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Abstract Precipitation, a key determinant of soil moisture variations, plays an important role in
regulating terrestrial carbon fluxes on multiple time scales. It is a critical meteorological forcing to drive
terrestrial biosphere model (TBM), however, with a large uncertainty itself. We here investigated to

what extent precipitation alone can cause uncertainties of model-simulated carbon flux from terrestrial
ecosystems to atmosphere (F_,,), based on eight precipitation products and a TBM, VEGAS. We find

that the pattern of uncertainties in simulated F, obviously differs from the pattern of discrepancies in
precipitation, owing to divergent water sensitivities of vegetation over different regions. Globally, the
uncertainty in F.,, can be up to approximately 40.73% of the uncertainty in TRENDYv6 multi-model
simulated F,,, which is caused by model structural and parameter uncertainty. A good linear relationship
emerges between global area-averaged land climatological annual precipitation and simulated total

F., with the slope of —0.0040 PgC yr~' per mm yr~' (p = 0.03; negative for carbon sink), where 70% is
explained by the sensitivity over extra-tropical Northern Hemisphere (NH). For seasonal cycle, compared
to nearly constant inter-precipitation spreads over tropics plus extra-tropical southern hemisphere

(Trop + SH), uncertainties in corresponding simulated F.,, show obvious seasonal differences with the
relatively larger uncertainties in March-April-May (MAM) and August-September-October (ASO). For
interannual variability, uncertainties in simulated total F.;, are, albeit smaller, nonnegligible, which

are 40.61% (global), 38.17% (Trop + SH), and 29.63% (NH) of the TRENDYV6 inter-model uncertainty,
respectively. Therefore, generating better global precipitation product is important for reducing the
uncertainty in simulating terrestrial carbon sinks.

Plain Language Summary Precipitation, a key forcing in terrestrial biosphere model (TBM),
has a large uncertainty itself. We here used eight land precipitation products to run TBM VEGAS and
explored the resulting uncertainties in simulating carbon flux from terrestrial ecosystems to atmosphere
(F.;,) on climatology, seasonal cycle, and interannual variability. In climatology, the uncertainty in global
F_, induced by different precipitation can be approximately 40.73% of the uncertainty in TRENDYv6
multi-model simulations induced by model structural and parameter uncertainty. Furthermore, we find

a good linear relationship between global area-averaged land climatological annual precipitation and
simulated total F.,,, implying more precipitation over land with stronger carbon sinks, especially over
extra-tropical Northern Hemisphere (NH). For seasonal cycle, uncertainties in simulated F.,, over tropics
plus extra-tropical southern hemisphere (Trop + SH) show relatively larger values in March-April-May
and August-September-October. For interannual variability, uncertainties in simulated total F,, are up

to 40.61% (global), 38.17% (Trop + SH), and 29.63% (NH) of the TRENDYV6 inter-model uncertainty,
respectively. In general, uncertainty in land precipitation data sets can cause considerable uncertainties
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in simulating F_,,, suggesting the importance of generating the better precipitation product for better
simulating the terrestrial carbon sinks.

1. Introduction

The terrestrial biosphere model (TBM) is a useful tool for understanding the global and regional terrestrial
carbon cycle. However, different model structures including processes considered and parameterizations
and different forcing/boundary data sets, causing surprising differences in simulated responses of pho-
tosynthesis to CO, concentration, temperature, soil moisture, and vapor pressure deficit, result in large
uncertainties in simulating terrestrial gross primary productivity (GPP) and net biome productivity (NBP)
(Friedlingstein et al., 2006; Ito et al., 2017; Rogers, 2014; Rogers et al., 2014; Sitch et al., 2015).

In TRENDY intercomparison project, following the same experimental protocols, multiple state-of-the-art
Dynamical Global Vegetation Models (DGVMs) are driven by the same climate forcing to simulate the
global land carbon flux from terrestrial ecosystems to the atmosphere (F_,, which equals to the negative
value of NBP) (Sitch et al., 2015). The standard deviation of the annual C sink across these DGVMs is on
average approximately 0.6 GtC yr~—! from 1959 to 2018 (Friedlingstein et al., 2019). This inter-model spread
results mainly from the structural and parameter uncertainties, of which structural uncertainty is caused
by the insufficient knowledge of how to represent the reality by the model, which tends to increase along
with greater model complexity (Wieder et al., 2015). TBMs involved in the second phase of the Inter-Sec-
toral Impact Model Intercomparison Project (ISIMIP2a) were forced by four meteorological forcing data
sets. Ito et al. (2017) suggested that their simulated global terrestrial GPP ranged from 98 to 141 GtC yr—!
during 1981-2000 with considerable inter-model and inter-data spreads. Therefore, besides the structural
and parameter uncertainties, different meteorological forcing can cause the nonnegligible uncertainty in
simulated terrestrial carbon fluxes by models.

It is well known that precipitation is one of the most critical meteorological forcing to drive the TBM. Pre-
cipitation, as the primary source of water for the land surface hydrological budget, to a large extent dom-
inates the variations of soil moisture and terrestrial water storage (Humphrey et al., 2018) which play an
important role in regulating terrestrial carbon fluxes on multiple time scales (climate extremes, interannual
variability, etc.) (Humphrey et al., 2018, 2021; Wang, Jiang, et al., 2021; Wang, Wang, et al., 2021; Wang
et al., 2016; Wang, Zeng, Wang, Jiang, Chen, et al., 2018; Wang, Zeng, Wang, Jiang, Wang, & Jiang, 2018;
Zscheischler, Mahecha, et al., 2014; Zscheischler, Michalak, et al., 2014). The traditional reanalysis data sets
have been widely used in terrestrial carbon simulations (J. M. Chen et al., 2012; Wang, Jiang, et al., 2021;
Wang, Wang, et al., 2021) and in upscaling using the machine learning technique (Lu et al., 2021). Rea-
nalysis data can be classified into three major categories according to the relative influence of the model
and observations (Kalnay et al., 1996). Specifically, for example, the winds belong to the most reliable class
because of their direct assimilation from observational data; humidity and surface temperature belong to
the second class as they are the mixtures of the model results and observations; precipitation belongs to
the third class which is derived from models. Therefore, precipitation data sets have large uncertainties,
largely affecting the soil moisture simulations. The poor correlation coefficients between TBM simulated
root zone soil moisture and satellite-derived terrestrial water storage variations are partially attributable to
uncertainties of precipitation data (Humphrey et al., 2018). It is cautious for us to employ the precipitation
data sets for climate analyses and TBM simulations. To constrain uncertainties in simulated soil moisture
partially caused by precipitation data, many studies assimilated satellite-derived surface soil moisture into
TBMs (Albergel et al., 2012; DeLannoy et al., 2014; Draper et al., 2012; Seo et al., 2021). Moreover, Scholze
et al. (2016) and He et al. (2017) suggested that assimilation of satellite-derived soil moisture into TBMs can
better simulate the terrestrial carbon cycle.

Although the multi-model simulations in ISIMIP2a were used to examine the uncertainties caused by dif-
ferent meteorological forcing data sets, they did not focus on the precipitation alone (Ito et al., 2017). Owing
to the great influence of water availability on terrestrial carbon cycle and larger uncertainty in precipitation
compared to other meteorological elements, it is necessary to comprehensively investigate to what extent
precipitation alone can cause the uncertainty of NBP simulated by TBMs. Therefore, we in this study ran
the state-of-the-art DGVM VEGAS to quantitatively examine the uncertainties in the simulated global and
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Table 1
Eight Precipitation Data Sets Used in This Study to Drive VEGAS Simulations

Data sets Time span Resolution References

CPC 1979—present 0.5° x 0.5° M. Chen et al. (2008)
CRU TS4.04 1901-2019 0.5° % 0.5° Harris et al. (2020)
Delaware v5.01 1900-2017 0.5° X 0.5° Willmott and Matsuura (2001)
GPCC 1891-present 2.5° X 2.5° Schneider et al. (2017)
PREC/L 1948—present 2.5° X 2.5° M. Chen et al. (2002)
CAMS_OPI 1979-present 2.5° % 2.5° Janowiak and Xie (1999)
CMAP 1979-present 2.5° X 2.5° Xie and Arkin (1997)
GPCP v2.3 1979-present 2.5° X 2.5° Adler et al. (2003)

regional NBP on climatology, seasonal cycle, and interannual variability, with VEGAS forced by eight pre-
cipitation products. Another important purpose is to provide the scientific evidence for VEGAS Near Re-
al-Time (NRT) to select the most proper precipitation data set. Additionally, this research can provide some
implications for the effect of soil moisture assimilations on the terrestrial carbon cycle.

This study is organized as follows: Section 2 will describe the precipitation data sets used here and experi-
mental designs for VEGAS in detail. Section 3 will give out the results on climatology, seasonal cycle, and in-
terannual variability. Discussion and concluding remarks will be presented in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Different Precipitation Products

In this study, we adopted eight precipitation products (Table 1) which were widely used in climate analyses
to drive VEGAS simulations, in which five out of eight land precipitation data sets are produced from in-
terpolation of gauge observations and the rest are the combination of satellite-based rainfall estimates and
gauge observations. Brief introduction to these data sets is as follows:

1. NOAA Climate Prediction Center (CPC) Global Unified Gauge-Based Analysis of Daily Precipitation
with its original resolution of 0.5° X 0.5° from 1979 to present (M. Chen et al., 2008). It is part of products
from the CPC Unified Precipitation Project, whose primary goal is to generate a suite of unified precip-
itation products with consistent quantity and improved quality by integrating all information sources
available at CPC and by means of the optimal interpolation (OI) objective analysis technique.

2. Climatic Research Unit (CRU) Time-Series (TS) version 4.04 of high resolution gridded data of month-
by-month variation in climate from 1901 to 2019 (Harris et al., 2020). This data set was produced by CRU
at the University of East Anglia and funded by the UK National Center for Atmospheric Science (NCAS),
a NERC collaborative center, with the resolution of 0.5° X 0.5°. The CRU TS4.04 data were generated
using angular-distance weighting (ADW) interpolation, based on monthly observations calculated from
daily or sub-daily data by National Meteorological Services and other external agents.

3. University of Delaware Precipitation (Delaware v5.01) (Willmott & Matsuura, 2001). This data set has
the resolution of 0.5° X 0.5° with monthly values from 1900 to 2017, produced from a large number of
stations both from the Global Historical Climate Network, version 2 (GHCN2) and more extensively
from the archive of Legates & Willmott. More complete description of the data can be accessed from
their web pages at the University of Delaware.

4. Global Precipitation Climatology Center (GPCC) (Schneider et al., 2017). The data set used here is the
Full Data Product (V2018) for the period 1891-2016 based on quality-controlled data from 67,200 sta-
tions worldwide that feature record durations of 10 years or longer and monitoring product for the
period 2017 to present based on quality-controlled data from 7,000 stations. This product has a spatial
resolution of 0.5° X 0.5°, 1.0° X 1.0°, and 2.5° X 2.5° latitude by longitude.

5. NOAA's PRECipitation REConstruction over Land (PREC/L) (M. Chen et al., 2002). This global analysis
is defined by interpolation of gauge observations over land from over 17,000 stations collected in the
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GHCN2 and the Climate Anomaly Monitoring System (CAMS) data sets with an OI technique of Gan-
din. Precipitation is available at 0.5° x 0.5°, 1.0° X 1.0°, and 2.5° X 2.5° latitude by longitude.

6. NOAA NCEP CAMS-outgoing longwave radiation precipitation index (CAMS_OPI) (Janowiak &
Xie, 1999). This data set was produced from rain gauge data for land and OPI estimates for land points
without observations and over the oceans, and was intended for real-time climate monitoring. Though
authors strongly suggest that users adopt either the CMAP or GPCP for analyses, we here still employed
this data set for the simulation because VEGAS NRT framework previously used this data set to con-
struct the near real-time forcing data set (Wang, Zeng, Wang, Jiang, Wang, & Jiang, 2018).

7. CPC Merged Analysis of Precipitation (CMAP) (Xie & Arkin, 1997). The CMAP precipitation is obtained
from five kinds of satellite estimates and gauge data, including a standard and enhanced version with
NCEP Reanalysis from 1979 to present. We here used the standard version of CMAP with the resolution
of 2.5° x 2.5°.

8. GPCP Version 2.3 Combined Precipitation Data Set (Adler et al., 2003). The GPCP product was produced
from an integration of various satellite data sets over land and ocean and a gauge analysis over land with
the resolution of 2.5° X 2.5° from 1979 to present. The combination of satellite-based rainfall estimates
provides necessary spatial details to the rainfall analyses over land and the most complete analysis of
rainfall over oceans.

2.2. VEGAS and Its Simulations

The state-of-the-art DGVM VEGAS, version 2.6, was used to investigate the uncertainty of simulated ter-
restrial NBP induced by different precipitation data sets. The introduction to its model structure and bio-
logical processes was described in the Appendix of Zeng, Mariotti, and Wetzel (2005). VEGAS model has
been extensively involved in the Coupled Climate-Carbon Cycle Model Intercomparison Project (C*MIP)
(Friedlingstein et al., 2006), the TRENDY project (Sitch et al., 2015), and Multi-scale Synthesis and Terres-
trial Model Intercomparison Project (MsTMIP) (Huntzinger et al., 2013). Its simulations have been widely
used to understand the terrestrial carbon cycle upon climate extremes, seasonal cycle, interannual variabil-
ity, and long-term trends (Wang et al., 2013; Wang, Zeng, Wang, Jiang, Wang, & Jiang, 2018; Zeng, Mariotti,
et al., 2005; Zeng, Qian, et al., 2005; Zeng et al., 2014).

In this research, we investigated the impact of precipitation on F,, which represents the terrestrial carbon
sources and sinks. F., is the net carbon flux from terrestrial ecosystems into the atmosphere, calculated as

Fy, = —~NBP = TER — GPP + D (1)

where TER and GPP represent the total ecosystem respiration and photosynthesis, respectively. D repre-
sents the carbon flux induced by disturbances (mainly wildfires and harvest in VEGAS model). Its positive
and negative values indicate carbon fluxes into the atmosphere (source) and into terrestrial ecosystems
(sink), respectively.

In VEGAS simple-land, abbreviated “SLand,” which is moderately more complicated than the bucket model
(Zeng et al., 2000), the water budget in the whole soil layer that represents the root zone is
W o p_E-R+s ©)
ot
where W is the soil moisture content per unit area; P is the precipitation; E is the total evaporation; R is the
total runoff, summed by surface and subsurface runoff; S represents the snowmelt. The soil can be saturated
when W reaches the field capacity (W,) which is dependent on surface types. Usefully, a relative soil wetness
is defined in SLand,
w=WIW, (3)
where wwill be unity at saturation. In the current version of the model, we use the following parameterization

B=w" 4)

This nonlinear dependence of S on w takes effects of the soil moisture uptake by deep roots into account.
The actual form of £ is adopted according to observations and physically based parameterizations including
heterogeneity effects (Zeng et al., 2000). We take the & = 0.5in VEGAS model now. The £ is further used as
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the water stress which influences vegetation photosynthesis in a colimiting function, heterotrophic respira-
tion processes, and wildfire probability, hence influencing the variability of F.,, in Equation 1.

In this study, we ran VEGAS at the hourly time step with the 2.5° X 2.5° horizontal resolution, starting from
the date of January 1, 1979. In detail, in the experimental protocols, we iterated VEGAS by just replacing
the precipitation data sets (Table 1). For each simulation, we spun up VEGAS with constant meteorological
drivers in 1979 for more than 500 years, in which we turned on the accelerator for soil carbon pools to reach
equilibrium fast in the first 200 years. Hence, each simulation is independent. Except precipitation, the
hourly temperature and radiation data sets are compiled from ECMWF Reanalysis v5 (ERAS5) (Hersbach
et al., 2020) and gridded cropland and pasture land use data are integrated from the History Database of the
Global Environment (HYDE 3.2) (Klein Goldewijk et al., 2017).

2.3. F,, in Comparison

For comparison, we in this study adopted 13 models simulated NBP (-F,,) from the TRENDYv6 S3 simula-
tion, in which the effects on the terrestrial carbon cycle of all the drivers, including CO,, climate, and land
use and land cover change, are taken into account (Sitch et al., 2015). The DGVMs include CABLE (Haverd
et al., 2018), CLASS-CTEM (Melton & Arora, 2016), CLM4.5 (Oleson et al., 2013), ISAM (Jain et al., 2013),
JSBACH (Reick et al., 2013), JULES (Clark et al., 2011), LPJ (Sitch et al., 2003), LPX-Bern (Keller et al., 2017),
OCN (Zaehle et al., 2010), ORCHIDEE (Krinner et al., 2005), ORCHIDEE-MICT (Guimberteau et al., 2018),
VEGAS (Zeng, Mariotti, & Wetzel, 2005), and VISIT (Kato et al., 2013). Additionally, an updated NEE-T
inversion result from the Jena CarboScope, denoted as “sSEXTocNEET_v2020” (Rodenbeck et al., 2018), was
also employed.

2.4. Statistical Methods

For the interannual analysis, we applied the 12-month running average to de-seasonalize the monthly
precipitation and F.,. Then we used the Pearson’s correlation coefficient to show their consistency. The
Root Mean Square Error (RMSE) was used to quantify the discrepancies between simulated F.,, and sEX-
TocNEET_v2020 inversion result. The uncertainties induced by different precipitation products relative to
TRENDYv6 multi-model simulations over different regions are calculated as

|0 GVEGAS

— J .
UNC = ;Z TRENDYv6 100% (%)
jo;

where a}/EGAS represents the standard deviation for de-seasonalized VEGAS simulations forced by different
precipitation in the jth month, and o-jTREND 6 represents the standard deviation in the same month for

TRENDYv6 multi-model simulations. n denotes the number of available months in the analysis.

3. Results
3.1. Impacts of Precipitation Data on Climatological Annual F,,

Figure 1 shows averages of climatological annual mean precipitation of eight different products and aver-
ages of annual mean F., simulated using these precipitation data sets. The heavier precipitation mainly
occurs over the Tropics owing to the active convections, especially over Equatorial Asia and Amazon (Fig-
ure 1a). The heavy precipitation is strongly linked to the activity of global monsoon (Wang & Ding, 2008).
These different precipitation data sets show the largest discrepancies in the low latitudes, especially over
the northwest part of South America, central Africa, Equatorial Asia, and the Tibetan Plateau (Figure 1b).
The simulated F_,, averaged from 1979 to 2016 shows obvious carbon uptake over the major crop regions
(North America, Europe, India, and North China) and boreal forests and tundra areas in northern high
latitudes. In the low latitudes, large areas show the positive F,,, namely carbon release, mainly owing to
the emissions of wildfires and land-use change, especially deforestation (Friedlingstein et al., 2019; van
der Werf et al., 2017) (Figure 1c). Interestingly, the pattern of uncertainties in simulated F.,, induced by
different precipitation data sets is obviously different from the pattern of discrepancies in precipitation
(Figures 1d and 1b). Large uncertainties in simulated F,, mainly occur in the transitional zones between
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Figure 1. Averages (a) and standard deviations (b) of annual precipitation (mm yr—!) of eight different precipitation data sets during 1979-2016. Averages (c)
and standard deviations (d) of annual mean F,, (kg C m~2 yr™!) simulated using eight different precipitation data sets during 1979-2016.

tropical rainforests and savannas over South America and Africa and mid-latitude grasslands over Asia
(Figure 1d). Different patterns of precipitation and F., discrepancies result from divergent sensitivities of
vegetation over different regions to precipitation (Wang et al., 2016).

Given that there are no true values of precipitation and F_,, and CRU precipitation has been widely used in
the TRENDY project, we here take the CRU precipitation and F.,, simulated using this precipitation data
set as the references to display the Taylor diagrams for other precipitation and simulated F., (Figure 2).
Consistently, the precipitation and their related F.,, show high spatial correlation coefficients (0.94-0.99)
with the CRU and its F,,, respectively. The CPC, CAMS_OPI, and CMAP show the relatively smaller stand-
ardized deviations (Figure 2a), whereas their related F.,, demonstrate the relatively higher standardized
deviations (Figure 2b).

Figure 3 shows the associations between area-averaged climatological annual precipitation and their related
simulated total F_,,. First of all, the amplitudes of F_,, simulated using VEGAS version 2.6 driven by CRU
precipitation over different zones are within the TRENDYv6 inter-model spreads, implying that the VEGAS
version 2.6 has at least the equivalent performance in simulating the terrestrial carbon sources and sinks
compared to the other state-of-the-art DGVMs. Globally, the land precipitation has inter-data spreads from
702.78 (CPC) to 860.58 mm yr~! (GPCP). It is worth mentioning that the integration of various satellite es-
timates and gauge observations do not make the land precipitation estimates converge. For example, there
are obvious differences in CMAP and GPCP which are both widely used in climate analyses (Figure S1 in
Supporting Information S1). These different precipitation data sets result in the different patterns of the
simulated F,, associated with their global total F,, varying from —0.95 to —0.38 PgC yr~! (Figures 3 and
S2 in Supporting Information S1). Although this uncertainty in F.,, caused by different precipitation data
sets is smaller than the uncertainty in TRENDYv6 multi-model simulations which is caused by the model

structural and parameter uncertainty, their ratio (o ) can be up to approximately 40.73%.

reci
P p/O-TRENDYv()
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Figure 2. Taylor diagram for climatological precipitation and simulated F.,,. The CRU precipitation and F_, simulated using this precipitation data set are
taken as the references, given that CRU data sets were widely used in the TRENDY project.

Fra [PgC yr—1]

Furthermore, a good linear relationship emerges between global area-averaged land annual precipitation
and simulated total F,, with a slope of —0.0040 Pg C yr~* per mm yr~* (R?* = 0.58, p = 0.03). That is, the
increase of 1 mm yr~! in precipitation averaged over the global land can cause 0.0040 Pg C yr—! more terres-

trial carbon absorption.
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Figure 3. Associations between area-averaged climatological annual
precipitation and simulated total F., over different zones. We separated
global land regions into tropical plus southern extratropical regions

(Trop + SH) and northern extratropical regions (NH). Simulations by
individual Dynamical Global Vegetation Model (DGVM) in TRENDYv6 are
also listed accordingly where the inter-model spreads are mainly caused by
the model structural and parameter uncertainties. The precipitation and
F,, are in the units of mm yr~! and Pg C yr~', respectively.

Separating the global land into tropical plus southern extratropical re-
gions (Trop + SH) and northern extratropical regions (NH), we can
comprehensively investigate the associations between precipitation and
simulated F,, in detail. Over the Trop + SH, the land precipitation has
the uncertainty from 984.29 (CPC) to 1,177.20 mm yr—! (GPCP). Except
CAMS_OPI and CMAP, the total of simulated F,, driven by other pre-
cipitation data sets is 0.50 = 0.04 Pg C yr~L. It is worth mentioning that
though CPC has the smallest precipitation amplitude, the simulated F,
has the almost same value compared to the GPCP which has the strong-
est precipitation amplitude. In contrast, smaller precipitation amplitudes
of CAMS_OPI and CMAP cause the stronger carbon release here. These
contrasting behaviors on one hand result from the spatial differences of
precipitation patterns (Figure S1 in Supporting Information S1) and veg-
etation sensitivities to precipitation (or soil moisture) (Jung et al., 2017;
Wang et al., 2016). On the other hand, different precipitation as climate
drivers for VEGAS simulations can cause different states of the terrestrial
carbon cycle, that is, differences in amplitudes of GPP, TER, vegetation,
and soil carbon pools. Hence, the association between different precipita-
tion and simulated F ,, shows a weaker linear relationship with the slope
of —0.0013 Pg C yr~! per mm yr~! (R? = 0.26, p = 0.19). The uncertainty
of F_, relative to TRENDYv6 multi-model simulations is approximately
31.50%.

Over NH, the simulated F,, amplitudes suggest a stronger sensitivity to
different precipitation with the slope of —0.0028 Pg C yr~! per mm yr!
(R* = 0.68, p = 0.01) than the behavior over Trop + SH. This sensitivity
accounts for 70% of the relationship between global total simulated F_,
and precipitation. Though precipitation over NH has relatively smaller
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Figure 4. Seasonal variations of simulated F_, over Trop + SH with the related different land precipitation. (a)
Precipitation (mm month), (b) tropical F,,, (PgC month~?), (¢c) standard deviation of F,,, during March-April-May
(MAM), and (d) standard deviation of F,, during August-September-October (ASO) with the unit of kg C m=2yr~".
inter-data spread from 469.43 (CPC) to 598.11 mm yr~' (GPCP), the simulated F.,, show differences from
—1.09 to —1.48 Pg C yr~! with the o = 0.12 PgC yr~! (approximately 30.32% of TRENDYv6 multi-model
simulations).
3.2. Impacts of Precipitation Data on the Seasonal Cycle in F,
Owing to the large seasonal cycle amplitude of F, over NH, uncertainties of simulated F, by different
precipitation products are insignificant. Hence, we mainly focus on the impact of different precipitation
on seasonal variations in F_, over Trop + SH (Figure 4). Different precipitation products keep nearly con-
stant inter-data spreads during the entire seasonal cycle (Figure 4a). However, uncertainties in their cor-
responding simulated F,, show the obvious seasonal differences with the relatively larger uncertainties
during March-April-May (MAM) and August-September-October (ASO) (Figure 4b). Spatially, the largest
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uncertainties mainly happen over regions north to the Equator (Northern Africa) during MAM (Figure 4c),
but over regions south to the Equator (South America and Africa) during ASO (Figure 4d).

In climatological seasonal evolution, during MAM, the soil moisture is relatively low over Northern Afri-
ca because the precipitation mainly locates in Southern Hemisphere (Figure S3a in Supporting Informa-
tion S1), making the carbon releases here (Figures S3b and S4a in Supporting Information S1). During ASO,
the rain-belts locate over the equatorial Northern Hemisphere. Low precipitation lasting from preceding
months makes the soil moisture relatively low over the regions south to the Equator (Figure S3a in Support-
ing Information S1), resulting in the carbon releases from the Equator to 20°S (Figure S3b in Supporting In-
formation S1), mainly over South America and Southern Africa (Figure S4b in Supporting Information S1).
Therefore, the large differences in simulated F.,, generally occur when the tropical regions are in their dry
seasons, implying that tropical ecosystems are phenologically more sensitive to water availability during dry
seasons than during wet seasons.

3.3. Impacts of Precipitation Data on the Interannual Variability in F,

On the interannual time scale, many literatures have reported that precipitation (or soil moisture) played
a vital role in the interannual variability of the global and regional terrestrial carbon cycle (Humphrey
et al., 2018, 2021; Wang, Jiang, et al., 2021; Wang, Wang, et al., 2021; Wang, Zeng, Wang, Jiang, Chen,
et al., 2018; Wang, Zeng, Wang, Jiang, Wang, & Jiang, 2018; Zeng, Mariotti, & Wetzel, 2005). The interan-
nual variations of different land precipitation and their correlation coefficients in pairs are presented in
Figure 5. It is clear that the discrepancies among different land precipitation products keep in year-to-year
variations, implying that systematic biases exist in different precipitation products, causing the differences
in climatological annual precipitation (Figure 3). However, the interannual variations of precipitation show
the high consistency on the global and regional scales (Figures 5a, 5c, and 5e). The precipitation has the
much stronger interannual variability over Trop + SH than over NH (Figures 5c and 5e), showing less pre-
cipitation during El Nifio events and more precipitation during La Nifia events which largely contributes to
the interannual variability of the terrestrial carbon cycle (Wang et al., 2016; Wang, Zeng, Wang, Jiang, Chen,
et al., 2018; Zeng, Mariotti, & Wetzel, 2005).

Specifically, over Trop + SH, except CPC and CAMS_OPI, other precipitation data sets are more consistent
on the interannual time scale, showing the correlation coefficients in pairs in the range from 0.81 to 0.97
(p < 0.05) (Figure 5d). In contrast, larger discrepancy occurs over NH (Figure 5f). Higher correlation coeffi-
cients in pairs (>0.81) occur among CRU, Delaware, GPCC, and GPCP. Globally, we can find that data sets
of CRU, Delaware, GPCC, PREC/L, and GPCP are more consistent with the higher correlation coefficients
in pairs (>0.81, Figure 5b). In contrast, CPC, CAMS_OPI, and CMAP show the lower correlation coeffi-
cients with the other products.

Differences in precipitation amplitudes and variations can result in the uncertainty in simulating the in-
terannual variability of the terrestrial carbon cycle. Figure 6 shows the interannual variations of simulated
F ., associated with their uncertainties relative to the TRENDYv6 multi-model simulations. TRENDYv6
multi-model simulations indicate that the global F_,, interannual variability is dominated by the tropical F,
rather than the F,,, over NH, with the anomalous carbon release induced by widespread dry and warm con-
ditions during El Nifio events and the anomalous carbon uptake due to wet and cool conditions during La
Nifia events (Figures 6b and 6c), as suggested by previous studies (Bousquet et al., 2000; Wang et al., 2016;
Zeng, Mariotti, & Wetzel, 2005). The anomalous terrestrial carbon releases can obviously lag El Nifio events
or show no lags, which were determined by types of El Nifios (Wang, Zeng, Wang, Jiang, Chen, et al., 2018).
By comparison, VEGAS has the good performance in simulating the interannual variability of F.,, with
the correlation coefficients of 0.49 for global total, 0.62 for Trop + SH, and 0.55 for NH (p < 0.05) between
TRENDYv6 ensemble mean and ensemble mean of VEGAS simulations (Figures 6b and 6c).

On the interannual time scale, relative to the inter-model uncertainties in TRENDYV6, uncertainties in VE-
GAS simulations induced by different precipitation are, albeit smaller, nonnegligible (Figures 6b-6d). Ac-
cording to Equation 5, the uncertainty for the global total simulated F_,, induced by different precipitation
can be up to 40.61% of the TRENDYv6 inter-model uncertainty (Figure 6a). Over the different latitudinal
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Figure 5. Interannual variations of different land precipitation and their correlation coefficients in pairs. (a, c, and e) Area-averaged land precipitation over
globe, Trop + SH, and NH, respectively. (b, d, and f) Pearson's correlation coefficients in pairs. The time series here are de-seasonalized by the 12-month
running average with the unit of mm yr=1.

regions, relative uncertainty over Trop + SH is obviously stronger than that over NH, with their correspond-
ing 38.17% and 29.63% of the TRENDYV6 inter-model uncertainties, respectively.

Though there are no “true” values for the interannual variability in F,, we take the updated NEE-T in-
version result (“sSEXTocNEET”) from the Jena CarboScope (Rodenbeck et al., 2018) as a reference because
the inversion result can to a large extent capture the large-scale interannual carbon variability after direct-
ly assimilating the CO, observations at stations. Regardless of the structural and parameter uncertainty
of VEGAS model, direct comparisons between simulated F,, forced by different precipitation and NEE-T
inversion result are presented in Figure 7. Although their interannual variations are basically consistent
(Figure 7a), differences exist (Figure 7b). Clearly, the largest RMSE occurs between F,, forced by CPC
and NEE-T, whereas the RMSE between F_,, forced by PREC/L and NEE-T is smallest, which implies that
the PREC/L is a better alternative than originally used CAMS_OPI in VEGAS NRT framework (Wang,
Zeng, Wang, Jiang, Wang, & Jiang, 2018). Except CPC, the RMSE between simulated F,, forced by other
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Figure 6. Interannual variations of simulated F_, associated with their uncertainties relative to the mean of 13 TRENDYv6 models forced by same

meteorological data and experimental protocols. (a) Averaged uncertainties relative to TRENDYv6 over globe, Trop + SH, and NH. The error bars represent the
one-o of the relative uncertainties. (b, ¢, and d) Interannual variations of VEGAS and TRENDYv6 simulated F., over globe, Trop + SH, and NH. The light coral
and dodger blue shaded areas in (b) represent the strong El Nifio and La Nifia events, respectively, which were defined based on the Oceanic Nifio Index (ONTI).

gauge-based precipitation products and NEE-T are close. However, it is worth mentioning that the integra-
tion of satellite and gauge estimates does not further reduce the uncertainties in land precipitation (CMAP
and GPCP) (Figures 3 and 5) associated with resultant F_,, (Figures 3 and 7).

4. Discussions

The results discussed in this study are simulations by VEGAS. As we know, focusing on the terrestrial
hydrological cycle, although under the same protocols and climatological drivers, the simulated variations
of terrestrial root zone soil moisture by different DGVMs indicate low correlation coefficients (Humphrey
et al., 2018). Additionally, different model structures, including processes considered and parameteriza-
tions, and so on, can cause surprising differences in model representation of responses of photosynthesis to
CO, concentration, temperature, soil moisture, and atmospheric vapor pressure deficit (Rogers, 2014; Rog-
ers et al., 2014; Wang et al., 2016). Therefore, different models may suggest different results to some extent
under these different precipitation data sets.

This research can also give some implications for carbon assimilations. Parazoo et al. (2014) constrained
the global distribution of GPP by using an optimal estimation approach with the a priori mean and un-
certainty derived from an ensemble of DGVMs in TRENDY project. As this research and Ito et al. (2017)
indicated that apart from inter-model spreads in the carbon cycle simulations induced by the structural and
parameter uncertainty, uncertainty in climatological drivers can also cause, albeit smaller, nonnegligible
spreads of carbon fluxes. Hence, they may underestimate the background errors by taking the uncertainty
derived from TRENDY multi-model simulations, which was mainly induced by structural and parameter
uncertainty since these models were driven by the same meteorological data set. Underestimation in back-
ground errors in data assimilation can largely bias the posterior results. Additionally, precipitation to a large
extent dominates the variations of soil moisture and terrestrial water storage (Humphrey et al., 2018). And
here it is clear that different precipitation products can cause considerable uncertainty in simulating F_,
on the climatological, seasonal, and interannual time scales, more specifically regulated by the root zone
soil moisture in VEGAS model. In satellite era, assimilating satellite-observed soil moisture into TBMs can
constrain the hydrological cycle simulations in models (Mladenova et al., 2020; Seo et al., 2021). Hence, this
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Figure 7. Root Mean Square Errors (RMSE) of simulated F,, relative to atmospheric inversion results of Jena
CarboScope sSEXTocNEET_v2020. (a) Time series of 1nterannual variabilities of the simulated F., forced by different
precipitation products (orange lines) and Jena CarboScope NEE-T inversion result (blue line). (b) RMSE of individual
simulated F_, relative to the results of Jena CarboScope.

considerable uncertainty in simulated F,, induced by the uncertainty in precipitation may be reduced to
some extent by assimilating satellite-observed soil moisture. Several studies have also shown the effective-
ness of assimilating satellite-observed soil moisture on simulating the global terrestrial carbon cycle (He
et al., 2017; Scholze et al., 2016). For example, Scholze et al. (2016) indicated that assimilating SMOS L3
soil moisture can considerably reduce the uncertainty for both regional net ecosystem productivity and net
primary productivity. He et al. (2017) suggested the significant improvement in GPP simulations over the
single-cropping agricultural lands by assimilating the Soil Moisture Active Passive (SMAP) satellite meas-
urements into a process-based ecosystem model.

Furthermore, we have demonstrated that a significant linear relationship exists between different climato-
logical annual precipitation and simulated total F,, over NH, showing the slope of —0.0028 PgC yr~* per mm
yr~! (R* = 0.68, p = 0.01) (Figure 3). It implies that regardless of other environmental condition changes,
more precipitation can result in stronger land carbon sinks over NH. On the basis of CMIP5 simulations, fu-
ture precipitation over NH will likely increase (Collins et al., 2013). Hence, increased precipitation, warmed
temperature, and rising atmospheric CO, concentration might altogether enhance the land carbon sinks
over NH in the future, though there is an uncertainty in the carbon losses in permafrost (Ciais et al., 2013).

WANG ET AL.

12 of 15

95US017 SUOWILIOD 3A1TES1D) 3|qedtjdde ay) Aq psusnof ae sapile YO ‘38N JO'Sa|nJ Joj Aleiq1auliuQ AB]1/ UO (SUONIPUGD-PUB-SWUIBIALIOY A8 |1 Aleid]1Bu1|UO//SNY) SUONIPUOD PUe SIS 1 841 39S *[G202/TT/S0] U0 AkeiqiauluO AB]IM ‘UGSIPR I - USUOSIA JO AISAIUN AQ 2G9009(TZ02/620T OT/I0p/Wod A8 1M Aseiq putjuosqndnbe//sdny wouy papeojumoq ‘0T ‘T202 ‘19686912



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Biogeosciences

10.1029/2021JG006524

Acknowledgments

The authors gratefully acknowledge the
TRENDY DGVM community, as part of
the Global Carbon Project, for access to
gridded land data. This study was sup-
ported by the National Natural Science
Foundation of China (41807434), the
National Key R&D Program of China
(2020YFA0607504), and Fundamental
Research Funds for the Central Uni-
versities (0904-14380028). The authors
are grateful to the High Performance
Computing Center (HPCC) of Nanjing
University for doing the numerical
calculations in this paper on its blade
cluster system.

5. Conclusion

In this study, we comprehensively investigated to what extent precipitation alone can cause uncertainties
in simulating terrestrial carbon sources and sinks, by using eight precipitation products to drive the VEGAS
model. Main conclusions are summarized below.

On climatology, owing to divergent water sensitivities of vegetation over different regions, the geographical
distribution of uncertainties in simulated F.,, differs from the pattern of discrepancies in precipitation. The
uncertainty in simulated global total F.,, induced by different precipitation is approximately 40.73% of the
uncertainty in TRENDYv6 multi-model simulated F.,,, which is mainly induced by the model structural and
parameter uncertainty. Furthermore, we find a good linear relationship between global area-averaged land
climatological annual precipitation and simulated total F,, with the slope of —0.0040 Pg C yr~! per mm yr~*
(R* =0.58, p = 0.03), in which sensitivity over NH to precipitation accounts for 70%. This linear relationship
implies that more land precipitation might induce the increase of land carbon sinks.

For seasonal cycle, over the Trop + SH, compared to the nearly constant inter-precipitation spreads, un-
certainties in corresponding simulated F.,, show obvious seasonal differences with the relatively larger
uncertainties in MAM and ASO, phenologically showing that ecosystems are more sensitive to the water
availability during dry seasons than during wet seasons over the certain regions.

For interannual variability, VEGAS has the good performance in simulating the interannual variability of
F,,. Uncertainties in simulated total F.,, are, albeit smaller, nonnegligible, which are up to 40.61% (global),
38.17% (Trop + SH), and 29.63% (NH) of the TRENDYv6 inter-model uncertainty, respectively. Additionally,
comparisons between simulated F.,, forced by different precipitation and NEE-T inversion result suggest
that the PREC/L can be a better alternative than originally used CAMS_OPI in VEGAS NRT framework.
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CPC Global Unified Precipitation data, Delaware v5.01, GPCC, PREC/L, CMAP, GPCP Version 2.3 are pro-
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data/gridded/tables/precipitation.html. CRU TS4.04 precipitation is from https://catalogue.ceda.ac.uk/
uuid/89ele34ec3554dc98594a5732622bce9. And CAMS_OPI precipitation is provided at https://www.cpc.
ncep.noaa.gov/products/global_precip/html/wpage.cams_opi.html. The TRENDY DGVMs data are availa-
ble at https://sites.exeter.ac.uk/trendy. VEGAS simulations for the findings of this article can be accessed
in the figshare repository at https://figshare.com/articles/dataset/Considerable_uncertainties_in_simulat-
ing land_carbon_sinks_induced_by_different_precipitation_products/16614277.
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