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Abstract

Dynamic neural radiance fields (dynamic NeRFs) have
achieved remarkable successes in synthesizing novel views
for 3D dynamic scenes. Traditional approaches typically
necessitate full video sequences for the training phase prior
to the synthesis of new views, akin to replaying a record-
ing of a dynamic 3D event. In contrast, on-the-fly training
allows for the immediate processing and rendering of dy-
namic scenes without the need for pre-training on full se-
quences, offering a more flexible and time-efficient solution
for dynamic scene rendering tasks. In this paper, we pro-
pose a highly efficient on-the-fly training algorithm for dy-
namic NeRFs, named OD-NeRF. To accelerate the train-
ing process, our method minimizes the training required
for the model at each frame by using: 1) a NeRF model
conditioned on multi-view projected colors, which exhibits
superior generalization across multiple frames with mini-
mal training ,and 2) a transition and update algorithm that
leverages the occupancy grid from the last frame to sample
efficiently at the current frame. Our algorithm can achieve
an interactive training speed of 10FPS on synthetic dynamic
scenes on-the-fly, and a 3×-9× training speed-up compared
to the state-of-the-art on-the-fly NeRF on real-world dy-
namic scenes.

1. Introduction
Neural radiance fields (NeRF) [14] have recently emerged
as a new 3D volumetric representation capable of synthe-
sizing photo-realistic novel views from multi-view images.
Many dynamic NeRFs are also proposed to reconstruct
scenes with moving or deforming objects, using space-time
4D [10, 18] or explicit deformation [17, 20] representa-
tions. Nonetheless, a common limitation among these dy-
namic NeRF models is their focus on post-event reconstruc-
tion from full training video sequences, thereby restricting
their use to replaying recorded dynamic event rather than
enabling real-time rendering during the event itself.

StreamRF[8] diverges from these conventional joint
training approaches by proposing an on-the-fly dynamic

scene reconstruction algorithm; it trains the NeRF model
concurrently with the ongoing capture of input frames. On-
the-fly training of a dynamic NeRF fundamentally differs
from the conventional post-event training approach. While
post-event training aims to fit a 4D space-time radiance
field using the complete training videos, on-the-fly train-
ing adapts the NeRF to represent the current radiance field,
informed by both the previous reconstruction and the con-
currently acquired video frames. As the dynamic event pro-
gresses, the model is updated with new frame information.
Avoiding retraining from scratch for each frame, which
would be prohibitively time-consuming, our approach fo-
cuses on exploiting the continuity inherent in the radiance
fields of successive frames by using 1) a NeRF representa-
tion conditioned on multi-view projected colors for cross-
frame generalizability, and 2) a transition and update to the
occupancy grid used for efficient sampling.

Our proposed NeRF representation conditioned on
multi-view projected colors is designed for better general-
ization across consecutive frames during on-the-fly training.
Most of the existing dynamic NeRFs explicitly represent the
motion using a temporal input dimension [10, 18] or a tem-
poral deformation field [17, 20]. Due to the lack of direct
supervision or known dynamics, these models with tempo-
ral input often extrapolate poorly to the unseen time and
require extensive optimization for each new frame. In lieu
of a temporal input, our model takes the projected color as
input together with the spatial position. Since the projected
color of a corresponding 3D point mostly remains constant
in consecutive frames, the NeRF model generalizes better
across frames even if the spatial position of the 3D point
has change. Consequently, our proposed model has excel-
lent temporal extrapolation capability and requires minimal
optimization iterations per frame, leading to a considerable
training acceleration.

Moreover, we introduce a method of transiting and up-
dating the occupancy grid used for efficient point sampling.
Since most of the 3D scenes are dominated with empty
space, the occupancy grid has been used in static NeRFs
[4, 15] to avoid redundant point sampling. However, this
occupancy grid cannot be easily applied to on-the-fly train-



ing, as the occupancy at each incoming frame is always
unknown. To tailor the occupancy grid to on-the-fly dy-
namic training, we treat it as a probability function reflect-
ing the likelihood of the 3D voxels occupied by any entity.
To model the motions in the scene, a transition function is
applied to occupancy probability at the start of each frame
optimization and later updated with new observations. The
updated occupancy grid can then be used to sample points
only in the occupied areas anytime during the on-the-fly
training.

We evaluate our method on synthetic D-NeRF dataset
[20], real-world MeetRoom [8], and DyNeRF [10] dataset.
When trained and rendered on-the-fly, our method achieves
substantial acceleration compared to the state-of-the-art al-
gorithms while maintaining a comparable rendering qual-
ity. Particularly, our method can train 10 frames per sec-
ond (FPS) on the synthetic D-NeRF dataset. We summarize
our contributions as follows: 1) we propose a projected
color-guided dynamic NeRF, facilitating efficient on-the-fly
training with its temporal generalization ability. 2) We in-
troduce a transition and update algorithm of occupancy grid
designed for on-the-fly point sampling. 3) We achieve 10×
on-the-fly training and rendering acceleration in synthetic
scenes and 3×-9× acceleration in real-world scenes com-
pared to the state-of-the-art on-the-fly models.

2. Related Works

2.1. Accelerated Dynamic Neural Radiance Fields

In the area of Neural Radiance Fields (NeRFs), the initial
achievements in representing static 3D scenes [14, 27, 33]
have catalyzed many works [10, 17, 20, 31] directed to-
wards adapting NeRFs for dynamic environments. Simi-
lar to the development of early static NeRF applications,
these dynamic models typically require extensive training
time for each scene, posing a significant challenge in effi-
ciency.

Efforts to enhance training efficiency for dynamic
NeRFs have often involved adapting strategies from their
static counterparts. Innovations in this domain include
the introduction of novel scene sampling and decomposi-
tion techniques in studies such as HyperReel[1] and NeRF-
Player[23]. These have notably improved rendering speeds,
yet the training phase remains a time-intensive process. Fur-
ther advancements have been achieved through the adoption
of 4D Gaussian Splatting [29, 32], which offers enhanced
rendering speeds. Nonetheless, the challenge of prolonged
training durations persists. Other approaches, includ-
ing TiNeuVox[6], k-planes[22], temporal interpolation[18],
Im4D[12], and masked spatial-temporal hashing[26], lever-
age advanced 4D grids, hash grids or 6 planes to accel-
erate training. However, these methods are primarily de-
signed for joint training scenarios and do not readily sup-

port flexible, on-the-fly training. Notably, StreamRF [8]
stands as a singular approach, to the best of our knowledge,
that accommodates on-the-fly training. This method utilizes
the Plenoxel framework [33] to represent the initial scene
frame, subsequently adapting this voxel grid to accommo-
date scene changes.

Our proposed methodology not only surpasses these
models in per-frame training efficiency but also introduces
the capability for on-the-fly training, making it particularly
suitable for streaming applications.

2.2. Image Based Rendering

Instead of representing a 3D scene as a NeRF conditioned
on spatial coordinates and viewing direction, some works
rely on additional projected colors/features on the train-
ing views to improve generalization or robustness. IBRNet
[28], MVSNeRF [3] and many following works [7, 13, 21]
construct a cost volume of a dynamic scene based on the im-
age features of the nearby views to learn a blending weights
or the density and color output. These models are designed
to be generalizable to unseen scenes and require prolonged
pre-training on large datasets. LLFF [24, 25] aggregates
features along the multi-view epipolar line to render view-
dependent effect.

Recently, DynIBaR [11] applies this technique to dy-
namic NeRF by aggregating the projected image features
across frames, after warpping a point using a motion tra-
jectory learned from past and future frames. However, this
method requires time-consuming optimization of the per-
frame motion trajectory and cannot be applied to on-the-
fly training as the future frames are not known. Similarly,
Im4D [12] utilizes projected image features as color pre-
diction guidance, but its geometry prediction still relies on
temporal input only. This results in its slower training speed
than our method in which both the geometry and color gen-
eralize across consecutive frames.

3. Problem Formulation

In this section, we first briefly describe the NeRF prelim-
inaries necessary to understand our formulation. We then
formally define the on-the-fly dynamic NeRF training.

NeRF Preliminaries. Static neural radiance fields [14]
represent a 3D scene implicitly with a continuous volumet-
ric function F : (x,d) 7→ (σ, c) that maps the spatial po-
sition x ∈ R3 and viewing direction d ∈ R3 to the vol-
ume density σ ∈ R and RGB color c ∈ R3. To synthesize
the pixel color Ĉ(r) on any 2D images, volume rendering
is used to aggregate the color of N points with interval δ
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Figure 1. We introduce the on-the-fly training(left) of dynamic NeRFs and the OD-NeRF model(right). In on-the-fly training, the dynamic
NeRF is trained based on the current and previous training frames to synthesize novel views for the current time step. Our OD-NeRF
leverages the projected colors(orange arrow) for better cross-frame generalization and transition and update to the occupancy grid(green
arrows) for efficient sampling.

along the ray r shooting from the pixel:

Ĉ(r) =

N−1∑
i=0

Ti(1−exp(−σiδi))ci, Ti = exp(−
i−1∑
j=0

σjδj).

(1)
Dynamic NeRFs usually include an additional time dimen-
sion t in the input, through either a time-varying deforma-
tion field D : (x, t) 7→ (x′) that maps the spatial coordi-
nates x to its canonical space correspondence x′ [17, 20],
or directly expanding the 3D NeRF model to a 4D variant
F ′ : (x,d, t) 7→ (σ, c) [10, 18]. During the training stage,
all K frames of the training images C0:K(r) from all time
t0:K are used to jointly minimize the rendering loss:

L =

K∑
t=0

∑
r∈R

||Ĉt(r)− Ct(r)||22. (2)

On-the-fly Dynamic NeRF. Although StreamRF[8] in-
corporates principles akin to on-the-fly training, the defi-
nition of this concept is not formally articulated within their
work. In this section, we aim to provide a clear definition
of on-the-fly training for dynamic NeRF. In contrast to the
typical post-event joint training employed by the majority
of dynamic NeRFs, on-the-fly training updates and renders
the NeRF model concurrently with the acquisition of new
training frames. Given the images up to the current time
step C0:k and the radiance field estimated up to the last time
step F0:k−1, the goal of on-the-fly dynamic NeRF training

is to find the radiance field function Fk at time tk that min-
imizes the rendering loss at the current time step:

Fk(x,d) = argmax
Fk

P (Fk | C0:k, F0:k−1)

= argmin
Fk

∑
r∈R

||Ĉk(r)− Ck(r)||22.
(3)

However, estimating the radiance field Fk at the cur-
rent time step conditioned on all the previous images C0:k

and radiance field F0:k−1 is not scalable as time tk in-
creases. To mitigate this growth in complexity, we apply
the first order Markov assumption to simplify the proba-
bility model by assuming conditional independence Fk ⊥
⊥ {C0:k−1, F0:k−2} | {Ck, Fk−1}. This simplifies the esti-
mation of the current radiance field as:

Fk = argmax
Fk

P (Fk | Ck, Fk−1). (4)

Taking the radiance fields F0:K as hidden states and im-
ages C0:K as observations, we can formulate the on-the-
fly training as the process of estimating the hidden states
in a Hidden Markov model (HMM). The emission func-
tion P (Ck | Fk) is the process of volumetric rendering that
renders 2D images from 3D radiance fields. The transition
function P (Fk | Fk−1) is the radiance field deformation or
motion between two consecutive time steps.

In practice, this maximum likelihood estimation can be
achieved by optimizing the last radiance field model Fk−1

with the current training images Ck. The updated radiance



field is then rendered and evaluated on the test views at this
time step.

Remarks. Note that we limit the focus of this work to dy-
namic scenes captured by multi-view forward-facing cam-
eras based on realistic considerations. Although the recon-
struction of dynamic scenes from a monocular camera is
less demanding on the hardware, it requires the photogra-
pher to keep on moving the camera [16]. This is cumber-
some in prolonged streaming scenarios. 360-degree inward-
facing cameras can be used to reconstruct from all angles.
Nonetheless, this often requires dozens of cameras and a
much bigger space [19]. It is difficult for most streamers
to acquire such professional setups. Consequently, we fo-
cus on scenes captured by static multi-view forward-facing
cameras that are most aligned with the setups used in the
current streaming industry. Some qualitative results with
surrounding cameras are included in the supplementary.

4. Method
For highly efficient on-the-fly training, the model should re-
quire fewer number of optimization iterations at each frame
and less training time for each iteration. To achieve these
two objectives, we propose: 1) a dynamic NeRF guided by
projected colors, and 2) an occupancy grid transition and
update strategy(Fig. 1).

4.1. Dynamic NeRF Guided by Projected Colors

To accelerate training processes, it is crucial to minimize the
number of required optimization iterations. Conventionally,
dynamic NeRF models incorporating a temporal dimension
often fail to extrapolate effectively to unseen time input,
leading to poor generalization and the necessity for exten-
sive iterative training upon receiving new frames.

In contrast, our approach seeks to replace the temporal
input with multi-view projected colors, based on the ob-
servation that the projected color of a 3D point typically
remains consistent across consecutive frames. This design
allows the model to interpolate in the color dimension rather
than to extrapolate in the temporal dimension. This frame-
work inherently fosters a robust generalization capability of
the model to new frames. Consequently, the model requires
little to no training upon receiving new frames before ren-
dering for this time step.

Delving into the model design, we replace the time in-
put t in the space-time dynamic NeRF model F (x,d, t) to
the multi-view projected color mean c̄p(x, k) and variance
Var(cp(x, k)) at frame k to become:

Fk : (x,d, c̄p(x, k),Var(cp(x, k))) 7→ (σ, c). (5)

The projected colors cp(x, k) are defined as the pixel colors
of the training images Ck,cam of all cameras M through 3D

Figure 2. Comparative performance of traditional NeRF mod-
els versus our proposed method when extrapolating to the next
frame without additional training. The purple color highlights ar-
eas present in the ground truth but missing in the rendered image,
while the green color shows regions rendered but absent in the
ground truth. The traditional models (left) exhibit a time lag and
unclear details. Our method (right) demonstrates superior gener-
alization with high fidelity and no observable lag.

to 2D projection with camera projection matrix Pcam:

cp(x, k) = {Ck,cam(Pcam · x) | cam ∈ M}. (6)

To empirically validate our model’s enhanced frame-to-
frame generalization, we demonstrate a simple experiment
as shown in Fig. 2. Both models are trained sequentially
from frame 0 to frame k − 1 and then tested on frame k,
without any further training for this new frame. The re-
sults contrast the performance of our model with that of tra-
ditional NeRF models dependent on time inputs. Where
the traditional model renders an image lagging behind the
ground truth indicative of its poor temporal extrapolation,
our model delivers accurate rendering based on its inherent
generalization ability.

This distinction also reflects our model’s capability from
another perspective. Where existing NeRF models rely on
extensive optimization with the new frames to utilize their
information, our model is smartly designed to be directly
conditioned on them through projection. This allows our
model to harness the scene information contained in the new
frames without much training.

4.2. Occupancy Grid Transition and Update

Occupancy grids are often used in static NeRFs to reduce
the number of points sampled by caching whether a voxel
is occupied. Formally, the occupancy grid is a 3D voxel
grid G = {max(σ(x)) | ∀x ∈ Vcur}3, where max(σ(x))
represents the maximum volume density of all points in
the respective voxel Vcur. When sampling points on a ray,
only points within the voxel above a certain volume den-
sity threshold are kept. It is obvious that this cannot be di-
rectly applied to dynamic scenes since the volume density
of the 3D space changes over time. One way of applying
this approach in dynamic scene reconstruction is to main-



tain a space-time 4D occupancy grid [18]. Unfortunately,
this does not improve the sampling efficiency when train-
ing on-the-fly as the 3D occupancy at tk−1 cannot be used
for sampling at tk. When training the new frame k, the
occupancy grid at the current time tk is the same as being
initialized from scratch.

Addressing the challenge of adapting occupancy grids
for dynamic scenes, we propose a novel transition function
that bridges the temporal gap between successive frames.
We consider the occupancy grid at any time tk as a 3D
probability function Gk = {P (max(σk(x)) > 0) | ∀x ∈
Vcur}3, representing the chance of any point present in the
voxel mathbbVcur with positive volume density at the cur-
rent time step. Since the occupancy grid Gk is constantly
updated throughout the per-frame training, we use Gj

k to
denote the occupancy grid after j iterations of optimization
where j ∈ [0, J ]. At the start of each new frame optimiza-
tion, we apply a transition function to this occupancy grid
for the possible motions of the objects in the 3D space. The
transition function comprises two components, catering to
both minor and large motions within the scene.

Transition for Minor Motion The first component em-
ploys a 3D Gaussian kernel S that convolves with the previ-
ous occupancy grid GJ

k−1. For scenarios involving minimal
movement, the spatial coordinates of a point at frame k are
expected to be in close proximity to its location at frame
k−1. In such cases, the convolution of the prior occupancy
probabilities with a Gaussian kernel serves as a reliable es-
timator for the forthcoming frame’s occupancy likelihood.

Transition for Large Motion The second component of
the transition function is specifically designed to account
for substantial movements. When an object undergoes sig-
nificant motion between consecutive frames, there’s often
a notable change in the projected color of its previously
and newly occupied area on the training images. By back-
projecting the areas with significant pixel color variations
∆Ck,cam between frames Ck−1,cam and Ck,cam from the
training views cam ∈ M, we construct an irregular frustum
∆Gk,cam for each view, which encompasses the potential
3D region of movement:

∆Gk,cam(x) = ∆Ck,cam(Pcam · x) ≥ cTh. (7)

The intersection of these frustums from multiple viewpoints
yields a 3D difference region ∆Gk with high probability of
containing motion, as shown in Fig. 3:

∆Gk =
⋂
cam

∆Gk,cam. (8)

The transition function thus emerges from the union of this
3D difference region ∆Gk and the previous occupancy grid

Figure 3. The 3D difference region is calculated by aggregating
the difference in traning views using plane sweeping.

GJ
k−1:

G0
k = max(GJ

k−1,∆Gk). (9)

In practical implementation, the 3D difference region is de-
termined through a majority vote across all training views
rather than requiring unanimous agreement, to account for
occlusions. This region is efficiently computed using a
plane sweeping algorithm.

Occupancy Update After the transition function is ap-
plied to the occupancy grid at the start of the optimization
for each frame, it needs to be updated with the new observa-
tions. Similar to the existing occupancy grid methods, we
update the occupancy grid probabilities using the volume
density output σ(x) of the NeRF model of both randomly
sampled points in each voxel as in [15] and points sampled
on the ray during training. If the sampled density σ(x) is
higher than the current occupancy grid value Gk(x), that
occupancy grid value is updated to σ(x).

Gradient Scaling and Dynamic-Static Fusion The 3D
difference region, derived to accommodate large motions
for the occupancy grid transition, can be applied to other
techniques as well. For instance, it enables gradient down-
scaling for spatial features f(x) in regions outside of the 3D
difference region with a multiplier 0 < αg < 1:

(
∂L

∂f(x)
)′ =

∂L
∂f(x)

· (∆Gk(x)+αg(1−∆Gk(x))). (10)

Given that these regions are expected to exhibit minimal
variation, scaling down the gradients in these regions can
mitigate the occurrence of floater artifacts during the on-
the-fly training process.

Additionally, this 3D difference region can be used in
the dynamic-static fusion during rendering. When the ren-
dering view remains static over a duration, it’s only nec-
essary to re-render the pixels outside projected area of the
3D difference region. This selective rendering significantly
reduces computation time, while the pixels u outside this



zone retain their previously rendered color, ensuring conti-
nuity and efficiency:

ck(u) =

{
ck(u), if ∃x, (u = Pcam · x) ∧∆Gk(x)

ck−1(u), otherwise
.

(11)

This mask can be efficiently generated using plane sweep-
ing and 2D homography warping.

5. Experiments
We demonstrate the efficient on-the-fly training capability
of our method on both synthetic and real-world novel view
synthesis datasets. As explained in Section 3, our focus is
on multi-view forward-facing camera configurations, which
align closely with practical streaming use cases.

For the synthetic dataset, we employed the widely-
recognized D-NeRF [20] dataset. To approximate a more
pragmatic scenario, we created a modified version of this
dataset featuring a forward-facing camera setup, instead of
the unrealistic teleporting camera setup. This dataset will
be made publicly available and more details are included in
the supplementary. Beyond our primary experimental setup,
we tested the limit of our model under additional challeng-
ing conditions. These scenarios including surrounding cam-
era setup, forgetting problems and randomly missing cam-
era feeds. The results of these auxiliary experiments are
included in the supplementary.

For the real-world dataset, we evaluate on the Meet-
Room [8] and DyNeRF [10] datasets, which are both cap-
tured with multi-view forward-facing cameras. All results
of our method are reported for models trained with a single
RTX3090 GPU. Some rendered videos are included in the
supplementary. Although memory storage usage is not the
focus of our paper, our model for the real-world scenes only
require 90MB memory, comparable to the 100MB memory
usage of the multi-view training images per frame.

5.1. Synthetic Dataset

On the synthetic dataset, we implement our method on top
of the TiNeuVox [6] and evaluate the improvements in on-
the-fly training speed and rendering quality. We also com-
pare the performance of our method against the reported re-
sults of many other baseline models as shown in Tab. 1, but
most of these models are trained jointly instead of trained
on-the-fly. Our model is trained on the first frame for 200 it-
erations (for around 2 seconds), and then optimized for just
10 iterations per frame on-the-fly. Compared to the baseline
methods, our model has significantly faster training speed
of 10.5FPS instead of 1.27FPS, while achieving a superior
rendering quality measured in PSNR and LPIPS [34].

As shown in Fig. 4, we also demonstrate some qualita-
tive results of our method compared to TiNeuVox[6]. The

Method Train FPS↑ PSNR↑ LPIPS↓
D-NeRF[20]* 0.0013 30.50 0.07
K-Plane[22]* 0.04 31.67 NA
TiNeuVox-S[6]* 0.21 30.75 0.07
TiNeuVox-B[6]* 0.08 32.67 0.04
TempInterp[18]* 0.21 29.84 0.06
TiNeuVox[6] 1.27 30.57 0.07
Ours 10.49 32.87 0.04

*Result reported for joint training instead of on-the-fly training. NA if
rendering speed not reported.

Table 1. Quantitative results of speed and novel view synthesis
qualities on the D-NeRF dataset.

images are rendered from slightly different camera angles to
better illustrate the 3D geometry of the reconstructed scene.
Our method not only achieves a 10× training speed accel-
eration but also better rendering details. To better compare
the performance of our proposed method with the baseline
and various ablation methods, we present a plot showing
their rendering quality (PSNR) against their training time
in Fig. 5. Our proposed OD-NeRF model renders at bet-
ter quality than TiNeuVox[6] at the same time constraint, or
trains faster to achieve the same rendering quality. The im-
provements from the models without the two proposed com-
ponent also suggest the effectiveness of both the projected
color and the occupancy grid transition. More qualitative
ablation results are included in the supplementary material.

Train Train Eval
Method Time (s)↓ Accel. PSNR↑
K-Plane*[22] 21.6 13.0x 31.63
HexPlane*[2] 24.0 14.5x 29.26
HyperReel*[1] 108.0 65.1x 31.1
NeRFplayer-INGP*[23] 66.0 39.8x 30.29
NeRFplayer-TRF*[23] 72.0 43.4x 30.69
4D-GS*[29] 24.0 14.5x 31.02
4K-4D*[30] 288.0 173.5x 32.86
Im4D*[12] 5.5 3.3x 32.58
Masked ST Hash*[26] 4.0 2.4x 33.09
StreamRF[8] 15.0 9.0x 28.26
InstantNGP[15] 11.5 6.9x 27.66
Ours 1.7 1.0x 28.31
No Color Proj. 1.3 0.8x 25.93
No Gauss Transit 1.6 1.0x 28.13
No Diff. Transit 1.7 1.0x 27.92
No Scene Fusion 2.1 1.2x 28.17
No Scale Grad. 1.5 0.9x 28.00

*Result reported for joint training instead of on-the-fly training.

Table 2. Quantitative results and ablation study on DyNeRF[10]
dataset. “Train Accel.” represents the training speed improvement
of our method w.r.t. the method at each row.
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Figure 4. Qualitative comparison between TiNeuVox and our method, rendered from random views instead of the ground truth view.

Train Train Eval
Method Time (s)↓ Accel. PSNR↑
JaxNeRF*[5] 28380.0 9274.5x 27.11
Plenoxels[33] 840.0 274.5x 27.15
LLFF[25] 180.0 58.8x 22.88
StreamRF[8] 10.2 3.3x 26.72
InstantNGP[15] 22.2 7.3x 22.22
Ours 3.1 1.0x 27.35
No Color Proj. 3.0 1.0x 25.96
No Gauss Transit 3.1 1.0x 26.50
No Diff. Transit 2.2 0.7x 26.68
No Scene Fusion 3.5 1.1x 27.16
No Scale Grad. 3.2 1.0x 26.54

*Result reported for joint training instead of on-the-fly training.

Table 3. Quantitative results and ablation study on MeetRoom[8]
dataset. “Train Accel.” represents the training speed improvement
of our method w.r.t. the method at each row.

Figure 5. Ablation comparison of rendering quality with different
training time.

5.2. Real-World Datasets

For the real-world datasets, our model is trained on the first
frame for 6000 iterations and later 100 iterations per frame.
We compare the training speed and rendering quality of our
method implemented on top of the NerfAcc [9] implemen-

tation of InstantNGP [15] against various baseline models
used for dynamic and static NeRFs. The performance of
our model on the DyNeRF dataset is measured on the hard-
est ”Flame Salmon” scene, following the evaluation pro-
posed in the original paper[10]. Please note that many other
works only report the performance on easier scenes[30], a
mixture of scenes[29], or an unspecified set of scenes[23],
so the rendering quality evaluation can be disadvantageous
to our method.

Although some of the models (e.g. StreamRF [8]) do
not claim the on-the-fly training ability, they are compati-
ble with the on-the-fly training proposed in our paper. As
shown in Tab. 3 and Tab. 2, our model can be trained on-the-
fly significantly faster than the baseline models while main-
taining a similar rendering quality. Other methods includ-
ing HyperReel[1] and NeRFPlayer[23] are designed for fast
rendering, but are trained at least 60× slower than our pro-
posed method. Some previous methods including Im4D[12]
and Masked ST Hash[26] designed for fast training, are in-
capable of on-the-fly training due to their 4D grid or hash
grid design and are a few times slower than our model.

We also present some of the qualitative results of our
model compared to StreamRF [8] and InstantNGP [15] as
shown in Fig. 6 on MeetRoom [8] dataset and in Fig. 7 on
DyNeRF [10] dataset. Our model is free of many com-
mon artifacts present in the rendered results of the base-
line model while maintaining a significantly faster on-the-
fly training speed.

5.3. Ablation

We present the ablation study of different components pro-
posed in our method, including color projection, occupancy
transition using Gaussian kernel and using 3D difference re-
gion, scene fusion and gradient scaling based on 3D differ-
ent region in Tab. 2 and Tab. 2. All models are trained with
the same number of iterations, so they train with a similar
speed but produces different rendering quality. The color
projection guidance contributes most to the rendering per-
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Figure 6. Qualitative results of models with different training speed on the MeetRoom dataset.
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Figure 7. Qualitative results of models with different training speed on the DyNeRF dataset.

formance because of the cross frame generalization derived
from it. The two types of transition methods contributes dif-
ferently to different scenes. The scene fusion and gradient
scaling also improve the overall rendering quality.

6. Limitations
The implicit correspondence of our projected color-guided
NeRF relies on the relative invariance of the projected color
of a point. However, this invariance can be violated with
specular surfaces and occluded points. It may be possible to
filter out the outlier projected colors caused by specularity
and occlusion, or explicitly detect occlusion.

7. Conclusion
We introduced a new on-the-fly dynamic NeRF training set-
ting, where the radiance field is trained and rendered frame

by frame. To tackle the efficient on-the-fly training chal-
lenge, we propose a projected color-guided dynamic NeRF
conditioned on the spatial and color input to efficiently opti-
mize the radiance field with better cross-frane generalizabil-
ity. We also propose a transition and update function to the
occupancy grid for efficient point sampling in space. The
experiment results in both synthetic and real-world datasets
indicate the superior on-the-fly training speed of our method
while maintaining a comparable rendering quality.
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