms. Beyond empirical results, SeqWM
demonstrates that sequential paradigms provide an efficient and scalable principle for structuring
multi-agent cooperation, paving the way for more robust and efficient deployment of cooperation in
physical multi-robot systems.

Limitations.

SeqWM is designed for fully cooperative tasks with shared rewards, and its effectiveness in com-
petitive or mixed-motive settings remains unexplored. Moreover, the current framework relies on a

9
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fixed or random order, lacking the ability to dynamically adjust the agent sequence during execution,
which may limit performance in scenarios where role priorities change over time.

Future Work. Benefiting from the integration of the sequential paradigm and agent-wise world
models, SeqWM naturally extends to heterogeneous robot teams and human–robot semantic under-
standing. With each agent maintaining an independent world model, the framework accommodates
diverse dynamics and sensing modalities, enabling cooperation among quadrupeds, manipulators,
and aerial robots. Moreover, the explicit trajectory rollouts can be shared not only across robots
but also with humans as interpretable intention signals, fostering transparent collaboration, mutual
understanding, and trust in human–robot teams.

10
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A MULTI-AGENT PLANNER

A.1 PLANNING PROCESS

At timestep t, the action planning process for agent vi can be divided into the following steps:

S1 - Communication. Agents are organized to exchange messages in a sequential manner. Specifically, agent
vi receives a message eit that aggregates the predicted latent states and planned actions from all its predecessors:

eit =

{
∅, i = 1,⊕

j<i

(
ẑjt , a

j
t

)
, i > 1,

(6)

where ⊕ denotes concatenation. To implement this efficiently, we employ a masking-based concatenation
scheme: a fixed-length vector of dimension n× (|A|+ dz) is pre-allocated, where n is the number of agents,
|A| and dz are the action and latent dimensions. Agent v1 maintains an empty message, while subsequent agents
sequentially fill in their designated slots with their own predictions (ẑit, ait) in addition to forwarding the received
content. This design ensures that information is progressively accumulated along the communication chain with
linear complexity in the number of agents.

S2 - Action Sampling. The planner samples N candidate action sequences from two sources. We sample
Np candidate action sequences from a diagonal Gaussian distribution ait:t+H ∼ N

(
µi
t:t+H , (σ

i
t:t+H)2I

)
,

where µi
t:t+H , σ

i
t:t+H ∈ R|A|×H represent the mean and standard deviation of the H-step horizon actions.

Additionally, we sample Na action sequences directly from the actor module âih ∼ πi,Act(·|oih, eih), h = t :
t+H , and combine these two sets of action sequences to form N candidate action sequences.

S3 - World Model Prediction. Following sampling, the world model predicts H-step trajectories for each
sampled action sequence using Eq. (2), generating N predicted sequences Γ = {(ẑih, aih, r̂ih)}h=t:t+H .

S4 - Value Evaluation. Each predicted trajectory is assigned a value via the H-step return, combining the
short-term cumulative predicted reward with the terminal value from the critic:

V i
Γ = γHQi(ẑit+H , a

i
t+H , e

i
t+H) +

t+H−1∑
h=t

γh−tr̂ih. (7)

S5 - Action Optimization. The candidate action sequences are ranked by their evaluated values, and the top M
are chosen as the elite set Γ∗. The parameters of the action distribution are updated based on the elite set using:

µ
i,(k+1)
t:t+H =

∑M
m=1 αmΓ∗

m∑M
m=1 αm

, σ
i,(k+1)
t:t+H =

√√√√√∑M
m=1 αm

(
Γ∗
m − µ

i,(k+1)
t:t+H

)2

∑M
m=1 αm

, (8)

where the weights are generated based on the evaluated values as αm = exp
[
τ
(
VΓ∗

m
−maxm∈M VΓ∗

m

)]
, with

τ being the temperature coefficient.

Iteration. For the default setting, the above process are iterated K times to derive the final action distribu-
tion. If the early-stopping heuristic is applied, after each iteration, we check whether the action optimiza-
tion has converged by evaluating the KL divergence between the current and previous action distributions,
DKL(N (k+1)∥N (k)) < η, where η is a small threshold.

The detailed hyperparameters used in the model-based planner are summarized in Table 1.

A.2 LOW-PASS ACTION SMOOTHING

In real-world robotics, high-frequency changes in control inputs can cause severe mechanical impacts, accel-
erating wear and reducing execution stability. Therefore, many studies in reinforcement learning and motion
planning incorporate action-smoothing constraints, such as adding penalties on differences between consecutive
actions during policy updates (Aractingi et al., 2023; Christmann et al., 2024; Wang et al., 2025), introducing
regularization in policy networks (Chen et al., 2024b; Song et al., 2025), or filtering noise in trajectory optimiza-
tion (Pinneri et al., 2021; Vlahov et al., 2024; Kicki, 2025), to reduce jitter and improve executability. Inspired
by these methods, we apply frequency-domain low-pass filtering directly to the sampled action noise in our
planner, explicitly suppressing the high-frequency components of the actions.

Specifically, during action sampling, we first sample noise from a standard normal distribution, apply low-pass
filtering, and then add the filtered noise to the action mean to generate candidate action sequences. We use a
Butterworth filter with oLBF = 1, whose transfer function and amplitude–frequency response are given by:

H(s) =
2πfc

s+ 2πfc
, |H(f)| = fc√

f2 + f2
c

, (9)
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Figure 10: Visualization of the low-pass filter. (Left): Amplitude–frequency response of the low-pass filter.
(Middle): Filtering effects on random signals at 20% cutoff ratios, the different colors represent different action
dimensions. (Right): Effects of low-pass filtering on control commands in PushBox, with different colors
representing different agents.

where fc is the low-pass cutoff frequency. As show in Figure 10, the amplitude–frequency response shows
that the high-frequency components are exponentially attenuated (approaching linear decay in logarithmic
coordinates). The corresponding discrete-time difference equation, obtained via bilinear transformation, is

y[t] =
1− β

2
(x[t] + x[t− 1])− βy[t− 1], β =

1− tan (πfc/fs)

1 + tan (πfc/fs)
, (10)

where fs is the sampling frequency, i.e., the frequency of the control signal.

A.3 SERIAL-BLOCKING-FREE EXECUTION

A common concern regarding the sequential paradigm is that the i-th agent may need to wait for the (i−1)-th
agent to finish planning, potentially causing inference time to grow linearly with the number of agents (Wen
et al., 2022; Hu et al., 2025). This issue, referred as serial blocking, does not arise in SeqWM due to the use of
the communication cache.

Agent
Comm.
Cache

MPPI
+1-th

Agent
Comm.
Cache

MPPI
-th

Message
Message Message

Figure 11: Sequential execution without serial blocking enabled by the communication cache.

As shown in Figure 11, the sequential paradigm specifies only the update order of the communication caches,
rather than the execution order of each agent’s planner. Each agent runs MPPI-based planner at a fixed control
frequency and simply reads the latest available multi-step trajectory from the cache, without waiting for any
other agent to complete planning. Under this design, the per-step inference latency satisfies

Tstep ≈ max
i

T
(i)
MPPI + Tcomm, (11)

meaning that SeqWM achieves O(1) decision latency with respect to the number of agents rather than exhibiting
linear degradation.
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Algorithm 1 Model Training

Input: replay buffer B, parameterized networks θE , θD, θR, θQ, and ψ for encoder, dynamics
predictor, reward predictor, critic, and actor, respectively;
for episode = 1, 2, 3, . . . , do

for step t = 1, 2, 3, . . . do
Get real data ([oit]i=1:n, [a

i
t]i=1:n, rt, [o

i
t+1]i=1:n) by interacting with the environment

Add transition into buffer: B = B ∪ ([oit]i=1:n, [a
i
t]i=1:n, rt, [o

i
t+1]i=1:n)

end for
for epoch = 1, 2, 3, . . . , do

Sample trajectories from B
Update θE , θD, θR, θQ by minimizing Eq. (3)
Update ψ by minimizing Eq. (4).

end for
end for

Algorithm 2 Model Planning

Input: learned parameters θE , θD, θR, θQ, ψ, hyperparameters H,K, τ,Np,M,Na, initial distri-
bution;
for step t = 1, 2, 3, . . . do

for agent i = 1, 2, . . . , n do
Get environment observation oit and encode it to latent space: zit = Ei(oit)
if i > 1 then

Retrieve the message from the previous agent eit =
⊕

j<i

(
ẑjt , a

j
t

)
else

set eit = ∅
end if
for iteration = 1, 2, 3, . . . ,Kp do

Sample Na actions ait:t+H ∼ N
(
µi
t:t+H , (σ

i
t:t+H)

2
I
)

Sample Np actions from actor âih ∼ πi,Act(·|oih, eih), h = t : t+H
Get predictions by world model rollouts, Γ = {(ẑih, aih, r̂ih)}h=t:t+H

Evaluate the trajectories by Eq. (7) and select top-M elite action sequences
Update action distribution following Eq. (8)

end for
end for

end for

B IMPLEMENTATION DETAILS

B.1 PSEUDOCODE

B.2 HYPERPARAMETERS

We summarize the hyperparameters used in SeqWM in Table 1 and Table 2.

Table 1: The Notations and Values of hyperparameters in the planner.

Hyperparameters Notations Value Hyperparameters Notations Value
rollout horizon H 3 sampling actions Np 512
planning iterations K 6 elites M 64
temperature τ 0.5 actor samples Na 24
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Table 2: The hyperparameters used in the world model.

Hyperparameters Value Hyperparameters Value Hyperparameters Value
batch size 1000 buffer size 1e6 dynamics coef 20
encoder lr scale 0.3 entropy coef 1e-4 lr 5e-4
n-step return 20 num bins 101 q coef 0.1
reward coef 0.1 step ρ 0.5

C ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL COMPARISONS

We report additional comparison results on other tasks to complement Figure 3.

SeqWM (ours) MARIE MAPPOHASAC MAT

]

Figure 12: Comparison results on other tasks.

C.2 INFERENCE TIME

Inference Time Cost. We report the per-step execution time of SeqWM on BottleCap using a single RTX
A6000 GPU on the left side of Figure 13. The execution time increases almost linearly with the rollout horizon
H and the number of planner iterations K, which is consistent with the design of SeqWM. With the default
settings, SeqWM achieves a per-step execution time of 12.8 ms, making it suitable for most real-time robotic
tasks.

Figure 13: The per-step execution time of SeqWM. (Left): Time cost under different rollout horizons H and
planner iterations K. (Right): Time cost and performance with and without early-stopping heuristic.

Early-Stopping Heuristic. To further enhance the efficiency of SeqWM, we introduce an early-stopping
heuristic in Section 4.2 that terminates iterations when the change in the action distribution is not significant.
The KL divergence is used as a measure of distribution change, and the execution time and performance under
different thresholds on BottleCap are shown on the right side of Figure 13. When the threshold is set to 0.5,
SeqWM reduces the execution time by approximately 57.3% while incurring only about 5.9% performance loss.

C.3 SIM-TO-REAL DEPLOYMENT

We implement all three Multi-Quad tasks in an 8m× 5m indoor space. Each task involves two Unitree Go2-W
quadruped robots. The room is equipped with eight Mars cameras, and real-time localization of robots and
objects is provided by the NOKOV 3D motion capture system.
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• PushBox: We use a cardboard box of 1.2m× 1.2m× 0.5m and approximately 6 kg in mass. The box is
sufficiently large that a single robot cannot independently control its movement direction, making cooperation
essential. The static and kinetic friction coefficients between the box and the ground are both approximately
0.5.

• Gate: A 1m-wide doorway is set up. As shown in Figure 7 (b)-A, the two robots cannot pass through
side-by-side, requiring coordinated navigation.

• Shepherd: A DJI EP robot acts as the guided agent (sheep). It is equipped with an omnidirectional chassis to
simulate sheep behavior: it moves away from the nearest herding robot and its speed is inversely proportional
to the distance to that robot.

Motion Capturing DJI EP Robot

Unitree Go2-W Robot

Figure 14: Real-world setups.

We employ the following strategies to enhance the generalization capability of SeqWM and facilitate sim-to-real
transfer:

• Observation transformation: Positions of other robots are transformed from the global frame into the
ego-centric frame of the current robot, reducing observation complexity and improving policy generalization.

• Domain randomization: Taking PushBox as an example, we randomize the initial positions/orientations of
both robots and the box, the position and distance of the target, and the friction coefficient between the box
and floor to improve robustness to environmental variations.

• Sensor and actuation perturbations: Random noise is added to sensor readings, and small delays with noise
are introduced into control commands to emulate real-world sensing errors and actuation inaccuracies.
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