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The representational geometry of
discrete computations on continuous manifolds

Abstract

Many tasks require mapping continuous input manifolds to discrete task outputs. Yet,
how neural networks perform such discrete computations on continuous manifolds remains
poorly understood. In parallel, recent work has argued that studying the representational
geometry of neural networks could provide insights into task computation. However, the
way neural representations of continuous inputs are warped in order to perform discrete
tasks remains elusive. Here, we show that signatures of such discrete computations on
continuous manifolds can be found in the representational geometry of neural networks.
By analysing the Riemannian metric across layers of a neural network, we find that network
computation can be decomposed into two stages: discretising continuous input features and
performing logical operations on these discretised variables. We further demonstrate how
different learning regimes (rich vs. lazy) have contrasting metric and curvature structures,
affecting the ability of the networks to generalise, and how input noise during training
smooths the hidden layer geometry. Overall, our work provides a geometric framework for
understanding discrete computation on continuous manifolds in neural networks.
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1. Introduction

Studying the geometry of manifolds of neural activation can provide insights into the com-
putations performed by neural networks (Chung and Abbott, 2021). Empirically, dimen-
sionality reduction methods have been used to infer low-dimensional structure in the high-
dimensional activity of biological (Pellegrino et al., 2024) and artificial neural networks
(Aubry and Russell, 2015; Li et al., 2023). More recently, analytical methods stemming
from Riemannian geometry have related these low-dimensional manifolds of neural network
activation to task computations (Hauser and Ray, 2017). These works share a common
basis: the manifold hypothesis, which posits that the input data to a network lie on low-
dimensional continuous manifolds.

In contrast, seminal work has studied how neural networks can perform discrete com-
putations, such as logical operations (Minsky and Papert, 1969). This idea has grown to
eventually be at the heart of neurosymbolic Al, which tackles how networks can perform
discrete tasks on raw input data such as images or text (Mao et al., 2019). Yet, the relation-
ship between continuous representational geometry and the discrete computations neural
networks perform remains elusive. For instance, in artificial neural networks, image data
is thought to lie on a low-dimensional submanifolds of pixel space, but vision models are
often trained to map this continuous manifold onto a small set of discrete classes (Cohen
et al., 2020). Other models combine continuous inputs with discrete contextual cues —
such as large language models responding to a manifold of possible inputs conditioned on
a discrete prompt (Li et al., 2023), or diffusion models generating images from discrete
textual descriptions (Dhariwal and Nichol, 2021). Similar patterns appear in neuroscience:
animals may be trained to map images at different orientations on a continuous circular
manifold to discrete categories (Reinert et al., 2021), or to integrate discrete contextual

© 2025 .



evidence with continuous sensory input in decision-making (Mante et al., 2013), working
memory (Panichello and Buschman, 2021), and motor control (Zimnik and Churchland,
2021). Across these domains, biological and artificial neural networks must integrate con-
tinuous data with discrete rules — whether learned through training or provided as explicit
cues — to perform their computations.

Here, we argue that formally studying the representational geometry of neural networks
using Riemannian geometry can help understand how they perform such discrete com-
putations on continuous manifolds. First, we provide a simple example of a multi-layer
perceptron trained to implement logical gates (XOR, AND) on a manifold of inputs. The
Riemannian metric and Gaussian curvature reveal the discretisation of the continuous input
manifold in the early layers of the network and the discrete logical operation in subsequent
layers. Thus, the computation is decomposed into input data manifold-specific and logical
task-specific discrete computation. Furthermore, rich and lazy learning regimes can lead to
structured and random representational geometries respectively, linked to the ability of the
network to generalise. Next, we show how input noise during training affects the smoothness
of the metric tensor across decision boundaries and causes the curvature of the manifold
to decrease monotonically with the noise level, corresponding to the network learning the
posterior distribution of the output.Overall, our work links continuous input data manifolds
to discrete task output by studying the Riemannian geometry of hidden layer activation.

2. Contributions

1. Riemannian geometry of discrete computation on continuous manifolds. We
introduce a framework anchored in Riemannian geometry to study discrete computations
on continuous manifolds.

2. The metric tensor reveals how neural networks implement logical gates on
non-linear input manifolds. In multi-layer perceptrons trained on logical gates tasks
we show that a highly localised metric tensor close to decision boundaries reflects the
discretisation of the continuous input manifold.

3. Different learning regimes have different representational geometries. In the
same model we show that rich learning produces a network that partitions the computa-
tion into a binarisation corresponding to the collapse of the embedding space of the input
manifold and a degenerate metric tensor, followed by the discrete logical computations.
In comparison, lazy learning learns a random projection of the inputs. Furthermore, the
rich, but not the lazy, geometry generalises to unseen inputs on the manifold.

4. Noise smooths the geometry to implement Bayesian computation. We show
that the curvature of the manifold decreases with input noise level, which corresponds to
a flatter posterior distribution of the output of the network. Furthermore, the curvature
can switch from positive to negative past a level of noise.

3. Related works

Representational geometry of neural networks. A long line of work has argued that
studying how variables are encoded can help understand how neural networks solve tasks,
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with applications in vision (Aubry and Russell, 2015), large language models (Li et al.,
2023), and reinforcement learning (Tennenholtz and Mannor, 2022). In particular, tools
from Riemannian geometry have been used to characterise the exact intrinsic geometry
neural representation of networks receiving low-dimensional inputs (Hauser and Ray, 2017;
Benfenati and Marta, 2023). Here, we instead characterise how discrete target task output
— which are discontinuous maps from the continuous input data manifold to the discrete
target output — affects the geometry of the hidden layer activation.

Neural networks trained on discrete tasks. A long line of work dating back to the
inception of the perceptron has studied whether and how neural networks can implement
discrete and logical tasks (McCulloch and Pitts, 1943; Minsky and Papert, 1969), which
culminated in proving that neural networks can simulate any Turing machine (Siegelmann
and Sontag, 1992). More recent work on neurosymbolic AT and geometric deep learning has
tackled how neural networks can use continuous input data to perform logical computations
(Mao et al., 2019; Petersen et al., 2022). Here, we ask more specifically how neural networks
represent these continuous input variables in their hidden layer activations as they perform
discrete tasks. Furthermore, we extend our framework to non-linear manifolds and show
that their topology affects the learned computation and representation.

4. Riemannian geometry provides the tools to study the intrinsic
geometry of neural network representations

In this section we briefly review concepts from Riemannian geometry that we will use to
study neural network representations. In particular, we will exactly characterise the intrinsic
geometry of the hidden layer activation. We work under the manifold hypothesis, and the
overall neural network can be summarised as:

M L R £y RSy Row

The input data manifold is M, which is embedded into the input space of the neural network
R™n via 1p. Assuming that we are interested in studying the representational geometry of a
particular layer, we can decompose the neural network into two functions: ¢, which maps
the embedded inputs to the hidden layer of interest, and { mapping this hidden layer to the
output. The activation of the network in response to all possible inputs ¢(M) will itself
be a manifold of the same topology as the input. We are interested in characterising the
geometry of this manifold as it sits in the hidden-layer state-space.

To characterise the intrinsic geometry of the hidden layer activation, the pullback of the
metric can be computed:
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where T, M is the tangent space at a point p € M. Intuitively, tangent vectors of the
input manifold can be mapped to vectors tangent to the manifold in the input embedding
space R™nr via the pushforward of the input embedding dv, and then to vectors tangent
to the manifold in the hidden layer state-space R™ via the Jacobian of the neural network
dp. Thus, the inner product between two tangent vectors of the input manifold can be
measured via the standard Euclidean dot product (-,-) by pushing them forward to the
relevant Euclidean state-space.



This definition is independent of the choice of local coordinates on the manifold. How-
ever, in many cases, there will be a basis that represents the particular task variables at
hand — e.g. the orientation and translation of an object in image space — whose neural
representation we seek to understand. In this case, the metric can be summarised by how
it acts on this basis: if we call z(p1,p2) € R™ the response of the neural population to an
input depending on two task variables pi, ps € R, we can characterise the encoding of these
task variables by asking how the neural representation changes in response to small changes
in the first 0,,z = % or second 0,z = % variable. If variables have correlated
representations then changing them individually will cause similar changes in representa-
tion, whereas uncorrelated representations cause changes in orthogonal directions in neural
state-space. For example, in neuroscience, it has been suggested that sequentially presented
images are represented orthogonally by the brain (Xie et al., 2022). Mathematically, this is
equivalent to saying that 0,,z - 0p,z = 0. However, variables such as the level of evidence
and the choice of a subject (Koay et al., 2022) have correlated representations, meaning
that 0,z - 0,,z # 0. In a task involving k variables, the pullback metric summarises such
correlations:

Op2-0p2 ... Opz-0p2
G=| S
OppZ-O0p 2 ... OpZ-0pZ

These are meaningful insights, as the computation necessary to solve these tasks require
these correlations — memories are encoded in orthogonal spaces because they are unrelated,
whereas the evidence level and choice of an animal are strongly related.

5. Neural network models can perform discrete computations on
continuous manifolds of inputs

Neural networks can approximate arbitrary logic gates (Siegelmann and Sontag, 1992). For
example, the XOR task has long been regarded as a canonical example of a non-linearly
separable problem requiring neural networks to perform discrete computations (Minsky and
Papert, 1969; Goodfellow et al., 2016), and has been widely used as a simple benchmark
across machine learning (Afzal and Wani, 2014; Mehta et al., 2018) and neuroscience (Stockel
and Eliasmith, 2022). In this section we consider a continuous extension of the XOR task,
allowing inputs to lie on a non-linear manifold. In particular, we start with a simple example
where the input manifold is a flat torus, consisting of the Cartesian product of two circles
which each encode a different input to the gate. This provides a minimal yet rich setting
for analysing how representational geometry supports discrete computations on continuous
manifolds.

To generate the input manifold, we define two angular task variables, 6,62 € [0,27),
which form a torus embedded in R*:

x = [cos(61) sin(f1) cos(fy) sin(hy)]".

We define a decision boundary on each input circle at an angle «, such that 0 < 0 —a < 7 is
mapped to +1, and 7 < 0 —a < 27 is mapped to 0. The network is then trained to perform
XOR on the discretised inputs, creating four quadrants (with periodic boundaries) on the
input manifold (Fig. 1a). Although inputs to the network are 4-dimensional, an efficient
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Figure 1: Neural network geometry reflects discrete computations on manifolds.
a. The target outputs of the XOR task with two angular inputs 61,6, € [0, 27).
b. Diagram of the network architecture used to solve the task. c. Left: Schematic
showing an input variable 6; embedded on a unit circle, x = [cos(6;),sin(6;)] T,
with decision boundaries at o and 7w+ . Right: The optimal solution compresses
the irrelevant dimensions and performs the logic operation on the 1D represen-
tation. d. Input weight matrix of a trained network (for @ = 0). Weights
corresponding to x; = cos(6;) and x3 = cos(f2) are close to zero. e. The Gaus-
sian curvature of the hidden layer manifold visualised on a torus. The curvature
diverges if 0; € {7, 37“} f. The components of the metric tensors of the hidden
layer activation of the network (lower-triangular part of the metric, each entry
varies over the manifold). g. Trace of the metric for networks trained on different
combination of input manifolds (torus, plane) and target output (AND, OR).

representation is sensitive only to the sign of the following latent variables:
vi(0;, ) = sin(6; — )

such that the target output is y = XOR[v1 (01, ) > 0, v2(62, ) > 0] (Fig. 1c). Without loss
of generality, we can set o = 0 and recover solutions for all other boundary rotations with
a rotation of the input weights. To solve the task, we used a feedforward network with four
hidden neurons (Fig. 1b), trained with a tanh hidden activation, SGD optimiser and binary
cross-entropy loss.

5.1. The metric and curvature of the neural representation ties continuous
inputs to discrete task outputs

In networks trained on the XOR task on the flat torus, the input weights compress task-
irrelevant dimensions. For example, when o = 0, the task output is independent of z1 and
x3: the cosines of the two input angles (Fig. 1c-d). For « # 0, different linear combinations



of the x;’s will encode the task-relevant information. Thus, two dimensions of the input
torus are collapsed, with the remaining inputs (e.g. x2,x4 € [—1,1] for o = 0) defining a
patch of the R? plane. This is reflected by the intrinsic curvature of the torus in the hidden
layer, which for collapsed x; and z3 directions is approximately given by

M(01,069)
"~ cos*(61) cost(62)

where M (6;,05) is a term depending on the first and second derivatives of the metric tensor.
When cos(#;) = 0 for either i the curvature diverges. This happens near the class centres
0; € {3,2} (Fig. le), where the circles are “folded” (Fig. 1c).

From the standpoint of Riemannian geometry, the hidden layer metric tensor encodes
this effect. Visualising the entries of the metric tensor in the input coordinates highlighted
that space near decision boundaries is stretched, while space far from them is compressed
(Fig. 1f). This effectively discretises the inputs, with transitions between the discretised
variables only occurring across boundaries. In comparison, the metric pulled back from the
output layer reflected the logical gate (Fig. 1g). To see how this result depended on the
choice of task and input manifold, we repeated this analysis in the AND and OR tasks,
with inputs either on a torus or a plane. Specifically, we looked at the trace of the metric
tensor, which reflects the overall stretching and compression of space at any point on the
manifold. We found that the hidden layer metric’s trace showed stretching of space near
the inputs class boundaries, while the output metric showed stretching of space near the
target output decision boundaries (Fig. 1g). Thus, the metric and curvature of the hidden
layer reflect computations that are tied to the choice of input manifold and its embedding,
while the output layer geometry reflects logic gate-specific computation.

Finally, we explored what happens when continuous and discrete computations cannot
be partitioned across layers. To do that, we went back to the XOR task and compared the
geometry of a 1-layer network to that of a 2-layer network. Classic work has shown that,
with binary inputs to the network, the XOR task requires at least one hidden layer (Minsky
and Papert, 1969). Thus, our 1-layer network cannot use its hidden layer to discretise the
input manifold, while the 2-layer network can in principle discretise the input manifold in
the first hidden layer before performing the classic solution on the binarised variables in
the second layer. Despite this discrepancy, both 1- and 2-layer networks can perform the
XOR task to a similar performance level (Fig. Sla). Interestingly, the two networks used
different geometries: the 2-layer network employed a similar representation of the discretised
variable in the first layer, while the 1-layer network showed a rich geometry which combined
the discretisation and logic computation (Fig. S1b).

Overall, this suggests that computations in these simple networks are partitioned across
layers into the discretisation of inputs manifolds and the performance of discrete logical
computations.

5.2. Rich and lazy learning of input manifold features result in different
intrinsic geometries

Next, we tried to better understand how different learning regimes affect the hidden layer
representation and the overall discrete computations on the continuous manifold. Previous
work has shown that varying the variance of the weights at initialisation can qualitatively
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affect the learned representation (Saxe et al., 2013). More recent work has studied these
different learning regimes in the context of the discrete tasks (Flesch et al., 2022). Here
we replicate these analyses and additional logic gates (Fig. S2) with our model of discrete
computation on continuous non-linear manifolds.

a b L
.. i az
Training set Outputs Rich y
Rich Lazy w; 016 -013 000 000 w‘. 727 1743 -1730
. W2 -0.13 . 0.12 -0.66 W 72.7 -528.3 -283.6
02 w3z 0.00 0.12 020 0.00 ws 1743 -528.3 -190.4
w4 000 -066 0.00 . Wi -173.0 -283.6 -190.4
61 00 10 weoowpws W wiows ows W
Cc Rich Lazy d Rich
6 i 175-
o After activation o
T 5 o . 2
< g
g 4 02 3
5 Before activation o
g 3 . o g
i<
T 2
o . : 0
1 —_——— e Rich Lazy
0 2x10* 0 2x10* -20 20 0.2 02
Training iteration Training iteration Gaussian curvature (K)

Figure 2: Rich networks generalise and have different geometries to lazy net-
works. a. Output of rich and lazy networks trained on XOR with a portion of
the input manifold held out during training, represented by the black square. Rich
networks are able to generalise to unseen inputs whereas lazy networks overfit to
the training data. b. The Gram matrices of the input weights for rich and lazy
networks. Rich networks ignore irrelevant inputs (corresponding to columns).
Lazy networks randomly project each input into the high dimensional hidden
space. c. The participation ratios over training in rich and lazy networks, with
error bars calculated as the standard deviation across 10 different seeds of weight
initialisations. Rich networks learn low-dimensional representations correspond-
ing to low-dimensional input manifold. Lazy networks learn high-dimensional
representations determined by weight matrix rank at initialisation. d. Curvature
over the hidden layer manifold in rich and lazy networks, with a bar plot show-
ing the average maximum curvature over the manifold (error bars show standard
deviation). Curvature in rich networks is highly structured and has large mag-
nitude, corresponding to large bending away from class centres. Lazy networks
are mostly flat, and have random curvature patterns. Rich networks have much
larger maximum curvatures with higher variability compared to lazy networks.

As in previous work, we continuously vary the strength of the initial weights of the
network W;; ~ N(0,0?). Previous work has found that small initial weights, corresponding
to the rich learning regime, tend to generalise better (Saxe et al., 2013). To test that
in our setting, we held out for testing the points on the input manifold corresponding to

(01,6002) € [-Z,37] x [-Z,2F]. We found that the rich, but not the lazy learning regime



generalised to the unseen points on the manifold (Fig. 2a). The high-dimensional (n = 100)
rich network learned the optimal low-dimensional projection of the input found by the
small-width (n = 4) network of the previous section, as reflected by its Gram matrix W71 W
having sparse low-rank structure (Fig. 2b, left). Instead the lazy network learned random,
near-orthogonal projections of the inputs (Fig. 2b, right).

To better understand the geometry underpinning this generalisation ability, we studied
the embedding dimensionality and intrinsic curvature of the representation. First, consistent
with previous work, rich learning led to lower-dimensional representations as reflected by
the participation ratio (>, ci)*/ (31, 07) of the hidden layer representation of the torus
(Fig. 2c). The discrepancy in the representation was also reflected in the intrinsic geometry.
The rich network representation had peaks in positive curvature near the class centres (Fig.
2d, left). These points are where small changes in either input angle leads to a change
in hidden layer representation in the same direction, towards switching the value of the
discretised input variable. Since the peaks are symmetrical, only being trained on the
points on the manifold on one of their halves is sufficient to generalise to the computation
to the unseen inputs. In comparison, the lazy network had a mostly flat curvature, with
small, randomly spread out, peaks in positive an negative curvature, which did not seem
to encode a general computation (Fig. 2d, right). Furthermore, the rich network was more
robust to noise in the state-space, likely linked to its highly structured representational
geometry, while noise on the manifold had similar effects in both networks (Fig. S2).

Thus, our results suggest that different learning regimes can have fundamentally different
effects on the representational geometry of discrete computations on continuous manifolds.
Furthermore, these geometries are tied to different generalisation abilities of the network.

5.3. Noise-robust neural representations have low curvature

Next we asked how injecting noise tangent to the input manifold during training affects
the learned representational geometry. We implemented this by a perturbation of the angle
x = [cos(f1 + n1),sin(f1 + n1), cos(z + 12),sin(f + 12)]T where 11,12 followed a wrapped
normal distribution of variance o2.

The network output on the original un-noised inputs smoothed out near the class bound-
aries for networks trained with larger noise levels (Fig. 3a, top). Interestingly, the curvature
near the class centres decreased, even below zero past a certain noise level (Fig. 3a, bottom;
Fig. 3b). This suggests that after a certain noise level, small changes in either input angles
near the class centres do not lead to similar changes in the representation. Moreover, the
value of the metric decreased, near the class boundaries, and so did its change over the
manifold, suggesting less warping (Fig. 3c). This effect was correlated with the model
output learning the flatter posterior distribution of the output (Fig. 3d).

Thus, noise during training affects representational geometry of discrete computations on
continuous manifolds. In particular, the continuous decrease in warping with noise reflects
the reduced confidence of the network in the output, as quantified by a flatter posterior
distribution. Furthermore, this is accompanied by a qualitative change from positive to
negative curvature past a certain noise threshold.



DISCRETE COMPUTATIONS ON CONTINUOUS MANIFOLDS

Noise level c
17.5 - 60 - 9
g g11
- . . o g11 g 90,
Outputs z g
S & —
@ 5 -
=] 2
E 3
o- 4 s A 00 —=—— "o ‘ ‘
z T ELs s T 3m
Curvature . -0 2 2 2 3
01 0,
el '\. ' % N - |
. . -30 Noise
61 0.0 (.5
b d
8- 1.0- — Model o =0.2 e =
—e— Mean Posterior o = 0.2 / 4 N

—— Model o = 0.5
- Posterior ¢ = 0.5

Curvature
o
!;I'I
IS
Model output / probability

00 01 02 03 04 05 06 ) ‘
0 T 27
Input noise 01

Figure 3: The metric and curvature encode the output posterior distribution. a.
Outputs and curvatures of rich networks trained on XOR with different amounts
of input noise during training. Increasing noise increases uncertainty near the
boundaries, leading to larger regions of outputs close to 0.5. Curvature decreases
with noise. b. Mean curvature vs. input noise. Curvature becomes more negative
for larger input noises. c. Metric and change in metric in the #; direction for
fixed 02 = 7 for different noises. In noisy models, the metric changes less quickly
across the boundaries. d. Outputs learned by models trained with different levels
of noise for fixed A2 and analytic predictions across the boundary. The learned
distribution closely matches the expected posterior distribution and the slope of
the posterior is less steep for larger values of noise.

6. Conclusion

The manifold hypothesis posits that data lie on low-dimensional manifolds. Yet, neural
networks must often perform fundamentally discrete computations on these continuous
input manifolds, whether classifying samples from a manifold of images in vision tasks
or making discrete actions over continuous state spaces in RL tasks. Here, we showed
that the hidden layer geometry reflected a sequential partitioning of these computations
into 1) discretisation of continuous variables and ii) logical computations on the discretised
variables. Furthermore, we demonstrated a link between these effects and different learning
regimes, as well as Bayesian computations.

While we focused our analyses on simple networks trained on hand-crafted input man-
ifolds, future work could attempt to extend these analyses by considering more complex
architectures trained on real-world data. Indeed, the tools leveraged here scale to high-
dimensional networks and inputs. Additionally, while this study was mostly descriptive,
future work could take a prescriptive approach by manipulating representational geometry
via constraints on the metric during training, in order to design more performant models.
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Appendix A. Geometry of Computations in Logic Gate Tasks
A.1. 1 Layer XOR vs 2 Layer XOR

We trained networks on the XOR task with 1 and 2 layers and a flat torus input manifold.
The 2 layer network (Fig. A.1, right) decomposed input-manifold specific computations
and task-specific computations across layers, with the first hidden layer metric showing the
characteristic discretisation pattern found in AND and OR networks (Fig. le). The 1-layer
hidden metric shows additional structure with sensitivity oscillating across the discretisation
boundaries, suggesting a more complex computation is occurring. The XOR task with
discrete inputs requires at least one hidden layer to solve (Minsky and Papert, 1969), so
the 1-layer network must discretise and solve the logic gate in one “step”.

1-Layer Net 2-Layer Net

g1 gi2 g22 g1 gi12 g22 o
IA VIV VI ’ b4 b PRI - 15 I_ - [PO—— [ I'2
1 [ . 40
Layer 1 : : < 32383238 »@OEX 1, , \ 0
5 20
Basa B P4 s LA . Ifs \ , . I‘-Z
|75O |>200
Layer 2 - — Fs0
- 250
Lo |>7200
r Yy N 5 3000
Izoo[ I»so
- 2000
Output Layer e o0 -0 S "
- 1000
G o |, l_5 ‘ — ., }—50

Figure S1: Varying depth of XOR networks Left: Hidden and output metrics for the 1
hidden layer XOR network. Right: Hidden and output metrics for the 2 hidden
layer XOR network.

A.2. Analytic Expression for Hidden Metric in XOR Task

Consider a network trained on the XOR, task with a tanh hidden non-linearity and input
weights W € RE*4 with components wq,p for the weight between the b*™® input and the a'®
hidden neuron. Inputs #; and 0y are embedded on a flat torus

x = [cos(6),sin(6), cos(f),sin(ha)] T, (1)

such that the target outputs are XOR(0 < 61 < 7,0 < 63 < 7). The hidden layer activa-
tions are z = tanh(u) = tanh(Wx) € RX. We first calculate the Jacobian of the hidden
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activations with respect to the inputs:
0z 0z
(2 3]

_ |4z 0u dz ou
N du801 du802

du 0x du 0x
=di h? _—— ——
iag(sech”(u)) [dx 90, dx 892]
= diag(sech?(Wx))W Jyx
where from Equation 1 we calculate:
— sin(01) 0
g cos(6) 0
* 0 — sin(62)
0 cos(62)
The metric tensor of the hidden layer is thus:
Gy, =JJ,

= J] W diag(sech(Wx))W Jy.

Which can be written in component form as:

Gy = (W DW ) ;

K
= Z(WJx)ki(WJx)ijkk
P

where D = diag(sech?(Wx)). Assume wy; = wyz = 0, then
(WJx)k1 = wi cos(01), (WJx)ke = wgg cos(f2)
and the pre-activations are
up = (WxX)g = wia sin(01) + wiq sin(6s).
Substitute (5)-(6) into (4):

K
Gij = Y (W Jx)ki(W Jx)j sech? (uy,)
k=1
K
= (w,2i cos(6;)) (wi,2; cos(Gj))sech4 [Wie sin(01) + wyq sin(62)]
k=1
K
= cos(6;) cos(6;) Z Wi 2:wy. 255ech? [wia sin(61) + wyy sin(fs)]
k=1
= cos(#;) cos(ﬂj)g(ij) (61,02)

where 2i € {2,4} corresponds to the input index of 6; (i =1 — 2,i =2 — 4).
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DISCRETE COMPUTATIONS ON CONTINUOUS MANIFOLDS

To observe how the Gaussian curvature depends on this expression, we use the Brioschi
formula which has the form:

_ M(01,09)
~ (det(@)? ®)
Substituting (7) into (8) yields:
K = M(ely 92)
[COSQ(Gl) cos? (02)9(11) (91, 02)9(22) (91, 92) — cos? ((91) COS2(92)g(12) (91, 92)2] 2
B 1 M(61,02) ()
~ cos?(1) cost(6s) [g(ll)g(22) _ (9(12))2}2

M'(60,,09)
cos*(01) cos*(62)

Appendix B. Rich and lazy learning geometry

Rich networks trained on XOR had low-dimensional hidden manifolds, and structured
Gram matrices, whereas lazy networks had high-dimensional hidden manifolds and near-
orthogonal projections of inputs. This difference was also captured by the hidden layer
metrics. Rich networks had localised sensitivity to inputs near the boundaries (Fig. S2a),
converging to the small width solutions (Fig. S1, left), whereas lazy networks had ran-
dom metrics with large magnitude across the manifold (Fig S2b). Output metrics in both
networks showed sensitivity close to task boundaries, indicating that a good solution was
found. The loss curves of the rich network show a slight initial delay in learning compared
to the lazy network (Fig.S2) consistent with the prediction of a slower convergence in rich
networks (Saxe et al., 2013), although this effect is small.

We also analysed the geometry of rich and lazy networks in the AND task, observing
better generalisation (Fig S2d), a lower-dimensional hidden manifold (Fig S2e), and more
structured and larger curvature (Fig S2f), consistent with the XOR results. The rich net-
work’s curvature was negative in one quadrant and positive in the other three, mirroring
the target outputs. This suggests the curvature pulls apart unlike classification regions on
the hidden manifold.

We tested the robustness to noise of XOR networks for a range of weight initialisations
(Fig S2g). Noise at the level of the task variables 61, #2 showed no difference in robustness
between learning regimes (S2h), because the mapping from task variables to outputs was
approximately identical irrespective of internal geometry. Isotropic noise at the level of
embedded inputs x(61,02) showed differences in robustness (Fig S2g). Here, task were
embedded first on a 4-D flat torus, and then by an orthogonal projection to a higher-
dimensional space. The difference in robustness increased with embedding dimension. High-
dimensional spaces containing low-dimensional manifolds have a large number of directions
orthogonal (task-irrelevant) to the manifold, which increases with embedding dimension.
Rich networks are known to compress task-irrelevant dimensions (Paccolat et al., 2021)
and so become increasingly robust to noise off the manifold as the number of orthogonal
dimensions increases.
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Figure S2: Rich and lazy geometry a. The hidden and output metric components for
the XOR network in the rich regime. b. Metric components for the lazy XOR
network. c. Loss curves for rich and lazy XOR networks. d. Outputs of
rich and lazy AND networks trained with a portion of the input space held
out during training. Rich networks generalise better to unseen inputs than
lazy networks. e. Participation ratios of rich and lazy AND networks across
training. f. The hidden layer Gaussian curvature across the manifold in rich and
lazy networks. g. Accuracy as a function of variance of input embedding noise
for networks trained with varying weight initialisations and increasing input
embedding dimension. h. Accurgcy as a function of variance of task variable
noise for varying weight initialisations.



DISCRETE COMPUTATIONS ON CONTINUOUS MANIFOLDS

Appendix C. A Bayesian Model of Noise

To study whether networks learn approximately Bayesian inference under training noise,
we computed the posterior for a simpler 1-dimensional classification problem on a circle.

We consider a random variable § uniformly distributed on a circle, representing an angle
in [—m, 7). We observe a noisy measurement ¢ = § + 7, where the noise 7 is drawn from a
zero-mean Gaussian distribution, 7 ~ N(0, 02).

Our goal is to determine the probability that ¢ is in the upper semi-circle, [0,7), given
the measurement c¢. We define a binary variable A:
1 if0<d<
-1 if -7 <a<0
We want to find the posterior probability P(A = 1|¢). From Bayes’ theorem, and given
that the priors P(A = 1) and P(A = —1) are both 0.5, the posterior is:
P(c|A=1)
P(c|[A=1)+ P(c|]A=-1)

P(A=1|c) =

Likelihoods For a circular variable, the Gaussian noise wraps around the circle. The
conditional probability of observing ¢ given 9§ is given by the wrapped normal distribution:

Plels) = Z exp <_(c—6—27rk:)2>

202
k=—00

ﬁ

Likelihood for A=1 We find P(c|A = 1) by marginalizing over ¢ € [0, 7). Given A = 1,
the PDF p(0|A =1) = 1/m.

P(c|A=1)= /07T P(c|d)p(0]A =1)dé
1 > 1 ox _(0—5—27Tk)2
- 7T/O _Z g P ( g ) do

Z / . < c—5—27rk)2>d6
= X _—
7T\/27T<7 P 202

The integral of a Gaussian is related to the error function, erf(z). Evaluating the integral
gives:

1 = I §—c+2mk\]™
PlclA=1)= — erf [ ————
Ca=n=5 ¥ | (e >]0
1 > -erf <7T—c+27rk> _erf<—c+27rk>}
o oo L ﬂa \/§0
1 il -erf <7T—c+27rk)+erf <c—27rk>]
o oo L \/§a \/§U
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Likelihood for A=-1 Similarly, for A = —1, we marginalize over § € [—7,0), where
p(d|A=—-1)=1/m.

Ple]A = —1) = 1/0 i L oo <—(C_‘:22”k)2> s

TJ—m, O()\/271'02 2
1 X I §—c4+2mk\1°
= — erf
2 [ ()]
1 < [ —c+ 27k —7 —c+ 27k
Ly at <C+7T>_erf (mﬂ
2, =~ | 20 20
_i > —erf <7T-|-c—27rkr> erf (c—27rk:>]
S L V20 V20

Final Posterior Probability Substituting the likelihoods into the posterior formula, the
% factor cancels. The denominator is the sum of the numerators of the two likelihoods.

> T —c+ 2nk c—2rk
Numerator = erf | ——— | +erf | ——
3 [ () e (5]
> T —c—+ 2nk c—2rk
Denominator = eff | ———— | +erf [ ———
X (e () e ()

(o (7) (55

S [ () e ()

k=—o00
The final expression for the posterior probability is:
00 T—ct+2mk c—27k
SE o for (%) (52
0 T—c+2wk T4+c—2nk

SR oo [orf () et (o)

where range of the index k controls how many “wrap-arounds” of the circle are considered.
The term in the sum corresponding to k£ = 0 is equivalent to the posterior without periodic

boundaries (i.e. a line). The circular posterior for £ = {—1,0, 1}, alongside the distribution
learned by the network is plotted in Figure 3d.

P(A=1|c) =
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