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Abstract

Many tasks require mapping continuous input data (e.g. images) to discrete task outputs
(e.g. class labels). Yet, how neural networks learn to perform such discrete computations
on continuous data manifolds remains poorly understood. Here, we show that signatures
of such computations emerge in the representational geometry of neural networks as they
learn. By analysing the Riemannian pullback metric across layers of a neural network,
we find that network computation can be decomposed into two functions: discretising
continuous input features and performing logical operations on these discretised variables.
Furthermore, we demonstrate how different learning regimes (rich vs. lazy) have contrasting
metric and curvature structures, affecting the ability of the networks to generalise to unseen
inputs. Overall, our work provides a geometric framework for understanding how neural
networks learn to perform discrete computations on continuous manifolds.
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1. Introduction

Studying the geometry of manifolds of neural activation can help interpret how neural
networks perform tasks (Chung and Abbott, 2021). Empirically, dimensionality reduction
methods have been used to infer low-dimensional structure in the high-dimensional activity
of biological (Pellegrino et al., 2024) and artificial neural networks (Li et al., 2023). More
recently, analytical methods stemming from Riemannian geometry have related these low-
dimensional manifolds of neural activation to task computations (Hauser and Ray, 2017;
Pellegrino and Chadwick, 2025). These works share a common basis: the manifold hy-
pothesis, which posits that the input data to a network lies on low-dimensional continuous
manifolds (Fefferman et al., 2016).

A parallel line of work has tackled how neural networks learn low-dimensional features of
their data inputs (Saxe et al., 2013). Studying the gradient dynamics of neural networks has
helped gain insights into their generalisation ability, sample complexity, and other facets of
task learning (Damian et al., 2024; Mousavi-Hosseini et al.; Abbe et al., 2023). Importantly,
in an effort to gain analytical tractability, and with some notable exceptions, this line of work
has focused on relatively unstructured inputs (e.g. Gaussian or Boolean), with a teacher
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network or polynomial target outputs. This stands in contrast with the representational
geometry typically studied in networks receiving inputs on low-dimensional manifolds, and
which are trained to produce discrete class labels (Aubry and Russell, 2015).

Here, we argue that using Riemannian geometric tools to formally study the represen-
tations that emerge as neural networks learn can provide insight into such discrete compu-
tations on continuous manifolds. Throughout, we study how multi-layer perceptrons learn
to implement Boolean functions (e.g. XOR, AND) on a continuous manifold of inputs (e.g.
a torus or a plane). We find that changes in the Riemannian metric over learning reveal the
discretisation of the continuous input manifold in the early layers of the network and the dis-
crete Boolean operation in subsequent layers. Furthermore, rich and lazy learning regimes
can lead to structured and random representational geometries, with different generalisation
abilities. Finally, we show that input noise during training decreases the curvature of the
manifold, and that it corresponds to the network learning a flatter posterior distribution of
the target output. Overall, our work links continuous input data manifolds to discrete task
output by studying the Riemannian geometry of hidden layer activation.

Contributions

1. Riemannian geometry of discrete computation on continuous manifolds. We
introduce a framework anchored in Riemannian geometry to study discrete computa-
tions on continuous manifolds. We show in multi-layer perceptrons trained to implement
Boolean functions that the metric tensor becomes highly localised close to class bound-
aries to reflect the discretisation of the continuous input manifold.

2. Different learning regimes have different representational geometries. In the
same model we show that feature learning partitions the computation into a binarisa-
tion corresponding to the collapse of the embedding space of the input manifold and a
degenerate metric tensor, followed by the discrete logical computations. Furthermore,
this geometry generalises to unseen inputs on the manifold, while lazy learning doesn’t.

3. Noise smooths the geometry to implement Bayesian computation. We show
that the curvature of the manifold decreases with input noise level, which corresponds
to a flatter posterior distribution of the output of the network.

Related works

Feature learning. Key work has derived the nonlinear learning dynamics of deep linear
networks to show that they could learn in two qualitatively distinct “rich” (or “feature”)
and “lazy” (or “kernel”) learning regimes (Saxe et al., 2013). Since then, similar tools
have been used to tackle various questions regarding how networks learn, such as under-
standing how many samples are required to learn target functions of increasing complexity
(Dandi et al., 2023) or bounding the generalisation error of neural networks (Goldt et al.,
2019). Importantly, these works often focus on Gaussian inputs or continuous target func-
tions (polynomials or teacher networks). Here, we instead study feature learning in neural
networks trained to map continuous input manifolds to discrete outputs.

Representational geometry of neural networks. A long line of work has argued
that geometrically studying how neural networks encode data features in their activations
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can help understand how they solve tasks, with applications in vision (Aubry and Russell,
2015), large language models (Li et al., 2023), and reinforcement learning (Tennenholtz
and Mannor, 2022). In particular, tools from Riemannian geometry have been used to
characterise the exact intrinsic geometry of neural representation of networks receiving
low-dimensional inputs (Hauser and Ray, 2017; Benfenati and Marta, 2023). Here, we
investigate how learning discrete target outputs affects the Riemannian geometry of the
hidden layer activation.

2. Riemannian geometry provides the tools to study the intrinsic
geometry of neural network representations

In this section we briefly review concepts from Riemannian geometry that we will use to
study neural network representations. In particular, we will exactly characterise the intrinsic
geometry of the hidden layer activation. We work under the manifold hypothesis, and the
overall neural network can be summarised as:

M ψ−→ Rnin
φ−→ Rn ζ−→ Rnout

The input data manifold isM, which is embedded into the input space of the neural network
Rnin via ψ. Assuming that we are interested in studying the representational geometry of a
particular layer, we can decompose the neural network into two functions: φ, which maps
the embedded inputs to the hidden layer of interest, and ζ mapping this hidden layer to the
output. Under weak constraints, the activation of the network in response to all possible
inputs (φ ◦ ψ)(M) will itself be a manifold, of the same topology as M. We are interested
in characterising the geometry of this manifold as it sits in the hidden-layer state-space.

To characterise the intrinsic geometry of the hidden layer activation, the pullback of the
metric can be computed:

g : TpM× TpM
dψ,dψ−−−−→ Rnin × Rnin

dφ,dφ−−−−→ Rn × Rn ⟨·,·⟩−−→ R

where TpM is the tangent space at a point p ∈ M. Intuitively, tangent vectors of the
input manifold can be mapped to vectors tangent to the manifold in the input embedding
space Rnin via the pushforward of the input embedding dψ, and then to vectors tangent
to the manifold in the hidden layer state-space Rn via the Jacobian of the neural network
dφ. Thus, the inner product between two tangent vectors of the input manifold can be
measured via the standard Euclidean dot product ⟨·, ·⟩ by pushing them forward to the
relevant Euclidean state-space.

This definition is independent of the choice of local coordinates on the manifold. How-
ever, in many cases, there will be a basis that represents the particular task variables at
hand — e.g. the orientation and translation of an object in image space — whose neural
representation we seek to understand. In this case, the metric can be summarised by how it
acts on this basis: if we call z(p1, p2) ∈ Rn the activation of the network in response to an
input depending on two task variables p1, p2 ∈ R, we can characterise the encoding of these
task variables by asking how the neural representation changes in response to small changes
in the first ∂p1z = dz(p1,p2)

dp1
or second ∂p2z = dz(p1,p2)

dp2
variable. If variables have locally

correlated representations, then changing them individually will cause similar changes in
representation, whereas uncorrelated representations cause changes in orthogonal directions
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in neural state-space. Mathematically, this is equivalent to saying that ∂p1z · ∂p2z = 0. In
a task involving k variables, the pullback metric summarises such correlations:

G =

∂p1z · ∂p1z . . . ∂p1z · ∂pkz
...

. . .
...

∂pkz · ∂p1z . . . ∂pkz · ∂pkz


Studying this pullback metric, and therefore the local correlations in the encoding of differ-
ent task variables, can provide insights into the computations performed by a network.

3. Neural network models can perform discrete computations on
continuous manifolds of inputs

Classic work has shown that neural networks can approximate arbitrary Boolean functions
(Siegelmann and Sontag, 1992). In this work we consider a continuous extension of this task,
involving learning Boolean functions, while allowing inputs to lie on a low-dimensional
manifold. This provides a minimal yet rich setting for analysing how representational
geometry supports discrete computations on continuous manifolds. More specifically, we
start with a simple example where the input manifold is a so-called flat torus, consisting of
the Cartesian product of two circles, each encoding a different input to the Boolean function.
To generate the input manifold, we define two angular task variables, θ1, θ2 ∈ [0, 2π), which
form a torus embedded in R4:

x =
[
cos(θ1) sin(θ1) cos(θ2) sin(θ2)

]⊤
.

We define a class boundary on each input circle at an angle α, such that 0 ≤ θ − α < π
is mapped to +1, and π ≤ θ − α < 2π is mapped to 0. The network is trained to apply a
Boolean function (e.g. XOR) on the discretised variables.

3.1. The learning dynamics of linear networks reveal that task-specific
representations emerge in hidden layer activation

We first consider the learning dynamics of a linear network performing the AND task.
Without loss of generality we can set α = 0 and recover solutions for all other boundary
rotations with a rotation of the input (Appendix A). The target output is:

y(θ) = 1 if (0 ≤ θ1 < π and 0 ≤ θ2 < π) 0 else

We consider a network which is linear in x, but not θ:

y =W2W1x(θ).

By extending a framework developed in Saxe et al. (2013) to consider inputs on a manifold,
we can derive exact learning dynamics for the linear network in terms of correlation matrices.
The input-input and input-output correlations are defined by the input embedding:

Σ11 = E[xx⊤] = 0.5I, Σ31 = E[yx⊤] =
[
0 1

2π 0 1
2π

]
Under certain assumptions (detailed in Appendix B), the dynamics across training of the
learned modes are controlled by the singular value decomposition of Σ31 = USV ⊤. For
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the AND task with input embedding as above, there is exactly one non-zero singular value

s1 = 1/π
√
2 with corresponding right singular vector v1 =

[
0 1/

√
2 0 1/

√
2
]⊤

.

It follows that the network will learn exactly one mode corresponding to m1 = v⊤
1 x ∝

sin θ1 + sin θ2. The network weights corresponding to the task relevant inputs (sine of the
input angles) evolve jointly, whilst the weights mapping the task irrelevant inputs (cosine
of the input angle) are not updated, resulting in a hidden weight structure of the form:

W1 = [0 a 0 a]

where a =W1v1 is the projection of the hidden weights onto the learned mode.

The projection of the total weights onto the learned mode, u = W2W1v1, will evolve
according to:

u(t) =
SeSt/τ

eSt/τ − 1 + S
u0

where S = 2s1, t is the training iteration and τ = 1
Learning Rate is the time constant of

learning. Figure S1 shows that u(t) accurately predicts learning dynamics in a linear network
trained on the AND task. Thus, networks learn hidden layer representations that capture
task-relevant information on the manifold via low-rank weights.

Using the evolution of the weights, we can derive a similar expression for the dynamics
of the hidden pullback metric:

Gz(t) ≃
1

2
a(t)2Gtask

z +G⊥
z

where a(t) represents the scalar learning dynamics ofW1, G
task
z has structure corresponding

to the task features and G⊥
z is the metric derived from weights orthogonal to the learned

mode at initialisation. Initially, a(t)2 is small, and the metric is determined by random
initialisations. In particular, in the limit of a large hidden layer, we obtain that at initial-
isation Gz(0) = I2, that is the manifold is uniform (Gz does not depend on θ1, θ2). Over
learning a(t)2 grows, dominating the G⊥

z term so the metric becomes task-specific. More
specifically, after training Gz(t) ≃ 0.5a(t)2[[cos2 θ1, cos θ1 cos θ2], [cos θ1 cos θ2, cos

2 θ2]], that
is the manifold is non-uniform and the metric close to degenerate at some points.

Thus, we have shown that task-specific Riemannian geometry emerges over learning
discrete computations on continuous input manifolds. Yet, here the network is linear and
cannot exactly discretise the input variables or perform more complex Boolean operations,
due to not being able to induce curvature on the manifold. Hence, in the next section we
turn to studying nonlinear networks, trained on more complex tasks.

3.2. The metric and curvature of the representations of nonlinear networks tie
continuous inputs to discrete task outputs

We next consider the toroidal inputs generalisation of the XOR task. The network is trained
to perform XOR on the discretised inputs, creating four quadrants (with periodic bound-
aries) on the input manifold (Fig. 1a). Although inputs to the network are 4-dimensional,
an efficient representation is sensitive only to the sign of the following latent variables:

vi(θi, α) = sin(θi − α)
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Figure 1: Neural network geometry reflects discrete computations on manifolds.
a. The target outputs of the XOR task with two angular inputs θ1, θ2 ∈ [0, 2π).
b. Diagram of the network architecture used to solve the task. c. Left: Schematic
showing an input variable θi embedded on a unit circle, x = [cos(θi), sin(θi)]

⊤,
with decision boundaries at α and π+α. Right: The optimal solution compresses
the irrelevant dimensions and performs the logic operation on the 1D represen-
tation. d. Input weight matrix of a trained network (for α = 0). Weights
corresponding to x1 = cos(θ1) and x3 = cos(θ2) are close to zero. e. The Gaus-
sian curvature of the hidden layer manifold visualised on a torus. The curvature
diverges if θi ∈ {π2 ,

3π
2 }. f. The components of the metric tensors of the hidden

layer activation of the network (lower-triangular part of the metric, each entry
varies over the manifold). g. Trace of the metric for networks trained on different
combination of input manifolds (torus, plane) and target output (AND, OR).

such that the target output is y = XOR[v1(θ1, α) > 0, v2(θ2, α) > 0] (Fig. 1c). We train
a multi-layer perceptron with four hidden neurons (Fig. 1b) and tanh activation, using
gradient descent on the binary cross-entropy loss.

We find that in networks trained on the XOR task on the flat torus, the input weights
compress task-irrelevant dimensions. For example, when α = 0, the task output is indepen-
dent of x1 and x3: the cosines of the two input angles (Fig. 1c-d). For α ̸= 0, the different
linear combinations of the xi’s will encode the task-relevant information. Thus, two dimen-
sions of the input torus are collapsed, with the remaining inputs (e.g. x2, x4 ∈ [−1, 1] for
α = 0) defining a patch of the R2 plane. This is reflected by the intrinsic curvature of the
torus in the hidden layer, which for collapsed x1 and x3 directions is approximately:

K ≃ M(θ1, θ2)

cos4(θ1) cos4(θ2)

whereM(θ1, θ2) is a term depending on the first and second derivatives of the metric tensor.
When cos(θi) = 0 for either i the curvature diverges. This happens near the class centres
θi ∈ {π2 ,

3π
2 } (Fig. 1e), where the circles are “folded” (Fig. 1c).
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From the standpoint of Riemannian geometry, the hidden layer metric tensor encodes
this effect. Visualising the entries of the metric tensor in the input coordinates highlighted
that space near decision boundaries is stretched, while space far from them is compressed
(Fig. 1f). This effectively discretises the inputs, with transitions between the discretised
variables only occurring across boundaries. In comparison, the metric pulled back from
the output layer reflects the logical gate (Fig. 1g). To see how this result depended on the
choice of task and input manifold, we repeated this analysis in the AND and OR tasks,
with inputs either on a torus or a plane. Specifically, we looked at the trace of the metric
tensor, which reflects the overall stretching and compression of space at any point on the
manifold. We found that the hidden layer metric’s trace showed stretching of space near
the input class boundaries, while the output metric showed stretching of space near the
target output decision boundaries (Fig. 1g). Thus, the metric and curvature of the hidden
layer reflect computations that are tied to the choice of input manifold and its embedding,
while the output layer geometry reflects Boolean function-specific computation.

Finally, we explored what happens when continuous and discrete computations cannot
be partitioned across layers. To do that, we went back to the XOR task and compared the
geometry of a 1-layer network to that of a 2-layer network. Classic work has shown that,
with binary inputs to the network, the XOR task requires at least one hidden layer (Minsky
and Papert, 1969). Thus, our 1-layer network cannot use its hidden layer to discretise the
input manifold, while the 2-layer network can in principle discretise the input manifold in
the first hidden layer before performing the classic solution on the binarised variables in
the second layer. Despite this discrepancy, both 1- and 2-layer networks can perform the
XOR task to a similar performance level (Fig. S2a). Interestingly, the two networks used
different geometries: the 2-layer network employed a similar representation of the discretised
variable in the first layer, while the 1-layer network showed a rich geometry which combined
the discretisation and Boolean computation (Fig. S2b).

Overall, this suggests that computations in these simple networks are partitioned across
layers into the discretisation of inputs manifolds and discrete Boolean computations.

3.3. Rich and lazy learning of input manifold features result in different
intrinsic geometries

Next, we tried to better understand how different learning regimes affect the hidden layer
representation and the overall discrete computations on the continuous manifold. Previous
work has shown that the variance of the weights at initialisation can qualitatively affect the
learned representation (Saxe et al., 2013). Here we replicate these analyses (Fig. S3) with
our model of discrete computation on continuous non-linear manifolds.

As in previous work, we continuously vary the strength of the initial weights of the
network Wij ∼ N (0, σ2). Small initial weights, corresponding to the rich learning regime,
tend to generalise better. To test this in our setting, we held out for testing the points
on the input manifold (θ1, θ2) ∈ [−π

2 ,
3π
2 ] × [−π

2 ,
3π
2 ]. We found that the rich, but not the

lazy learning regime generalised to the unseen points on the manifold (Fig. 2a). The high-
dimensional (n = 100) rich network learned the optimal low-dimensional projection of the
input found by the small-width (n = 4) network of the previous section, as reflected by
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Figure 2: Feature learning yields a structured geometry promoting generalisa-
tion. a. Output of rich and lazy networks trained on XOR with a portion of
the input manifold held out during training, represented by the black square.
Only rich networks are able to generalise to unseen inputs. b. The Gram ma-
trices W⊤W of the input weights. Rich networks ignore irrelevant inputs (cor-
responding to columns). Lazy networks randomly project each input into the
high dimensional hidden space. c. Participation ratios over training, with er-
ror bars calculated as the standard deviation across 10 different seeds of weight
initialisations. Rich networks learn low-dimensional representations, while lazy
networks learn high-dimensional representations determined by the initialisation.
d. Curvature over the hidden layer manifold, with a bar plot showing the aver-
age maximum curvature over the manifold (error bars show standard deviation).
Curvature in rich networks is highly structured with large magnitude at class
centres. Lazy networks are mostly flat, and have random curvature patterns.

its Gram matrix W TW having sparse low-rank structure (Fig. 2b, left). Instead the lazy
network learned random, near-orthogonal projections of the inputs (Fig. 2b, right).

To better understand the geometry underpinning this generalisation ability, we studied
the embedding dimensionality and intrinsic curvature of the representation. First, consistent
with previous work, rich learning led to lower-dimensional representations as reflected by
the participation ratio (

∑n
i=1 σi)

2 /
(∑n

i=1 σ
2
i

)
of the hidden layer representation of the

torus (Fig. 2c). The discrepancy in the representation was also reflected in the intrinsic
geometry. The rich network representation had peaks in positive curvature near the class
centres (Fig. 2d, left). These points are where small changes in either input angle lead to a
change in hidden layer representation in the same direction, towards switching the value of
the discretised input variable. Since the peaks are symmetrical, only being trained on the
points on the manifold on one of their halves is sufficient to generalise to the computation
to the unseen inputs. In comparison, the lazy network had a mostly flat curvature, with
small, randomly spread out, peaks in positive an negative curvature, which did not seem
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to encode a general computation (Fig. 2d, right). Furthermore, the rich network was more
robust to noise in the state-space, likely linked to its highly structured representational
geometry, while noise on the manifold had similar effects in both networks (Fig. S3).

Thus, our results suggest that different learning regimes can have fundamentally different
effects on the representational geometry of discrete computations on continuous manifolds.
Furthermore, these geometries are tied to different generalisation abilities of the network.

3.4. Noise-robust neural representations have low curvature

Next we asked how injecting noise tangent to the input manifold during training affects
the learned representational geometry. We implemented this by a perturbation of the angle
x = [cos(θ1 + η1), sin(θ1 + η1), cos(θ2 + η2), sin(θ2 + η2)]

T where η1, η2 followed a wrapped
normal distribution of variance σ2.

The network output on the original un-noised inputs smoothed out near the class bound-
aries for networks trained with larger noise levels (Fig. 3a, top). Interestingly, the curvature
near the class centres decreased, even below zero past a certain noise level (Fig. 3a, bottom;

Figure 3: The metric and curvature encode the output posterior distribution. a.
Outputs and curvatures of rich networks trained on XOR with different amounts
of input noise during training. Increasing noise increases uncertainty near the
boundaries, leading to larger regions of outputs close to 0.5. Curvature decreases
with noise. b. Mean curvature vs. input noise. Curvature becomes more negative
for larger input noises. c. Metric and change in metric in the θ1 direction for
fixed θ2 =

π
4 for different noises. In noisy models, the metric changes less quickly

across the boundaries. d. Outputs learned by models trained with different levels
of noise for fixed θ2 and analytic predictions across the boundary. The learned
distribution closely matches the expected posterior distribution and the slope of
the posterior is less steep for larger values of noise.
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Fig. 3b). This suggests that after a certain noise level, small changes in either input angles
near the class centres do not lead to similar changes in the representation. Moreover, the
value of the metric decreased, near the class boundaries, and so did its change over the
manifold, suggesting less warping (Fig. 3c). This effect was correlated with the model
output learning the flatter posterior distribution of the output (Fig. 3d).

Thus, noise during training affects representational geometry of discrete computations on
continuous manifolds. In particular, the continuous decrease in warping with noise reflects
the reduced confidence of the network in the output, as quantified by a flatter posterior
distribution. Furthermore, this is accompanied by a qualitative change from positive to
negative curvature past a certain noise threshold.

4. Conclusion

The manifold hypothesis posits that data lie on low-dimensional manifolds. Yet neural
networks must often perform fundamentally discrete computations on these continuous
manifolds, whether classifying samples from a manifold of images in vision tasks or making
discrete actions over continuous state spaces in RL tasks. Here, we sought to understand
the effect of this dichotomy on neural network representational geometry. We first showed
analytically, in linear networks, that specific Riemannian geometries emerge when learning
such discrete computations on continuous manifolds. Then, motivated by this insight,
we showed in numerical experiments that the hidden-layer geometry of nonlinear networks
reflected a sequential partitioning of these computations into (i) discretisation of continuous
variables and (ii) logical computations on the discretised variables. Finally, we demonstrated
a link between these effects and different learning regimes, as well as Bayesian computations.

While we focused our analyses on simple networks trained on hand-crafted input man-
ifolds, future work could extend these analyses to more complex architectures trained on
real-world data. Indeed, recent work has demonstrated that Riemannian geometry can be
used to understand generative (Park et al., 2023) and vision models (Kaul and Lall, 2019).
In parallel, our toy models could be used to understand further aspects of learning dynam-
ics, such as how the manifold structure of data influences sample complexity (Joshi et al.,
2025) or how the covariance between data variables affects generalisation error (Loureiro
et al., 2021).

Furthermore, while our work was mostly descriptive, future work could take a pre-
scriptive approach by manipulating representational geometry via constraints on the metric
during training. This could help design models that are (in/equi)variant to specific geo-
metric transformations (Tai et al., 2019), or help place implicit geometric biases into neural
networks (Katsman et al., 2023). Finally, some of these analyses could be combined with
tools used to infer changes in connectivity (Pellegrino et al., 2023) or learning dynamics
(Confavreux et al., 2020) from data, in order to study changes in representational geometry
over learning in biological networks.

Overall, we show that specific Riemannian geometric structures emerge over learning
in networks trained to perform discrete tasks on input data lying on continuous manifolds.
These results thus deepen our theoretical understanding of computations in neural networks
and their evolution over learning.
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Appendix A. Optimal weights for shifted boundaries

The toy models considered in this work require networks to learn representations of the
input embedding:

x(θ) =
[
cos θ1 sin θ1 cos θ2 sin θ2

]⊤
(1)

to output a logical operation:

y = LogicOp(α < θ1 < π + α, α < θ2 < π + α) (2)

where α is a constant used to shift the boundaries. This is equivalent to solving the task:

y = LogicOP(v1 > 0, v2 > 0) (3)

where v1 = sin(θ1 − α) and v2 = sin(θ2 − α). Expanding using the sine addition identity
yields

vi = sin θi cosα− cos θi sinα. (4)

Note that x(2i−1) = cos θi and x(2i) = sin θi. As was shown in Section 3.1, to efficiently
solve the task the hidden layer must learn a mapping:

h(x) = v1 + v2 (5)

= − sinα︸ ︷︷ ︸
weight for x(1)

·x(1) + cosα︸ ︷︷ ︸
weight for x(2)

·x(2) + − sinα︸ ︷︷ ︸
weight for x(3)

·x(3) + cosα︸ ︷︷ ︸
weight for x(4)

·x(4) (6)

Collecting the terms from Eq. 6 reveals the structure of the optimal weight vector w. For
each input pair (cos θi, sin θi), the corresponding weights are (− sinα, cosα). We observe
that this weight vector is the result of applying a rotation matrix R(α) to the unshifted
weights (where α = 0): (

− sinα
cosα

)
=

(
cosα − sinα
sinα cosα

)(
0
1

)
(7)

Consequently, shifting the classification boundary by α in the input space is mathe-
matically equivalent to rotating the optimal hidden layer weights by α in the parameter
space.

Appendix B. Linear network learning dynamics

Input Embedding and Target Function (AND Task)

The angles are embedded into a 4-dimensional input vector x ∈ R4:

x(θ) =
[
cos θ1 sin θ1 cos θ2 sin θ2

]T
(8)

The target y implements a logical AND on the half-planes defined by the angles. We define
the active region as the first quadrant [0, π]× [0, π]:

y(θ) =

{
1 if 0 < θ1 < π AND 0 < θ2 < π

0 otherwise
(9)
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Statistical Moments

The learning dynamics of a deep linear network are governed by the input correlation matrix
Σ11 and the input-output correlation matrix Σ31. Since we minimize MSE, these are defined
as expectations over the manifold.

Input Correlation Matrix Σ11

We calculate Σ11 = E[xxT ]. Due to the orthogonality of sine and cosine functions, the
off-diagonal elements vanish. Assuming a uniform sampling distribution p(θ) = 1

2π , we
compute the diagonal variance for a sine term:

σ2 = E[sin2 θ] =
∫ π

−π

∫ π

−π
sin2(θ1)p(θ) dθ1dθ2 (10)

σ2 =
1

2π

∫ π

−π
sin2(θ1) dθ1 =

1

2π
(π) = 0.5 (11)

Thus, the input correlation matrix is diagonal:

Σ11 = 0.5I (12)

In the notation of Saxe et al. (Appendix E), the eigenvalue matrix is D = 0.5I.

Input-Output Correlation Matrix Σ31

We calculate Σ31 = E[yxT ]. The integration is restricted to the active region where y = 1.

Σ31 =

∫ π

0

∫ π

0
x(θ)T p(θ) dθ1dθ2 (13)

Evaluating the component for sin θ1:

E[y sin θ1] =
1

4π2

(∫ π

0
sin θ1dθ1

)(∫ π

0
1dθ2

)
(14)

=
1

4π2
(2)(π) =

2π

4π2
=

1

2π
(15)

By symmetry, the expectation for sin θ2 is identical. The cosine terms integrate to zero over
[0, π]. The correlation vector is:

Σ31 =
[
0 1

2π 0 1
2π

]
(16)

The non-zero singular value s corresponds to the Euclidean norm of this vector:

s =

√(
1

2π

)2

+

(
1

2π

)2

=

√
2

2π
=

1√
2π

(17)

which has corresponding right singular vector

v1 =
[
0 1√

2
0 1√

2

]⊤
(18)
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Differential Equation for Weight Magnitude

Following Saxe et al. (2013), the gradient descent dynamics for the weights W are given
by:

τ
d

dt
W = Σ31 −WΣ11 (19)

We project these dynamics onto the single active mode. Let

u(t) =W2(t)W1(t)v1 (20)

be the scalar product of the input and output weights aligned with the mode. Assuming
balanced initialization (W1(0)v1 ≈W2(0)

⊤), the chain rule introduces a factor of 2:

τ
du

dt
= 2u(s− u · σ2) (21)

Substituting σ2 = 0.5:

τ
du

dt
= 2u(s− 0.5u) (22)

Rearranging to group the constants:

τ
du

dt
= u(2s− u) (23)

Let S = 2s be the effective singular value. This constant represents the final asymptotic
strength of the weights.

τ
du

dt
= u(S − u) (24)

Integration and Solution

We solve the differential equation (24) by separation of variables:∫
du

u(S − u)
=

∫
dt

τ
(25)

Using partial fraction decomposition 1
u(S−u) =

1
S (

1
u + 1

S−u):

1

S
(lnu− ln(S − u)) =

t

τ
+ C ′ (26)

ln

(
u

S − u

)
=
St

τ
+ C (27)

Exponentiating and solving for u(t) yields the sigmoidal learning curve:

u(t) =
SeSt/τ

eSt/τ − 1 + S
u0

(28)

Learned Weights

To obtain the form of the learned hidden layer weights, we first project the hidden weights
onto the learned mode:

a =
[
a1 a2 a3 a4

]⊤
:=W1v1 (29)
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To recover the learned weights we perform the opposite transformation:

W learned
1 = av⊤

1 =
1√
2


0 a1 0 a1
0 a2 0 a2
0 a3 0 a3
0 a4 0 a4

 (30)

Pullback Metric Dynamics

To derive the dynamics of the hidden pullback metric over training, we first define the
Jacobian of the hidden activations with respect to task angles:

Jz =
∂z

∂θ
=
∂z

∂x

∂x

∂θ
=W1Jx (31)

The hidden pullback metric is then:

Gz = J⊤
z Jz (32)

= J⊤
x W

⊤
1 W1Jx (33)

For randomly initialised hidden weights, we can decompose into weights parallel and per-
pendicular to the learned mode: W1(t) = W∥(t) +W⊥ = a(t)v⊤

1 +W⊥, where a(t) and v1

are defined as above. The perpendicular weights have zero gradients, and so don’t evolve
over training. The metric then becomes:

Gz = J⊤
x (W∥ +W⊥)

⊤(W∥ +W⊥)Jx (34)

= J⊤
x (a(t)v⊤

1 )
⊤(a(t)v⊤

1 )Jx+G⊥
z (35)

=
1

2
a(t)2J⊤

x v1v
⊤
1 Jx +G⊥

z (36)

=
1

2
a(t)2

(
cos2 θ1 cos θ1 cos θ2

cos θ1 cos θ2 cos2 θ2

)
+G⊥

z (37)

=
1

2
a(t)2Gtask

z +G⊥
z (38)

where in (36) we have used the fact that a(t) = a(t) · û, and û is a constant unit vector.
In the rich regime (σ2 ≪ 1) G⊥

z is small. Note that cross terms in the expansion of (34)
vanish due to orthogonality. Over learning, a(t)2 grows and the final learned metric is
approximately:

Gz ≃ 1

2
a(t)2

(
cos2 θ1 cos θ1 cos θ2

cos θ1 cos θ2 cos2 θ2

)
(39)

Appendix C. Geometry of Computations in Logic Gate Tasks

C.1. 1 Layer XOR vs 2 Layer XOR

We trained networks on the XOR task with 1 and 2 layers and a flat torus input manifold.
The 2 layer network (Fig. C.1, right) decomposed input-manifold specific computations
and task-specific computations across layers, with the first hidden layer metric showing the
characteristic discretisation pattern found in AND and OR networks (Fig. 1e). The 1-layer
hidden metric shows additional structure with sensitivity oscillating across the discretisation
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Figure S1: Left : Theoretical curve of learning dynamics u(t) plotted against a linear and
tanh network trained on the AND task. The theoretical curve is an excellent
prediction of learning dynamics in the linear network, and is a reasonable approx-
imation of the initial learning stage in the non-linear network. Right : Learned
hidden layer weights for the tanh network. Only weights corresponding to the
non-zero mode are learned.

boundaries, suggesting a more complex computation is occurring. The XOR task with
discrete inputs requires at least one hidden layer to solve (Minsky and Papert, 1969), so
the 1-layer network must discretise and solve the logic gate in one “step”.

C.2. Analytic Expression for Hidden Metric in XOR Task

Consider a network trained on the XOR task with a tanh hidden non-linearity and input
weights W ∈ RK×4 with components wa,b for the weight between the bth input and the ath

hidden neuron. Inputs θ1 and θ2 are embedded on a flat torus

x = [cos(θ1), sin(θ1), cos(θ2), sin(θ2)]
⊤, (40)

such that the target outputs are XOR(0 ≤ θ1 < π, 0 ≤ θ2 < π). The hidden layer activa-
tions are z = tanh(u) = tanh(Wx) ∈ RK . We first calculate the Jacobian of the hidden
activations with respect to the inputs:

Jz =

[
∂z

∂θ1

∂z

∂θ2

]
=

[
dz

du

∂u

∂θ1

dz

du

∂u

∂θ2

]
= diag(sech2(u))

[
du

dx

∂x

∂θ1

du

dx

∂x

∂θ2

]
= diag(sech2(Wx))WJx
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Figure S2: Varying depth of XOR networks Left : Hidden and output metrics for the 1
hidden layer XOR network. Right : Hidden and output metrics for the 2 hidden
layer XOR network.

where from Equation 40 we calculate:

Jx =


− sin(θ1) 0
cos(θ1) 0

0 − sin(θ2)
0 cos(θ2)

 . (41)

The metric tensor of the hidden layer is thus:

Gz = J⊤
z Jz

= J⊤
x W

⊤diag(sech4(Wx))WJx.
(42)

Which can be written in component form as:

Gij =
(
J⊤
x W

⊤DWJx

)
ij

=
K∑
k=1

(WJx)ki(WJx)kjDkk

(43)

where D = diag(sech4(Wx)). Assume wk1 = wk3 = 0, then

(WJx)k1 = wk2 cos(θ1), (WJx)k2 = wk4 cos(θ2) (44)
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and the pre-activations are

uk = (Wx)k = wk2 sin(θ1) + wk4 sin(θ2). (45)

Substitute (44)-(45) into (43):

Gij =

K∑
k=1

(WJx)ki(WJx)kj sech
4(uk)

=
K∑
k=1

(wk,2i cos(θi))(wk,2j cos(θj))sech
4[wk2 sin(θ1) + wk4 sin(θ2)]

= cos(θi) cos(θj)
K∑
k=1

wk,2iwk,2jsech
4[wk2 sin(θ1) + wk4 sin(θ2)]

= cos(θi) cos(θj)g
(ij)(θ1, θ2)

(46)

where 2i ∈ {2, 4} corresponds to the input index of θi (i = 1 → 2, i = 2 → 4).

To observe how the Gaussian curvature depends on this expression, we use the Brioschi
formula which has the form:

K =
M(θ1, θ2)

(det(G))2
. (47)

Substituting (46) into (47) yields:

K =
M(θ1, θ2)[

cos2(θ1) cos2(θ2)g(11)(θ1, θ2)g(22)(θ1, θ2)− cos2(θ1) cos2(θ2)g(12)(θ1, θ2)2
]2

=
1

cos4(θ1) cos4(θ2)

M(θ1, θ2)[
g(11)g(22) − (g(12))2

]2
=

M ′(θ1, θ2)

cos4(θ1) cos4(θ2)

(48)

Appendix D. Rich and lazy learning geometry

Rich networks trained on XOR had low-dimensional hidden manifolds, and structured
Gram matrices, whereas lazy networks had high-dimensional hidden manifolds and near-
orthogonal projections of inputs. This difference was also captured by the hidden layer
metrics. Rich networks had localised sensitivity to inputs near the boundaries (Fig. S3a),
converging to the small width solutions (Fig. S2, left), whereas lazy networks had ran-
dom metrics with large magnitude across the manifold (Fig S3b). Output metrics in both
networks showed sensitivity close to task boundaries, indicating that a good solution was
found. The loss curves of the rich network show a slight initial delay in learning compared
to the lazy network (Fig.S3) consistent with the prediction of a slower convergence in rich
networks (Saxe et al., 2013), although this effect is small.

We also analysed the geometry of rich and lazy networks in the AND task, observing
better generalisation (Fig S3d), a lower-dimensional hidden manifold (Fig S3e), and more
structured and larger curvature (Fig S3f), consistent with the XOR results. The rich net-
work’s curvature was negative in one quadrant and positive in the other three, mirroring
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the target outputs. This suggests the curvature pulls apart unlike classification regions on
the hidden manifold.

We tested the robustness to noise of XOR networks for a range of weight initialisations
(Fig S3g). Noise at the level of the task variables θ1, θ2 showed no difference in robustness
between learning regimes (S3h), because the mapping from task variables to outputs was
approximately identical irrespective of internal geometry. Isotropic noise at the level of
embedded inputs x(θ1, θ2) showed differences in robustness (Fig S3g). Here, task were
embedded first on a 4-D flat torus, and then by an orthogonal projection to a higher-
dimensional space. The difference in robustness increased with embedding dimension. High-
dimensional spaces containing low-dimensional manifolds have a large number of directions
orthogonal (task-irrelevant) to the manifold, which increases with embedding dimension.
Rich networks are known to compress task-irrelevant dimensions (Paccolat et al., 2021)
and so become increasingly robust to noise off the manifold as the number of orthogonal
dimensions increases.

Appendix E. A Bayesian Model of Noise

To study whether networks learn approximately Bayesian inference under training noise,
we computed the posterior for a simpler 1-dimensional classification problem on a circle.

We consider a random variable δ uniformly distributed on a circle, representing an angle
in [−π, π). We observe a noisy measurement c = δ + η, where the noise η is drawn from a
zero-mean Gaussian distribution, η ∼ N (0, σ2).

Our goal is to determine the probability that δ is in the upper semi-circle, [0, π), given
the measurement c. We define a binary variable A:

A =

{
+1 if 0 ≤ δ < π

−1 if − π ≤ δ < 0

We want to find the posterior probability P (A = 1|c). From Bayes’ theorem, and given
that the priors P (A = 1) and P (A = −1) are both 0.5, the posterior is:

P (A = 1|c) = P (c|A = 1)

P (c|A = 1) + P (c|A = −1)

Likelihoods For a circular variable, the Gaussian noise wraps around the circle. The
conditional probability of observing c given δ is given by the wrapped normal distribution:

P (c|δ) =
∞∑

k=−∞

1√
2πσ2

exp

(
−(c− δ − 2πk)2

2σ2

)
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Figure S3: Rich and lazy geometry a. The hidden and output metric components for
the XOR network in the rich regime. b. Metric components for the lazy XOR
network. c. Loss curves for rich and lazy XOR networks. d. Outputs of
rich and lazy AND networks trained with a portion of the input space held
out during training. Rich networks generalise better to unseen inputs than
lazy networks. e. Participation ratios of rich and lazy AND networks across
training. f. The hidden layer Gaussian curvature across the manifold in rich and
lazy networks. g. Accuracy as a function of variance of input embedding noise
for networks trained with varying weight initialisations and increasing input
embedding dimension. h. Accuracy as a function of variance of task variable
noise for varying weight initialisations.
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Likelihood for A=1 We find P (c|A = 1) by marginalizing over δ ∈ [0, π). Given A = 1,
the PDF p(δ|A = 1) = 1/π.

P (c|A = 1) =

∫ π

0
P (c|δ)p(δ|A = 1)dδ

=
1

π

∫ π

0

∞∑
k=−∞

1√
2πσ2

exp

(
−(c− δ − 2πk)2

2σ2

)
dδ

=
1

π
√
2πσ2

∞∑
k=−∞

∫ π

0
exp

(
−(c− δ − 2πk)2

2σ2

)
dδ

The integral of a Gaussian is related to the error function, erf(z). Evaluating the integral
gives:

P (c|A = 1) =
1

2π

∞∑
k=−∞

[
erf

(
δ − c+ 2πk√

2σ

)]π
0

=
1

2π

∞∑
k=−∞

[
erf

(
π − c+ 2πk√

2σ

)
− erf

(
−c+ 2πk√

2σ

)]

=
1

2π

∞∑
k=−∞

[
erf

(
π − c+ 2πk√

2σ

)
+ erf

(
c− 2πk√

2σ

)]

Likelihood for A=-1 Similarly, for A = −1, we marginalize over δ ∈ [−π, 0), where
p(δ|A = −1) = 1/π.

P (c|A = −1) =
1

π

∫ 0

−π

∞∑
k=−∞

1√
2πσ2

exp

(
−(c− δ − 2πk)2

2σ2

)
dδ

=
1

2π

∞∑
k=−∞

[
erf

(
δ − c+ 2πk√

2σ

)]0
−π

=
1

2π

∞∑
k=−∞

[
erf

(
−c+ 2πk√

2σ

)
− erf

(
−π − c+ 2πk√

2σ

)]

=
1

2π

∞∑
k=−∞

[
erf

(
π + c− 2πk√

2σ

)
− erf

(
c− 2πk√

2σ

)]
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Final Posterior Probability Substituting the likelihoods into the posterior formula, the
1
2π factor cancels. The denominator is the sum of the numerators of the two likelihoods.

Numerator =
∞∑

k=−∞

[
erf

(
π − c+ 2πk

σ
√
2

)
+ erf

(
c− 2πk

σ
√
2

)]

Denominator =

∞∑
k=−∞

[(
erf

(
π − c+ 2πk

σ
√
2

)
+ erf

(
c− 2πk

σ
√
2

))
+

(
erf

(
π + c− 2πk

σ
√
2

)
− erf

(
c− 2πk

σ
√
2

))]
=

∞∑
k=−∞

[
erf

(
π − c+ 2πk

σ
√
2

)
+ erf

(
π + c− 2πk

σ
√
2

)]
The final expression for the posterior probability is:

P (A = 1|c) =

∑∞
k=−∞

[
erf

(
π−c+2πk
σ
√
2

)
+ erf

(
c−2πk
σ
√
2

)]
∑∞

k=−∞

[
erf

(
π−c+2πk
σ
√
2

)
+ erf

(
π+c−2πk
σ
√
2

)]
where range of the index k controls how many “wrap-arounds” of the circle are considered.
The term in the sum corresponding to k = 0 is equivalent to the posterior without periodic
boundaries (i.e. a line). The circular posterior for k = {−1, 0, 1}, alongside the distribution
learned by the network is plotted in Figure 3d.
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