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ABSTRACT

In two-sided markets, the accurate estimation of treatment effects is crucial yet
challenging due to the inherent interference between market participants, which
violates the Stable Unit Treatment Value Assumption (SUTVA). This paper in-
troduces a novel framework that leverages random graph asymptotics to model
and estimate treatment effects under network interference in two-sided markets.
By incorporating a random graph model, we handle two-sided randomization by
modeling customer interference within the potential outcome function as a func-
tion of graph topology and equilibrium dynamics, while capturing listing interfer-
ence through the random graph structure. Our new estimation process provides
asymptotically normal estimators with robust theoretical properties, suitable for
large-scale market scenarios. Our theoretical findings are supported by extensive
numerical simulations, demonstrating the effectiveness and practical applicabil-
ity of our approach in estimating direct and indirect causal effects within these
complex market structures.

1 INTRODUCTION

Two-sided markets have been a fundamental focus in microeconomics for several decades, playing a
crucial role in various economic and digital platforms. In a two-sided market, two distinct groups of
participants interact, with each group’s success dependent on the presence and activity of the other.
In the context of two-sided markets, such as online platforms or rental services, the two primary
groups are typically customers and listings (e.g., products, services, or properties). Customers arrive
sequentially and make choices from the listings that are available at the time of their arrival. Once a
customer books a listing, that listing becomes unavailable for a period while it is being replenished.
This temporary unavailability creates dynamic competition among customers as they vie for listings,
and it also introduces a time-sensitive element to decision-making in the market. This structure
creates complex interdependencies between the two sides, which present significant challenges in
accurately estimating causal effects within two-sided markets.

Estimating causal effects within two-sided markets is a critical challenge across various fields. In
these markets, interventions affect interactions between participants in the market, and decisions on
whether to launch the intervention across the entire market depend heavily on the accuracy of ex-
perimental estimates. However, these estimates are often compromised by biases and high variances
due to interference between market participants. As participants interact and compete, the treatment
assigned to one individual can influence the behavior of others, thereby violating the Stable Unit
Treatment Value Assumption (SUTVA) (Imbens & Rubin, 2015). Previous studies have shown that
interference in markets can lead to substantial biases (Johari et al., 2022) and potentially infinite
variances as market size increases (Li & Wager, 2022).

1.1 RELATED WORKS

Estimating treatment effects in two-sided markets has been a challenging area of research due to
the interference between participants, which violates the Stable Unit Treatment Value Assumption
(SUTVA). Several studies have attempted to address these challenges by developing models that ac-
count for this interference. One common approach is the bipartite experimental framework, where
treatments are assigned to one set of market participants (e.g., sellers) and outcomes are observed
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on another set (e.g., buyers) (Pouget-Abadie et al., 2019)(Zigler & Papadogeorgou, 2018). This
framework is often represented as a bipartite graph connecting the two groups, which enables the
modeling of market dynamics and interference (Harshaw et al., 2022). These studies laid the ground-
work for designing experiments in two-sided markets but faced limitations when not only one side
of the market receives treatment.

Recent advancements have focused on two-sided randomization designs, where both sides of the
market receive treatment and control (Masoero et al., 2024). The predominant approach involves
using a continuous Markov chain model combined with a mean field limit analysis (Johari et al.,
2022). Wager & Xu (2021) and Li et al. (2022) leverage domain-specific structures within two-sided
marketplaces and network routing to assess the bias of difference-in-means estimators across differ-
ent experimental designs. Their model captures the dynamics of two-sided markets by analyzing
the limiting case, where both the number of listings and the customer arrival rates approach infinity.
Although this framework provides a solid foundation for analysis and introduces novel estimators,
these estimators are particularly sensitive to the relative volumes of supply and demand. Biases can
emerge due to the interconnected nature of participants, potentially leading to network effects and
interference (Blake & Coey, 2014)(Cortez-Rodriguez et al., 2023)(Fradkin, 2019). Moreover, these
estimators lack desirable asymptotic properties, underscoring the need for new approaches that can
more effectively account for interference in two-sided markets.

In response to the limitations of traditional randomization techniques, a growing body of work has
explored network-based interference models using exposure graphs. For example, Doudchenko et al.
(2020) puts forward a framework that considers network structures in which edges probabilistically
form between participants in bipartite structures, connecting treatments and outcomes through ran-
dom formations. Erdos-Rényi random graphs are utilized for experimentation purposes to simulate
network structures with interference. Cai et al. (2023) proposes an independent set design, which
partitions a network into two sets: the independent set (non-interfering units) and the auxiliary set
(interfering units), helping to control bias and variance in causal estimators by separating treatment
and interference effects. Zheleva & Arbour (2021) further discusses techniques to mitigate inter-
ference in network-based randomized controlled trials, including block designs, chain graphs, and
abstract ground graphs, which model the relationships between entities in the networks.

Utilizing random graphs to estimate causal effects is particularly valuable in networks with interfer-
ence, such as two-sided markets, where traditional randomized experiments often fail to accurately
estimate causal effects due to spillovers between connected units. Our research focuses on a model
in which units are represented as vertices on a graph, with edges connecting any two units if the
treatment of one may influence the potential outcome of the other (Li & Wager, 2022). This method
has gained traction for its ability to model network interference, particularly in settings where the
interference structure is complex. Appropriate random graph assumptions can facilitate more man-
ageable analyses of treatment effects under network interference, leading to methodological ad-
vancements.

1.2 OUR CONTRIBUTIONS

By addressing the limitations of existing approaches, our contributions offer a significant advance-
ment in the understanding and practical application of treatment effect estimation in two-sided mar-
kets. We introduce a new framework for analyzing experiments conducted in two-sided markets,
and we propose a novel estimation process designed to achieve estimators with robust asymptotic
properties. Our key contributions are as follows:

• We incorporate the random graph model proposed in Li & Wager (2022) to the two-sided
markets, where the graph structure reflects the inherent competition and interference among
market participants. To deal with two-sided randomization, we model the interference be-
tween customers within the potential outcome function as a function of both graph topology
and equilibrium dynamics, and capture the interference between listings through the ran-
dom graph model.

• We use the steady-state mass of listings to determine the graphon value, which represents
the probability of two listings being connected, accounting for the interference between
them. This allows for a realistic and analytically tractable analysis of treatment effects in
two-sided markets.
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• We identify key limitations in existing methods for treatment effect estimation in two-sided
markets and introduce a new estimation process, yielding asymptotically normal estima-
tors.

This framework not only advances the theoretical understanding of treatment effect estimation in
two-sided markets but also provides practical tools for designing and analyzing experiments in these
environments. The rest of the paper is organized as follows: Section 2 and 3 detail the formulation
of our problem setting and random graph model, Section 4 presents our novel estimation process
of the direct effect and indirect effect, Section 5 discusses the numerical analysis, and Section 6
concludes with implications and future directions.

2 PROBLEM FORMULATION: TWO-SIDED MARKETS

We are particularly interested in marketplaces where a booked listing becomes unavailable for a
certain period before it becomes available again. Our model assumes a fixed number of listings,
with the goal of exploring scenarios as the number of listings approaches infinity. Each arriving
customer forms a consideration set from the available listings, and selects one to book or decides
not to book at all, based on a choice model. Once a listing is booked, it becomes unavailable until
its occupancy period ends.

Our primary interest lies in the steady-state average rate of bookings. We specifically focus on mar-
ket interventions that alter the parameters governing customer choice probabilities. To test such
interventions, we employ a two-sided randomization design: both customers and listings are ran-
domly assigned to treatment or control groups. Each listing’s consideration probability and utility
for each customer are determined by their respective treatment condition.

Listings: The system consists of a fixed number N of listings. Each listing l has a type θl ∈ Θ.
When an available listing is booked by an arriving customer, it becomes occupied, and an occupied
listing of type θ remains occupied for an exponential time with parameter τ(θ) = τν(θ). Listings
are indexed i = 1, ..., N , where each listing is randomly assigned a binary treatment Wi ∈ {0, 1},
Wi ∼ Bernoulli(aL) for some 0 ≤ aL ≤ 1, and then experiences a potential outcome Yi ∈ R,
where Yi represents the steady state rate at which bookings of listing i are made by customers when
time t → ∞. We use a superscript ’N ’ to denote quantities in the model with N listings. Here we
consider the regime where N → ∞, allowing us to apply the mean field limit results as discussed in
Johari et al. (2022) and the graphon asymptotic results outlined in Li & Wager (2022).

Customers: Each customer j has a type γj ∈ Γ. Customers of type γ arrive sequentially according
to a Poisson process of rate λγ . Customers choose at most one listing to book and can choose
not to book at all. Each customer is randomly assigned a binary treatment with probability aC .
The total arriving rate is denoted as λ =

∑
γ∈Γ λγ . Further, we assume that for each γ ∈ Γ,

limN→∞ λ
(N)
γ /λ(N) = ϕγ > 0. Note that

∑
γ ϕγ = 1.

Booking Mechanism: When customers arrive at a market, they form a consideration set of possible
listings to book. Assume that each available listing of type θ is included in the arriving customer’s
consideration set independently with probability αγ(θ) > 0 for a customer of type γ. To put it
formally, suppose that customer j arrives at time Tj . For each listing ℓ, let Cjℓ = 0 if the listing
is unavailable at Tj . If listing ℓ is available, let Cjℓ = 1 with probability αγj

(θℓ), and let Cjℓ = 0
with probability 1 − αγj (θℓ). Then the consideration set of customer j is {ℓ : Cjℓ = 1}. After the
consideration set is formed, a choice model is applied to determine whether a booking is made.

We assume that a type γ customer has utility vγ(θ) > 0 for a type θ listing. Let qjℓ denote the
probability that arriving customer j of type γj books listing ℓ of type θℓ. Assume that customers
make choices according to the multinomial logit choice model:

qjℓ =
Cjℓvγj (θℓ)

ϵγj +
∑(N)

ℓ′=1 Cjℓ′vγj
(θℓ′)

where ϵγ is the value of the outside option, corresponding to the circumstance that the customer
doesn’t book at all.
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Two-Sided Randomization of Treatment: Interventions change the choice probability of listings
by customers either through the consideration probabilities α or perceived utility v. The intervention
is only applied when a treatment customer considers a treatment listing. Namely,

vγ,0(θ, 0) = vγ,1(θ, 0) = vγ,0(θ, 1) = vγ(θ); vγ,1(θ, 1) = ṽγ(θ);

αγ,0(θ, 0) = αγ,1(θ, 0) = αγ,0(θ, 1) = αγ(θ);αγ,1(θ, 1) = α̃γ(θ).

Additionally, we assume that both the value of the outside option and the parameter for the expo-
nential occupancy time are not affected by the treatment condition. Namely,

ϵγ,1 = ϵγ,0 = ϵγ ; ν(θ, 1) = ν(θ, 0) = ν(θ).

Interference: Since each customer considers both treatment and control listings when deciding
whether to book according to a multinomial logit choice model, there are dynamic interference
between available listings, violating the Stable Unit Treatment Value Assumption (SUTVA). This
interference introduces bias in estimation. Specifically, while the Horvitz–Thompson estimator, a
natural estimator, is unbiased in the absence of interference, it may become biased in the presence
of such interference.

Causal Effect: We seek to estimate the direct, indirect and total causal effects of the treatment,
where Yi represents the steady state booking rate of listing i:

τ̄DIR(aL) =
∑

iEaL
[Yi(wi = 1;W−i)− Yi(wi = 0;W−i) | Y (·)],

τ̄IND(aL) =
∑

i

∑
j ̸=iEaL

[Yj(wi = 1;W−i)− Yj(wi = 0;W−i) | Y (·)],

τ̄TOT(aL) = τ̄DIR(aL) + τ̄IND(aL)

We focus on estimating τ̄DIR(π) and τ̄IND(π).

3 RANDOM GRAPH MODEL

Investigating treatment effect estimation under random graph asymptotics has proven effective (Li &
Wager, 2022). However, existing methods are limited to single-sided randomization, where only one
set of units receives treatment. To extend this framework to two-sided randomization, we account for
customer-side interference in the potential outcome function by incorporating both graph topology
and equilibrium dynamics. Meanwhile, listing-side interference is modeled using a random graph
approach. Specifically, we model the listings as the vertices of a random graph, with the interference
graph represented as a random draw from a graphon. Given a set of regularity assumptions detailed
below, we can estimate causal effects within a two-sided market framework in our setting. For
direct effect estimation, standard estimators from the literature are both unbiased and asymptotically
Gaussian. For indirect effects, our use of the PC balancing estimator demonstrates significant power.

To put the random graph model we use formally, we posit a graph with edge set {Eij}Ni,j=1 and ver-
tices at the N listings. The ith potential outcome may only depend on the jth treatment assignment
if there is an edge from i to j, that is, Yi(w) = Yi(w

′) if wi = w′
i and wj = w′

j for all j ̸= i with
Eij = 1. We consider the following assumptions and demonstrate their validity in our setting of the
two-sided markets.

Assumption 1 (Undirected relationships) The interference graph is undirected, that is, Eij =
Eji for all i ̸= j.

From the market setting and customer choice model described in Section 2, the interference between
listings is undirected, thus Assumption 1 holds true.

Assumption 2 (Random graph) The interference graph is randomly generated as follows: Each
listing i has a type θi ∈ Θ, and there is a symmetric measurable function GN : Θ2 → [0, 1] called
a graphon such that Eij ∼ Bernoulli(GN (θi, θj)) independently for all i ̸= j and Eii = 0 for all
i ∈ {1, 2, 3...N}.

To address dynamic interference within two-sided markets, we focus on the steady-state scenario.
Referring to Johari et al. (2022), two-sided markets in our setting can be modeled with a continuous
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Markov chain, where the state at any time reflects the number of available listings of each type. A
mean field analog is proposed by examining the limit as both the number of listings and the customer
arrival rate approach infinity. By scaling with the number of listings, a continuum of listings is
obtained, and the state is represented by the mass of available listings in this mean field model.
This system proved to be globally asymptotically stable and provide a precise characterization of
the asymptotic steady state as the solution to an optimization problem. The mean field limit serves
as the fluid limit of the finite market model, effectively approximating large markets.

Formally, the total mass of listings of type θ in the system is ρ(θ) > 0 (note that
∑

θ ρ(θ) = 1). We
represent the state at time t by st = (st(θ), θ ∈ Θ); st(θ) represents the mass of listings of type θ
available at time t. The state space is:

S = {s : 0 ≤ s(θ) ≤ ρ(θ)}.

In an appropriate sense, there exists a unique steady state s∗ to which all trajectories converge as
t → ∞ regardless of the initial condition. s∗ is the unique solution to the following optimization
problem:

minimize W (s) ≜
∑
γ

∑
c

(
λγ,c log

(
ϵγ,c +

∑
θ

∑
l

αγ,c(θ, l)νγ,c(θ, l)s(θ, l)

))
− τ(θ)

∑
θ

∑
l

ρ(θ, l) log s(θ, l) + τ(θ)
∑
θ

∑
l

s(θ, l)

where λγ,1 = aCλ, λγ,0 = (1 − aC)λ; ρ(θ, 0) = (1 − aL)ρ(θ), ρ(θ, 1) = aLρ(θ). Additionally,
c ∈ {0, 1} is the treatment condition of the customers, and l ∈ {0, 1} is the treatment condition of
the listings. From the definitions in Section 2, since interference only exists between listings that are
available, we can set

GN (θi, θj) =
∑
θ

s∗(θ), ∀i, j ∈ {1, 2, 3...N}, i ̸= j (1)

as t→ ∞. Clearly, GN is a symmetric function, which satisfies the condition mentioned above. At
this point, the random graph model in our paper is fully specified.

Assumption 3 (Anonymous interference) The potential outcomes only depend on the fraction of
treated neighbors: Yi(wi;w−i) = fi(wi;

∑
j ̸=iEijwj/

∑
j ̸=iEij), where fi ∈ F is the potential

outcome function of the ith subject.

The rationality of Assumption 3 can be found in the Appendix. Under Assumption 2-3, we can
also derive the specific form of the potential outcome function as a function of treatment status and
proportion of treated neighbors, which represents the steady-state booking rate:

fk(w, x) =
λ

N

∑
i

∑
γ

ϕγ,iαγ,i(θk, w)vγ,i(θk, w)

ϵγ,i +GN

∑
θ′(αγ,i(θ′, 1)vγ,i(θ′, 1)x+ αγ,i(θ′, 0)vγ,i(θ′, 0)(1− x))

.

(2)

Here, GN and x characterize the incorporation of graph topology, while, as shown in (1), GN also
reflects the equilibrium dynamics.

Assumption 4 (Smoothness) The potential outcome functions f(w, x) satisfy

|f(w, x)|, |f ′(w, x)|, |f ′′(w, x)|, |f ′′′(w, x)| ≤ B (3)

uniformly in f ∈ F , w ∈ {0, 1} and x ∈ [0, 1], where all derivatives of f are taken with respect to
the second argument.

The rationality of Assumption 4 is in the Appendix. This assumption states that small changes in
the fraction of treated neighbors lead to small changes in the potential outcomes.

5
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Assumption 5 (Graphon sequence) The graphon sequence GN (·, ·) described in Assumption 2
(Random graph) satisfies GN (Ui, Uj) = min{1, ρNG(Ui, Uj)}, where G(·, ·) is a symmetric, non-
negative function on [0, 1]2 and 0 < ρN ≤ 1 satisfies one of the following two conditions: ρN = 1
(dense graph), or limN→∞ ρN = 0 and limN→∞NρN = ∞ (sparse graph). In the case of dense
graphs, we simply denote GN = G.

Figure 1 illustrates the model setup under Assumption 1-5 on a small graph with 4 listings.

Figure 1: Random graph model setup

The following proposition offers a straightforward method for defining our target estimands within
the specified random graph model. The direct effect measures how much f changes with w, while
the indirect effect is the derivative of f with respect to x.

Proposition 1 Consider a randomized trial under network interference satisfying Assumptions 1,
3, and 4, with treatment assigned independently as Wi ∼ Bernoulli(π) for some 0 < π < 1. Let
Ni =

∑
j ̸=iEij be the number of neighbors of subject i in the interference graph. Conditional

on the interference graph and the potential outcome functions, the estimands can be expressed as
follows, where B is the smoothness constant in Assumption 4 (Smoothness):

τ̄DIR =
λ

N2

∑
i

∑
γ

∑
k

ϕγ,i(αγ,i(θk, 1)vγ,i(θk, 1)− αγ(θk)vγ(θk))

ϵγ,i +GN

∑
θ′(αγ,i(θ′, 1)vγ,i(θ′, 1)π + αγ(θ′)vγ(θ′)(1− π))

+O
(

B

miniNi

)
,

τ̄IND =
1

N

∑
i

∑
γ

∑
k

C (παγ,i(θk, 1)vγ,i(θk, 1) + (1− π)αγ(θk)vγ(θk))

+
∑
i

∑
γ

C

(∑
θ′

αγ,i(θ
′, 1)vγ,i(θ

′, 1)− αγ(θ
′)vγ(θ

′)

)
+O

(
B√

miniNi

)
,

where C =
−λϕγ,iGN

N(ϵγ,i+GN

∑
θ′ (αγ,i(θ′,1)vγ,i(θ′,1)π+αγ(θ′)vγ(θ′)(1−π)))

2 .

4 ESTIMATION THEORY

4.1 DIRECT EFFECT

The direct effect captures the effect of a unit’s treatment status on its own outcome. Under interfer-
ence between available treatment listings and control listings as clarified in Section 2, the Horvitz-
Thompson estimator (inverse propensity weighted, IPW, estimator) is unbiased for the direct effect
conditionally on potential outcomes:

6
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τ̂HT
DIR =

1

n

∑
i

WiYi
π

− 1

n

∑
i

(1−Wi)Yi
1− π

,

E
[
τ̂HT

DIR

∣∣Y (·)
]
=

1

n

n∑
i=1

E [WiYi(1,W−i)|Yi(·)]
π

− 1

n

n∑
i=1

E [(1−Wi)Yi(0,W−i)|Yi(·)]
1− π

=
1

n

n∑
i=1

E [Wi|Yi(·)]E [Yi(1,W−i)|Yi(·)]
π

− 1

n

n∑
i=1

E [1−Wi|Yi(·)]E [Yi(0,W−i)|Yi(·)]
1− π

= τ̄DIR.

The Horvitz–Thompson estimator is consistent for the direct effect in both sparse and dense graphs,
and it has a 1/

√
N rate of convergence regardless of the degree of the exposure graph (Li & Wager,

2022). Furthermore, we can establish a central limit theorem showing that natural estimator of the
average treatment effect in the no-interference setting is asymptotically normal around the direct
effect once interference effects appear.

Theorem 2 Consider a randomized trial under network interference satisfying Assumptions 1–5.
Suppose that the function gN (u) :=

∑
θ min(1, GN (u, θ)) is bounded away from 0, i.e.,

gN (u) ≥ cl for any u ∈ Θ,

and that
E[G(U1, U2)

k] ≤ cku for k = 1, 2.

Finally, suppose that lim inf log ρN/ logN > −1. Then the Horvitz–Thompson estimator has a
limiting Gaussian distribution around the direct effect,

√
N
(
τ̂HT

DIR − τ̄DIR
) d→ N

(
0, π(1− π)E

[
(Rk +Qk)

2
])
,

where

Rk =
λ

N

∑
i

∑
γ

ϕγ,i
ϵγ,i +GN

∑
θ′ (αγ,i(θ′, 1)vγ,i(θ′, 1)π + αγ(θ′)vγ(θ′)(1− π))

·(
αγ,i(θk, 1)vγ,i(θk, 1)

π
+
αγ(θk)vγ(θk)

1− π

)
,

Qk =E

[
G(Uk, Uj)

(
f ′j(1, π)− f ′j(0, π)

)
g(Uj)

∣∣∣∣∣Uk

]
.

4.2 INDIRECT EFFECT

We take advantage of the PC balancing estimator initially proposed in Li & Wager (2022) to estimate
the indirect effect in a setting where the graphon G admits a low-rank representation with rank
r, that is, G(Ui, Uj) =

∑r
k=1 λkψk(Ui)ψk(Uj) for a small number r of measurable functions

ψk : [0, 1] → R. The low-rank condition quantifies an assumption that each unit can be characterized
using a small number (r) of factors. Qualitatively, since the only factor that characterize the listings
is the type, the low-rank condition is naturally satisfied.

In practice, we don’t have access to ψk(Ui) directly. But if the graphon is low rank, then the adja-
cency matrix E is a noisy observation of the low rank edge probability matrix, and its eigenvectors
ψ̂ki are approximately ψk(Ui). PC balancing estimator can be calculated following the procedure:

1. Let E be the adjacency matrix with 0 on the diagonal.

7
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2. Eigen-decompose E: Let λ1, λ2, . . . , λr be the first r eigenvalues of E such that |λ1| ≥
|λ2| ≥ · · · ≥ |λr|. Let ψk be the eigenvector corresponding to the eigenvalue λk.

3. Compute the PC balancing estimator

τ̂PC
IND =

1

n

∑
i

Yi

(
Mi

π
− Ni −Mi

1− π
+

r∑
k=1

β̂kψk(Ui)

)
,

where β̂ is determined by solving the following equations∑
i

ψl(Ui)

(
Mi

π
− Ni −Mi

1− π
+

r∑
k=1

β̂kψk(Ui)

)
= 0,

for all l = 1, 2, . . . , r.

The PC balancing estimator is both consistent and satisfies a central limit theorem, demonstrating its
asymptotic normality (Li & Wager, 2022). Under certain regularity assumptions, the PC balancing
estimator is asymptotically normal:

τ̂PC
IND − τIND√
ρnσIND

d−→ N (0, 1),
τ̂PC

IND − τ̄IND√
ρnσIND

d−→ N (0, 1),

where σ2
IND = E[G(U1, U2)(α

2
1 +α1α2)] +E[g(U1)η

2
1 ]/(π(1− π)), αi = fi(1, π)− fi(0, π), bi =

πfi(1, π) + (1− π)fi(0, π) and ηi = bi −
∑r

k=1 E[biψk(Ui)]ψk(Ui).

5 NUMERICAL STUDIES

In this section, we implement the estimation process developed in the previous sections to evaluate
its performance under simulated scenarios. Our goal is to demonstrate the robustness and effective-
ness of the proposed methodology for estimating causal effects in two-sided markets, considering
both homogeneous and heterogeneous settings with network interference. The results provide in-
sights into the practical applicability of our approach.

5.1 PARAMETERS

Homogeneous Setting: Consider a market with homogeneous customers and listings. We set ϵ = 1,
α = 0.5, aC = aL = 0.5. Customers have utility v = 0.315 for control listings and ṽ = 0.394 for
treatment listings. λ = τ = 1.

Heterogeneous Setting: Consider a market with heterogeneous customers. There is one listing
type θ and two customer types γ1, γ2. We fix the size of the treatment utility increase such that
ṽγ1

(θ) = 1.25 · vγ1
(θ) and ṽγ2

(θ) = 1.25 · vγ2
(θ). We set the ratio vγ2

(θ)/vγ1
(θ) = 3, with

vγ1
(θ) = 0.17, vγ2

(θ) = 0.51.

5.2 DIRECT EFFECT

5.2.1 SIMULATION WITH THE POTENTIAL OUTCOME FUNCTION

We simulate data as described in the homogeneous setting, for a graph with N = 10000 nodes
generated via a constant graphon GN (u1, u2) = 0.867, where any pair of nodes are connected
with probability 0.867. The value of the graphon is calculated according to (1). We then generate
treatment assignments as Wi

i.i.d.∼ Bernoulli(π) with π = aL = 0.5, and potential outcome functions
as (2). Note that ϕγ,0 = (1− aC)ϕγ , ϕγ,1 = aCϕγ .

As proved in Section 4, the Horvitz-Thompson estimator is unbiased for the direct effect condition-
ally on potential outcomes, and is asymptotically normal around the direct effect. Hájek estimator
is not exactly unbiased, but its ratio form makes it invariant to shifting all outcomes by a constant.
Figure 2 shows the distribution of the estimators τ̂HT

DIR and τ̂HAJ
DIR across 2000 simulations. Here,

the Hájek estimator has a better asymptotic variance than the Horvitz–Thompson estimator, which
agrees with the case without interference.
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Figure 2: Histograms of the Horvitz–Thompson and Hájek estimator

5.2.2 SIMULATION WITH THE MARKET SETTING

We use another simulation approach of the direct effect to verify the accuracy of the result in Section
5.2.1. We simulate the process of customers arriving, choosing a listing, the listing being occupied,
and the listing becoming available again.

According to simulation, in the homogeneous setting, τ̂HT
DIR = τ̂HAJ

DIR = 1.122 × 10−5. The standard
error estimation for both the Horvitz-Thompson estimator and the Hájek estimator are 1.898×10−6.
The results of this simulation are of the same order of magnitude as in Section 5.2.1 and differ within
the expected range, indicating that our simulation is reliable. The reason why two ways of simulation
don’t get exactly the same result is that simulation with the potential outcome functions depends on
a asymptotic mean field model when N → ∞, while simulation with the market setting uses a
specific value of N = 10000. Similarly, in the heterogeneous setting, τ̂HT

DIR = τ̂HAJ
DIR = 1.082× 10−5,

and the standard error estimation for both the Horvitz-Thompson estimator and the Hájek estimator
are 1.747× 10−6.

5.3 CONSERVATIVE INTERVALS FOR THE DIRECT EFFECT

We consider the conservative interval for the direct effect in the homogeneous setting. According
to Li & Wager (2022), under Assumptions 1-5 and certain regularization assumptions, the Hájek
estimator τ̂ satisfies a central limit theorem

√
N(τ̂ − τ̄DIR) =⇒ N (0, σ2

0 + π(1− π)V ),

where V = Var[Ri] + 2Cov[Ri, Qi] + E[Q2
i ]. Let V0 = Var[Ri]. By Cauchy–Schwarz,

V ≤ V0 + 2
√
V0E[Q2

i ] + E[Q2
i ],

1

2
E[Q2

i ] ≤
E[a20(Ui)]

E[a0(Ui)]2
E [f ′i(1, π)− f ′i(0, π)]

2

+

K∑
k=1

P[Ui ∈ Ik]
E[a2k(Ui)|Ui ∈ Ik]

E[ak(Ui)|Ui ∈ Ik]2
E [f ′i(1, π)− f ′i(0, π)|Ui ∈ Ij ]

2 (4)

We use the standard error estimate from Section 5.2.2 for V0, that is, (σ2
0 + π(1 − π)V0)/N =

3.599× 10−12. Since each listing has a type, the market naturally satisfies the setting of the disjoint
communities model, where the interference effect is dominated by links between these disjoint com-
munities, namely, different types of listings. Assume that E[f ′i(1, π) − f ′i(0, π)]

2 ≤ τ2DIR and that
all terms in (4) that depend on stochastic fluctuations can be controlled by considering these terms
constant and then inflating the resulting bound by a factor 2. We get that

E[Q2
i ] ≤ 8τ2DIR.

The following chi-squared test will reject with probability at most α under the null hypothesis H0 :
τDIR = τ0:

(τ̂ − τ0)
2 ≥ Φ(1− α/2)2

N
(σ2

0 + π(1− π)(V0 + 2
√
8V0τ20 + 8τ20 ))

9
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In our specific case, π = 1/2 andN = 10000, and we assume that (σ2
0+π(1−π)V0)/N = 3.599×

10−12. We can maximize the noise term by setting σ2
0 = 0 and V0 = 4 × 10000 × 3.599 × 10−12,

so that the hypothesis test is fully specified. We obtain the following 95% confidence interval:
τDIR ∈ (7.299165 × 10−6, 1.5365257 × 10−5). In contrast, the unadjusted Gaussian confidence
interval was τDIR ∈ (7.501121 × 10−6, 1.4939679 × 10−5). Although interference do inflate the
confidence interval of the direct effect, we are still able to reject the null that τDIR = 0 at the 95%
level. Figure 3 shows the intervals obtained for different significance levels α.

5.4 INDIRECT EFFECT

With the PC balancing estimator proposed in Section 4.2, we get τ̂PC
IND = 9.68 × 10−6 in the ho-

moegeneous setting, and τ̂PC
IND = 1.375 × 10−5 in the heterogeneous setting. Figure 4 shows the

distribution of τ̂PC
IND across 100 simulations, which is approximately normally distributed.

Figure 3: Level-α confidence in-
tervals for the direct effect τDIR.
The dashed blue lines denote up-
per and lower endpoints of a ba-
sic Gaussian confidence interval,
while the solid red curves denote
endpoints of a confidence inter-
val derived with inteference con-
sidered. The solid green line de-
notes the point estimate.

Figure 4: Histogram of PC Balanc-
ing Estimator across 100 simula-
tions

6 CONCLUSION

This study advances the understanding of treatment effect estimation in two-sided markets by ad-
dressing the limitations of existing methodologies, particularly those affected by interference. By
introducing a random graph model and novel estimation techniques, we provide a robust framework
capable of handling the complexities of two-sided markets. Our simulations confirm the reliability
of the proposed estimators, showing their potential for practical application in real-world scenarios.
Future work may explore extending it to observational study settings, or adapting the framework for
A/B testing scenarios. These contributions open new avenues for designing and analyzing experi-
ments in two-sided markets, with implications for both theoretical research and applied economic
strategies.
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A APPENDIX

A.1 DERIVATION OF THE POTENTIAL OUTCOME FUNCTION

By using the equilibrium described in Section 2 and by modifying the mean field limit result in Johari
et al. (2022), the steady state rate at which bookings of listing k of treatment condition Wk ∈ {0, 1}
are made by customers can be written as:

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

fk(w, x) =
λ

Ns∗(θk,Wk)

∑
i∈{0,1}

∑
γ

ϕγ,ipγ,i(θk,Wk|s∗(aC , aL))

=
λ

N

∑
i

∑
γ

ϕγ,iαγ,i(θk, w)vγ,i(θk, w)

ϵγ,i +
∑

j

∑
θ′ αγ,i(θ′, j)vγ,i(θ′, j)s∗(θ′, j)

where fk(w, x) is the potential outcome function for listing k.

A.2 RATIONALITY OF THE ASSUMPTIONS

Rationality of Assumption 3:

In the expression of fk(w, x), the only term affected by the treatment condition of the neighbors of
listing k is s∗(θ′, j). According to Assumption 2 (Random graph),

∑
m ̸=k Ekmwm/

∑
m ̸=k Ekm =∑

θ′ s∗(θ′, 1)/
∑

j

∑
θ′ s∗(θ′, j), and

∑
j

∑
θ s

∗(θ) = GN . When α and v are both independent of
the type of the listing,

∑
j

∑
θ′

αγ,i(θ
′, j)vγ,i(θ

′, j)s∗(θ′, j) =
∑
θ′

αγ,i(θ
′, 1)vγ,i(θ

′, 1)s∗(θ′, 1)

+
∑
θ′

αγ,i(θ
′, 0)vγ,i(θ

′, 0)s∗(θ′, 0)

=αγ,i(θ
′, 1)vγ,i(θ

′, 1)
∑
θ′

s∗(θ′, 1)

+ αγ,i(θ
′, 0)vγ,i(θ

′, 0)
∑
θ′

s∗(θ′, 0)

=αγ,i(θ
′, 1)vγ,i(θ

′, 1)GN

∑
m ̸=k Ekmwm∑

m ̸=k Ekm

+ αγ,i(θ
′, 0)vγ,i(θ

′, 0)GN

(
1−

∑
m ̸=k Ekmwm∑

m ̸=k Ekm

)

which only depends on the fraction of treated neighbors:
∑

m ̸=k Ekmwm∑
m̸=k Ekm

. Thus this assumption is
properly satisfied.

Rationality of Assumption 4: From the proof of rationality of Assumption 3 (Anonymous interfer-
ence),

fk(w, x) =
λ

N

∑
i

∑
γ

ϕγ,i
αγ,i(θk, w)vγ,i(θk, w)

ϵγ,i +
∑

θ′ GN (αγ,i(θ′, 1)vγ,i(θ′, 1)x+ αγ,i(θ′, 0)vγ,i(θ′, 0)(1− x))
.

Since ϵγ,i is non-negative, αγ,i(θ
′, 1), vγ,i(θ′, 1), GN , αγ,i(θ

′, 0), vγ,i(θ′, 0) are positive for all
γ and i, |f(w, x)|, |f ′(w, x)|, |f ′′(w, x)|, |f ′′′(w, x)| are bounded uniformly in w ∈ {0, 1} and
x ∈ [0, 1], thus this assumption is properly satisfied.
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A.3 COMPARATIVE EXPERIMENTS WITH EXISTING METHODS

Figure 5 shows the comparison of our estimator with the customer-side estimator, listing-side esti-
mator, and TSR-Naı̈ve estimator proposed in Johari et al. (2022) in the homogeneous setting, where
λ = τ = 1. Customers have utility v = 0.315 for control listings and ṽ = 0.394 for treatment
listings.

Figure 5: Comparison of Estimators
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