
Abstract  Precipitation, a key determinant of soil moisture variations, plays an important role in 
regulating terrestrial carbon fluxes on multiple time scales. It is a critical meteorological forcing to drive 
terrestrial biosphere model (TBM), however, with a large uncertainty itself. We here investigated to 
what extent precipitation alone can cause uncertainties of model-simulated carbon flux from terrestrial 
ecosystems to atmosphere (FTA), based on eight precipitation products and a TBM, VEGAS. We find 
that the pattern of uncertainties in simulated FTA obviously differs from the pattern of discrepancies in 
precipitation, owing to divergent water sensitivities of vegetation over different regions. Globally, the 
uncertainty in FTA can be up to approximately 40.73% of the uncertainty in TRENDYv6 multi-model 
simulated FTA which is caused by model structural and parameter uncertainty. A good linear relationship 
emerges between global area-averaged land climatological annual precipitation and simulated total 
FTA with the slope of −0.0040 PgC yr−1 per mm yr−1 ( E p  = 0.03; negative for carbon sink), where 70% is 
explained by the sensitivity over extra-tropical Northern Hemisphere (NH). For seasonal cycle, compared 
to nearly constant inter-precipitation spreads over tropics plus extra-tropical southern hemisphere 
(Trop + SH), uncertainties in corresponding simulated FTA show obvious seasonal differences with the 
relatively larger uncertainties in March-April-May (MAM) and August-September-October (ASO). For 
interannual variability, uncertainties in simulated total FTA are, albeit smaller, nonnegligible, which 
are 40.61% (global), 38.17% (Trop + SH), and 29.63% (NH) of the TRENDYv6 inter-model uncertainty, 
respectively. Therefore, generating better global precipitation product is important for reducing the 
uncertainty in simulating terrestrial carbon sinks.

Plain Language Summary  Precipitation, a key forcing in terrestrial biosphere model (TBM), 
has a large uncertainty itself. We here used eight land precipitation products to run TBM VEGAS and 
explored the resulting uncertainties in simulating carbon flux from terrestrial ecosystems to atmosphere 
(FTA) on climatology, seasonal cycle, and interannual variability. In climatology, the uncertainty in global 
FTA induced by different precipitation can be approximately 40.73% of the uncertainty in TRENDYv6 
multi-model simulations induced by model structural and parameter uncertainty. Furthermore, we find 
a good linear relationship between global area-averaged land climatological annual precipitation and 
simulated total FTA, implying more precipitation over land with stronger carbon sinks, especially over 
extra-tropical Northern Hemisphere (NH). For seasonal cycle, uncertainties in simulated FTA over tropics 
plus extra-tropical southern hemisphere (Trop + SH) show relatively larger values in March-April-May 
and August-September-October. For interannual variability, uncertainties in simulated total FTA are up 
to 40.61% (global), 38.17% (Trop + SH), and 29.63% (NH) of the TRENDYv6 inter-model uncertainty, 
respectively. In general, uncertainty in land precipitation data sets can cause considerable uncertainties 
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1.  Introduction
The terrestrial biosphere model (TBM) is a useful tool for understanding the global and regional terrestrial 
carbon cycle. However, different model structures including processes considered and parameterizations 
and different forcing/boundary data sets, causing surprising differences in simulated responses of pho-
tosynthesis to CO2 concentration, temperature, soil moisture, and vapor pressure deficit, result in large 
uncertainties in simulating terrestrial gross primary productivity (GPP) and net biome productivity (NBP) 
(Friedlingstein et al., 2006; Ito et al., 2017; Rogers, 2014; Rogers et al., 2014; Sitch et al., 2015).

In TRENDY intercomparison project, following the same experimental protocols, multiple state-of-the-art 
Dynamical Global Vegetation Models (DGVMs) are driven by the same climate forcing to simulate the 
global land carbon flux from terrestrial ecosystems to the atmosphere (FTA, which equals to the negative 
value of NBP) (Sitch et al., 2015). The standard deviation of the annual C sink across these DGVMs is on 
average approximately 0.6 GtC yr−1 from 1959 to 2018 (Friedlingstein et al., 2019). This inter-model spread 
results mainly from the structural and parameter uncertainties, of which structural uncertainty is caused 
by the insufficient knowledge of how to represent the reality by the model, which tends to increase along 
with greater model complexity (Wieder et al., 2015). TBMs involved in the second phase of the Inter-Sec-
toral Impact Model Intercomparison Project (ISIMIP2a) were forced by four meteorological forcing data 
sets. Ito et al. (2017) suggested that their simulated global terrestrial GPP ranged from 98 to 141 GtC yr−1 
during 1981–2000 with considerable inter-model and inter-data spreads. Therefore, besides the structural 
and parameter uncertainties, different meteorological forcing can cause the nonnegligible uncertainty in 
simulated terrestrial carbon fluxes by models.

It is well known that precipitation is one of the most critical meteorological forcing to drive the TBM. Pre-
cipitation, as the primary source of water for the land surface hydrological budget, to a large extent dom-
inates the variations of soil moisture and terrestrial water storage (Humphrey et al., 2018) which play an 
important role in regulating terrestrial carbon fluxes on multiple time scales (climate extremes, interannual 
variability, etc.) (Humphrey et al., 2018, 2021; Wang, Jiang, et al., 2021; Wang, Wang, et al., 2021; Wang 
et al., 2016; Wang, Zeng, Wang, Jiang, Chen, et al., 2018; Wang, Zeng, Wang, Jiang, Wang, & Jiang, 2018; 
Zscheischler, Mahecha, et al., 2014; Zscheischler, Michalak, et al., 2014). The traditional reanalysis data sets 
have been widely used in terrestrial carbon simulations (J. M. Chen et al., 2012; Wang, Jiang, et al., 2021; 
Wang, Wang, et al., 2021) and in upscaling using the machine learning technique (Lu et al., 2021). Rea-
nalysis data can be classified into three major categories according to the relative influence of the model 
and observations (Kalnay et al., 1996). Specifically, for example, the winds belong to the most reliable class 
because of their direct assimilation from observational data; humidity and surface temperature belong to 
the second class as they are the mixtures of the model results and observations; precipitation belongs to 
the third class which is derived from models. Therefore, precipitation data sets have large uncertainties, 
largely affecting the soil moisture simulations. The poor correlation coefficients between TBM simulated 
root zone soil moisture and satellite-derived terrestrial water storage variations are partially attributable to 
uncertainties of precipitation data (Humphrey et al., 2018). It is cautious for us to employ the precipitation 
data sets for climate analyses and TBM simulations. To constrain uncertainties in simulated soil moisture 
partially caused by precipitation data, many studies assimilated satellite-derived surface soil moisture into 
TBMs (Albergel et al., 2012; DeLannoy et al., 2014; Draper et al., 2012; Seo et al., 2021). Moreover, Scholze 
et al. (2016) and He et al. (2017) suggested that assimilation of satellite-derived soil moisture into TBMs can 
better simulate the terrestrial carbon cycle.

Although the multi-model simulations in ISIMIP2a were used to examine the uncertainties caused by dif-
ferent meteorological forcing data sets, they did not focus on the precipitation alone (Ito et al., 2017). Owing 
to the great influence of water availability on terrestrial carbon cycle and larger uncertainty in precipitation 
compared to other meteorological elements, it is necessary to comprehensively investigate to what extent 
precipitation alone can cause the uncertainty of NBP simulated by TBMs. Therefore, we in this study ran 
the state-of-the-art DGVM VEGAS to quantitatively examine the uncertainties in the simulated global and 

in simulating FTA, suggesting the importance of generating the better precipitation product for better 
simulating the terrestrial carbon sinks.
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regional NBP on climatology, seasonal cycle, and interannual variability, with VEGAS forced by eight pre-
cipitation products. Another important purpose is to provide the scientific evidence for VEGAS Near Re-
al-Time (NRT) to select the most proper precipitation data set. Additionally, this research can provide some 
implications for the effect of soil moisture assimilations on the terrestrial carbon cycle.

This study is organized as follows: Section 2 will describe the precipitation data sets used here and experi-
mental designs for VEGAS in detail. Section 3 will give out the results on climatology, seasonal cycle, and in-
terannual variability. Discussion and concluding remarks will be presented in Sections 4 and 5, respectively.

2.  Materials and Methods
2.1.  Different Precipitation Products

In this study, we adopted eight precipitation products (Table 1) which were widely used in climate analyses 
to drive VEGAS simulations, in which five out of eight land precipitation data sets are produced from in-
terpolation of gauge observations and the rest are the combination of satellite-based rainfall estimates and 
gauge observations. Brief introduction to these data sets is as follows:

1.	 �NOAA Climate Prediction Center (CPC) Global Unified Gauge-Based Analysis of Daily Precipitation 
with its original resolution of 0.5° × 0.5° from 1979 to present (M. Chen et al., 2008). It is part of products 
from the CPC Unified Precipitation Project, whose primary goal is to generate a suite of unified precip-
itation products with consistent quantity and improved quality by integrating all information sources 
available at CPC and by means of the optimal interpolation (OI) objective analysis technique.

2.	 �Climatic Research Unit (CRU) Time-Series (TS) version 4.04 of high resolution gridded data of month-
by-month variation in climate from 1901 to 2019 (Harris et al., 2020). This data set was produced by CRU 
at the University of East Anglia and funded by the UK National Center for Atmospheric Science (NCAS), 
a NERC collaborative center, with the resolution of 0.5° × 0.5°. The CRU TS4.04 data were generated 
using angular-distance weighting (ADW) interpolation, based on monthly observations calculated from 
daily or sub-daily data by National Meteorological Services and other external agents.

3.	 �University of Delaware Precipitation (Delaware v5.01) (Willmott & Matsuura, 2001). This data set has 
the resolution of 0.5° × 0.5° with monthly values from 1900 to 2017, produced from a large number of 
stations both from the Global Historical Climate Network, version 2 (GHCN2) and more extensively 
from the archive of Legates & Willmott. More complete description of the data can be accessed from 
their web pages at the University of Delaware.

4.	 �Global Precipitation Climatology Center (GPCC) (Schneider et al., 2017). The data set used here is the 
Full Data Product (V2018) for the period 1891–2016 based on quality-controlled data from 67,200 sta-
tions worldwide that feature record durations of 10  years or longer and monitoring product for the 
period 2017 to present based on quality-controlled data from 7,000 stations. This product has a spatial 
resolution of 0.5° × 0.5°, 1.0° × 1.0°, and 2.5° × 2.5° latitude by longitude.

5.	 �NOAA's PRECipitation REConstruction over Land (PREC/L) (M. Chen et al., 2002). This global analysis 
is defined by interpolation of gauge observations over land from over 17,000 stations collected in the 

Data sets Time span Resolution References

CPC 1979–present 0.5° × 0.5° M. Chen et al. (2008)

CRU TS4.04 1901–2019 0.5° × 0.5° Harris et al. (2020)

Delaware v5.01 1900–2017 0.5° × 0.5° Willmott and Matsuura (2001)

GPCC 1891–present 2.5° × 2.5° Schneider et al. (2017)

PREC/L 1948–present 2.5° × 2.5° M. Chen et al. (2002)

CAMS_OPI 1979–present 2.5° × 2.5° Janowiak and Xie (1999)

CMAP 1979–present 2.5° × 2.5° Xie and Arkin (1997)

GPCP v2.3 1979–present 2.5° × 2.5° Adler et al. (2003)

Table 1 
Eight Precipitation Data Sets Used in This Study to Drive VEGAS Simulations
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GHCN2 and the Climate Anomaly Monitoring System (CAMS) data sets with an OI technique of Gan-
din. Precipitation is available at 0.5° × 0.5°, 1.0° × 1.0°, and 2.5° × 2.5° latitude by longitude.

6.	 �NOAA NCEP CAMS-outgoing longwave radiation precipitation index (CAMS_OPI) (Janowiak & 
Xie, 1999). This data set was produced from rain gauge data for land and OPI estimates for land points 
without observations and over the oceans, and was intended for real-time climate monitoring. Though 
authors strongly suggest that users adopt either the CMAP or GPCP for analyses, we here still employed 
this data set for the simulation because VEGAS NRT framework previously used this data set to con-
struct the near real-time forcing data set (Wang, Zeng, Wang, Jiang, Wang, & Jiang, 2018).

7.	 �CPC Merged Analysis of Precipitation (CMAP) (Xie & Arkin, 1997). The CMAP precipitation is obtained 
from five kinds of satellite estimates and gauge data, including a standard and enhanced version with 
NCEP Reanalysis from 1979 to present. We here used the standard version of CMAP with the resolution 
of 2.5° × 2.5°.

8.	 �GPCP Version 2.3 Combined Precipitation Data Set (Adler et al., 2003). The GPCP product was produced 
from an integration of various satellite data sets over land and ocean and a gauge analysis over land with 
the resolution of 2.5° × 2.5° from 1979 to present. The combination of satellite-based rainfall estimates 
provides necessary spatial details to the rainfall analyses over land and the most complete analysis of 
rainfall over oceans.

2.2.  VEGAS and Its Simulations

The state-of-the-art DGVM VEGAS, version 2.6, was used to investigate the uncertainty of simulated ter-
restrial NBP induced by different precipitation data sets. The introduction to its model structure and bio-
logical processes was described in the Appendix of Zeng, Mariotti, and Wetzel (2005). VEGAS model has 
been extensively involved in the Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) 
(Friedlingstein et al., 2006), the TRENDY project (Sitch et al., 2015), and Multi-scale Synthesis and Terres-
trial Model Intercomparison Project (MsTMIP) (Huntzinger et al., 2013). Its simulations have been widely 
used to understand the terrestrial carbon cycle upon climate extremes, seasonal cycle, interannual variabil-
ity, and long-term trends (Wang et al., 2013; Wang, Zeng, Wang, Jiang, Wang, & Jiang, 2018; Zeng, Mariotti, 
et al., 2005; Zeng, Qian, et al., 2005; Zeng et al., 2014).

In this research, we investigated the impact of precipitation on FTA which represents the terrestrial carbon 
sources and sinks. FTA is the net carbon flux from terrestrial ecosystems into the atmosphere, calculated as

TAF NBP TER GPP D    � (1)
where TER and GPP represent the total ecosystem respiration and photosynthesis, respectively. E D repre-
sents the carbon flux induced by disturbances (mainly wildfires and harvest in VEGAS model). Its positive 
and negative values indicate carbon fluxes into the atmosphere (source) and into terrestrial ecosystems 
(sink), respectively.

In VEGAS simple-land, abbreviated “SLand,” which is moderately more complicated than the bucket model 
(Zeng et al., 2000), the water budget in the whole soil layer that represents the root zone is

W P E R S
t


   


� (2)

where E W  is the soil moisture content per unit area; E P is the precipitation; E E is the total evaporation; E R is the 
total runoff, summed by surface and subsurface runoff; E S represents the snowmelt. The soil can be saturated 
when E W  reaches the field capacity (  0E W  ) which is dependent on surface types. Usefully, a relative soil wetness 
is defined in SLand,

/ ow W W� (3)
where E w will be unity at saturation. In the current version of the model, we use the following parameterization

w � (4)

This nonlinear dependence of E   on E w takes effects of the soil moisture uptake by deep roots into account. 
The actual form of E   is adopted according to observations and physically based parameterizations including 
heterogeneity effects (Zeng et al., 2000). We take the 0.5E    in VEGAS model now. The E   is further used as 
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the water stress which influences vegetation photosynthesis in a colimiting function, heterotrophic respira-
tion processes, and wildfire probability, hence influencing the variability of FTA in Equation 1.

In this study, we ran VEGAS at the hourly time step with the 2.5° × 2.5° horizontal resolution, starting from 
the date of January 1, 1979. In detail, in the experimental protocols, we iterated VEGAS by just replacing 
the precipitation data sets (Table 1). For each simulation, we spun up VEGAS with constant meteorological 
drivers in 1979 for more than 500 years, in which we turned on the accelerator for soil carbon pools to reach 
equilibrium fast in the first 200 years. Hence, each simulation is independent. Except precipitation, the 
hourly temperature and radiation data sets are compiled from ECMWF Reanalysis v5 (ERA5) (Hersbach 
et al., 2020) and gridded cropland and pasture land use data are integrated from the History Database of the 
Global Environment (HYDE 3.2) (Klein Goldewijk et al., 2017).

2.3.  FTA in Comparison

For comparison, we in this study adopted 13 models simulated NBP (–FTA) from the TRENDYv6 S3 simula-
tion, in which the effects on the terrestrial carbon cycle of all the drivers, including CO2, climate, and land 
use and land cover change, are taken into account (Sitch et al., 2015). The DGVMs include CABLE (Haverd 
et al., 2018), CLASS-CTEM (Melton & Arora, 2016), CLM4.5 (Oleson et al., 2013), ISAM (Jain et al., 2013), 
JSBACH (Reick et al., 2013), JULES (Clark et al., 2011), LPJ (Sitch et al., 2003), LPX-Bern (Keller et al., 2017), 
OCN (Zaehle et al., 2010), ORCHIDEE (Krinner et al., 2005), ORCHIDEE-MICT (Guimberteau et al., 2018), 
VEGAS (Zeng, Mariotti, & Wetzel, 2005), and VISIT (Kato et al., 2013). Additionally, an updated NEE-T 
inversion result from the Jena CarboScope, denoted as “sEXTocNEET_v2020” (Rodenbeck et al., 2018), was 
also employed.

2.4.  Statistical Methods

For the interannual analysis, we applied the 12-month running average to de-seasonalize the monthly 
precipitation and FTA. Then we used the Pearson's correlation coefficient to show their consistency. The 
Root Mean Square Error (RMSE) was used to quantify the discrepancies between simulated FTA and sEX-
TocNEET_v2020 inversion result. The uncertainties induced by different precipitation products relative to 
TRENDYv6 multi-model simulations over different regions are calculated as

UNC
n j

n
j
VEGAS

j
TRENDYv

 
1

100
6




. %� (5)

where VEGAS
jE   represents the standard deviation for de-seasonalized VEGAS simulations forced by different 

precipitation in the E j th month, and 6TRENDYv
jE   represents the standard deviation in the same month for 

TRENDYv6 multi-model simulations. E n denotes the number of available months in the analysis.

3.  Results
3.1.  Impacts of Precipitation Data on Climatological Annual FTA

Figure 1 shows averages of climatological annual mean precipitation of eight different products and aver-
ages of annual mean FTA simulated using these precipitation data sets. The heavier precipitation mainly 
occurs over the Tropics owing to the active convections, especially over Equatorial Asia and Amazon (Fig-
ure 1a). The heavy precipitation is strongly linked to the activity of global monsoon (Wang & Ding, 2008). 
These different precipitation data sets show the largest discrepancies in the low latitudes, especially over 
the northwest part of South America, central Africa, Equatorial Asia, and the Tibetan Plateau (Figure 1b). 
The simulated FTA averaged from 1979 to 2016 shows obvious carbon uptake over the major crop regions 
(North America, Europe, India, and North China) and boreal forests and tundra areas in northern high 
latitudes. In the low latitudes, large areas show the positive FTA, namely carbon release, mainly owing to 
the emissions of wildfires and land-use change, especially deforestation (Friedlingstein et al.,  2019; van 
der Werf et al., 2017) (Figure 1c). Interestingly, the pattern of uncertainties in simulated FTA induced by 
different precipitation data sets is obviously different from the pattern of discrepancies in precipitation 
(Figures 1d and 1b). Large uncertainties in simulated FTA mainly occur in the transitional zones between 
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tropical rainforests and savannas over South America and Africa and mid-latitude grasslands over Asia 
(Figure 1d). Different patterns of precipitation and FTA discrepancies result from divergent sensitivities of 
vegetation over different regions to precipitation (Wang et al., 2016).

Given that there are no true values of precipitation and FTA and CRU precipitation has been widely used in 
the TRENDY project, we here take the CRU precipitation and FTA simulated using this precipitation data 
set as the references to display the Taylor diagrams for other precipitation and simulated FTA (Figure 2). 
Consistently, the precipitation and their related FTA show high spatial correlation coefficients (0.94–0.99) 
with the CRU and its FTA, respectively. The CPC, CAMS_OPI, and CMAP show the relatively smaller stand-
ardized deviations (Figure 2a), whereas their related FTA demonstrate the relatively higher standardized 
deviations (Figure 2b).

Figure 3 shows the associations between area-averaged climatological annual precipitation and their related 
simulated total FTA. First of all, the amplitudes of FTA simulated using VEGAS version 2.6 driven by CRU 
precipitation over different zones are within the TRENDYv6 inter-model spreads, implying that the VEGAS 
version 2.6 has at least the equivalent performance in simulating the terrestrial carbon sources and sinks 
compared to the other state-of-the-art DGVMs. Globally, the land precipitation has inter-data spreads from 
702.78 (CPC) to 860.58 mm yr−1 (GPCP). It is worth mentioning that the integration of various satellite es-
timates and gauge observations do not make the land precipitation estimates converge. For example, there 
are obvious differences in CMAP and GPCP which are both widely used in climate analyses (Figure S1 in 
Supporting Information S1). These different precipitation data sets result in the different patterns of the 
simulated FTA associated with their global total FTA varying from −0.95 to −0.38 PgC yr−1 (Figures 3 and 
S2 in Supporting Information S1). Although this uncertainty in FTA caused by different precipitation data 
sets is smaller than the uncertainty in TRENDYv6 multi-model simulations which is caused by the model 

structural and parameter uncertainty, their ratio (  precip
TRENDYv6

 ) can be up to approximately 40.73%. 

Figure 1.  Averages (a) and standard deviations (b) of annual precipitation (mm yr−1) of eight different precipitation data sets during 1979–2016. Averages (c) 
and standard deviations (d) of annual mean FTA (kg C m−2 yr−1) simulated using eight different precipitation data sets during 1979–2016.
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Furthermore, a good linear relationship emerges between global area-averaged land annual precipitation 
and simulated total FTA with a slope of −0.0040 Pg C yr−1 per mm yr−1 (  2E R   = 0.58, E p  = 0.03). That is, the 
increase of 1 mm yr−1 in precipitation averaged over the global land can cause 0.0040 Pg C yr−1 more terres-
trial carbon absorption.

Separating the global land into tropical plus southern extratropical re-
gions (Trop  +  SH) and northern extratropical regions (NH), we can 
comprehensively investigate the associations between precipitation and 
simulated FTA in detail. Over the Trop + SH, the land precipitation has 
the uncertainty from 984.29 (CPC) to 1,177.20 mm yr−1 (GPCP). Except 
CAMS_OPI and CMAP, the total of simulated FTA driven by other pre-
cipitation data sets is 0.50 ± 0.04 Pg C yr−1. It is worth mentioning that 
though CPC has the smallest precipitation amplitude, the simulated FTA 
has the almost same value compared to the GPCP which has the strong-
est precipitation amplitude. In contrast, smaller precipitation amplitudes 
of CAMS_OPI and CMAP cause the stronger carbon release here. These 
contrasting behaviors on one hand result from the spatial differences of 
precipitation patterns (Figure S1 in Supporting Information S1) and veg-
etation sensitivities to precipitation (or soil moisture) (Jung et al., 2017; 
Wang et al., 2016). On the other hand, different precipitation as climate 
drivers for VEGAS simulations can cause different states of the terrestrial 
carbon cycle, that is, differences in amplitudes of GPP, TER, vegetation, 
and soil carbon pools. Hence, the association between different precipita-
tion and simulated FTA shows a weaker linear relationship with the slope 
of −0.0013 Pg C yr−1 per mm yr−1 (  2E R   = 0.26, E p  = 0.19). The uncertainty 
of FTA relative to TRENDYv6 multi-model simulations is approximately 
31.50%.

Over NH, the simulated FTA amplitudes suggest a stronger sensitivity to 
different precipitation with the slope of −0.0028 Pg C yr−1 per mm yr−1  
(  2E R   = 0.68, E p  = 0.01) than the behavior over Trop + SH. This sensitivity 
accounts for 70% of the relationship between global total simulated FTA 
and precipitation. Though precipitation over NH has relatively smaller 

Figure 2.  Taylor diagram for climatological precipitation and simulated FTA. The CRU precipitation and FTA simulated using this precipitation data set are 
taken as the references, given that CRU data sets were widely used in the TRENDY project.

Figure 3.  Associations between area-averaged climatological annual 
precipitation and simulated total FTA over different zones. We separated 
global land regions into tropical plus southern extratropical regions 
(Trop + SH) and northern extratropical regions (NH). Simulations by 
individual Dynamical Global Vegetation Model (DGVM) in TRENDYv6 are 
also listed accordingly where the inter-model spreads are mainly caused by 
the model structural and parameter uncertainties. The precipitation and 
FTA are in the units of mm yr−1 and Pg C yr−1, respectively.
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inter-data spread from 469.43 (CPC) to 598.11 mm yr−1 (GPCP), the simulated FTA show differences from 
−1.09 to −1.48 Pg C yr−1 with the E    = 0.12 PgC yr−1 (approximately 30.32% of TRENDYv6 multi-model 
simulations).

3.2.  Impacts of Precipitation Data on the Seasonal Cycle in FTA

Owing to the large seasonal cycle amplitude of FTA over NH, uncertainties of simulated FTA by different 
precipitation products are insignificant. Hence, we mainly focus on the impact of different precipitation 
on seasonal variations in FTA over Trop + SH (Figure 4). Different precipitation products keep nearly con-
stant inter-data spreads during the entire seasonal cycle (Figure 4a). However, uncertainties in their cor-
responding simulated FTA show the obvious seasonal differences with the relatively larger uncertainties 
during March-April-May (MAM) and August-September-October (ASO) (Figure 4b). Spatially, the largest 

Figure 4.  Seasonal variations of simulated FTA over Trop + SH with the related different land precipitation. (a) 
Precipitation (mm month−1), (b) tropical FTA (PgC month−1), (c) standard deviation of FTA during March-April-May 
(MAM), and (d) standard deviation of FTA during August-September-October (ASO) with the unit of kg C m−2 yr−1.
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uncertainties mainly happen over regions north to the Equator (Northern Africa) during MAM (Figure 4c), 
but over regions south to the Equator (South America and Africa) during ASO (Figure 4d).

In climatological seasonal evolution, during MAM, the soil moisture is relatively low over Northern Afri-
ca because the precipitation mainly locates in Southern Hemisphere (Figure S3a in Supporting Informa-
tion S1), making the carbon releases here (Figures S3b and S4a in Supporting Information S1). During ASO, 
the rain-belts locate over the equatorial Northern Hemisphere. Low precipitation lasting from preceding 
months makes the soil moisture relatively low over the regions south to the Equator (Figure S3a in Support-
ing Information S1), resulting in the carbon releases from the Equator to 20°S (Figure S3b in Supporting In-
formation S1), mainly over South America and Southern Africa (Figure S4b in Supporting Information S1). 
Therefore, the large differences in simulated FTA generally occur when the tropical regions are in their dry 
seasons, implying that tropical ecosystems are phenologically more sensitive to water availability during dry 
seasons than during wet seasons.

3.3.  Impacts of Precipitation Data on the Interannual Variability in FTA

On the interannual time scale, many literatures have reported that precipitation (or soil moisture) played 
a vital role in the interannual variability of the global and regional terrestrial carbon cycle (Humphrey 
et  al.,  2018,  2021; Wang, Jiang, et  al.,  2021; Wang, Wang, et  al.,  2021; Wang, Zeng, Wang, Jiang, Chen, 
et al., 2018; Wang, Zeng, Wang, Jiang, Wang, & Jiang, 2018; Zeng, Mariotti, & Wetzel, 2005). The interan-
nual variations of different land precipitation and their correlation coefficients in pairs are presented in 
Figure 5. It is clear that the discrepancies among different land precipitation products keep in year-to-year 
variations, implying that systematic biases exist in different precipitation products, causing the differences 
in climatological annual precipitation (Figure 3). However, the interannual variations of precipitation show 
the high consistency on the global and regional scales (Figures 5a, 5c, and 5e). The precipitation has the 
much stronger interannual variability over Trop + SH than over NH (Figures 5c and 5e), showing less pre-
cipitation during El Niño events and more precipitation during La Niña events which largely contributes to 
the interannual variability of the terrestrial carbon cycle (Wang et al., 2016; Wang, Zeng, Wang, Jiang, Chen, 
et al., 2018; Zeng, Mariotti, & Wetzel, 2005).

Specifically, over Trop + SH, except CPC and CAMS_OPI, other precipitation data sets are more consistent 
on the interannual time scale, showing the correlation coefficients in pairs in the range from 0.81 to 0.97 
(p < 0.05) (Figure 5d). In contrast, larger discrepancy occurs over NH (Figure 5f). Higher correlation coeffi-
cients in pairs (>0.81) occur among CRU, Delaware, GPCC, and GPCP. Globally, we can find that data sets 
of CRU, Delaware, GPCC, PREC/L, and GPCP are more consistent with the higher correlation coefficients 
in pairs (>0.81, Figure 5b). In contrast, CPC, CAMS_OPI, and CMAP show the lower correlation coeffi-
cients with the other products.

Differences in precipitation amplitudes and variations can result in the uncertainty in simulating the in-
terannual variability of the terrestrial carbon cycle. Figure 6 shows the interannual variations of simulated 
FTA associated with their uncertainties relative to the TRENDYv6 multi-model simulations. TRENDYv6 
multi-model simulations indicate that the global FTA interannual variability is dominated by the tropical FTA 
rather than the FTA over NH, with the anomalous carbon release induced by widespread dry and warm con-
ditions during El Niño events and the anomalous carbon uptake due to wet and cool conditions during La 
Niña events (Figures 6b and 6c), as suggested by previous studies (Bousquet et al., 2000; Wang et al., 2016; 
Zeng, Mariotti, & Wetzel, 2005). The anomalous terrestrial carbon releases can obviously lag El Niño events 
or show no lags, which were determined by types of El Niños (Wang, Zeng, Wang, Jiang, Chen, et al., 2018). 
By comparison, VEGAS has the good performance in simulating the interannual variability of FTA, with 
the correlation coefficients of 0.49 for global total, 0.62 for Trop + SH, and 0.55 for NH (p < 0.05) between 
TRENDYv6 ensemble mean and ensemble mean of VEGAS simulations (Figures 6b and 6c).

On the interannual time scale, relative to the inter-model uncertainties in TRENDYv6, uncertainties in VE-
GAS simulations induced by different precipitation are, albeit smaller, nonnegligible (Figures 6b–6d). Ac-
cording to Equation 5, the uncertainty for the global total simulated FTA induced by different precipitation 
can be up to 40.61% of the TRENDYv6 inter-model uncertainty (Figure 6a). Over the different latitudinal 

 21698961, 2021, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021JG

006524 by U
niversity O

f W
isconsin - M

adison, W
iley O

nline L
ibrary on [05/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Biogeosciences

WANG ET AL.

10.1029/2021JG006524

10 of 15

regions, relative uncertainty over Trop + SH is obviously stronger than that over NH, with their correspond-
ing 38.17% and 29.63% of the TRENDYv6 inter-model uncertainties, respectively.

Though there are no “true” values for the interannual variability in FTA, we take the updated NEE-T in-
version result (“sEXTocNEET”) from the Jena CarboScope (Rodenbeck et al., 2018) as a reference because 
the inversion result can to a large extent capture the large-scale interannual carbon variability after direct-
ly assimilating the CO2 observations at stations. Regardless of the structural and parameter uncertainty 
of VEGAS model, direct comparisons between simulated FTA forced by different precipitation and NEE-T 
inversion result are presented in Figure 7. Although their interannual variations are basically consistent 
(Figure  7a), differences exist (Figure  7b). Clearly, the largest RMSE occurs between FTA forced by CPC 
and NEE-T, whereas the RMSE between FTA forced by PREC/L and NEE-T is smallest, which implies that 
the PREC/L is a better alternative than originally used CAMS_OPI in VEGAS NRT framework (Wang, 
Zeng, Wang, Jiang, Wang, & Jiang, 2018). Except CPC, the RMSE between simulated FTA forced by other 

Figure 5.  Interannual variations of different land precipitation and their correlation coefficients in pairs. (a, c, and e) Area-averaged land precipitation over 
globe, Trop + SH, and NH, respectively. (b, d, and f) Pearson's correlation coefficients in pairs. The time series here are de-seasonalized by the 12-month 
running average with the unit of mm yr−1.
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gauge-based precipitation products and NEE-T are close. However, it is worth mentioning that the integra-
tion of satellite and gauge estimates does not further reduce the uncertainties in land precipitation (CMAP 
and GPCP) (Figures 3 and 5) associated with resultant FTA (Figures 3 and 7).

4.  Discussions
The results discussed in this study are simulations by VEGAS. As we know, focusing on the terrestrial 
hydrological cycle, although under the same protocols and climatological drivers, the simulated variations 
of terrestrial root zone soil moisture by different DGVMs indicate low correlation coefficients (Humphrey 
et  al.,  2018). Additionally, different model structures, including processes considered and parameteriza-
tions, and so on, can cause surprising differences in model representation of responses of photosynthesis to 
CO2 concentration, temperature, soil moisture, and atmospheric vapor pressure deficit (Rogers, 2014; Rog-
ers et al., 2014; Wang et al., 2016). Therefore, different models may suggest different results to some extent 
under these different precipitation data sets.

This research can also give some implications for carbon assimilations. Parazoo et al. (2014) constrained 
the global distribution of GPP by using an optimal estimation approach with the a priori mean and un-
certainty derived from an ensemble of DGVMs in TRENDY project. As this research and Ito et al. (2017) 
indicated that apart from inter-model spreads in the carbon cycle simulations induced by the structural and 
parameter uncertainty, uncertainty in climatological drivers can also cause, albeit smaller, nonnegligible 
spreads of carbon fluxes. Hence, they may underestimate the background errors by taking the uncertainty 
derived from TRENDY multi-model simulations, which was mainly induced by structural and parameter 
uncertainty since these models were driven by the same meteorological data set. Underestimation in back-
ground errors in data assimilation can largely bias the posterior results. Additionally, precipitation to a large 
extent dominates the variations of soil moisture and terrestrial water storage (Humphrey et al., 2018). And 
here it is clear that different precipitation products can cause considerable uncertainty in simulating FTA 
on the climatological, seasonal, and interannual time scales, more specifically regulated by the root zone 
soil moisture in VEGAS model. In satellite era, assimilating satellite-observed soil moisture into TBMs can 
constrain the hydrological cycle simulations in models (Mladenova et al., 2020; Seo et al., 2021). Hence, this 

Figure 6.  Interannual variations of simulated FTA associated with their uncertainties relative to the mean of 13 TRENDYv6 models forced by same 
meteorological data and experimental protocols. (a) Averaged uncertainties relative to TRENDYv6 over globe, Trop + SH, and NH. The error bars represent the 
one- E   of the relative uncertainties. (b, c, and d) Interannual variations of VEGAS and TRENDYv6 simulated FTA over globe, Trop + SH, and NH. The light coral 
and dodger blue shaded areas in (b) represent the strong El Niño and La Niña events, respectively, which were defined based on the Oceanic Niño Index (ONI).
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considerable uncertainty in simulated FTA induced by the uncertainty in precipitation may be reduced to 
some extent by assimilating satellite-observed soil moisture. Several studies have also shown the effective-
ness of assimilating satellite-observed soil moisture on simulating the global terrestrial carbon cycle (He 
et al., 2017; Scholze et al., 2016). For example, Scholze et al. (2016) indicated that assimilating SMOS L3 
soil moisture can considerably reduce the uncertainty for both regional net ecosystem productivity and net 
primary productivity. He et al. (2017) suggested the significant improvement in GPP simulations over the 
single-cropping agricultural lands by assimilating the Soil Moisture Active Passive (SMAP) satellite meas-
urements into a process-based ecosystem model.

Furthermore, we have demonstrated that a significant linear relationship exists between different climato-
logical annual precipitation and simulated total FTA over NH, showing the slope of −0.0028 PgC yr−1 per mm 
yr−1 (  2E R   = 0.68, E p  = 0.01) (Figure 3). It implies that regardless of other environmental condition changes, 
more precipitation can result in stronger land carbon sinks over NH. On the basis of CMIP5 simulations, fu-
ture precipitation over NH will likely increase (Collins et al., 2013). Hence, increased precipitation, warmed 
temperature, and rising atmospheric CO2 concentration might altogether enhance the land carbon sinks 
over NH in the future, though there is an uncertainty in the carbon losses in permafrost (Ciais et al., 2013).

Figure 7.  Root Mean Square Errors (RMSE) of simulated FTA relative to atmospheric inversion results of Jena 
CarboScope sEXTocNEET_v2020. (a) Time series of interannual variabilities of the simulated FTA forced by different 
precipitation products (orange lines) and Jena CarboScope NEE-T inversion result (blue line). (b) RMSE of individual 
simulated FTA relative to the results of Jena CarboScope.
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5.  Conclusion
In this study, we comprehensively investigated to what extent precipitation alone can cause uncertainties 
in simulating terrestrial carbon sources and sinks, by using eight precipitation products to drive the VEGAS 
model. Main conclusions are summarized below.

On climatology, owing to divergent water sensitivities of vegetation over different regions, the geographical 
distribution of uncertainties in simulated FTA differs from the pattern of discrepancies in precipitation. The 
uncertainty in simulated global total FTA induced by different precipitation is approximately 40.73% of the 
uncertainty in TRENDYv6 multi-model simulated FTA, which is mainly induced by the model structural and 
parameter uncertainty. Furthermore, we find a good linear relationship between global area-averaged land 
climatological annual precipitation and simulated total FTA with the slope of −0.0040 Pg C yr−1 per mm yr−1 
(  2E R   = 0.58, E p  = 0.03), in which sensitivity over NH to precipitation accounts for 70%. This linear relationship 
implies that more land precipitation might induce the increase of land carbon sinks.

For seasonal cycle, over the Trop + SH, compared to the nearly constant inter-precipitation spreads, un-
certainties in corresponding simulated FTA show obvious seasonal differences with the relatively larger 
uncertainties in MAM and ASO, phenologically showing that ecosystems are more sensitive to the water 
availability during dry seasons than during wet seasons over the certain regions.

For interannual variability, VEGAS has the good performance in simulating the interannual variability of 
FTA. Uncertainties in simulated total FTA are, albeit smaller, nonnegligible, which are up to 40.61% (global), 
38.17% (Trop + SH), and 29.63% (NH) of the TRENDYv6 inter-model uncertainty, respectively. Additionally, 
comparisons between simulated FTA forced by different precipitation and NEE-T inversion result suggest 
that the PREC/L can be a better alternative than originally used CAMS_OPI in VEGAS NRT framework.

Data Availability Statement
CPC Global Unified Precipitation data, Delaware v5.01, GPCC, PREC/L, CMAP, GPCP Version 2.3 are pro-
vided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/
data/gridded/tables/precipitation.html. CRU TS4.04 precipitation is from https://catalogue.ceda.ac.uk/
uuid/89e1e34ec3554dc98594a5732622bce9. And CAMS_OPI precipitation is provided at https://www.cpc.
ncep.noaa.gov/products/global_precip/html/wpage.cams_opi.html. The TRENDY DGVMs data are availa-
ble at https://sites.exeter.ac.uk/trendy. VEGAS simulations for the findings of this article can be accessed 
in the figshare repository at https://figshare.com/articles/dataset/Considerable_uncertainties_in_simulat-
ing_land_carbon_sinks_induced_by_different_precipitation_products/16614277.
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