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Abstract

Transliteration has emerged as a powerful
means to bridge the gap between various lan-
guages in multilingual NLP, showing promising
results on unseen languages without respect to
script. While it is widely understood that this
success is due to the degree to which transliter-
ation results in a shared representational space
among languages, we investigate the degree
to which shared script, an overlap in token vo-
cabularies, and shared phonology contribute to
performance of models relying on translitera-
tion. To investigate this question, we train and
evaluate models using three kinds of translit-
eration (romanization, phonemic transcription,
and substitution ciphers) as well as orthogra-
phy. We use named entity recognition as a
downstream task for evaluation. Our results are
largely consistent with our hypothesis—that ro-
manization is most effective because it results
in sharing of all three kinds.

1 Introduction

Multilingual language modeling has drawn signif-
icant attention from researchers seeking to cover
diverse languages and promote fairness in Al. Ef-
forts for effective multilingual language modeling
include improving the performance of low-resource
languages (Bharadwaj et al., 2016), dealing with
tokenization fairness across languages (Ahia et al.,
2023; Petrov et al., 2023; Limisiewicz et al., 2024),
investigating the curse of multilinguality (Conneau
et al., 2020; Wang et al., 2020; Chang et al., 2024;
Blevins et al., 2024), and breaking the script bar-
riers (Chaudhary et al., 2018; Moosa et al., 2023;
J et al., 2024; Sohn et al., 2024; Ahia et al., 2024;
Liu et al., 2024). One of the recent approaches
that touches on all of these problems is translitera-
tion—converting original forms of written text into
a unified input representations with methods such
as romanization or grapheme-to-phoneme (G2P)
transduction.
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Figure 1: Visualization of transliteration analysis
schema, showing input types (Ortho, IPA, Rom, Ci-
pher) positioned based on shared character set, shared
token set, and shared phonology.

Transliteration in multilingual NLP is typically
performed using Latin scripts or International Pho-
netic Alphabet (IPA), giving various languages a
shared input representation. Both representations
encode linguistic information—specifically pho-
netic and phonological—across languages. Here,
we pose a question: Is it the shared script itself or
the linguistic information encoded in the scripts
that helps the models adapt to other languages?

To investigate this question, we define three key
factors in transliteration—(i) shared character set,
(i1) shared token set, and (iii) shared phonology—
that influence how a model processes and gener-
alizes across languages. We then run experiments
with four different input types, each varying in the
degree to which these factors are present: Orthog-
raphy, IPA, Romanized, and Substitution Ciphered
text (see Figure 1). IPA and Romanized text encode
linguistic information (phonetic or phonological)



to different extents, making them more likely to
leverage shared phonology (e.g., similarity in cog-
nate and borrowed vocabulary items) and contain
shared tokens. On the other hand, ciphered text
shares the same character set as romanized text but
lacks any linguistic information, as each language
is randomly mapped to different letters.

We hypothesize that romanized text yields the
best performance in handling diverse languages as
it improves representations across all three dimen-
sions. Based on this assumption, IPA is expected to
follow, as it enhances two out of three dimensions—
sharing phonology and tokens—while ciphered text
only shares the character set and lacks any addi-
tional shared representations. Throughout the pa-
per, we evaluate our hypothesis by analyzing NER
performance on seen and unseen languages and
analyze in terms of vocabulary overlaps.

2 Preliminary: Transliteration for
Multilingual Language Modeling

Transliteration has been recently explored as a
method to enhance cross-lingual transfer in mul-
tilingual NLP by unifying script representations.
Two major approaches in this domain are phone-
mic transcription and romanization.

Phonemic transcriptions use IPA to represent
various languages. It has been explored in cross-
lingual scenarios, particularly to low-resource lan-
guages (Bharadwaj et al., 2016; Chaudhary et al.,
2018; Nguyen et al., 2023; Sohn et al., 2024). Re-
cently, Nguyen et al. (2024) show that IPA prompt-
ing aids large-scale LL.Ms in handling non-Latin
scripts. Similarly, romanization has been widely
used to overcome the difference in scripts and mit-
igate potential out-of-vocabulary problems by re-
stricting the input space (Fujinuma et al., 2022;
Moosa et al., 2023; Liu et al., 2024). This approach
improves POS Tagging and Dependency Parsing
by enhancing token consistency (Fujinuma et al.,
2022) and significantly benefits low-resource lan-
guages without negatively impacting high-resource
ones (Moosa et al., 2023).

3 Input Types

While transliteration into shared scripts has demon-
strated promising results in cross-lingual transfer,
particularly for low-resource languages and non-
Latin scripts (Soni and Bhattacharyya, 2024; J et al.,
2024), its underlying mechanisms remain unex-
plored. As illustrated in Figure 1, we define three

key factors that explain different aspects of translit-
eration.

* Shared Character Set. Transliteration usu-
ally enforces a shared character set across lan-
guages. For example, romanization can only
produce Latin characters, which significantly
reduces the number of unique characters and
patterns that a tokenizer must learn.

* Shared Token Set. Here, we specifically dis-
tinguish rokens from characters, where by to-
kens we refer to subword tokens that contain
more than a character.

* Shared Phonology. Widely used translitera-
tion methods (e.g., G2P and romanization) en-
code phonological information in their repre-
sentations. Representing languages based on
their phonology can capture representations
of cognate and borrowed vocabulary shared
across languages.

To explore these different dimensions of translit-
eration, we employ four distinct input types: Or-
thography (Ortho), IPA, Romanized text (Rom),
and Substitution Ciphered text (Cipher). Here, we
explain in detail the process of converting written
text data (Ortho) into each of other input types.

3.1 G2P Conversion (IPA)

Based on Latin scripts, IPA symbols are designed
to represent pronunciations of human language in
phonemes. While transliteration into IPA enables
some degree of character set sharing, differences in
phonemic inventories and phonotactic structures
cause each language to use its own distinct set
of characters and subword tokens. To convert or-
thographic data into IPA symbols, we use Epitran
(Mortensen et al., 2018), a widely used rule-based
G2P tool that supports more than a hundred lan-
guages.

3.2 Romanization (Rom)

Romanization converts various scripts into Latin
alphabets, enforcing a stricter limit that enables
multiple languages to share the character set. Ad-
ditionally, unlike G2P, which converts identical
Latin-script text into language-specific phonemes,
Romanization preserves the original form of text
written in Latin scripts. Since Latin scripts en-
code sound—though not as precisely as [PA—
Romanization produces phonologically informed
representations for each language. We employ Uro-
man (Hermjakob et al., 2018) which supports more
than 370 languages for romanization.



‘ Script

‘ same ‘ diverse

similar ‘ swe, por, lij, cat, ron, spa, sqi, fra ‘ fra, ben, hin, hrv, ori, rus, srp, urd

dissimilar ‘ ilo, sna, lav, uzb, deu, fin, som, swa ‘ ambh, ben, tel, fra, tha, kat, kor, mya

Table 1: Languages selected for each language set.

3.3 Substitution Cipher (Cipher)

A substitution cipher is a method from cryptog-
raphy where units of plaintext are replaced with
ciphertext according to a predefined rule or key.
We apply substitution cipher to the Romanized text
of each language—in different rules—to remove
encoded phonological information. While this al-
lows multilingual text to share the same character
space as Rom, it no longer contains phonological
meanings and prevents the sharing of meaningful
subword tokens across languages. We employ Cae-
sar cipher, a simple substitution encryption tech-
nique. Details are provided in Appendix A.4.

4 Experiments

4.1 Language Selection

To examine how different input types impact multi-
lingual adaptation, we selected languages to form
four language sets: (i) typologically similar lan-
guages using the same script (sim-same), (ii) simi-
lar languages using diverse scripts (sim-div), (iii)
dissimilar languages using the same script (dissim-
same), and (iv) dissimilar languages using diverse
scripts (dissim-div). Similar to Chang et al. (2024),
we utilized lang2vec (Littell et al., 2017)! to com-
pute language similarity. We extracted syntactic,
geographic, and genetic features from lang2vec to
obtain cosine similarities, and also defined lexi-
cal similarity based on word overlap ratio between
training corpora of each language”. By aggregating
these similarity scores, as detailed in Appendix A.1,
we assigned eight languages to each set (see Ta-
ble 1) and trained multilingual models with varying
linguistic similarities and scripts.

4.2 Datasets

For pre-training, we utilize sampled version of
a preprocessed Wikipedia corpus from Hugging
Face®. For downstream task, we utilized WikiAnn
(Pan et al., 2017; Rahimi et al., 2019) dataset for
named entity recognition. More details on pre-
processing and dataset statistics can be found in

!'Utilizing https://github.com/antonisa/lang2vec
*Words are segmented by white spaces.
3https://huggingface.co/datasets/wikimedia/wikipedia

Test Languages ‘ Trained Lang. Set ‘ Ortho IPA Rom  Cipher
| sim-same | 0.8466 0.8085 0.8395 0.8173

Seen | sim-div | 0.8409 0.8239 0.8451 0.8270

| dissim-same | 0.7860 0.7732 0.7981 0.7725

| dissim-div | 07402 07524 0.7538 0.7518

| sim-same | 0.6611 0.6801 0.7267 0.6824

Unseen | sim-div | 0.6321 0.6787 0.7151 0.6772

| dissim-same | 0.6626 0.7468 0.7280 0.7547

| dissim-div | 0.7450 07524 0.7832 0.7496

Table 2: Average F1 scores for each case. Bold: best
performing input. Underlined: second best.

Appendix A.7. In order to train the model with
different input types, we converted all datasets into
each input type.

4.3 Model Training

To investigate the impact of different input types,
we pre-trained 16 models using four input types
and four language sets. We first trained a Senten-
cePiece (character-level) BPE tokenizer for each
model with fixed vocabulary size of 30K for all to-
kenizers. We employed a Transformer architecture,
following the training regime of RoBERTa (Liu
et al., 2019) with masked language modeling on
a multilingual corpus. After pre-training we fine-
tuned each model on target language NER dataset
to obtain downstream task performance. For details
on the model configurations and training, refer to
Appendix A.2 and Appendix A.3.

5 Results: NER Performance across
Input Types

Table 2 presents the average F1 scores of each
model for seen and unseen languages. p-values
obtained from paired t-tests on F1 scores across dif-
ferent input types can be found in Appendix A.5.

Performance within Seen Languages. Translit-
eration does not provide a significant advantage
over orthographic text when the language was seen
during pre-training. While Rom outperforms other
input types, including Ortho, its superiority is not
statistically significant (p > 0.05). On the other
hand, Ortho and Rom significantly outperform the
other two input types for seen languages (p <
0.05).

Performance on Unseen Languages. For un-
seen languages, the performance of Ortho is sig-
nificantly lower than that of all other input types
(p < 0.05). Furthermore, we find that our hypothe-
sis holds, with Rom achieving the highest average
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Figure 2: (a) Distribution of lexical overlap ratios across token lengths for different input types. (b) Pearson r
between overlap ratios of each token length and NER performance. Correlations with p > 0.05 are masked out.

F1 scores in 6 out of 8 cases. Interestingly, contrary
to expectation, IPA and Cipher do not show statisti-
cally significant differences. We further investigate
how Cipher achieves comparable performance, in
the following sections.

6 Analysis: Vocabulary Overlap

Transliteration is widely assumed to enhance mul-
tilingual language modeling by increasing vocabu-
lary overlap. However, it remains unclear whether
conflicting tokens—tokens that are shared but
do not form meaningful units (e.g., individual
characters)—also contribute to performance. To
examine this, we measure lexical overlap of an
unseen target language [/; as follows:

|ﬂ.s ﬂ ﬂt|

1
Y

Lexical Overlap(l;) =
exical Overlap(l;) max
where [; is a target language, [ is one of the pre-
trained languages L, and 7T; is set of subword to-
kens of a dataset in language I.

Transliteration and Lexical Overlap. Figure 2a
shows the spread of lexical overlap across token
lengths. Ortho and Rom exhibit relatively high
overlap across all token lengths, whereas IPA and
Cipher show less. Notably, Ciphered text primar-
ily shares single characters across languages rather
than longer sequences, reflecting its shared char-
acter set without meaningful token overlap. IPA
shows relatively high overlap at token length of 2,
likely because IPA symbols often form phonemes
as character pairs. Meanwhile, Rom and Ortho
tend to share longer tokens (length 2-3) across lan-
guages, suggesting greater overlap in meaningful
subword units.

Vocabulary Overlap and Transferability. To
understand how Cipher achieves comparable re-

sults on unseen languages, we further investigate
how vocabulary overlap associates with task perfor-
mance. Figure 2b presents the Pearson correlation
coefficient between overlap ratios and NER per-
formance for each input type. We observe that
sharing tokens with trained languages is crucial
for successful adaptation to unseen languages. Par-
ticularly, token lengths of 2 to 4 exhibit a strong
correlation with F1 scores, highlighting the impor-
tance of sharing meaningful tokens. To summarize,
sharing character tokens does positively correlate
with the performance, but having longer tokens in
common correlates stronger with the performance.

7 Discussion

Different Patterns on Seen/Unseen Languages.
For seen languages, we find that IPA and Cipher
lag behind Ortho and Rom. We assume that this is
because Ortho and Rom are more likely to share
tokens across languages, whereas IPA contains
more language-specific symbols and Cipher has
little chance of sharing similar character sequences
across languages.

Comparable Performance of Cipher. Cipher’s
comparability to IPA, despite having few shared
tokens, highlights the role of a shared character
set in transliteration. As IPA symbol sets are in-
herently language-specific, unseen languages are
more likely to produce unknown tokens([UNK]),
failing to tokenize appropriately. In contrast, Ci-
pher produces almost no unknown tokens, although
the tokens tend to be over-segmented or are seg-
mented in an incoherent manner. This suggests that
having conflicting or over-segmented tokens may
not be as detrimental as expected in multilingual
adaptation scenarios.



8 Limitation

The results reported here are suggestive, but there
are three major limitations which prevent us from
generalizing them too broadly. First, we only tested
one type of transformer model with one tokeniza-
tion scheme. It is possible, for example, that we
would have obtained much different results if we
had trained character- or byte-level models. Sec-
ond, the extrinsic evaluation was limited to a single
task—named entity recognition—and it is not im-
mediately obvious that representations that work
well for NER would generalize to other tasks (like
machine translation, summarization, and question
answering). Finally, we only tested one romanizer
and one G2P transducer. It is entirely possible that
we would have obtained different results if different
tools had been used.

9 Ethics Statement

We believe that this research raises no significant
ethical concerns or violations of the code of ethics
mandated by the Association for Computational
Linguistics. The data used in this study, all of
which are publicly available, were collected in ac-
cordance with legal and institutional protocols, to
the best of our knowledge. Furthermore, our use
of these resources is compatible with the uses in-
tended by the creators.
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A Appendix

A.1 Language Selection

To examine the impact on multilingual adaptation
that differences in input types have, we selected
four language sets : (i) similar languages using the
same script (sim-same), (ii) similar languages using
diverse scripts (sim-div), (iii) dissimilar languages
using the same script (dissim-same), and (iv) dis-
similar languages using diverse scripts (dissim-div).
These sets were used to train multilingual models
with varying linguistic similarities and scripts. For
each set, we assigned eight languages based on a
computed similarity score as shown in Table 1.
Similar to Chang et al. (2024), we utilized
lang2vec (Littell et al., 2017)* to compute language
similarity. Specifically, we extracted syntactic, ge-
ographic, and genetic features from lang2vec and
computed cosine similarities, denoted as Sgyn, Sgeos

4Utilizing https://github.com/antonisa/lang2vec
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and sgep, in Eq. 2. We also defined lexical similar-
ity Sje., Which is obtained by calculating the word
overlap ratio between training corpora of each lan-
guage. Finally, we aggregated all similarity scores
(i.e., syntactic, geographic, genetic, and lexical)
to derive the overall similarity score between two
languages:

simg (l’, y) = Ssyn ($a y) + Sgeo($7 y) )
+ Sgen(xa y) + Slem(xa y)

With initial set of languages L that are supported
by Wikipedia corpus and Epitran, we use average
pairwise similarity scores to compute similarity
score for a set of languages and obtain an optimal
set L*, where s € {sim-same, sim-div} :

1
* R - > 1
L; = arg max (|Ls\(|LS\ —1) > D sims(ay)

|Ls|=8 z€Ls yELs
v

3)

+ta- <ls€{sim—div}|SCLs‘

- IlsE{dissim-div} ‘SCLS ‘)) )

As for an optimal set L), where d €
{dissim-same, dissim-div} :

1
* . 1 T 9
Lq = arg LacL <Ld(Ld —-1) D D simy(a.y)

|Lq|=8 z€Lqy€Llq
i

“)

+a- (lde{sim-div} ISCL,|

— Lge{dissim-div} |SCLd|)> :

To select languages for the sets with same script
(i.e., sim-same and dissim-same), we limited the
search space to languages that use the Latin script
to maximize the number of languages available for
similarity-based sampling.

For sets with diverse scripts (i.e., -div), we ad-
ditionally consider how many different scripts are
involved in each set.

A.2 Model Configuration

Table 3 summarizes the key configuration details of
our RoBERTa-based model. Number of parameters
per model is 109,082,112.

SWords are segmented by white spaces.

Parameter Value
Vocabulary Size 30,000
Hidden Size 768
Hidden Layers 12
Attention Heads 12
Intermediate Size 3072
Activation Function GELU

Dropout (Hidden/Attention) 0.1
Max Position Embeddings 514

Table 3: Model Configuration

A.3 Training Setup

To investigate the impact of different input types,
we pre-trained and fine-tuned a total of 16 models
across four distinct input types and language sets.
In addition, we trained a SentencePiece BPE tok-
enizer for each model, fixing the vocabulary size to
30K. Table 4 summarizes the key hyperparameters
used in our experiments for both the pretraining
phase and the downstream NER task.

Hyperparameter Sweep We conducted grid
search to find learning rates that converges or
achieves the best results. For pre-training, the
search space was {le-5, 2e-5, 3e-5, Se-5, le-4,
2e-4, 3e-4} and for NER, it was {3e-5, Se-5, le-4}.

Parameter Pretraining NER Task
FP16 Training True True
Max Sequence Length 512 512
Batch Size (per device) 64 64
Gradient Accumulation Steps 1 -
Warmup Steps 50 -
Learning Rate le-4 Se-5
Weight Decay 0.01 0.01
LR Scheduler Type Linear -
MLM Probability 0.15 -
Epochs 300 20
Log Interval 1

GPU Resources 4 NVIDIA L40S 2 NVIDIA RTX A6000

Table 4: Training Configurations

A.4 Substitution Cipher (Cipher)

A substitution cipher is a method from cryptog-
raphy where units of plaintext are replaced with
ciphertext according to a predefined rule or key.
We apply substitution cipher to the Romanized text
to remove encoded phonological information.
Specifically, we use the Caesar cipher (Kahn,
1996), a simple substitution encryption technique
that shifts each letter in the text by a fixed num-
ber of positions in the Latin alphabet. For each
language, we assign an integer that determines the
shift from the current position of each letter. For



example, if English is assigned the integer 4, the
word ‘apple’ would be represented as ‘ettpi’, with
each letter replaced by the one four positions ahead
in the alphabet.

A.5 P-values of Paired t-tests

Table 2 presents the NER scores for different input
types across various language settings. To assess
the significance of the observed differences, we
performed paired t-tests. Figure 3 displays the
corresponding P-values derived from these tests.

Seen Languages Unseen Languages

°
2
£-

ipa  ortho

ipa o

- 0.027

-0.05
[P 0.0021

<0.005

- 0.0052
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8
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cipher rom
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Figure 3: P-value for paired t-test on NER scores across
different input types.

A.6 External Tools for Transliteration

In this study, we used Epitran and Uroman as
transliteration tools to unify script and facilitate
multilingual processing. These tools are widely
used for converting text into standardized phone-
mic or Romanized forms, which aids in cross-
lingual learning and transferability. Below, we
describe their functionalities and implementation
details.

Epitran(Mortensen et al., 2018) is a tool
for grapheme-to-phoneme (G2P) conversion,
capable of converting text into the Interna-
tional Phonetic Alphabet (IPA) representations.
It can be downloaded from the link below
https://github.com/dmort27/epitran

Uroman(Hermjakob et al., 2018) is a uni-
versal transliteration tool that converts text
from various scripts into a Romanized format.
It can be downloaded from the link below
https://github.com/isi-nlp/uroman

A.7 Datasets

In Table 5, the specific number of datasets per
corresponding language is provided. For pre-
training, we utilized sampled version of prepro-
cessed Wikipedia corpus from Huggingface®.

We limited each language with its number of

Shttps://huggingface.co/datasets/wikimedia/wikipedia

words around 10M’. For those languages with less
number of tokens than 10M, we kept all the docu-
ments and oversampled during training, to match
the model’s exposure to all languages. For down-
stream task, we utilized WikiAnn (Pan et al., 2017;
Rahimi et al., 2019) dataset for named entity recog-
nition. In order to train the model with different
input types, we converted all datasets into each
corresponding input type.

Wikipedia corpora used for pre-training are
licensed under the GNU Free Documentation
License (GFDL) and the Creative Commons
Attribution-Share-Alike 3.0 License. License type
for WikiAnn dataset is ODC-BY.

A.8 Detailed Experimental Results

Tables 6, 7, 8, 9 summarize the performance results
(F1 scores) across different language sets under var-
ious evaluation settings. In our experiments, "Seen"
refers to languages included in both pretraining
and fine-tuning, "Unseen" to those entirely absent
during training, and "Zero-Shot" to languages eval-
uated without task-specific fine-tuning. The lan-
guage sets differ in terms of typological similarity
and script usage. Detailed results for each setting
are provided in the respective tables.

"For each language, we randomly shuffled the order of the
documents, and iterated over each document, counting the
words segmented by whitespaces. We stop adding the docu-
ments when adding the number of words of the last document
exceeds 10M.



Lang | Dataset | # Train # Validate # Test ‘ Lang ‘ Dataset | # Train # Validate # Test

am wikipedia | 5328 - - m wikipedia | 34309 - -
wikiann 100 100 100 y wikiann 100 100 100

ar wikipedia - - - or wikipedia | 11018 - -
wikiann | 20000 10000 10000 wikiann | 100 100 100

bn wikipedia | 28496 - - 1 wikipedia - - -
wikiann | 10000 1000 1000 | P wikiann | 20000 10000 10000

wikipedia | 26031 - - ‘ wikipedia | 26510 - -
ca wikiann | 20000 10000 10000 | P wikiann | 20000 10000 10000

o | wikipedia | 22724 ] ] wikipedia | 28890 - -
ce wikiann | 100 100 100 | ™ wikiann | 20000 10000 10000

de wikipedia | 30460 - - . wikipedia | 32636 - -
wikiann | 20000 10000 10000 wikiann | 20000 10000 10000

. wikipedia | 25727 - - ; wikipedia | 23084 - -
S wikiann | 20000 10000 10000 | ° wikiann | 100 100 100

q wikipedia | 36190 - - wikipedia | 5204 - -
wikiann | 20000 10000 10000 | *° wikiann | 100 100 100

6 wikipedia | 25353 - - wikipedia | 27406 - -
r wikiann | 20000 10000 10000 | *4 wikiann | 5000 1000 1000

N wikipedia | 25492 ] ] wikipedia | 29961 - -
! wikiann | 5000 1000 1000 | *F wikiann | 20000 10000 10000

hr wikipedia | 30764 - - . wikipedia | 29839 - -
wikiann | 20000 10000 10000 wikiann | 20000 10000 10000

1 wikipedia | 5828 - - wikipedia | 25911 - -
° wikiann | 100 100 100 |V wikiann | 1000 1000 1000

K wikipedia | 33713 - - ¢ wikipedia | 28543 - -
a wikiann | 10000 10000 10000 | © wikiann | 1000 1000 1000

K wikipedia | 38885 - - th wikipedia | 76083 - -
0 wikiann | 20000 10000 10000 wikiann | 20000 10000 10000

[ | wikipedia | 4002 ; - wikipedia | 23568 - -
Y wikiann | 100 100 100 | " wikiann | 20000 1000 1000

It wikipedia | 32836 - - , wikipedia | 29833 - -
wikiann | 10000 10000 10000 | © wikiann | 1000 1000 1000

1 wikipedia | 31152 - - - - - -

v wikiann | 10000 10000 10000 | - ; ; - -

Table 5: Statistic of transliterated dataset. All dataset exist in four parallel versions ; original Orthographic, phonemic
IPA, Romanized, and Cipher transcribed version. - refers to unavailable values. The wikipedia dataset is used for
pre-training without validation or test. Languages ‘ar’ and ‘pl” do not have available wikipedia dataset for pre-train.



‘ ‘ Monolingual Multilingual Zero-Shot
‘ ‘Ortho IPA Rom Cip Ortho IPA Rom Cip Ortho IPA Rom Cip

ca | 09117 0.8970 0.9005 0.9024 | 0.8997 0.8725 0.8993 0.8803 | 0.7730 0.6763 0.7770 0.5945
es | 0.8929 0.8759 0.8802 0.9141 | 0.8773 0.8584 0.8788 0.8657 | 0.7704 0.5703 0.8095 0.4956
fr | 0.8779 0.8607 0.8717 0.8693 | 0.8628 0.8252 0.8639 0.8384 | 0.7293 0.6184 0.7355 0.5645
Seen lij | 0.3269 0.2927 0.4306 0.2775 | 0.5064 0.4052 0.4615 0.4082 | 0.2416 0.1702 0.2500 0.1137
pt | 0.8931 0.8842 0.8891 0.8850 | 0.8798 0.8605 0.8796 0.8674 | 0.8792 0.8605 0.8796 0.8674
ro | 09143 09106 09153 0.9141 | 0.9129 0.8855 0.9103 0.8956 | 0.6257 0.4303 0.6367 0.375
sq | 09052 0.8958 0.9011 0.8981 | 0.9120 0.8738 0.8979 0.8785 | 0.6791 0.5891 0.7037 0.5335
sv [ 09300 0.9238 0.9320 0.9311 | 0.9215 0.8872 0.9247 0.9046 | 0.4674 0.4093 0.4970 0.4897
am | - - - - 0.2000 0.3089 0.3383 0.3623 | 0.0000 0.1173 0.1004 0.1434
bn | - - - - 0.8230 0.8907 0.9081 0.8969 | 0.0000 0.0719 0.1690 0.1372
de |- - - - 0.8204 0.7400 0.8236 0.7676 | 0.3323 0.1559 0.4247 0.1307
fi - - - - 0.8573 0.8050 0.8609 0.8237 | 0.4664 0.1993 0.5341 0.1966
hi |- - - - 0.7395 0.8043 0.8225 0.7861 | 0.0060 0.1789 0.1343 0.1566
hr | - - - - 0.8682 0.8318 0.8727 0.8403 | 0.8682 0.2494 0.5225 0.1794
ilo | - - - - 0.6400 0.5714 0.6757 0.4498 | 0.5408 0.3108 0.5408 0.1516
ka | - - - - 0.6878 0.7920 0.8227 0.7780 | 0.1160 0.1846 0.1713 0.1126
ko | - - - - 0.5329 0.7578 0.7883 0.7626 | 0.0240 0.1483 0.1233  0.0904
Iv |- - - - 0.8940 0.8463 0.8919 0.8695 | 0.3637 0.2201 0.4402 0.1556
Unseen | my | - - - - 0.2286 0.2541 0.2857 0.2232 | 0.0000 0.0919 0.1474 0.0929
or |- - - - 0.2738 0.2647 0.3492 0.3533 | 0.0000 0.0534 0.0000 0.0125
| - - - - 0.8083 0.7842 0.8268 0.8010 | 0.0894 0.1580 0.2857 0.1273
sn | - - - - - - - - - - - -
so | - - - - 0.6256 0.4641 0.5500 0.4397 | 0.3543 0.1662 0.3460 0.2000
st | - - - - 0.8574 0.8442 0.8879 0.8691 | 0.0521 0.1608 0.3454 0.1246
SWo| - - - - 0.8250 0.7381 0.8195 0.7494 | 0.4311 0.2118 0.4551 0.1765
te |- - - - 0.3384 0.5336  0.5797 0.5252 | 0.0033 0.0966 0.0726 0.0550
th |- - - - 0.4762 0.6637 0.6622 0.6477 | 0.0009 0.0015 0.0018 0.0059
ur | - - - - 0.9032 0.9101 0.9273 0.9172 | 0.0019 0.0253 0.0360 0.0926
uz | - - - - 0.8266 0.7962 0.8402 0.7862 | 0.4932 0.2941 0.5120 0.0812

Table 6: Performance results (F1 scores) on the sim-same language set, which consists of typologically similar
languages that share the same script. The table reports results for three evaluation settings. Seen: languages
used during both pretraining and fine-tuning, Unseen: languages not encountered during training and Zero-Shot:
languages evaluated without any task-specific fine-tuning. Results are provided for four different input types:
Orthographic (Ortho), IPA, Romanized (Rom), and Ciphered (Cip)
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‘ ‘ Monolingual Multilingual Zero-Shot
‘ ‘Ortho IPA Rom Cip Ortho IPA Rom Cip Ortho IPA Rom Cip

bn | 0.9584 0.9543 0.9524 0.9506 | 0.9380 0.9375 0.9466 0.9377 | 0.9380 0.9375 0.9466 0.9377
fr | 0.8779 0.8607 0.8717 0.8693 | 0.8436 0.8255 0.8430 0.8378 | 0.3384 0.3728 0.3891 0.3826
hi | 0.8909 0.8695 0.8890 0.8877 | 0.8524 0.8577 0.8394 0.8314 | 0.5151 0.5167 0.5400 0.4647
Seen hr | 0.8986 0.8876 0.8931 0.8950 | 0.8741 0.8527 0.8767 0.8605 | 0.3666 0.3353 0.3952 0.3762
or | 0.6032 0.6584 0.6235 0.6721 | 0.5483 0.4981 0.5873 0.4962 | 0.1338 0.2266 0.2731 0.1948
ru | 0.8614 0.8515 0.8604 0.8578 | 0.8395 0.8286 0.8375 0.8304 | 0.2268 0.2365 0.2369 0.2348
st | 09099 0.8413 09175 0.9117 | 0.8918 0.8484 0.8969 0.8900 | 0.2257 0.1228 0.3048 0.2571
ur | 0.9447 09410 0.9476 0.9408 | 0.9396 0.9424 0.9333 0.9318 | 0.2834 0.2518 0.3534 0.2200
am | - - - - 0.0079 0.2902 0.3282 0.2695 | 0.000  0.1063 0.1017 0.0155
de |- - - - 0.7934 0.7381 0.8047 0.7608 | 0.1986 0.1257 0.2420 0.1048
es | - - - - 0.8511 0.8144 0.8573 0.8265 | 0.2640 0.1913 0.3043 0.1641
fi - - - - 0.8427 0.7993 0.8460 0.8201 | 0.2539 0.1717 0.2688 0.1820
ilo | - - - - 0.5333 0.5356 0.5537 0.4627 | 0.2473 0.2500 0.2922 0.1313
ka | - - - - 0.5860 0.7961 0.8162 0.7872 | 0.0181 0.1207 0.1851 0.1314
ko | - - - - 0.5244 0.7318 0.7792 0.7577 | 0.0026 0.1445 0.1538 0.1262
lij |- - - - 0.3071 0.3684 0.2975 0.3064 | 0.1183 0.1037 0.2172 0.1022
Iv |- - - - 0.8826 0.8468 0.8891 0.8605 | 0.1710 0.1945 0.3140 0.0941
my | - - - - 0.1596 0.1721 0.2975 0.2424 | 0.0000 0.0263 0.0912 0.0552
Unseen | pt | - - - - 0.8535 0.8206 0.8547 0.8312 | 0.2351 0.1104 0.3257 0.0947
ro |- - - - 0.8889 0.8754 0.8963 0.8695 | 0.2116 0.1710 0.2407 0.0537
sn | - - - - - - - - - - - -
so | - - - - 0.4874 0.4870 0.5128 0.5236 | 0.3175 0.1930 0.2759 0.1554
sq - - - 0.8557 0.8319 0.8604 0.8315 | 0.3258 0.2241 0.3604 0.0944
sV | - - - - 0.9059 0.8583 0.9043 0.8850 | 0.1923 0.0546 0.1745 0.0810
sSWo| - - - - 0.7634 0.7429 0.7955 0.7359 | 0.1996 0.0843 0.2402 0.0893
te | - - - - 0.3297 0.5753 0.6440 0.5119 | 0.0000 0.1277 0.1955 0.0514
th |- - - - 0.3531 0.6680 0.6479 0.6302 | 0.0001 0.0049 0.0025 0.0032
uz | - - - - 0.8384 0.7819 0.8360 0.7863 | 0.1377 0.0588 0.1310 0.0130

Table 7: Performance results (F1 scores) on the sim-div language set, which comprises similar languages that
use diverse scripts. The table reports results for three evaluation settings. Seen: languages used during both
pretraining and fine-tuning, Unseen: languages not encountered during training and Zero-Shot: languages evaluated
without any task-specific fine-tuning. Results are provided for four different input types: Orthographic (Ortho), IPA,
Romanized (Rom), and Ciphered (Cip)
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‘ ‘ Monolingual Multilingual Zero-Shot
‘ ‘Ortho IPA Rom Cip Ortho IPA Rom Cip Ortho IPA Rom Cip

de | 0.8716 0.8518 0.8599 0.8622 | 0.8184 0.7924 0.8248 0.8095 | 0.3300 0.2076 0.3288 0.2098
fi | 0.8855 0.8813 0.8850 0.8861 | 0.8618 0.8264 0.8638 0.8436 | 0.3129 0.1859 0.3216 0.2062
ilo | 0.6053 0.6216 0.6881 0.6996 | 0.6757 0.7123 0.6368 0.6549 | 0.4615 0.1965 0.3170 0.2677

Seen | IV | 09284 09205 09232 09230 | 0.8995 0.8736 09006 0.8998 | 0.2784 0.1720 0.2608 0.1711
sn | - - - - - - - - - - - -
so | 0.6111 05648 0.6000 0.5249 | 0.5551 0.5887 0.6577 0.5556 | 0.3891 0.3128 0.3291 0.2731
sw | 0.8481 0.8385 0.8532 0.8481 | 0.8291 0.7981 0.8421 0.8125 | 0.3126 0.1655 0.2427 0.1624
uz | 0.8648 0.8655 0.8665 0.8836 | 0.8621 0.8210 0.8608 0.8314 | 0.8621 0.8210 0.8608 0.8314
am | - - - - 0.2833 0.5560 0.2845 0.5018 | 0.0402 0.0730 0.0429 0.0121
bn | - - - - 0.8269 0.8791 0.9005 0.9430 | 0.0415 0.1208 0.0697 0.0234
ca |- - - - 0.8733 0.8255 0.8750 0.8542 | 0.2548 0.1487 0.2590 0.0972
es | - - - - 0.8518 0.8103 0.8583 0.8377 | 0.2646 0.1242 0.2846 0.0874
fr |- - - - 0.8312 0.7607 0.8294 0.8447 | 0.2633 0.1434 0.2878 0.0946
hi |- - - - 0.7128 0.8210 0.8055 0.7981 | 0.0030 0.0890 0.0910 0.0945
hr | - - - - 0.8531 0.8404 0.8532 0.8495 | 0.2098 0.0930 0.2079  0.0604
ka | - - - - 0.6289 0.8577 0.8103 0.8606 | 0.0591 0.0724 0.1008 0.0488
ko | - - - - 0.5282 0.8297 0.7652 0.8381 | 0.0590 0.0666 0.0559 0.0484
lij |- . . . 0.3319 0.2893 0.3333 0.2979 | 0.1393 0.0836 0.1337 0.0663

Unseen | my | - - - - 02128 0.5263 0.2785 0.5750 | 0.0000 0.0214 0.0566 0.0310
or |- - - - 0.0708 0.4082 03851 0.2339 | 0.0090 0.0137 0.1102 0.1208
pt | - - - - 0.8566 0.8015 0.8558 0.8449 | 0.2773 0.1053 0.2992 0.0836
ro | - - - - 0.8906 0.8548 0.8880 0.8768 | 0.1894 0.1050 0.2112 0.0694
|- . . . 07992 0.7922 0.8132 0.8051 | 0.0377 0.0880 0.1506 0.0762
sq | - - - - 0.8658 0.8120 0.8627 0.8259 | 0.2117 0.1075 0.2447 0.0785
st | - - - - 0.8540 0.8201 0.8790 0.8739 | 0.0243 0.1693 0.2781 0.1292
sv | - - - - 0.9075 0.8484 0.9076 0.8919 | 0.2286 0.0546 0.2230 0.0520
te |- - - - 03278 0.7441 0.5494 0.7632 | 0.0100 0.0619 0.0309 0.0373
th |- - - - 0.5162 0.6841 0.6320 0.6110 | 0.0021 0.0074 0.0089 0.0232
ur | - - - - 0.8906 0.9208 0.9205 0.9220 | 0.0419 0.0138 0.0757 0.0762

Table 8: Performance results (F1 scores) on the dissim-same language set, which comprises typologically dissimilar
languages that share the same script. The table reports results for three evaluation settings. Seen: languages
used during both pretraining and fine-tuning, Unseen: languages not encountered during training and Zero-Shot:
languages evaluated without any task-specific fine-tuning. Results are provided for four different input types:
Orthographic (Ortho), IPA, Romanized (Rom), and Ciphered (Cip)
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‘ ‘ Monolingual Multilingual
| | Ortho IPA Rom Cip |Ortho IPA  Rom  Cip

am | 04796 0.4615 0.5388 0.5203 | 0.4941 0.5403 0.5760 0.5364
bn | 0.9584 0.9100 0.9524 0.9506 | 0.9579 0.9488 0.9552 0.9479
fr | 0.8779 0.8607 0.8717 0.8693 | 0.8528 0.8265 0.8487 0.8432
Seen ka | 0.8866 0.8873 0.8850 0.8837 | 0.8647 0.8607 0.8619 0.8598
ko | 0.8611 0.8576 0.8623 0.8628 | 0.7699 0.8347 0.8382 0.8333
my | 0.5401 0.5852 0.5617 0.5188 | 0.5259 0.5738 0.5164 0.5477
te | 0.7880 0.7983 0.7822 0.7922 | 0.7532 0.7529 0.7528 0.7734
th | 0.7052 0.6880 0.6656 0.6726 | 0.7031 0.6813 0.6810 0.6727
ca | - - - - 0.8797 0.8503 0.8803 0.8513
de | - - - - 0.8088 0.7555 0.8134 0.7855
es | - - - - 0.8615 0.8315 0.8687 0.8352
fi - - - - 0.8504 0.8188 0.8532 0.8311
hi | - - - - 0.6585 0.8223 0.8472 0.7939
hr | - - - - 0.8642 0.8381 0.8652 0.8428
ilo | - - - - 0.5272  0.5726 0.5122 0.4516
lij |- - - - 0.3465 0.3243 0.3793 0.2833
v |- - - - 0.8948 0.8544 0.891 0.8762
or |- - - - 0.3840 0.3931 0.4373 0.2913
Unseen | pt | - - - - 0.8609 0.8245 0.8630 0.8437
ro | - - - - 0.8940 0.8746 0.8979 0.8788
ru | - - - - 0.6753 0.7941 0.8207 0.8049
sn | - - - - - - - -
so | - - - - 0.6140 0.4893 0.5462 0.5299
sq | - - - - 0.8720 0.8395 0.8533 0.8389
sr | - - - - 0.6697 0.8405 0.8826 0.8735
sv | - - - - 09117 0.8641 0.9119 0.8920
SW | - - - - 0.7968 0.7527 0.7855 0.7536
ur | - - - - 0.6974 0.9072 0.9243 0.9226
uz | - - - - 0.8317 0.8004 0.8300 0.8121

Table 9: Performance results (F1 scores) on the dissim-div language set, which comprises typologically dissimilar
languages that utilize diverse scripts. The table reports results for two evaluation settings. Seen: languages
used during both pretraining and fine-tuning and Unseen: languages not encountered during training. Zero-shot
evaluation was omitted due to the minimal shared representations among dissim-div languages, which limits the
effectiveness of zero-shot transfer. Results are provided for four different input types: Orthographic (Ortho), IPA,
Romanized (Rom), and Ciphered (Cip)
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