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Abstract
Accurate, resource-efficient localization and tracking enables
numerous location-aware services in next-generation wireless
networks. However, existing machine learning-based meth-
ods often require large labeled datasets while overlooking
spectrum and energy efficiencies. To fill this gap, we pro-
pose LocDreamer, a world model (WM)-based framework
for joint target tracking and scheduling of localization an-
chors. LocDreamer learns a WM that captures the latent rep-
resentation of the target motion and localization environ-
ment, thereby generating synthetic measurements to imag-
ine arbitrary anchor deployments. These measurements en-
able imagination-driven training of both the tracking model
and the reinforcement learning (RL)-based anchor scheduler
that activates only the most informative anchors, which sig-
nificantly reduce energy and signaling costs while preserv-
ing high tracking accuracy. Experiments on a real-world in-
door dataset demonstrate that LocDreamer substantially im-
proves data efficiency and generalization, outperforming con-
ventional Bayesian filter with random scheduling by 37% in
tracking accuracy, and achieving 86% of the accuracy of same
model trained directly on real data.

Introduction
Location awareness has become a cornerstone of next-
generation wireless systems, supporting applications from
smart buildings and industrial automation to integrated sens-
ing and communications (ISAC) (Liu et al. 2022; Trevlakis
et al. 2023; Yang et al. 2024). Wireless localization esti-
mates a target’s position by utilizing geometry-based mea-
surements, e.g., distance, from multiple anchors at a single
time instance, and tracking extends this across consecutive
timesteps by considering temporal dynamics. Achieving ac-
curate localization and tracking depends on the quality of
radio-signal measurements, which often degrade under mul-
tipath and non-line-of-sight (NLoS) propagation in dynamic,
complex indoor environments. Extensive research has there-
fore focused on identifying and mitigating these effects from
the received signals to improve tracking accuracy (Nkrow
et al. 2024; Wang et al. 2024). Nevertheless, they typically
assume that all anchors are simultaneously active to provide
measurements, leading to increased energy consumption,
spectrum usage, and computational overhead. In practical

wireless systems, activating all anchors at every timestep is
infeasible due to limited measurement opportunities, band-
width budgets and energy constraints. This motivates the
need for joint tracking and anchor scheduling1–dynamically
selecting a subset of anchors to balance resource consump-
tion and tracking accuracy (Win et al. 2018; Wang, Conti,
and Win 2019; Hajiakhondi-Meybodi et al. 2022).

To achieve accurate tracking and select informative an-
chors, model-based frameworks describe the tracking sys-
tem through mathematical models, e.g., Bayesian filters, and
employ heuristic or optimization-based anchor scheduling
policies (Albaidhani, Morell, and Vicario 2019; Zhao et al.
2019; Fan et al. 2023; Oh et al. 2023). However, these static
models are designed based on handcrafted assumptions that
only offer interpretability and generalization under idealized
conditions. Consequently, tracking accuracy degrades and
the scheduling strategies fail to adapt when the environment
deviates from the assumed models. Moreover, their schedul-
ing decisions still require all anchors to be active for mea-
surements, e.g., measurements from anchors predicted to be
uninformative will be discarded, and this post-processing
scheme does not reduce the signaling overhead.

Alternatively, machine learning-based frameworks can di-
rectly learn to infer target position and scheduling poli-
cies from data using neural networks (Hajiakhondi-Meybodi
et al. 2022; Gómez-Vega, Win, and Conti 2023b,a; Kim
et al. 2025), without relying on fixed parametric mathe-
matical models. Reinforcement learning (RL), in particu-
lar, has emerged as a promising approach that can flexi-
bly learn strategies from collected interaction data without
explicit modeling of complex environments (Hajiakhondi-
Meybodi et al. 2022; Kim et al. 2025). While these meth-
ods achieve high accuracy in dynamic and complex environ-
ments, they rely on extensive labeled training data to cap-
ture environment-specific features. Consequently, they ex-
hibit poor generalization when anchor configurations or en-
vironmental conditions change and new measurements are
unavailable (Kim et al. 2025). How to learn the tracking and
scheduling models that generalize to unseen dynamic and
complex environments without additional measurements re-

1Also referred to as node selection/activation in the literature.



mains an open challenge.
Recent advances in world models (WMs) offer a pow-

erful solution by learning compact latent representations
of the environment as well as its dynamics, enabling an
agent to imagine future trajectories and optimize strate-
gies without real-world interactions (Ha and Schmidhuber
2018; Hafner et al. 2025). Comparing to model-based RL
that learns the dynamics in the observable states (Moham-
madi et al. 2018; Li et al. 2020), WMs operate in a com-
pact latent space, making them particularly effective in high-
dimensional (Ha and Schmidhuber 2018; Hafner et al. 2025)
or complex-structured (Lee et al. 2019) environments. By
interacting with latent dynamics rather than real-world envi-
ronments, WMs significantly improve sample efficiency and
have achieved remarkable success in data-efficient control
tasks where direct interaction with environments is expen-
sive or unsafe, e.g., autonomous driving (Tu et al. 2025), but
its potential remains largely untapped in the field of wireless
localization and tracking.

In this paper, we introduce LocDreamer, a WM-based
learning framework for joint tracking and anchor schedul-
ing to achieve high tracking accuracy and resource efficiency
in dynamic indoor environments, while enabling effective
adaptation to new environments without additional measure-
ments. Our contributions are summarized as follows:

• Joint tracking and scheduling based on WM: We for-
mulate joint tracking and anchor scheduling as a unified
maximum likelihood estimation problem based on WM.
Specifically, the problem jointly optimizes 1) a WM that
learns the most likely dynamics in localization system to
accurately track the target, and 2) an anchor scheduling
policy that selects the most informative anchors, both us-
ing measurements generated by the WM.

• Imagination-driven learning using WM: We design
the learning framework, LocDreamer, to train the WM
and the scheduling policy for joint tracking and anchor
scheduling. The WM is first pre-trained using data from a
well-measured source environment to learn the dynamics
of the localization system. It then imagines the dynamics
and generates synthetic measurements for unseen anchor
configurations, enabling self-supervised learning of joint
tracking and scheduling without additional data collec-
tion.

• Evaluations using real-world dataset: Through ex-
tensive experiments, we demonstrate that LocDreamer
generalizes well to unmeasured environments with new
anchor configurations without any additional measure-
ments. The imagined WM and scheduling policy out-
perform model–based tracking with random scheduling
strategy by 37%, while achieving 86% of the tracking
accuracy of the same WM trained directly on real-world
data.

System Model
Tracking and Scheduling Models
We consider an indoor tracking scenario in which a target
moves within a two-dimensional space M ⊂ R2, covered

by a set of anchors A = {1, · · · , A} , A ≥ 3 at fixed
known positions pk =

[
xk, yk

]
∈ M, k ∈ A. At each

discrete time step t ∈ {1, · · · , T}, the target initiates rang-
ing requests to a selected subset of anchors Kt ⊆ A with
|Kt| = Kt, 3 ≤ Kt ≤ A, and receives corresponding dis-
tance measurements dt =

[
dkt

]
k∈Kt

∈ RKt from those Kt

anchors. The measured distance dkt from each individual an-
chor is modeled as

dkt =
∥∥pt − pk

∥∥+ nk
t , (1)

where pt = [xt, yt] ∈ M is the target position and nk
t

represents measurement noise.
Before each ranging request, the anchor scheduling model

determines which set of anchors Kt should be activated for
measurements by outputting a binary scheduling policy vec-
tor αt =

[
α1
t , · · · , αA

t

]
∈ {0, 1}A, where αk

t = 1 if an-
chor k is activated and αk

t = 0 otherwise. The active set is
therefore Kt =

{
k |αk

t = 1
}

with
∑A

k=1 α
k
t = Kt. Since

distance measurements dt can be noisy and erroneous due
to multipath and NLoS propagation conditions (Wang et al.
2024), finding the optimal set of anchors Kt can improve
both tracking accuracy and resource efficiency.

Unified Objective for Joint Tracking and
Scheduling
The goal is to maximize tracking accuracy subject to the
constraint of scheduling Kt anchors per timestep. In clas-
sical supervised-learning based tracking, this is equivalent
to minimizing the position estimation error between the pre-
dicted and ground-truth positions. Since we do not assume
access to labeled ground truth positions, we instead maxi-
mize the marginal likelihood of distance measurements as a
surrogate for tracking accuracy

max
θ,α1:T

log pθ(d1:T |α1:T )

s.t.
A∑

k=1

αk
t = Kt, ∀t,

(2)

which measures how well pθ explains the observed measure-
ments under the scheduled anchors. Intuitively, the anchor
scheduling policy is optimized to maximize this likelihood,
thereby favoring anchors that yield more informative and ac-
curate measurements.

The marginal likelihood of the measurements dt given an-
chor selections αt in (2) is linked to the tracking problem
through the latent target state defined as zt ≜ [pt, v

x
t , v

y
t ] ∈

RZ=4, which also includes the velocities at x and y direc-
tions as kinematic states. The tracking process is conven-
tionally described as a discrete-time continuous-value state
space model (SSM) characterized by the following state
transition and observation functions

zt ∼ fθz (zt−1) , zt ∈ RZ , (3a)

dt ∼ gθd (zt, αt) , dt ∈ RKt . (3b)

where the target state zt evolves following the first-order
Markovian assumption and current distance measurement dt
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Figure 1: Illustration of the proposed LocDreamer.

is generated from the current latent state zt and selected an-
chors αt. Applying the above, the marginal likelihood in (2)
can be factorized as
logpθ(d1:T |α1:T )

= log

∫
pθ(d1:T , z1:T |α1:T ) dz1:T

= log

∫ T∏
t=1

gθd(dt | zt, αt) fθz(zt | zt−1) dz1:T ,

(4)

where the scheduling action αt affects the measurement
likelihood, which in turn influences position inference.
However, conventional SSMs with simplified first-order as-
sumptions cannot capture the complex hidden dynamics
of the tracking system. To address this issue, deep SSMs
(DSSMs) (Girin et al. 2021; Gedon et al. 2021; Wang et al.
2025b) have been developed to replace SSM functions with
neural networks with an additional recurrence hidden state
ht for improved expressivity. As a result, we rewrite (4) as2

log pθ(d1:T |α1:T )

= log

∫ T∏
t=1

gθd(dt | zt, ht,αt) fθz(zt | zt−1,ht) dz1:T .

(5)
This architecture uses the latent state zt and the determinis-
tic hidden state ht to represent the system at each timestep
t. Rolling out the generative model yields imagined trajecto-
ries, analogous to the imagination process observed in WM-
based learning. From imagination, we reconstruct measure-
ments for arbitrary anchor deployments, enabling training of
both the DSSM tracker and the scheduling policy in unseen
environments without additional real data. An overview of
the proposed imagination-based training framework, Loc-
Dreamer, is shown in Fig. 1. We detail the DSSM and the
imagination-driven training in the next section.

2The recurrence hidden state ht is a deterministic function of
other latent variables and is marginalized for clarity of presentation
throughout the paper.

zt−1 zt zt+1

ht−1 ht ht+1

dt−1 dt dt+1

αt−1 αt αt+1

Figure 2: Graphical model of LocDreamer. Diamond and
circle represent deterministic and stochastic variables. Ar-
rows indicate conditional dependencies. Solid and dashed
lines represent the DSSM modeling the tracking system and
the scheduling decision making. Green, red and blue high-
light DSSM, observation and anchor scheduler components,
respectively.

Proposed LocDreamer
To address the joint tracking and anchor scheduling prob-
lem formulated in (2), we propose LocDreamer, a WM-
based learning framework that integrates DSSM for proba-
bilistic tracking and imagination-driven RL scheduler train-
ing within a single framework. The DSSM learns the la-
tent/hidden dynamics of the target and the environment,
while the RL agent learns optimal scheduling policies. This
imagination capability allows the DSSM to be first pre-
trained in a source environment, and then used to generate
synthetic measurements for unseen anchor configurations in
new environments. Using the generated measurements, Loc-
Dreamer self-supervises the training of both the DSSM and
the RL scheduler, without requiring additional real-world
measurements in the new environments. Since the over-
all learning objective is to maximize the marginal likeli-
hood in (2), DSSM approximates the likelihood of the mea-
surements from scheduled anchors, and the RL scheduler
learns to select anchors that provide the highest-likelihood
measurement in DSSM, thus improving tracking accuracy
while reducing resource consumption. The graphical model
of LocDreamer is shown in Fig. 2.

Deep State Space Model in LocDreamer
The DSSM backbone (Girin et al. 2021; Gedon et al. 2021;
Wang et al. 2025b) of our LocDreamer integrates stochas-
tic recurrent latent dynamics, physics-guided modeling and
variational inference to learn the tracking dynamics. It con-
sists of the following components: a sequence model to cap-
ture temporal dependencies of the hidden states; a dynamic
model to predict the prior latent state in the next step; an en-
coder model to infer the posterior latent state from measure-
ments; and a decoder model to reconstruct measurements



LELBO=

T∑
t=1

{
Eqϕ

[∑
k∈Kt

log gθd

(
dkt | z

posterior
t , ht, p

k
)]

︸ ︷︷ ︸
Lrecon

t

−KL
(
qϕ

(
zposterior
t | zposterior

t−1 , ht, o(αt)
)∥∥∥ fθz(zprior

t | zposterior
t−1 , ht

))
︸ ︷︷ ︸

Ldyn
t

}
.

(6)

from the latent state. Their structures are detailed as follows.

Sequence Model We use recurrent neural network (RNN)
as the sequence model that acts as the memory of DSSM.
The RNN deterministic hidden state ht ∈ RH evolves as

ht = rθh

(
zposterior
t−1 , ht−1

)
, (7)

where rθh (·) is a recurrent function parametrized by θh, and
ht depends on both the past posterior estimation of the latent
state zt−1 and the past RNN hidden state ht−1.

Dynamic Model We model the target’s prior latent state
zprior
t as a Gaussian-distributed random variable

zprior
t ∼ N

(
µprior

z,t , diag
{(

σprior
z,t

)2
})

, (8)

with mean vector µprior
z,t and a diagonal covariance matrix

diag
{(

σprior
z,t

)2
}

. These parameters are generated by the

target dynamic model that consists of a physics-based ap-
proximation and a learning-based correction as[
µprior

z,t , σprior
z,t

]
= fθz

(
zposterior
t−1 , ht

)
= f phy

(
zposterior
t−1

)
+ MLPθz

(
zposterior
t−1 , ht

)
,

(9)
where f phy (·) is an arbitrary motion model (Rong Li and
Jilkov 2003) and MLPθz (·) is a multi-layer perceptron
(MLP) parametrized by θz that learns a data-driven residual
compensating model discrepancies.

Encoder Model At each timestep t, when encoding the
measurements from either real or imagined environments,
the model receives pairs of distance measurement dkt and its
corresponding anchor position pk as observations o(αt) ≜{(

dkt , p
k
)
|αk

t = 1, k = 1, . . . , A
}

from scheduling action
αt. Similarly, we model the target posterior state zposterior

t as
a Gaussian-distributed random variable

zposterior
t ∼ N

(
µposterior

z,t , diag
{(

σposterior
z,t

)2
})

. (10)

And we apply variational Bayesian inference (Kingma and
Welling 2022) to approximate the true posterior as[

µposterior
z,t , σposterior

z,t

]
= qϕ

(
zposterior
t−1 , ht, o(αt)

)
, (11)

where qϕ (·) is the variational inference function parameter-
ized by ϕ. We implement qϕ (·) following the set transformer
encoder approach (Lee et al. 2019) to ensure permutation in-
variance with respect to the number and order of active an-
chors in the observations o(αt).

Decoder Model The decoder model reconstructs distance
measurements by embedding physics-based distance model
in (1) with a learnable noise model. The reconstructed dis-
tance measurement d̂kt of the k-th anchor is modeled as a
Gaussian-distributed random variable as

d̂kt ∼ N
(
µk
d,t,

(
σk
d,t

)2)
, ∀k ∈ Kt, (12)

whose parameters are inferred based on the posterior esti-
mation of the latent state as

µk
d,t = ∥p̃posterior

t − pk∥, ∀k ∈ Kt, (13a)

σk
d,t = MLPθd

(
z̃posterior
t , ht, p

k
)
, ∀k ∈ Kt. (13b)

Here, (13a) uses physics-based distance model in (1)
to compute the mean of the reconstructed distance
and (13b) uses a MLP parameterized by θd to learn the
measurement noise with reparameterized sample z̃posterior

t

from zposterior
t . We write the above reconstruction process

in (12), (13a) and (13b) as d̂kt ∼ gθd

(
zposterior
t , ht, p

k
)

.

Loss of DSSM Note that direct maximization of (2) is in-
tractable because it requires the integration over all possi-
ble latent state sequences z1:T in (5). Therefore, to train the
DSSM, we maximize the variational evidence lower bound
(ELBO) of (2) in (6) as an alternative objective that can be
computed based on the DSSM components in (7), (9), (11)
and (13) (Girin et al. 2021; Wang et al. 2025b). Here,
the reconstruction loss Lrecon

t computes the conditional log-
likelihood of the measurements, encouraging the model to
reproduce realistic distance distributions, while the dynamic
loss Ldyn

t regularizes posterior approximation from prior dy-
namics, enabling coherent imagination.

RL-Based Anchor Scheduling in LocDreamer
With the learned DSSM that models the tracking system dy-
namics, we can now optimize the anchor scheduling policy
to select informative anchors that maximize the measure-
ment likelihood. We use an actor-critic (AC) model to train
our scheduling policy entirely based on the imagined mea-
surements generated by the DSSM.

Actor Model The actor is the stochastic scheduling policy
that makes the actor selections αt based on the current latent
and hidden state of the DSSM

αt ∼ πϕα(st) , ∀t, (14)

where st =
(
zprior
t , ht

)
is the state input of the actor at

timestep t and ϕα is the parameter of the actor model.



Critic Model The critic learns to evaluate the expected re-
ward to guide the actor based on the rewards. The reward
Rt = Lrecon

t in (6) is designed as the reconstruction loss as
the policy is rewarded for selecting anchors that yield high
measurement likelihood, i.e., anchors that preserve tracking
accuracy. The critic predicts the value over the future dis-
counted rewards as

VϕV
(st) = E

[
T∑

τ=t

γτ−tRτ

]
, (15)

where ϕV is the parameter of the value function, and γ ∈
(0, 1) is the discount factor.

Loss of Actor Critic The actor learns to maximize the re-
wards with each anchor scheduling strategy

Lactor
t = −E∼πϕα ,DSSM[log πϕα (αt | st)Adv (st, αt)],

(16)
where minimizing Lactor

t is equivalent to maximizing the ex-
pected return under the policy parameterized by ϕα when
interacting with the learned DSSM, and Adv (st, αt) =∑T

τ=t γ
τ−tRτ − VϕV

(st) is the advantage function repre-
senting the advantage of taking action αt in state st. The
critic learns to evaluate the value by minimizing the error
between the predicted value and observed return as

Lcritic
t = E∼πϕα ,DSSM

(
VϕV

(st)−
T∑

τ=t

γτ−tRτ

)2

. (17)

The above losses are then used to update the actor and critic
networks via gradient descent.

Proposed LocDreamer Learning
The overall training procedure of LocDreamer consists of
two stages: DSSM pre-training and WM imagination-based
joint training of DSSM and scheduling policy, as illustrated
in Algorithm 1. In the first stage, the DSSM is pre-trained
on a source environment with sufficient real measurements
from a set of anchors R ⊈ A, assuming all anchors in R are
always providing measurements, i.e., αt = 1, ∀t. In each
pre-training epoch, the model first initalizes the latent and
hidden states, zposterior

0 and h1, and processes the real mea-
surements {drt}r∈R sequentially over T timesteps. At each
timestep t, the model first predicts the prior latent state zprior

t

using (9), then infers the posterior latent state zposterior
t us-

ing (11), reconstructs the distance measurements {d̂rt}r∈R
using (13), and finally updates the RNN hidden state ht+1

using (7). At the end of each timestep, the model computes
the reconstruction loss Lrecon

t and dynamic loss Ldyn
t in (6)

and accumulates them over T timesteps. After processing
all timesteps in the epoch, the model computes the overall
ELBO loss LELBO in (6) and uses gradient descent to update
the DSSM parameters. The DSSM pre-training repeats for
Edssm epochs.

Once trained, the DSSM can model the target dynamics
and generate realistic distance measurements for arbitrary
anchor deployments. In detail, in each imagination epoch,

Algorithm 1: Proposed LocDreamer Algorithm
Input : DSSM training epoch Edssm; LocDreamer

imagination and training epoch Eimagine;
Output: Trained LocDreamer for tracking and

anchor scheduling;
1 Initialize LocDreamer;
/* DSSM Training Using Real Data R

*/
2 for e = 1, · · · , Edssm do
3 Initialize zposterior

0 and h1;
4 for t = 1, · · · , T do
5 zprior

t ∼ fθz

(
zposterior
t−1 , ht

)
;

6 zposterior
t ∼
qϕ

(
zposterior
t−1 , ht, {(dkt , pk) | k ∈ R}

)
;

7 d̂kt ∼ gθd

(
zposterior
t , ht, p

k
)

for k ∈ R;

8 ht+1 = rθh

(
zposterior
t , ht

)
;

9 Compute Ldyn
t from zprior

t , zposterior
t ;

10 Compute Lrecon
t from dkt , d̂

k
t for k ∈ R;

11 Train θz, θh, θd, ϕ of DSSM;
/* LocDreamer Imagination and

Training for A */
12 for e = 1, · · · , Eimagine do
13 Initialize zposterior

0 and h1;
14 for t = 1, · · · , T do
15 zprior

t ∼ fθz

(
zposterior
t−1 , ht

)
;

16 dkt ∼ gθd

(
zprior
t , ht, p

k
)

for k ∈ A;

17 αt ∼ πθα

(
zprior
t , ht

)
∈ RA;

18 zposterior
t ∼ qϕ

(
zposterior
t−1 , ht, o(αt)

)
;

19 d̂kt ∼ gθd

(
zposterior
t , ht, p

k
)

for k ∈ R ∪ Kt;

20 ht+1 = rθh

(
zposterior
t , ht

)
;

21 Compute Ldyn
t from zprior

t , zposterior
t ;

22 Compute Lrecon
t from dkt and d̂kt for

k ∈ R ∪ Kt;
23 Compute AC loss from Lrecon

t ;
24 Finetune θz, θh, θd, ϕ of DSSM and train

θα, ϕV of AC for A;

the DSSM predicts future dynamics considering the imag-
ined anchors in A without measurements but only with their
positions {pk}k∈A known. At each timestep t, the DSSM
predicts future dynamics by running learned (7) and (9)
forward, samples imagined measurements from the learned
generative model (13), and select the anchors using (14) ac-
cordingly. This closed-loop imagination facilitates training
entirely inside its dream, allowing LocDreamer to general-
ize to unseen scenarios without actual interaction with the



anchors in A. After each epoch, the parameters of the DSSM
and AC are updated based on their losses. The training for
the imagined anchors is repeated for Eimagine epochs.

Experiment Results and Discussions
Experiment Setup
We evaluate the performance of the proposed framework us-
ing the indoor Ultra-wideband (UWB) positioning and posi-
tion tracking dataset (Bregar 2023), which uses commercial
DecaWave DW1000 UWB modules as measurement nodes
operating across frequencies from 3494.4 MHz to 6489.6
MHz with bandwidths of 499.2 MHz or 900 MHz. Specifi-
cally, we use Environment 0, a residential house floor (9.18
m × 12.06 m) with brick inside and outside walls, and a
total of 126410 measurements were collected from 8 fixed
anchors at 85 positions.

To mimic a data-scarce deployment scenario, we use real
measurements from three anchors to bootstrap the model,
and then use the trained model to imagine for unseen set
of five new anchors A with A = 5. The tracking model
and scheduling policy are trained on these imagined mea-
surements, targeting a fixed minimum number of Kt =
3,∀t anchors. Tracking performance is then evaluated us-
ing real measurements from the unseen anchors A, testing
the framework’s generalization to new anchor deployments
when trained using imagined data.

All experiments are conducted on a single NVIDIA RTX
3060 Ti GPU and hyperparameters of the model is summa-
rized in Table 1. For comparison, we assess the tracking per-

Table 1: Hyperparameter Setting

Parameter Symbol Value
Environment

Total number of anchors A 5
Scheduled number of anchors Kt 3

DSSM
DSSM Training Epoch Edssm 50

Batch size B 32
Sequence length T 32

RNN state dimension H 50
RNN layers - 2

Learning rate - 1e-3
Optimizer - Adam
Scheduler - Cosine annealing

Weight decay - 1e-3
AC

Imagination Epoch Eimagine 300
Learning rate - 1e-3

Optimizer - Adam
Scheduler - Cosine annealing

Discount factor γ 0.99

formances of the following methods and strategies:

1. EKF - random scheduling: Extended Kalman filter (EKF)
with Kt = 3 anchors randomly selected at each timestep.
A constant velocity transition model (Wang et al. 2025a)
is adopted and the standard deviation of acceleration
noise for the process noise covariance matrix Q ∈ R4×4

Table 2: Tracking Errors (m) for Different Algorithms

Algorithms MAE RMSE 50th 90th

EKF - random scheduling 1.05 1.67 0.71 1.83
EKF - all anchors 0.92 1.50 0.63 1.41

DSSM - all anchors (real) 0.57 0.64 0.54 0.96
LocDreamer - random scheduling 1.07 1.43 0.82 2.05

LocDreamer - all anchors (imagined) 0.85 1.07 0.68 1.60
LocDreamer - scheduling 0.66 0.77 0.60 1.18

is set to σacc = 0.2m/s2. The standard deviation of mea-
surement noise for the measurement noise covariance
matrix R ∈ R4×4 is set to σn = 1m.

2. EKF - all anchors: EKF with the same configuration but
using all anchors A at each timestep.

3. DSSM - all anchors (real): Trained with real measure-
ments using all anchors A.

4. LocDreamer - random scheduling: Trained with imag-
ined data and it randomly selects Kt anchors instead of
using the scheduling policy from learned AC.

5. LocDreamer - all anchors (imagined): Trained with
imagined data using all anchors A.

6. LocDreamer - scheduling: Trained with imagined data
and scheduling from learned AC.

Tracking Performance
We summarize the tracking performances in terms of mean
absolute error (MAE), root mean squared error (RMSE),
and 50th/90th percentile error for all methods in Table 2.
EKF and LocDreamer achieve similar tracking performance
with a random scheduling strategy, achieving a MAE around
1m. By using all anchors instead of random scheduling,
the tracking performances increase in all metrics for both
EKF and LocDreamer, demonstrating the additional robust-
ness with abundant measurements and validating that Loc-
Dreamer can generalize to unseen anchors without requiring
real measurements. The proposed LocDreamer - scheduling
further improves accuracy while preserving resource effi-
ciency by actively scheduling most informative anchors with
policies learned from imagined data, demonstrating that the
imagined measurements from LocDreamer are sufficiently
realistic to train both the tracking model and the schedul-
ing policy. And it approaches the performance of DSSM
using all anchors trained with real measurements. We also
show the estimated trajectories of these methods in Fig. 3.
These results demonstrate that LocDreamer can learn latent
dynamics and enable imagination-driven learning, leading
to efficient and accurate tracking in unseen anchor deploy-
ments without real measurements.

We also plot an anchor scheduling heatmap across differ-
ent locations in Fig. 4. It can be observed that the model
consistently prioritizes anchors 1 and 4, which provide fa-
vorable geometric diversity and lower geometrical dilution
of precision (GDOP) (Horn 2020). This confirms that the
learned scheduling policy discovers physically meaningful
anchor combinations directly from imagination-driven re-
wards. The learning curve of tracking performance against



Figure 3: Estimated trajectories with different methods.

Figure 4: An anchor scheduling heatmap over spatial loca-
tions where different color represents different selected an-
chor sets Kt.

training epochs is shown in Fig. 5. We set Eimagine = 1000
to test the LocDreamer’s sensitivity to overfitting. The pro-
posed LocDreamer - scheduling quickly converges at around
300 epochs, outperforming baseline methods.

Limitations and Future Work
Our current model still assumes real data from a minimal
set of 3 anchors to bootstrap training, and the quality of
these real data affects the training and imagination perfor-

Figure 5: Validation loss and test MAE of LocDreamer -
scheduling versus imagination epochs Eimagine.

mance. Reducing the impact or removing this assumption is
an important direction for future work. Moreover, the current
number of scheduled anchors is fixed at Kt = 3, extend-
ing the scheduler to dynamically adapt Kt to channel con-
ditions and desired accuracy-resource tradeoffs is another
promising direction. The resource efficiency/usage can be
modeled in a more sophisticated way for quantitative eval-
uation. Finally, further validation on large-scale and more
complex environments is a promising next step. In these
scenarios, exhaustive search becomes computationally in-
tractable, and the proposed imagination-driven framework
could demonstrate clear advantages in scalability, data effi-
ciency and cross-environment generalization.

Conclusion
This paper introduces LocDreamer, a WM-based learning
framework for joint indoor tracking and anchor scheduling.
By learning a DSSM that captures target dynamics and en-
vironment behavior, the proposed approach can imagine re-
alistic measurements for unseen anchor deployments. These
imagined measurements enable efficient training of both the
tracking model and a RL-based scheduling policy, without
requiring additional data from site surveys. Experiments on
a public UWB dataset demonstrate that the proposed frame-
work achieves superior accuracy using only a few anchors
for bootstrapping, outperforms random scheduling and ap-
proaches the performance of models trained with full real
measurements. Future work will explore adaptive anchor se-
lection with variable anchor budgets and self-bootstrapping
that requires no real data initialization to further enhance ro-
bustness and scalability toward AI-native 6G networks.
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