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Abstract

Transliteration has emerged as a powerful001
means to bridge the gap between various lan-002
guages in multilingual NLP, showing promising003
results on unseen languages without respect to004
script. While it is widely understood that this005
success is due to the degree to which transliter-006
ation results in a shared representational space007
among languages, we investigate the degree008
to which shared script, an overlap in token vo-009
cabularies, and shared phonology contribute to010
performance of models relying on translitera-011
tion. To investigate this question, we train and012
evaluate models using three kinds of translit-013
eration (romanization, phonemic transcription,014
and substitution ciphers) as well as orthogra-015
phy. We use named entity recognition as a016
downstream task for evaluation. Our results are017
largely consistent with our hypothesis—that ro-018
manization is most effective because it results019
in sharing of all three kinds.020

1 Introduction021

Multilingual language modeling has drawn signif-022

icant attention from researchers seeking to cover023

diverse languages and promote fairness in AI. Ef-024

forts for effective multilingual language modeling025

include improving the performance of low-resource026

languages (Bharadwaj et al., 2016), dealing with027

tokenization fairness across languages (Ahia et al.,028

2023; Petrov et al., 2023; Limisiewicz et al., 2024),029

investigating the curse of multilinguality (Conneau030

et al., 2020; Wang et al., 2020; Chang et al., 2024;031

Blevins et al., 2024), and breaking the script bar-032

riers (Chaudhary et al., 2018; Moosa et al., 2023;033

J et al., 2024; Sohn et al., 2024; Ahia et al., 2024;034

Liu et al., 2024). One of the recent approaches035

that touches on all of these problems is translitera-036

tion—converting original forms of written text into037

a unified input representations with methods such038

as romanization or grapheme-to-phoneme (G2P)039

transduction.040
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한국어는 한글을 사용합니다.

hankukʌnɯn hankɯlɯl sajoŋhamnita.

Ortho

IPA

hangugeoneun hangeuleul sayonghabnida.Rom

JCPIWIGQPGWP JCPIGWNGWN UCaQPIJCDPKFCCipher

(ENG) Korean uses Hangul.

Figure 1: Visualization of transliteration analysis
schema, showing input types (Ortho, IPA, Rom, Ci-
pher) positioned based on shared character set, shared
token set, and shared phonology.

Transliteration in multilingual NLP is typically 041

performed using Latin scripts or International Pho- 042

netic Alphabet (IPA), giving various languages a 043

shared input representation. Both representations 044

encode linguistic information—specifically pho- 045

netic and phonological—across languages. Here, 046

we pose a question: Is it the shared script itself or 047

the linguistic information encoded in the scripts 048

that helps the models adapt to other languages? 049

To investigate this question, we define three key 050

factors in transliteration—(i) shared character set, 051

(ii) shared token set, and (iii) shared phonology— 052

that influence how a model processes and gener- 053

alizes across languages. We then run experiments 054

with four different input types, each varying in the 055

degree to which these factors are present: Orthog- 056

raphy, IPA, Romanized, and Substitution Ciphered 057

text (see Figure 1). IPA and Romanized text encode 058

linguistic information (phonetic or phonological) 059
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to different extents, making them more likely to060

leverage shared phonology (e.g., similarity in cog-061

nate and borrowed vocabulary items) and contain062

shared tokens. On the other hand, ciphered text063

shares the same character set as romanized text but064

lacks any linguistic information, as each language065

is randomly mapped to different letters.066

We hypothesize that romanized text yields the067

best performance in handling diverse languages as068

it improves representations across all three dimen-069

sions. Based on this assumption, IPA is expected to070

follow, as it enhances two out of three dimensions—071

sharing phonology and tokens—while ciphered text072

only shares the character set and lacks any addi-073

tional shared representations. Throughout the pa-074

per, we evaluate our hypothesis by analyzing NER075

performance on seen and unseen languages and076

analyze in terms of vocabulary overlaps.077

2 Preliminary: Transliteration for078

Multilingual Language Modeling079

Transliteration has been recently explored as a080

method to enhance cross-lingual transfer in mul-081

tilingual NLP by unifying script representations.082

Two major approaches in this domain are phone-083

mic transcription and romanization.084

Phonemic transcriptions use IPA to represent085

various languages. It has been explored in cross-086

lingual scenarios, particularly to low-resource lan-087

guages (Bharadwaj et al., 2016; Chaudhary et al.,088

2018; Nguyen et al., 2023; Sohn et al., 2024). Re-089

cently, Nguyen et al. (2024) show that IPA prompt-090

ing aids large-scale LLMs in handling non-Latin091

scripts. Similarly, romanization has been widely092

used to overcome the difference in scripts and mit-093

igate potential out-of-vocabulary problems by re-094

stricting the input space (Fujinuma et al., 2022;095

Moosa et al., 2023; Liu et al., 2024). This approach096

improves POS Tagging and Dependency Parsing097

by enhancing token consistency (Fujinuma et al.,098

2022) and significantly benefits low-resource lan-099

guages without negatively impacting high-resource100

ones (Moosa et al., 2023).101

3 Input Types102

While transliteration into shared scripts has demon-103

strated promising results in cross-lingual transfer,104

particularly for low-resource languages and non-105

Latin scripts (Soni and Bhattacharyya, 2024; J et al.,106

2024), its underlying mechanisms remain unex-107

plored. As illustrated in Figure 1, we define three108

key factors that explain different aspects of translit- 109

eration. 110

• Shared Character Set. Transliteration usu- 111

ally enforces a shared character set across lan- 112

guages. For example, romanization can only 113

produce Latin characters, which significantly 114

reduces the number of unique characters and 115

patterns that a tokenizer must learn. 116

• Shared Token Set. Here, we specifically dis- 117

tinguish tokens from characters, where by to- 118

kens we refer to subword tokens that contain 119

more than a character. 120

• Shared Phonology. Widely used translitera- 121

tion methods (e.g., G2P and romanization) en- 122

code phonological information in their repre- 123

sentations. Representing languages based on 124

their phonology can capture representations 125

of cognate and borrowed vocabulary shared 126

across languages. 127

To explore these different dimensions of translit- 128

eration, we employ four distinct input types: Or- 129

thography (Ortho), IPA, Romanized text (Rom), 130

and Substitution Ciphered text (Cipher). Here, we 131

explain in detail the process of converting written 132

text data (Ortho) into each of other input types. 133

3.1 G2P Conversion (IPA) 134

Based on Latin scripts, IPA symbols are designed 135

to represent pronunciations of human language in 136

phonemes. While transliteration into IPA enables 137

some degree of character set sharing, differences in 138

phonemic inventories and phonotactic structures 139

cause each language to use its own distinct set 140

of characters and subword tokens. To convert or- 141

thographic data into IPA symbols, we use Epitran 142

(Mortensen et al., 2018), a widely used rule-based 143

G2P tool that supports more than a hundred lan- 144

guages. 145

3.2 Romanization (Rom) 146

Romanization converts various scripts into Latin 147

alphabets, enforcing a stricter limit that enables 148

multiple languages to share the character set. Ad- 149

ditionally, unlike G2P, which converts identical 150

Latin-script text into language-specific phonemes, 151

Romanization preserves the original form of text 152

written in Latin scripts. Since Latin scripts en- 153

code sound—though not as precisely as IPA— 154

Romanization produces phonologically informed 155

representations for each language. We employ Uro- 156

man (Hermjakob et al., 2018) which supports more 157

than 370 languages for romanization. 158
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Script

same diverse

similar swe, por, lij, cat, ron, spa, sqi, fra fra, ben, hin, hrv, ori, rus, srp, urd

dissimilar ilo, sna, lav, uzb, deu, fin, som, swa amh, ben, tel, fra, tha, kat, kor, mya

Table 1: Languages selected for each language set.

3.3 Substitution Cipher (Cipher)159

A substitution cipher is a method from cryptog-160

raphy where units of plaintext are replaced with161

ciphertext according to a predefined rule or key.162

We apply substitution cipher to the Romanized text163

of each language—in different rules—to remove164

encoded phonological information. While this al-165

lows multilingual text to share the same character166

space as Rom, it no longer contains phonological167

meanings and prevents the sharing of meaningful168

subword tokens across languages. We employ Cae-169

sar cipher, a simple substitution encryption tech-170

nique. Details are provided in Appendix A.4.171

4 Experiments172

4.1 Language Selection173

To examine how different input types impact multi-174

lingual adaptation, we selected languages to form175

four language sets: (i) typologically similar lan-176

guages using the same script (sim-same), (ii) simi-177

lar languages using diverse scripts (sim-div), (iii)178

dissimilar languages using the same script (dissim-179

same), and (iv) dissimilar languages using diverse180

scripts (dissim-div). Similar to Chang et al. (2024),181

we utilized lang2vec (Littell et al., 2017)1 to com-182

pute language similarity. We extracted syntactic,183

geographic, and genetic features from lang2vec to184

obtain cosine similarities, and also defined lexi-185

cal similarity based on word overlap ratio between186

training corpora of each language2. By aggregating187

these similarity scores, as detailed in Appendix A.1,188

we assigned eight languages to each set (see Ta-189

ble 1) and trained multilingual models with varying190

linguistic similarities and scripts.191

4.2 Datasets192

For pre-training, we utilize sampled version of193

a preprocessed Wikipedia corpus from Hugging194

Face3. For downstream task, we utilized WikiAnn195

(Pan et al., 2017; Rahimi et al., 2019) dataset for196

named entity recognition. More details on pre-197

processing and dataset statistics can be found in198

1Utilizing https://github.com/antonisa/lang2vec
2Words are segmented by white spaces.
3https://huggingface.co/datasets/wikimedia/wikipedia

Test Languages Trained Lang. Set Ortho IPA Rom Cipher

Seen

sim-same 0.8466 0.8085 0.8395 0.8173

sim-div 0.8409 0.8239 0.8451 0.8270

dissim-same 0.7860 0.7732 0.7981 0.7725

dissim-div 0.7402 0.7524 0.7538 0.7518

Unseen

sim-same 0.6611 0.6801 0.7267 0.6824

sim-div 0.6321 0.6787 0.7151 0.6772

dissim-same 0.6626 0.7468 0.7280 0.7547

dissim-div 0.7450 0.7524 0.7832 0.7496

Table 2: Average F1 scores for each case. Bold: best
performing input. Underlined: second best.

Appendix A.7. In order to train the model with 199

different input types, we converted all datasets into 200

each input type. 201

4.3 Model Training 202

To investigate the impact of different input types, 203

we pre-trained 16 models using four input types 204

and four language sets. We first trained a Senten- 205

cePiece (character-level) BPE tokenizer for each 206

model with fixed vocabulary size of 30K for all to- 207

kenizers. We employed a Transformer architecture, 208

following the training regime of RoBERTa (Liu 209

et al., 2019) with masked language modeling on 210

a multilingual corpus. After pre-training we fine- 211

tuned each model on target language NER dataset 212

to obtain downstream task performance. For details 213

on the model configurations and training, refer to 214

Appendix A.2 and Appendix A.3. 215

5 Results: NER Performance across 216

Input Types 217

Table 2 presents the average F1 scores of each 218

model for seen and unseen languages. p-values 219

obtained from paired t-tests on F1 scores across dif- 220

ferent input types can be found in Appendix A.5. 221

Performance within Seen Languages. Translit- 222

eration does not provide a significant advantage 223

over orthographic text when the language was seen 224

during pre-training. While Rom outperforms other 225

input types, including Ortho, its superiority is not 226

statistically significant (p > 0.05). On the other 227

hand, Ortho and Rom significantly outperform the 228

other two input types for seen languages (p < 229

0.05). 230

Performance on Unseen Languages. For un- 231

seen languages, the performance of Ortho is sig- 232

nificantly lower than that of all other input types 233

(p < 0.05). Furthermore, we find that our hypothe- 234

sis holds, with Rom achieving the highest average 235

3



all 1 2 3 4 5
Token Length

0.0

0.2

0.4

0.6

0.8

Ov
er

la
p 

Ra
tio

ortho

all 1 2 3 4 5
Token Length

ipa

all 1 2 3 4 5
Token Length

rom

all 1 2 3 4 5
Token Length

cipher

(a) Overlap ratio distribution.

all 1 2 3 4 5 6 7
Token Length

al
l

or
th

o
ip

a
ro

m
cip

he
r

0.5899 0.3089 0.4872 0.5028 0.4500 0.2922

0.7610 0.6465 0.6800 0.7143 0.6162 0.5914 0.5370 0.3479

0.4146 0.5671 0.2648 0.5345 0.4837 0.2935

0.7271 0.3511 0.5720 0.6811 0.6318 0.3645 0.4134 0.2704

0.5316 0.3011 0.5040 0.5491 0.5657
0.3

0.4

0.5

0.6

0.7

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

 (r
)

(b) Correlation between overlap ratio and NER score.

Figure 2: (a) Distribution of lexical overlap ratios across token lengths for different input types. (b) Pearson r
between overlap ratios of each token length and NER performance. Correlations with p > 0.05 are masked out.

F1 scores in 6 out of 8 cases. Interestingly, contrary236

to expectation, IPA and Cipher do not show statisti-237

cally significant differences. We further investigate238

how Cipher achieves comparable performance, in239

the following sections.240

6 Analysis: Vocabulary Overlap241

Transliteration is widely assumed to enhance mul-242

tilingual language modeling by increasing vocabu-243

lary overlap. However, it remains unclear whether244

conflicting tokens—tokens that are shared but245

do not form meaningful units (e.g., individual246

characters)—also contribute to performance. To247

examine this, we measure lexical overlap of an248

unseen target language lt as follows:249

Lexical Overlap(lt) = max
ls∈Ls

|Tls ∩ Tlt |
|Tlt |

(1)250

where lt is a target language, ls is one of the pre-251

trained languages Ls, and Tl is set of subword to-252

kens of a dataset in language l.253

Transliteration and Lexical Overlap. Figure 2a254

shows the spread of lexical overlap across token255

lengths. Ortho and Rom exhibit relatively high256

overlap across all token lengths, whereas IPA and257

Cipher show less. Notably, Ciphered text primar-258

ily shares single characters across languages rather259

than longer sequences, reflecting its shared char-260

acter set without meaningful token overlap. IPA261

shows relatively high overlap at token length of 2,262

likely because IPA symbols often form phonemes263

as character pairs. Meanwhile, Rom and Ortho264

tend to share longer tokens (length 2–3) across lan-265

guages, suggesting greater overlap in meaningful266

subword units.267

Vocabulary Overlap and Transferability. To268

understand how Cipher achieves comparable re-269

sults on unseen languages, we further investigate 270

how vocabulary overlap associates with task perfor- 271

mance. Figure 2b presents the Pearson correlation 272

coefficient between overlap ratios and NER per- 273

formance for each input type. We observe that 274

sharing tokens with trained languages is crucial 275

for successful adaptation to unseen languages. Par- 276

ticularly, token lengths of 2 to 4 exhibit a strong 277

correlation with F1 scores, highlighting the impor- 278

tance of sharing meaningful tokens. To summarize, 279

sharing character tokens does positively correlate 280

with the performance, but having longer tokens in 281

common correlates stronger with the performance. 282

7 Discussion 283

Different Patterns on Seen/Unseen Languages. 284

For seen languages, we find that IPA and Cipher 285

lag behind Ortho and Rom. We assume that this is 286

because Ortho and Rom are more likely to share 287

tokens across languages, whereas IPA contains 288

more language-specific symbols and Cipher has 289

little chance of sharing similar character sequences 290

across languages. 291

Comparable Performance of Cipher. Cipher’s 292

comparability to IPA, despite having few shared 293

tokens, highlights the role of a shared character 294

set in transliteration. As IPA symbol sets are in- 295

herently language-specific, unseen languages are 296

more likely to produce unknown tokens([UNK]), 297

failing to tokenize appropriately. In contrast, Ci- 298

pher produces almost no unknown tokens, although 299

the tokens tend to be over-segmented or are seg- 300

mented in an incoherent manner. This suggests that 301

having conflicting or over-segmented tokens may 302

not be as detrimental as expected in multilingual 303

adaptation scenarios. 304
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8 Limitation305

The results reported here are suggestive, but there306

are three major limitations which prevent us from307

generalizing them too broadly. First, we only tested308

one type of transformer model with one tokeniza-309

tion scheme. It is possible, for example, that we310

would have obtained much different results if we311

had trained character- or byte-level models. Sec-312

ond, the extrinsic evaluation was limited to a single313

task—named entity recognition—and it is not im-314

mediately obvious that representations that work315

well for NER would generalize to other tasks (like316

machine translation, summarization, and question317

answering). Finally, we only tested one romanizer318

and one G2P transducer. It is entirely possible that319

we would have obtained different results if different320

tools had been used.321

9 Ethics Statement322

We believe that this research raises no significant323

ethical concerns or violations of the code of ethics324

mandated by the Association for Computational325

Linguistics. The data used in this study, all of326

which are publicly available, were collected in ac-327

cordance with legal and institutional protocols, to328

the best of our knowledge. Furthermore, our use329

of these resources is compatible with the uses in-330

tended by the creators.331
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A Appendix 505

A.1 Language Selection 506

To examine the impact on multilingual adaptation 507

that differences in input types have, we selected 508

four language sets : (i) similar languages using the 509

same script (sim-same), (ii) similar languages using 510

diverse scripts (sim-div), (iii) dissimilar languages 511

using the same script (dissim-same), and (iv) dis- 512

similar languages using diverse scripts (dissim-div). 513

These sets were used to train multilingual models 514

with varying linguistic similarities and scripts. For 515

each set, we assigned eight languages based on a 516

computed similarity score as shown in Table 1. 517

Similar to Chang et al. (2024), we utilized 518

lang2vec (Littell et al., 2017)4 to compute language 519

similarity. Specifically, we extracted syntactic, ge- 520

ographic, and genetic features from lang2vec and 521

computed cosine similarities, denoted as ssyn, sgeo, 522

4Utilizing https://github.com/antonisa/lang2vec
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and sgen in Eq. 2. We also defined lexical similar-523

ity slex, which is obtained by calculating the word524

overlap ratio between training corpora of each lan-525

guage5. Finally, we aggregated all similarity scores526

(i.e., syntactic, geographic, genetic, and lexical)527

to derive the overall similarity score between two528

languages:529

sims(x, y) = ssyn(x, y) + sgeo(x, y)

+ sgen(x, y) + slex(x, y).
(2)530

With initial set of languages L that are supported531

by Wikipedia corpus and Epitran, we use average532

pairwise similarity scores to compute similarity533

score for a set of languages and obtain an optimal534

set L∗
s, where s ∈ {sim-same, sim-div} :535

L∗
s = arg max

Ls⊂L
|Ls|=8

(
1

|Ls|(|Ls| − 1)

∑
x∈Ls

∑
y∈Ls
y ̸=x

sims(x, y)

+ α ·
(
1s∈{sim-div}|SCLs |

− 1s∈{dissim-div}|SCLs |
))

,

(3)536

.537

As for an optimal set L∗
d, where d ∈538

{dissim-same, dissim-div} :539

L∗
d = arg min

Ld⊂L
|Ld|=8

(
1

|Ld|(|Ld| − 1)

∑
x∈Ld

∑
y∈Ld
y ̸=x

sims(x, y)

+ α ·
(
1d∈{sim-div} |SCLd

|

− 1d∈{dissim-div} |SCLd
|
))

.

(4)540

To select languages for the sets with same script541

(i.e., sim-same and dissim-same), we limited the542

search space to languages that use the Latin script543

to maximize the number of languages available for544

similarity-based sampling.545

For sets with diverse scripts (i.e., -div), we ad-546

ditionally consider how many different scripts are547

involved in each set.548

A.2 Model Configuration549

Table 3 summarizes the key configuration details of550

our RoBERTa-based model. Number of parameters551

per model is 109,082,112.552

5Words are segmented by white spaces.

Parameter Value
Vocabulary Size 30,000
Hidden Size 768
Hidden Layers 12
Attention Heads 12
Intermediate Size 3072
Activation Function GELU
Dropout (Hidden/Attention) 0.1
Max Position Embeddings 514

Table 3: Model Configuration

A.3 Training Setup 553

To investigate the impact of different input types, 554

we pre-trained and fine-tuned a total of 16 models 555

across four distinct input types and language sets. 556

In addition, we trained a SentencePiece BPE tok- 557

enizer for each model, fixing the vocabulary size to 558

30K. Table 4 summarizes the key hyperparameters 559

used in our experiments for both the pretraining 560

phase and the downstream NER task. 561

Hyperparameter Sweep We conducted grid 562

search to find learning rates that converges or 563

achieves the best results. For pre-training, the 564

search space was {1e-5, 2e-5, 3e-5, 5e-5, 1e-4, 565

2e-4, 3e-4} and for NER, it was {3e-5, 5e-5, 1e-4}. 566

Parameter Pretraining NER Task
FP16 Training True True
Max Sequence Length 512 512
Batch Size (per device) 64 64
Gradient Accumulation Steps 1 -
Warmup Steps 50 -
Learning Rate 1e-4 5e-5
Weight Decay 0.01 0.01
LR Scheduler Type Linear -
MLM Probability 0.15 -
Epochs 300 20
Log Interval - 1
GPU Resources 4 NVIDIA L40S 2 NVIDIA RTX A6000

Table 4: Training Configurations

A.4 Substitution Cipher (Cipher) 567

A substitution cipher is a method from cryptog- 568

raphy where units of plaintext are replaced with 569

ciphertext according to a predefined rule or key. 570

We apply substitution cipher to the Romanized text 571

to remove encoded phonological information. 572

Specifically, we use the Caesar cipher (Kahn, 573

1996), a simple substitution encryption technique 574

that shifts each letter in the text by a fixed num- 575

ber of positions in the Latin alphabet. For each 576

language, we assign an integer that determines the 577

shift from the current position of each letter. For 578
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example, if English is assigned the integer 4, the579

word ‘apple’ would be represented as ‘ettpi’, with580

each letter replaced by the one four positions ahead581

in the alphabet.582

A.5 P -values of Paired t-tests583

Table 2 presents the NER scores for different input584

types across various language settings. To assess585

the significance of the observed differences, we586

performed paired t-tests. Figure 3 displays the587

corresponding P -values derived from these tests.588

ortho ipa rom cipher

or
th

o
ip

a
ro

m
cip

he
r

0.027

0.32 0.0021

0.029 0.42 0.0017

Seen Languages

ortho ipa rom cipher
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o
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a
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m
cip
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r

0.0052

1.3e-07 0.0012

0.0025 0.74 0.005

Unseen Languages
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p-
va
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0.05

ns

p-
va

lu
e

Figure 3: P -value for paired t-test on NER scores across
different input types.

A.6 External Tools for Transliteration589

In this study, we used Epitran and Uroman as590

transliteration tools to unify script and facilitate591

multilingual processing. These tools are widely592

used for converting text into standardized phone-593

mic or Romanized forms, which aids in cross-594

lingual learning and transferability. Below, we595

describe their functionalities and implementation596

details.597

Epitran(Mortensen et al., 2018) is a tool598

for grapheme-to-phoneme (G2P) conversion,599

capable of converting text into the Interna-600

tional Phonetic Alphabet (IPA) representations.601

It can be downloaded from the link below602

https://github.com/dmort27/epitran603

Uroman(Hermjakob et al., 2018) is a uni-604

versal transliteration tool that converts text605

from various scripts into a Romanized format.606

It can be downloaded from the link below607

https://github.com/isi-nlp/uroman608

A.7 Datasets609

In Table 5, the specific number of datasets per610

corresponding language is provided. For pre-611

training, we utilized sampled version of prepro-612

cessed Wikipedia corpus from Huggingface6.613

We limited each language with its number of614

6https://huggingface.co/datasets/wikimedia/wikipedia

words around 10M7. For those languages with less 615

number of tokens than 10M, we kept all the docu- 616

ments and oversampled during training, to match 617

the model’s exposure to all languages. For down- 618

stream task, we utilized WikiAnn (Pan et al., 2017; 619

Rahimi et al., 2019) dataset for named entity recog- 620

nition. In order to train the model with different 621

input types, we converted all datasets into each 622

corresponding input type. 623

Wikipedia corpora used for pre-training are 624

licensed under the GNU Free Documentation 625

License (GFDL) and the Creative Commons 626

Attribution-Share-Alike 3.0 License. License type 627

for WikiAnn dataset is ODC-BY. 628

A.8 Detailed Experimental Results 629

Tables 6, 7, 8, 9 summarize the performance results 630

(F1 scores) across different language sets under var- 631

ious evaluation settings. In our experiments, "Seen" 632

refers to languages included in both pretraining 633

and fine-tuning, "Unseen" to those entirely absent 634

during training, and "Zero-Shot" to languages eval- 635

uated without task-specific fine-tuning. The lan- 636

guage sets differ in terms of typological similarity 637

and script usage. Detailed results for each setting 638

are provided in the respective tables. 639

7For each language, we randomly shuffled the order of the
documents, and iterated over each document, counting the
words segmented by whitespaces. We stop adding the docu-
ments when adding the number of words of the last document
exceeds 10M.
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Lang Dataset # Train # Validate # Test Lang Dataset # Train # Validate # Test

am
wikipedia 5328 - -

my
wikipedia 34309 - -

wikiann 100 100 100 wikiann 100 100 100

ar
wikipedia - - -

or
wikipedia 11018 - -

wikiann 20000 10000 10000 wikiann 100 100 100

bn
wikipedia 28496 - -

pl
wikipedia - - -

wikiann 10000 1000 1000 wikiann 20000 10000 10000

ca
wikipedia 26031 - -

pt
wikipedia 26510 - -

wikiann 20000 10000 10000 wikiann 20000 10000 10000

ceb
wikipedia 22724 - -

ro
wikipedia 28890 - -

wikiann 100 100 100 wikiann 20000 10000 10000

de
wikipedia 30460 - -

ru
wikipedia 32636 - -

wikiann 20000 10000 10000 wikiann 20000 10000 10000

es
wikipedia 25727 - -

si
wikipedia 23084 - -

wikiann 20000 10000 10000 wikiann 100 100 100

fi
wikipedia 36190 - -

so
wikipedia 5204 - -

wikiann 20000 10000 10000 wikiann 100 100 100

fr
wikipedia 25353 - -

sq
wikipedia 27406 - -

wikiann 20000 10000 10000 wikiann 5000 1000 1000

hi
wikipedia 25492 - -

sr
wikipedia 29961 - -

wikiann 5000 1000 1000 wikiann 20000 10000 10000

hr
wikipedia 30764 - -

sv
wikipedia 29839 - -

wikiann 20000 10000 10000 wikiann 20000 10000 10000

ilo
wikipedia 5828 - -

sw
wikipedia 25911 - -

wikiann 100 100 100 wikiann 1000 1000 1000

ka
wikipedia 33713 - -

te
wikipedia 28543 - -

wikiann 10000 10000 10000 wikiann 1000 1000 1000

ko
wikipedia 38885 - -

th
wikipedia 76083 - -

wikiann 20000 10000 10000 wikiann 20000 10000 10000

lij
wikipedia 4002 - -

ur
wikipedia 23568 - -

wikiann 100 100 100 wikiann 20000 1000 1000

lt
wikipedia 32836 - -

uz
wikipedia 29833 - -

wikiann 10000 10000 10000 wikiann 1000 1000 1000

lv
wikipedia 31152 - -

-
- - - -

wikiann 10000 10000 10000 - - - -

Table 5: Statistic of transliterated dataset. All dataset exist in four parallel versions ; original Orthographic, phonemic
IPA, Romanized, and Cipher transcribed version. - refers to unavailable values. The wikipedia dataset is used for
pre-training without validation or test. Languages ‘ar’ and ‘pl’ do not have available wikipedia dataset for pre-train.
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Monolingual Multilingual Zero-Shot

Ortho IPA Rom Cip Ortho IPA Rom Cip Ortho IPA Rom Cip

Seen

ca 0.9117 0.8970 0.9005 0.9024 0.8997 0.8725 0.8993 0.8803 0.7730 0.6763 0.7770 0.5945
es 0.8929 0.8759 0.8802 0.9141 0.8773 0.8584 0.8788 0.8657 0.7704 0.5703 0.8095 0.4956
fr 0.8779 0.8607 0.8717 0.8693 0.8628 0.8252 0.8639 0.8384 0.7293 0.6184 0.7355 0.5645
lij 0.3269 0.2927 0.4306 0.2775 0.5064 0.4052 0.4615 0.4082 0.2416 0.1702 0.2500 0.1137
pt 0.8931 0.8842 0.8891 0.8850 0.8798 0.8605 0.8796 0.8674 0.8792 0.8605 0.8796 0.8674
ro 0.9143 0.9106 0.9153 0.9141 0.9129 0.8855 0.9103 0.8956 0.6257 0.4303 0.6367 0.375
sq 0.9052 0.8958 0.9011 0.8981 0.9120 0.8738 0.8979 0.8785 0.6791 0.5891 0.7037 0.5335
sv 0.9300 0.9238 0.9320 0.9311 0.9215 0.8872 0.9247 0.9046 0.4674 0.4093 0.4970 0.4897

Unseen

am - - - - 0.2000 0.3089 0.3383 0.3623 0.0000 0.1173 0.1004 0.1434
bn - - - - 0.8230 0.8907 0.9081 0.8969 0.0000 0.0719 0.1690 0.1372
de - - - - 0.8204 0.7400 0.8236 0.7676 0.3323 0.1559 0.4247 0.1307
fi - - - - 0.8573 0.8050 0.8609 0.8237 0.4664 0.1993 0.5341 0.1966
hi - - - - 0.7395 0.8043 0.8225 0.7861 0.0060 0.1789 0.1343 0.1566
hr - - - - 0.8682 0.8318 0.8727 0.8403 0.8682 0.2494 0.5225 0.1794
ilo - - - - 0.6400 0.5714 0.6757 0.4498 0.5408 0.3108 0.5408 0.1516
ka - - - - 0.6878 0.7920 0.8227 0.7780 0.1160 0.1846 0.1713 0.1126
ko - - - - 0.5329 0.7578 0.7883 0.7626 0.0240 0.1483 0.1233 0.0904
lv - - - - 0.8940 0.8463 0.8919 0.8695 0.3637 0.2201 0.4402 0.1556
my - - - - 0.2286 0.2541 0.2857 0.2232 0.0000 0.0919 0.1474 0.0929
or - - - - 0.2738 0.2647 0.3492 0.3533 0.0000 0.0534 0.0000 0.0125
ru - - - - 0.8083 0.7842 0.8268 0.8010 0.0894 0.1580 0.2857 0.1273
sn - - - - - - - - - - - -
so - - - - 0.6256 0.4641 0.5500 0.4397 0.3543 0.1662 0.3460 0.2000
sr - - - - 0.8574 0.8442 0.8879 0.8691 0.0521 0.1608 0.3454 0.1246
sw - - - - 0.8250 0.7381 0.8195 0.7494 0.4311 0.2118 0.4551 0.1765
te - - - - 0.3384 0.5336 0.5797 0.5252 0.0033 0.0966 0.0726 0.0550
th - - - - 0.4762 0.6637 0.6622 0.6477 0.0009 0.0015 0.0018 0.0059
ur - - - - 0.9032 0.9101 0.9273 0.9172 0.0019 0.0253 0.0360 0.0926
uz - - - - 0.8266 0.7962 0.8402 0.7862 0.4932 0.2941 0.5120 0.0812

Table 6: Performance results (F1 scores) on the sim-same language set, which consists of typologically similar
languages that share the same script. The table reports results for three evaluation settings. Seen: languages
used during both pretraining and fine-tuning, Unseen: languages not encountered during training and Zero-Shot:
languages evaluated without any task-specific fine-tuning. Results are provided for four different input types:
Orthographic (Ortho), IPA, Romanized (Rom), and Ciphered (Cip)
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Monolingual Multilingual Zero-Shot

Ortho IPA Rom Cip Ortho IPA Rom Cip Ortho IPA Rom Cip

Seen

bn 0.9584 0.9543 0.9524 0.9506 0.9380 0.9375 0.9466 0.9377 0.9380 0.9375 0.9466 0.9377
fr 0.8779 0.8607 0.8717 0.8693 0.8436 0.8255 0.8430 0.8378 0.3384 0.3728 0.3891 0.3826
hi 0.8909 0.8695 0.8890 0.8877 0.8524 0.8577 0.8394 0.8314 0.5151 0.5167 0.5400 0.4647
hr 0.8986 0.8876 0.8931 0.8950 0.8741 0.8527 0.8767 0.8605 0.3666 0.3353 0.3952 0.3762
or 0.6032 0.6584 0.6235 0.6721 0.5483 0.4981 0.5873 0.4962 0.1338 0.2266 0.2731 0.1948
ru 0.8614 0.8515 0.8604 0.8578 0.8395 0.8286 0.8375 0.8304 0.2268 0.2365 0.2369 0.2348
sr 0.9099 0.8413 0.9175 0.9117 0.8918 0.8484 0.8969 0.8900 0.2257 0.1228 0.3048 0.2571
ur 0.9447 0.9410 0.9476 0.9408 0.9396 0.9424 0.9333 0.9318 0.2834 0.2518 0.3534 0.2200

Unseen

am - - - - 0.0079 0.2902 0.3282 0.2695 0.000 0.1063 0.1017 0.0155
de - - - - 0.7934 0.7381 0.8047 0.7608 0.1986 0.1257 0.2420 0.1048
es - - - - 0.8511 0.8144 0.8573 0.8265 0.2640 0.1913 0.3043 0.1641
fi - - - - 0.8427 0.7993 0.8460 0.8201 0.2539 0.1717 0.2688 0.1820
ilo - - - - 0.5333 0.5356 0.5537 0.4627 0.2473 0.2500 0.2922 0.1313
ka - - - - 0.5860 0.7961 0.8162 0.7872 0.0181 0.1207 0.1851 0.1314
ko - - - - 0.5244 0.7318 0.7792 0.7577 0.0026 0.1445 0.1538 0.1262
lij - - - - 0.3071 0.3684 0.2975 0.3064 0.1183 0.1037 0.2172 0.1022
lv - - - - 0.8826 0.8468 0.8891 0.8605 0.1710 0.1945 0.3140 0.0941
my - - - - 0.1596 0.1721 0.2975 0.2424 0.0000 0.0263 0.0912 0.0552
pt - - - - 0.8535 0.8206 0.8547 0.8312 0.2351 0.1104 0.3257 0.0947
ro - - - - 0.8889 0.8754 0.8963 0.8695 0.2116 0.1710 0.2407 0.0537
sn - - - - - - - - - - - -
so - - - - 0.4874 0.4870 0.5128 0.5236 0.3175 0.1930 0.2759 0.1554
sq - - - 0.8557 0.8319 0.8604 0.8315 0.3258 0.2241 0.3604 0.0944
sv - - - - 0.9059 0.8583 0.9043 0.8850 0.1923 0.0546 0.1745 0.0810
sw - - - - 0.7634 0.7429 0.7955 0.7359 0.1996 0.0843 0.2402 0.0893
te - - - - 0.3297 0.5753 0.6440 0.5119 0.0000 0.1277 0.1955 0.0514
th - - - - 0.3531 0.6680 0.6479 0.6302 0.0001 0.0049 0.0025 0.0032
uz - - - - 0.8384 0.7819 0.8360 0.7863 0.1377 0.0588 0.1310 0.0130

Table 7: Performance results (F1 scores) on the sim-div language set, which comprises similar languages that
use diverse scripts. The table reports results for three evaluation settings. Seen: languages used during both
pretraining and fine-tuning, Unseen: languages not encountered during training and Zero-Shot: languages evaluated
without any task-specific fine-tuning. Results are provided for four different input types: Orthographic (Ortho), IPA,
Romanized (Rom), and Ciphered (Cip)
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Monolingual Multilingual Zero-Shot

Ortho IPA Rom Cip Ortho IPA Rom Cip Ortho IPA Rom Cip

Seen

de 0.8716 0.8518 0.8599 0.8622 0.8184 0.7924 0.8248 0.8095 0.3300 0.2076 0.3288 0.2098
fi 0.8855 0.8813 0.8850 0.8861 0.8618 0.8264 0.8638 0.8436 0.3129 0.1859 0.3216 0.2062
ilo 0.6053 0.6216 0.6881 0.6996 0.6757 0.7123 0.6368 0.6549 0.4615 0.1965 0.3170 0.2677
lv 0.9284 0.9205 0.9232 0.9230 0.8995 0.8736 0.9006 0.8998 0.2784 0.1720 0.2608 0.1711
sn - - - - - - - - - - - -
so 0.6111 0.5648 0.6000 0.5249 0.5551 0.5887 0.6577 0.5556 0.3891 0.3128 0.3291 0.2731
sw 0.8481 0.8385 0.8532 0.8481 0.8291 0.7981 0.8421 0.8125 0.3126 0.1655 0.2427 0.1624
uz 0.8648 0.8655 0.8665 0.8836 0.8621 0.8210 0.8608 0.8314 0.8621 0.8210 0.8608 0.8314

Unseen

am - - - - 0.2833 0.5560 0.2845 0.5018 0.0402 0.0730 0.0429 0.0121
bn - - - - 0.8269 0.8791 0.9005 0.9430 0.0415 0.1208 0.0697 0.0234
ca - - - - 0.8733 0.8255 0.8750 0.8542 0.2548 0.1487 0.2590 0.0972
es - - - - 0.8518 0.8103 0.8583 0.8377 0.2646 0.1242 0.2846 0.0874
fr - - - - 0.8312 0.7607 0.8294 0.8447 0.2633 0.1434 0.2878 0.0946
hi - - - - 0.7128 0.8210 0.8055 0.7981 0.0030 0.0890 0.0910 0.0945
hr - - - - 0.8531 0.8404 0.8532 0.8495 0.2098 0.0930 0.2079 0.0604
ka - - - - 0.6289 0.8577 0.8103 0.8606 0.0591 0.0724 0.1008 0.0488
ko - - - - 0.5282 0.8297 0.7652 0.8381 0.0590 0.0666 0.0559 0.0484
lij - - - - 0.3319 0.2893 0.3333 0.2979 0.1393 0.0836 0.1337 0.0663
my - - - - 0.2128 0.5263 0.2785 0.5750 0.0000 0.0214 0.0566 0.0310
or - - - - 0.0708 0.4082 0.3851 0.2339 0.0090 0.0137 0.1102 0.1208
pt - - - - 0.8566 0.8015 0.8558 0.8449 0.2773 0.1053 0.2992 0.0836
ro - - - - 0.8906 0.8548 0.8880 0.8768 0.1894 0.1050 0.2112 0.0694
ru - - - - 0.7992 0.7922 0.8132 0.8051 0.0377 0.0880 0.1506 0.0762
sq - - - - 0.8658 0.8120 0.8627 0.8259 0.2117 0.1075 0.2447 0.0785
sr - - - - 0.8540 0.8201 0.8790 0.8739 0.0243 0.1693 0.2781 0.1292
sv - - - - 0.9075 0.8484 0.9076 0.8919 0.2286 0.0546 0.2230 0.0520
te - - - - 0.3278 0.7441 0.5494 0.7632 0.0100 0.0619 0.0309 0.0373
th - - - - 0.5162 0.6841 0.6320 0.6110 0.0021 0.0074 0.0089 0.0232
ur - - - - 0.8906 0.9208 0.9205 0.9220 0.0419 0.0138 0.0757 0.0762

Table 8: Performance results (F1 scores) on the dissim-same language set, which comprises typologically dissimilar
languages that share the same script. The table reports results for three evaluation settings. Seen: languages
used during both pretraining and fine-tuning, Unseen: languages not encountered during training and Zero-Shot:
languages evaluated without any task-specific fine-tuning. Results are provided for four different input types:
Orthographic (Ortho), IPA, Romanized (Rom), and Ciphered (Cip)
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Monolingual Multilingual

Ortho IPA Rom Cip Ortho IPA Rom Cip

Seen

am 0.4796 0.4615 0.5388 0.5203 0.4941 0.5403 0.5760 0.5364
bn 0.9584 0.9100 0.9524 0.9506 0.9579 0.9488 0.9552 0.9479
fr 0.8779 0.8607 0.8717 0.8693 0.8528 0.8265 0.8487 0.8432
ka 0.8866 0.8873 0.8850 0.8837 0.8647 0.8607 0.8619 0.8598
ko 0.8611 0.8576 0.8623 0.8628 0.7699 0.8347 0.8382 0.8333
my 0.5401 0.5852 0.5617 0.5188 0.5259 0.5738 0.5164 0.5477
te 0.7880 0.7983 0.7822 0.7922 0.7532 0.7529 0.7528 0.7734
th 0.7052 0.6880 0.6656 0.6726 0.7031 0.6813 0.6810 0.6727

Unseen

ca - - - - 0.8797 0.8503 0.8803 0.8513
de - - - - 0.8088 0.7555 0.8134 0.7855
es - - - - 0.8615 0.8315 0.8687 0.8352
fi - - - - 0.8504 0.8188 0.8532 0.8311
hi - - - - 0.6585 0.8223 0.8472 0.7939
hr - - - - 0.8642 0.8381 0.8652 0.8428
ilo - - - - 0.5272 0.5726 0.5122 0.4516
lij - - - - 0.3465 0.3243 0.3793 0.2833
lv - - - - 0.8948 0.8544 0.891 0.8762
or - - - - 0.3840 0.3931 0.4373 0.2913
pt - - - - 0.8609 0.8245 0.8630 0.8437
ro - - - - 0.8940 0.8746 0.8979 0.8788
ru - - - - 0.6753 0.7941 0.8207 0.8049
sn - - - - - - - -
so - - - - 0.6140 0.4893 0.5462 0.5299
sq - - - - 0.8720 0.8395 0.8533 0.8389
sr - - - - 0.6697 0.8405 0.8826 0.8735
sv - - - - 0.9117 0.8641 0.9119 0.8920
sw - - - - 0.7968 0.7527 0.7855 0.7536
ur - - - - 0.6974 0.9072 0.9243 0.9226
uz - - - - 0.8317 0.8004 0.8300 0.8121

Table 9: Performance results (F1 scores) on the dissim-div language set, which comprises typologically dissimilar
languages that utilize diverse scripts. The table reports results for two evaluation settings. Seen: languages
used during both pretraining and fine-tuning and Unseen: languages not encountered during training. Zero-shot
evaluation was omitted due to the minimal shared representations among dissim-div languages, which limits the
effectiveness of zero-shot transfer. Results are provided for four different input types: Orthographic (Ortho), IPA,
Romanized (Rom), and Ciphered (Cip)
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