
Under review as a conference paper at ICLR 2023

EFFICIENT HYPERPARAMETER OPTIMISATION
THROUGH TENSOR COMPLETION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter optimisation is a prerequisite for state-of-the-art performance in
machine learning, with current strategies including Bayesian optimisation, hy-
perband, and evolutionary methods. While such methods have been shown to
improve performance, none of these is designed to explicitly take advantage of
the underlying data structure. To this end, we introduce a completely different
approach for hyperparameter optimisation, based on low-rank tensor completion.
This is achieved by first forming a multi-dimensional tensor which comprises per-
formance scores for different combinations of hyperparameters. Based on the
realistic underlying assumption that the so-formed tensor has a low-rank struc-
ture, reliable estimates of the unobserved validation scores of combinations of
hyperparameters can be obtained through tensor completion, from knowing only
a fraction of the elements in the tensor. Through extensive experimentation on
various datasets and learning models, the proposed method is shown to exhibit
competitive or superior performance to state-of-the-art hyperparameter optimisa-
tion strategies. Distinctive advantages of the proposed method include its ability to
simultaneously handle any hyperparameter type (e.g., kind of optimiser, number
of neurons, number of layer, etc.), its relative simplicity compared to competing
methods, as well as the ability to suggest multiple optimal combinations of hyper-
parameters.

1 INTRODUCTION

Machine learning (ML) applications have been steadily growing in number and scope over recent
years, especially in Computer Vision and Natural Language Processing. This growth is mainly
attributed to the ability of large deep learning (DL) models to learn very complex functions. Con-
sequently, the performance of such models (but even of simpler models that perform less computa-
tionally heavy tasks) is critically dependent on fine-tuning of their internal hyperparameters. Given
the importance of hyperparameter optimisation and the ever increasing complexity of training mod-
ern ML models, efficient tuning of hyperparameters has become an area of utmost importance, not
only in obtaining state-of-the-art performance, but also in alleviating the complexity of the training
process. It is therefore not surprising that a large effort of the machine learning community has been
focused on developing efficient hyperparameter optimisation methods. Commonly used methods in-
clude grid search, random search, methods based on Bayesian optimisation, multi-fidelity optimisa-
tion and evolutionary strategies. For a comprehensive review of currently available hyperparameter
optimisation methods we refer the reader to Yu & Zhu (2020).

Despite success, current approaches are either rather heuristic or depend on strong underlying as-
sumptions. To this end, we introduce a radically different approach based on exploiting the low-rank
structure of the hyperparameter space. For example, we expect that a given optimiser with its learn-
ing rate set to 1e− 3 will most likely yield similar validation loss performance to a learning rate of
9.9e−4. Extending this argument to multiple dimensions, so as to reflect multiple hyperparameters,
we aim to identify highly promising subspaces in the vast space of hyperparameter combinations
by evaluating only a small fraction of these combinations. More specifically, the proposed method
models the set of all possible hyperparameter combinations as a multidimensional tensor. Each en-
try in this tensor corresponds to a score indicating relative suitability of a particular hyperparameter
combination with respect to others (e.g., validation loss). By evaluating a subset of these combi-
nations, we construct an incomplete tensor with only a fraction of its elements known. Assuming

1

Under review as a conference paper at ICLR 2023

the complete tensor is of low rank, the unknown entries can be estimated using low-rank tensor
completion techniques. This makes it possible to predict the relative performance of different hy-
perparameter configurations without the need for their explicit evaluation. The best hyperparameter
configurations can then be found by searching the so completed tensor.

To take full advantage of the tensor completion framework, we propose a sequential tensor comple-
tion algorithm which narrows down the hyperparameter search space based on identified promising
subspaces from previous tensor completion cycles. Furthermore, for each cycle, we employ the
Cross method (Zhang (2019)), a tensor sampling scheme which ensures that as few hyperparameter
evaluations as possible are required for accurate tensor completion. We show that such an approach
results in a speed of optimisation that is highly competitive with, and often surpassing, other state-
of-the-art hyperparameter optimisation techniques. Comprehensive numerical results and extensive
experimentation illustrate the potential of the proposed framework as a competitive and intuitive,
yet physically meaningful, alternative option for efficient hyperparameter optimisation.

The rest of the paper is organised as follows. Section 2 discusses related work. After briefly dis-
cussing key tensor preliminary concepts in Section 3, we present a validation of the assumed low-
rank property of the hyperparameter tensor in 4 and the proposed tensor completion algorithm for
hyperparameter optimisation in Section 5. Next, comprehensive experimental results are presented
in Section 6, followed by the Conclusion in Section 7.

2 RELATED WORK

Deng & Xiao (2022) provide a meta-learning approach based on low-rank tensor completion which
allows the optimal hyperparameter configuration in a new machine learning problem to be predicted
based on the optimal configurations found in other related problems. Our work is crucially different
since it does not require the results of related problems or any other prior knowledge to optimise a
given machine learning problem. A plethora of hyperparameter optimisation techniques exist that
also do not require prior knowledge of the problem e.g. random search or Bayesian optimisation.
However, to the best of our knowledge, there is no such hyperparameter optimisation method based
on low-rank tensor completion. Furthermore, we have been unable to find any work hypothesising
that the performance distribution of various hyperparameter combinations has an underlying low-
rank structure, even though this is a natural assumption for any physically meaningful data structure.

3 TENSOR PRELIMINARIES

Low-rank tensor completion is based on the premise that elements in a low rank tensor exhibit
certain interrelationships. This makes it possible to infer values of unknown elements based on the
elements whose values are known. Research abounds with algorithms for tensor completion e.g.,
Bengua et al. (2017), Song et al. (2018), Liu et al. (2014) or Acar et al. (2011); however, most
of these algorithms assume there is no prior knowledge of which elements of the true tensor are
known. In the strategy proposed by this paper, one is able to “choose” which elements of the tensor
are known by choosing which hyperparameter combinations to evaluate. Since each hyperparameter
evaluation is time-consuming, it is important to be achieve accurate tensor completion with as few
known elements as possible; this capability is provided by the Cross technique for efficient low rank
tensor completion from Zhang (2019).

To explain this technique, it is necessary to explain two important prerequisites: Tucker decompo-
sition and Tucker rank. Any N -dimensional tensor X can be expressed as a Tucker decomposition,
consisting of an N -dimensional core tensor G and N factor matrices A(n), one for each dimension.
The relationship between the tensor X and its Tucker decomposition is

X = G ×1 A
(1) ×2 A

(2) ... ×N A(N) (1)

The operation ×n denotes the mode-n product. Consider a tensor X ∈ RI1×I2...×IN and matrix
A ∈ RJ×In , such that 1 ≤ n ≤ N . The n-mode product of X and A is a tensor whose elements are

2

Under review as a conference paper at ICLR 2023

(X ×n A)i1,i2...in−1,j,in+1...in =

In∑
in=1

xi1,i2...in−1,in,in+1...in · aj,in (2)

where x and a are respectively elements of X and A with indices given by their subscripts. Based
on the Tucker decomposition, the Tucker rank of a tensor X is a list containing the smallest possible
dimensions of G in a Tucker decomposition that accurately reconstructs X . Tucker rank is the
definition of tensor rank used throughout this paper. For more details, refer to Cichocki et al. (2015).

Let the tensor X to be completed have dimensions I1 × I2...IN . The Cross technique requires the
Tucker rank of the complete tensor to be assumed beforehand - let this assumed rank be [r1, r2...rN].
It provides a heuristic to accurately estimate the complete tensor by sampling r1 × r2...rN + r1 ×
(I1 − r1) + r2 × (I2 − r2)...rN × (IN − rN) elements - the authors prove this is the minimum
number of elements required for accurate tensor completion at a given assumed rank. The heuristic
samples a body tensor of dimensions r1 × r2...rN , starting from X0,0...0, and rn arm vectors for
each nth tensor dimension that stretch along the entire dimension and must intersect with the body.
The authors of Zhang (2019) provide 2 algorithms to generate a complete tensor estimate from these
samples; throughout this paper we use “Noisy Tensor Completion with Cross Measurements”, which
accounts for the presence of “noise” that prevents the tensor from being perfectly low-rank.

4 INVESTIGATION OF THE LOW RANK PROPERTY OF HYPERPARAMETER
TENSORS

Before introducing the proposed hyperparameter optimisation algorithm, it is necessary to provide
validation to the assumption that a tensor constructed from validation losses of hyperparameter com-
binations, when constructed in a particular manner, is of low (Tucker) rank. This section aims to
illustrate this through experiments on widely used machine learning setups.

4.1 MAPPING THE HYPERPARAMETER SEARCH SPACE TO THE TENSOR

The first step is to discuss how we construct the tensor T based on the sets of possible values i.e.,
search spaces for the hyperparameters. Firstly, if there are N hyperparameters, the tensor T would
be N -dimensional. Each hyperparameter H corresponds to one dimension of T - there is no con-
straint on which dimension this can be. In experiments, we consider three kinds of hyperparameters
based on their search spaces: categorical: a set of category-based values; uniform integer: a uni-
formly spaced sequence of integers and uniform real a uniformly spaced sequence of real numbers.

The search space for a categorical hyperparameter, Hcat, is specified as a list: consider the activation
function in neural networks as an example: [“ReLU”, “tanh”, “sigmoid”]. If Hcat corresponds to
the lth dimension of T then, based on the example provided, elements of T with index 0 for the lth

dimension correspond to all hyperparameter combinations with Hcat =’ReLU’. Similarly, indices
1 and 2 correspond to ’tanh’ and ’sigmoid’, respectively. The search space for a uniform integer
or real hyperparameter is specified through three values: start s, resolution interval r, and end e.
For uniform integer hyperparameters, r is an integer, while for uniform real r is real. The search
space is then {s, s+ r, s+ 2r, ...,min(e, ⌊(e− s)/r⌋ × r)}. Let Huni be a uniform integer or real
hyperparameter on the mth dimension of T . The elements of T whose index for the mth dimension
is i correspond to all hyperparameter combinations having Huni = s+ i× r.

There is thus a mapping between hyperparameter combinations and tensor indices, generated based
on the set of search spaces for the hyperparameters. Each tensor element represents the validation
loss of the hyperparameter combination corresponding to that index. We hypothesize that a tensor
constructed in this way is (at least approximately) of low rank.

4.2 SETUP FOR TENSOR COMPLETION EXPERIMENTS

Experiments were performed with the following machine learning problems: support-vector ma-
chine (SVM) with polynomial kernel in binary classification of the iris data set from Fisher (1936)
(abbreviated SVM-P-iris); K-NN regression on the diabetes data set from Efron et al. (2004) (KNN-
R-diab), and random forest binary classification of the wine data set (RF-wine). The wine data set

3

Under review as a conference paper at ICLR 2023

of size 178 was modified for binary classification by retaining only samples from classes 0 and 1 to
give a data set of size 130.

For SVM-P-iris, 4 hyperparameters were used to construct the (4-dimensional) tensor: the SVM
regularisation hyperparameter, and the degree, constant term and scaling factor of the polynomial
kernel. For KNN-R-diab, 3 hyperparameters were optimised: the number of neighbours K of the
K-NN algorithm, the order of Minkowski norm (used to calculate distances between points) and the
weighting heuristic (uniform or distance-based) for values of the K neighbours when making a pre-
diction at any data point. For RF-wine, 5 hyperparameters were optimised: the number of decision
trees in the forest; maximum depth of any tree; minimum number of data samples needed to split a
tree node; number of data features to consider when splitting a tree node, and a Boolean categorical
hyperparameter determining whether a subset or the entire training data is used to construct each
tree. The search spaces for all these hyperparameters are provided in Appendix A.1. For each of
these problems p, a tensor Tp was generated based on the mapping discussed in part 4.1. Tp was then
sampled and estimated through tensor completion based on the Cross heuristic. In all problems, val-
idation loss was calculated using cross-validation with 5 folds predefined for each data set. The loss
metric used to calculate validation loss varied across problems: hinge loss for SVM-P-iris, logcosh
loss for KNN-R-diab and Kullback-Leibler divergence for RF-wine.

4.3 TENSOR COMPLETION RESULTS

Table 1 represents the result of tensor completion using an assumed Tucker rank of 1 for each
dimension i.e., r1 = r2...rN = 1. Table 2 represents the best result obtained when using any Tucker
rank different from the one used in Table 1. The columns represent metrics devised to compare the
predicted tensor from tensor completion T̂p with the true tensor Tp. NND stands for “normalised
norm difference”, and is given by:

NND =
||T̂p − Tp||
||Tp||

(3)

where ||X || is the norm of a tensor ||X ||, given by the square root of the sum of squares of all its
elements. A lower NND indicates better accuracy, although NND = 1 is still poor: equivalent to
all elements of T̂p being 0. CE10% is the percentage of tensor indices of the top 10% elements in T̂p,
by lowest validation loss, in common with the top 10% of Tp. This metric provides an indication of
whether tensor completion can identify the best hyperparameter combinations. Note that the number
of elements in Tp is the same in tables 1 and 2; we found it convenient to display in table 1.

Metric SVM-P-iris KNN-R-diab RF-wine
Elements in Tp 111,600 20,000 4,500

Elements sampled 92 200 27
NND 0.09 0.09 0.27

CE10% 7.5% 14.6% 2%

Table 1: Tensor completion results using assumed Tucker rank of [1, 1...1].

Metric SVM-P-iris KNN-R-diab RF-wine
Tucker rank [2,2,2,2] [2,2,4] [2,2,2,1,3]

Elements sampled 190 596 65
NND range [0.97, 1.37] [0.14, 1.00] [0.92, 1.55]
NND mean 1.07 0.47 1.16

CE10% range [0, 46.2]% [0, 85.1]% [0, 8]%
CE10% mean 19.9% 68% 1.8%

Table 2: Tensor completion results using best assumed Tucker rank ̸= [1, 1...1].

4

Under review as a conference paper at ICLR 2023

Due to the inherent randomness of the Cross heuristic, the set of elements of Tp sampled when the
Tucker rank is not [1, 1...1] varies over trials - hence the range and mean of each metric over 10 trials
is provided in Table 2. As seen in table 1, tensor completion with the Cross technique consistently
provides a degree of accuracy in approximation (NND < 1) when the Tucker rank is [1, 1...1]. This
is in spite of the fact that across all problems, the proportion of tensor elements being sampled is
always < 1%. However, the CE10% value is always < 15%, indicating that, while some of the best
validation loss elements are identified, many are not. When higher rank values are used as in Table 2,
the NND worsens to the extent that NND ≈ 1 but the CE10% performance improves. These results
suggest that a Tucker rank of 1 for each dimension is able to capture general trends in the variation
of validation loss values throughout the tensor - this explains why it can consistently produce low
NND values. This can only be true if the validation loss values can be roughly described by a low-
rank structure of rank [1, 1...1]. However, this Tucker rank is less effective at capturing specific local
variations in the values, which is why its CE10% performance is lower. On the other hand, using
a higher Tucker rank may at times be able to capture local variations accurately - hence the higher
CE10% - it tends to overfit these variations i.e., emphasise the variations over the underlying low
rank structure. This results in more variable performance and poorer NND. For higher Tucker ranks
to be able to capture the (approximate) rank [1, 1...1] structure underlying the validation loss values,
a larger number of samples of Tp would be required.

For hyperparameter optimisation, we decided that while in some cases, a higher rank may prove
more effective at identifying the best hyperparameter combinations, using a Tucker rank of [1, 1...1]
is the best default choice as it can capture the structure of different Tp, while ensuring the best time
performance by evaluating the lowest number of hyperparameter combinations.

5 TENSOR COMPLETION FOR HYPERPARAMETER OPTIMISATION

In this section, we present a technique for hyperparameter optimisation based on tensor construction
and completion as performed in Section 4. Throughout this paper, we refer to this technique as
“Hyperparameter optimisation through tensor completion”, abbreviated HOTC. From the results of
Section 4, it is apparent that low-rank tensor completion can approximate the global distribution of
validation losses over hyperparameter combinations, but may miss local variations. Accounting for
these variations is, however, crucial to obtaining the optimal hyperparameter combination. There-
fore, we decided a suitable approach would be to use tensor completion to predict the general region
of the search space most likely to hold the optimal combination(s), and then focus the optimisation
on this region for another round of tensor completion. This focusing of the optimisation can be
repeatedly applied until the region being searched is small enough for an exhaustive i.e., grid search.

5.1 THE PROPOSED ALGORITHM

Algorithm 1 describes HOTC. Note that the search space for each hyperparameter H is as defined
in part 4.1. In each tensor completion cycle, the function generate tensor cross components
first evaluates different hyperparameter combinations i.e., samples the true validation loss ten-
sor according to the Cross sampling scheme. It returns the sampled elements in the form of
Cross measurements B,J and A which are respectively the body tensor, array of joint matrici-
sations and array of arm matricisations - see Zhang (2019) for more information. The function
generate complete tensor then applies the noisy tensor completion algorithm from Zhang (2019)
to estimate the complete tensor. In this, B,J ,A are used to generate the core and factor matrices of
a Tucker decomposition of the rank T estimate of the true tensor T . An overall illustration of how
true tensor samples can form a Tucker decomposition of the estimate is illustrated in figure 1.

The hyperparameter combination h with the lowest validation loss T is then found by the func-
tion find best combination, which converts the tensor index to its corresponding hyperparameter
combination. The function narrow search spaces then generates a new version of S with smaller
search spaces centred around the values in the hyperparameter combination, h. The search space for
each hyperparameter is narrowed around its corresponding value in h; assume this value to be hHuni

for a uniform integer/real hyperparameter Huni. Let the start, resolution interval, and end (see part
4.1 for definitions) of the original search space before narrowing for Huni be s, r and e respectively.
The range of values searched in this space is Gi = ⌊(e − s)/r⌋ × r; the range of the narrowed
space Gi+1 would be at most ⌊Gi/2r⌋ × r + 1 with hHuni at the centre of the new sequence of

5

Under review as a conference paper at ICLR 2023

Algorithm 1 The HOTC Algorithm
Input

C Number of tensor completion cycles
M Maximum number of hyperparameter combinations for grid search
rmin Minimum search space resolution interval for real-valued hyperparameters
T Tucker rank assumed for the completed tensor
f Function to generate validation loss for a hyperparameter combination
S Map of each hyperparameter to its search space

h← ϕ
for cycle num in 1, 2...C do

B,J ,A ← generate tensor cross components(f,S,T)
T ← generate complete tensor(B,J ,A)
h← find best combination(T ,S)
if number of elements in T ≤ M then

h← grid search(f,S)
Exit loop

end if
if cycle num < C then

S← narrow search spaces(S,h, rmin)
end if

end for
Output

h Selected hyperparameter combination

Ac
tiv
ati
on
:

[𝑅
𝑒𝐿
𝑈,
𝑡𝑎
𝑛ℎ
, 𝑠𝑖
𝑔𝑚
𝑜𝑖𝑑
]

La
ye
rs
:

[1
,2
,3
,4
]

Lambda:
[0.5, 1.0, 1.5, 2.0, 2.5]

	𝑅!

Ac
tiv
ati
on
:

[𝑅
𝑒𝐿
𝑈,
𝑡𝑎
𝑛ℎ
, 𝑠𝑖
𝑔𝑚
𝑜𝑖𝑑
]

La
ye
rs
:

[1
,2
,3
,4
]

Lambda:
[0.5, 1.0, 1.5, 2.0, 2.5]

	𝑅"

	𝑅#

	𝑅!

	𝑅#

	𝑅"
Ac
tiv
ati
on
:

[𝑅
𝑒𝐿
𝑈,
𝑡𝑎
𝑛ℎ
, 𝑠𝑖
𝑔𝑚
𝑜𝑖𝑑
]

La
ye
rs
:

[1
,2
,3
,4
]

Lambda:
[0.5, 1.0, 1.5, 2.0, 2.5]

Incomplete Tensor Tensor Decomposition Completed Tensor

Figure 1: Illustration of a tensor completion approach, based on Tucker decomposition, for hyper-
parameter optimisation. Missing values of the incomplete tensor are designated in grey.

values. The new start and end of the search space hence become max
(
hHuni

− ⌊(Gi/4r)⌋ × r, s
)

and min
(
hHuni

+⌊(Gi/4r)⌋×r, e
)

respectively. The new resolution interval is max(⌊r/2⌋, rmin)
when Huni is uniform real, or max(⌊r/2⌋, 1) for uniform integer hyperparameters.

Some categorical hyperparameters may take numerical category values, where closer numbers in-
dicate a closer relationship. To narrow the search space of such a hyperparameter, Hcat, the list
of numerical values representing the search space is first sorted in an ascending order. The nar-
rowed search space is then the sequence of values from the ath to the bth element (both inclu-
sive) of the sorted list, where a = max

(
i − round to integer(Li/4), 1

)
and b = min

(
i +

round to integer(Li/4), L
)
. Here, the length of the original list is Li and hHcat

is the ith el-
ement in the sorted list. The size Li+1 of the new search space list is at most ⌈Li/2⌉ + 1, with
hHcat roughly in the middle. The search spaces of categorical hyperparameters taking unrelated
non-numerical values e.g.,[’ReLU’, ’tanh’, ’sigmoid’], are not narrowed down, and left as they are.

Once the search spaces have been sufficiently narrowed that the tensor estimate T has < M ele-
ments, grid search performs an exhaustive grid search by evaluating every hyperparameter com-

6

Under review as a conference paper at ICLR 2023

bination in S to find the lowest validation loss. Note that M can be set to 0, in which case the
predictions would be purely from tensor completion cycles without any grid search.

5.2 HEURISTICS TO ENHANCE PERFORMANCE

It is important to mention heuristics to obtain the best performance from Algorithm 1, which has
numerous configuration parameters. These heuristics were followed to generate the results in Sec-
tion 6. Firstly, it is advisable to define large resolution intervals for the initial search spaces in S.
For example, if a uniform integer hyperparameter has a start and end of 1 and 101 respectively, a
good choice for the resolution interval would be 10 or 20, so that 10 or 5 values are being searched
in the completion cycle. As discussed in part 4.3, a Tucker rank of 1 for every dimension is the
best default choice. With these settings, the algorithm should narrow the search space, with each
tensor completion cycle, on areas likely to contain the optimal hyperparameter combinations. The
resolution intervals would automatically decrease from their large values to rmin.

Once the initial search spaces are defined, the next step is to run the algorithm for one completion
cycle, keeping the grid search limit M as zero (i.e., disabling grid search) and to observe the perfor-
mance. The number of cycles, C, can be gradually increased until no improvement in performance
is obtained on running the algorithm, or the maximum amount of time acceptable for optimisation
is reached. At this stage, performance may be further improved by setting M > 0, enabling a grid
search - at the cost of more execution time, this ensures that the best possible validation loss in the
area of the search space being examined has been obtained.

It is possible to predict how much time the algorithm will take, if one knows the time required
to evaluate one hyperparameter combination; let this be t. Consider a tensor T of dimensions
I1 × I2...IN . To estimate T using the Cross technique, with assumed Tucker rank [r1, r2...rN], it is
necessary to sample samp = r1 × r2...rN + r1 × (I1 − r1) + r2 × (I2 − r2)...rN × (IN − rN)
elements of T under the Cross scheme. In the context of algorithm 1, for the first completion
cycle, In is the number of values in the initial search space for the nth hyperparameter. Estimating
the completed tensor based on the sampled elements involves N n-mode tensor multiplications
that take negligible time compared evaluating samp hyperparameter combinations. Thus, the first
completion cycle takes roughly samp × t in time. In subsequent completion cycles, the tensor
to be completed has smaller dimensions due to narrowing of the search space - thus samp × t is
an upper bound for the time taken by these cycles. The maximum time taken by the completion
cycles is thus ≈ C × samp × t. If a grid search is performed at the end, the maximum time is
≈ (C × samp)× t+M .

6 EVALUATION OF HOTC AGAINST ALTERNATIVE HYPERPARAMETER
OPTIMISATION TECHNIQUES

The HOTC technique was compared with six existing hyperparameter optimisation techniques: ran-
dom search (RS) (Bergstra & Bengio (2012)); Bayesian optimisation with Gaussian process (BO-
GP) (Frazier (2018)); Bayesian optimisation with Tree-Parzen estimator (BO-TPE) (Feurer & Hut-
ter (2019)); covariance matrix adaptation evolution strategy (CMA-ES) (Hansen (2016)); hyperband
(HB) (Li et al. (2018)), and Bayesian optimisation hyperband (BOHB) (Falkner et al. (2018)).

The techniques were compared across five benchmark machine learning problems: K-nearest neigh-
bours (K-NN) binary classification on the wine data set (abbreviated KNN-C-Wine); K-NN re-
gression on the California Housing data set (KNN-R-Calh); random forest binary classification on
the Forest Covertype data set (RF-FC); binary classification with a 3-layer convolutional neural
network (CNN) on the MNIST data set (3LC-MNIST), and transfer-learning in the VGG16 CNN
architecture in multi-class classification of the CIFAR10 data set (VGG-CIF10).

For each hyperparameter in each problem, the limits (maximum and minimum) of the range of values
to search were kept identical for each hyperparameter optimisation technique. In KNN-C-Wine,
KNN-R-Calh and RF-FC, each hyperparameter combination was evaluated using cross-validation
loss over 5 fold pre-defined for each data set. This ensures a consistent loss value is obtained over
multiple trials. For 3LC-MNIST and VGG-CIF10, separate training and validation data sets, in
size ratio 80 : 20, were used instead, to enable faster calculation of validation loss.

7

Under review as a conference paper at ICLR 2023

6.1 IMPLEMENTATION DETAILS

In KNN-C-Wine, 3 hyperparameters were optimised: the number of neighbours K of the K-NN al-
gorithm, the order of Minkowski norm (used to calculate distances between points) and the weight-
ing heuristic (uniform or distance-based) for values of the K neighbours when making a prediction
at any data point. The wine data set of size 178 was modified for binary classification to only re-
tain samples from classes 0 and 1. The resulting set was of size 130. The fraction of misclassified
validation data samples i.e., misclassification loss was the metric used to represent the validation
loss. In KNN-R-Calh, 2 hyperparameters were optimised: the number of neighbours K and the
order of Minkowski norm. Only the uniform wighting heuristic could be used here, as the Califor-
nia Housing data set had coinciding elements that resulted in infinite distance-based weights. The
logcosh metric was used to calculate validation loss. In RF-FC, 5 hyperparameters were optimised:
the number of decision trees in the random forest; maximum depth of any tree; minimum number
of data samples needed to split a tree node; number of data features to consider when splitting a
tree node, and a boolean hyperparameter determining whether a subset or the entire training data is
used to construct each tree. The Forest Covertype data set, of initial size 581, 012 was too large to
be processed in RAM. Hence, it was modified for binary classification by retaining the first 10, 000
samples of classes 1 and 2 each. This gave an “evenly balanced” data set of size 20, 000. The
truncation also made the data set faster to train on. In 3LC-MNIST, the CNN had 2 convolutional
layers and 1 fully-connected output layer. 11 hyperparameters were optimised, the most among all
the benchmark problems. These were: the numbers of neurons, activation functions, dimensions of
max pooling and dimensions of stride of the first and second convolutional layers, as well as the
neural network optimiser, learning rate and learning rate decay rate. To evaluate each hyperparame-
ter combination, the CNN was trained for 5 epochs. The transfer learning problem in VGG-CIF10
involved freezing its 16 convolutional layers and training its 3 fully connected output layers. These
layers were of size 4096, 4096 and 10 (to classify 10 classes) resulting in 18, 923, 530 trainable
parameters. 7 hyperparameters were optimised: the optimiser, learning rate, learning rate decay,
number of epochs to train the network, batch size and dropout probabilities of the fully connected
layers of size 4096. It should be noted that the 32 × 32 CIFAR10 were resized to 224 × 224 to be
accepted by the VGG16 network.

The search spaces for each of these hyperparameters are described in Appendix A.2. The computing
hardware, software implementations of the different hyperparameter optimisation techniques, and
the configurations of these techniques are described in Appendix B.

6.2 NUMERICAL RESULTS

The code for HOTC and our benchmarks is publicly available on GitHub. Figure 2 illustrates the
results of the experiments. The graphs were generated for RS, BO-TPE, CMA-ES, BO-GP, HB and
BOHB by sampling the best obtained validation loss at the timestamp of every trial. For HOTC, this
sampling was done after each completion cycle and after the final grid search, if any. For KNN-C-
Wine, KNN-R-Calh and RF-FC, the HOTC approach is remarkably faster than the other techniques
and also obtains the lowest value of validation loss. It is not possible to run HOTC for longer than
is seen on these graphs, as the completion cycles have already converged to very small region in the
tensor that is trivial to exhaustively search. Note that in the diagram for KNN-C-Wine, the graphs
of BO-GP, CMA-ES, RS and BOHB overlap each other, as do those of BO-TPE and HB.

In the diagrams for 3LC-MNIST and VGG-CIF10, the ends of the completion cycles for HOTC
have been indicated by numbered markers. Grid search was not enabled in either problem, as it
would consume too much time. In these problems with more hyperparameters, each combination
of which takes longer to evaluate (neural networks take longer to train), HOTC does not outperform
the other techniques. One has to wait ≈ 1500 seconds for the first suggestion of a hyperparameter
combination from HOTC in 3LC-MNIST and ≈ 2000 seconds in VGG-CIF10 - this is because
a minimum number of tensor elements must be known in order for tensor completion to be possi-
ble. However, the effectiveness of the tensor completion can be seen as the suggested combination
improves over subsequent completion cycles - in both cases, the final validation loss is compara-
ble to the best results observed. Overall, while HOTC is not outperforming its competitors in all
situations, it is still able to consistently find optimal or near-optimal combinations across machine
learning paradigms.

8

Under review as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200
Opimisation time (seconds)

0.06

0.08

0.10

0.12

0.14
Va

lid
at

io
n

Lo
ss

 (M
isc

la
ss

ifi
ca

tio
n

Er
ro

r)

KNN Classification on Wine Data Set
RS
BO-TPE
CMA-ES
BO-GP
HB
BOHB
HOTC

0 200 400 600 800 1000
Opimisation time (seconds)

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Va
lid

at
io

n
Lo

ss
 (M

AE
)

KNN Regression on California Housing Data Set
RS
BO-TPE
CMA-ES
BO-GP
HB
BOHB
HOTC

0 200 400 600 800 1000
Opimisation time (seconds)

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

Va
lid

at
io

n
Lo

ss
 (J

S
di

ve
rg

en
ce

)

Random Forest on Forest Covertype Data Set
RS
BO-TPE
CMA-ES
BO-GP
HB
BOHB
HOTC

0 500 1000 1500 2000 2500 3000 3500
Opimisation time (seconds)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Va
lid

at
io

n
Lo

ss
 (C

at
eg

or
ica

l C
ro

ss
-E

nt
ro

py
)

1

2

3

3-layer CNN on MNIST Data Set
RS
BO-TPE
CMA-ES
BO-GP
HB
BOHB
HOTC

0 1000 2000 3000 4000 5000
Opimisation time (seconds)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Va
lid

at
io

n
Lo

ss
 (C

at
eg

or
ica

l C
ro

ss
-e

nt
ro

py
)

1
2

VGG Transfer Learning on CIFAR10 Data Set
RS
BO-TPE
CMA-ES
BO-GP
HB
BOHB
HOTC

Figure 2: Graphs of validation loss against optimisation time for the different hyperparameter opti-
misation algorithms on the benchmark machine learning problems.

7 CONCLUSION

We have introduced the concept of tensor completion in the hyperparameter optimisation paradigm.
Through sequential completion cycles that are able to identify the most promising subspaces, the
proposed method has been shown to be highly competitive and often superior to a wide range of
state-of-the-art and commonly used frameworks over a diverse set of benchmarks and algorithms.
It is our hope that the presented intuitive yet efficient approach to hyperparameter optimisation will
spur the interest of the machine learning community, and we envision tensor completion becoming
a strong alternative to current approaches. Regarding future work, we aim to work on a procedure
to automatically determine optimal values for the algorithm inputs, such as resolution of hyperpa-
rameter ranges or number of tensor completion cycles. Furthermore, we plan to investigate whether
combining the current approach of focusing on optimal regions with random exploration of the
space will improve the overall performance. Finally, an interesting direction we aim to pursue is the
investigation of alternative tensorisation methods of the hyperparameter space.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Evrim Acar, Daniel M. Dunlavy, Tamara G. Kolda, and Morten Mørup. Scalable tensor fac-
torizations for incomplete data. Chemometrics and Intelligent Laboratory Systems, 106(1):
41–56, Mar 2011. ISSN 0169-7439. doi: 10.1016/j.chemolab.2010.08.004. URL http:
//dx.doi.org/10.1016/j.chemolab.2010.08.004.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework, arxiv1907.10902, 2019.

AutoML. Hpbandster :a distributed hyperband implementation on steroids, 2019. URL https:
//github.com/automl/HpBandSter.

Johann A. Bengua, Ho N. Phien, Hoang Duong Tuan, and Minh N. Do. Efficient tensor completion
for color image and video recovery: Low-rank tensor train. IEEE Transactions on Image Pro-
cessing, 26(5):2466–2479, May 2017. ISSN 1941-0042. doi: 10.1109/tip.2017.2672439. URL
http://dx.doi.org/10.1109/TIP.2017.2672439.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(10):281–305, 2012. URL http://jmlr.org/papers/
v13/bergstra12a.html.

Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao, Cesar Caiafa,
and Huy Anh Phan. Tensor decompositions for signal processing applications: From two-way
to multiway component analysis. IEEE Signal Processing Magazine, 32(2):145–163, 2015. doi:
10.1109/MSP.2013.2297439.

Liping Deng and Mingqing Xiao. A new automatic hyperparameter recommendation approach un-
der low-rank tensor completion framework. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–13, 2022. doi: 10.1109/TPAMI.2022.3195658.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The
Annals of Statistics, 32(2), Apr 2004. doi: 10.1214/009053604000000067. URL https://
doi.org/10.1214%2F009053604000000067.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter opti-
mization at scale. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
1437–1446. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
falkner18a.html.

Matthias Feurer and Frank Hutter. Hyperparameter Optimization, pp. 3–33. Springer International
Publishing, Cham, 2019. ISBN 978-3-030-05318-5. doi: 10.1007/978-3-030-05318-5 1. URL
https://doi.org/10.1007/978-3-030-05318-5_1.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2):179–188, 1936. doi: https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.
1936.tb02137.x.

Peter I. Frazier. A tutorial on bayesian optimization, arxiv1807.02811, 2018.

Nikolaus Hansen. The cma evolution strategy: A tutorial, arxiv.1604.00772, 2016. URL https:
//arxiv.org/abs/1604.00772.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization, arxiv1603.06560, 2018.

Yuanyuan Liu, Fanhua Shang, Hong Cheng, James Cheng, and Hanghang Tong. Factor Matrix
Trace Norm Minimization for Low-Rank Tensor Completion, pp. 866–874. 04 2014. ISBN 978-
1-61197-344-0. doi: 10.1137/1.9781611973440.99.

Fernando Nogueira. Bayesian Optimization: Open source constrained global optimization tool for
Python, 2014. URL https://github.com/fmfn/BayesianOptimization.

10

http://dx.doi.org/10.1016/j.chemolab.2010.08.004
http://dx.doi.org/10.1016/j.chemolab.2010.08.004
https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
http://dx.doi.org/10.1109/TIP.2017.2672439
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://doi.org/10.1214%2F009053604000000067
https://doi.org/10.1214%2F009053604000000067
https://proceedings.mlr.press/v80/falkner18a.html
https://proceedings.mlr.press/v80/falkner18a.html
https://doi.org/10.1007/978-3-030-05318-5_1
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772
https://github.com/fmfn/BayesianOptimization

Under review as a conference paper at ICLR 2023

Qingquan Song, Hancheng Ge, James Caverlee, and Xia Hu. Tensor completion algorithms in big
data analytics, 2018.

Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and applications,
2020. URL https://arxiv.org/abs/2003.05689.

Anru Zhang. Cross: Efficient low-rank tensor completion. The Annals of Statistics, 47(2):936 – 964,
2019. doi: 10.1214/18-AOS1694. URL https://doi.org/10.1214/18-AOS1694.

A HYPERPARAMETER SEARCH SPACES

A.1 TENSOR COMPLETION EXPERIMENTS

In these experiments, the hyperparameter search spaces are set in order to generate a
complete tensor of validation loss values. In the tables, they are presented in the for-
mat of (start, resolution interval, end) for uniform integer or real hyperparameters, or
[item1, item2, ...] for categorical hyperparameters.

SVM-P-iris Refer to table 3.

Hyperparameter Search Space
Regularisation Hyperparameter (0.1, 0.1, 3.0)

Polynomial Kernel Degree (0.0, 0.1, 3.0)
Polynomial Kernel Scaling Factor (0.1, 0.1, 3.0)
Polynomial Kernel Constant Term (0.0, 0.1, 3.0)

Table 3: Search spaces for SVM-P-iris.

KNN-R-diab Refer to table 4.

Hyperparameter Search Space
No. of Neighbours (1, 1, 100)

Minkowski Norm Order (1, 1, 100)
Weighting Heuristic [’uniform’, ’distance’]

Table 4: Search spaces for KNN-R-diab.

RF-wine Refer to table 5.

Hyperparameter Search Space
No. of Decision Trees [1, 10, 20, 30, 40]
Maximum Tree Depth [1, 5, 10, 15, 20]

Minimum Samples to Split Node (2,1,10)
Data Features to Split Node (1,1,10)

Subset/Entire Training Data to Construct Tree [True, False]

Table 5: Search spaces for RF-wine.

A.2 HYPERPARAMETER OPTIMISATION EXPERIMENTS

In these experiments, the limits of the search spaces for each hyperparameter were kept common
for all of the tensor completion techniques. The search space resolution interval is only defined for
HOTC so that it can construct a tensor representing the search spaces. For all other techniques,
integer hyperparameters always have resolution 1 and the search spaces for real hyperparameters
are continuous. The advantage of this is that it ensures these techniques have access to the entire set

11

https://arxiv.org/abs/2003.05689
https://doi.org/10.1214/18-AOS1694

Under review as a conference paper at ICLR 2023

of possible values, although the downside is that the set of combinations that can be tested becomes
larger, especially with real hyperparameters.

In the tables, search spaces are presented either in the format of (start, end) for real or integer
hyperparameters, or [item1, item2 ...] for categorical hyperparameters. Fuethermore, if the log
column value is “True”, this means the hyperparameter value varies between start and end expo-
nentially rather than uniformly. Note that while it was stated that HOTC only supports uniformly
distributed hyperparameter values, it is easy to accomodate exponentially varying values by consid-
ering the exponent as a uniformly varying hyperparameter over a constant base.

KNN-C-Wine Refer to table 7.

Hyperparameter Search Space HOTC Inital Log
Resolution Interval

No. of Neighbours (1, 100) 10 False
Minkowski Norm Order (1, 100) 10 False

Weighting Heuristic [’uniform’, ’distance’] N/A N/A

Table 6: Search spaces for KNN-C-Wine.

KNN-R-Calh Refer to table 7.

Hyperparameter Search Space HOTC Inital Log
Resolution Interval

No. of Neighbours (1, 100) 10 False
Minkowski Norm Order (1, 100) 10 False

Table 7: Search spaces for KNN-R-Calh.

RF-FC Refer to table 8.

Hyperparameter Search Space HOTC Inital Log
Resolution Interval

No. of Decision Trees (1, 40) 5 False
Maximum Tree Depth (1, 20) 5 False

Minimum Samples to Split Node (2, 11) 2 False
Data Features to Split Node (1, 11) 2 False

Subset/Entire Training Data to Construct Tree [True, False] N/A N/A

Table 8: Search spaces for RF-FC.

3LC-MNIST Refer to table 9.

12

Under review as a conference paper at ICLR 2023

Hyperparameter Search Space HOTC Inital Log
Resolution Interval

No. of Layer 1 Neurons (5, 40) 5 False
No. of layer 2 Neurons (5, 40) 5 False

Layer 1 Activation Function [’relu’, ’tanh’, ’sigmoid’] N/A N/A
Layer 2 Activation Function [’relu’, ’tanh’, ’sigmoid’] N/A N/A
Layer 1 Pooling Dimension (1, 5) 1 False
Layer 2 Pooling Dimension (1, 5) 1 False
Layer 1 Stride Dimension (1, 5) 1 False

Layer 2 Pooling Dimension (1, 5) 1 False
Optimiser [’RMSProp’, ’adam’, ’sgd’] N/A N/A

Learning Rate (10−6, 10−2) 1 True
Learning Rate Decay (10−8, 10−4) 1 True

Table 9: Search spaces for 3LC-MNIST.

VGG-CIF10 Refer to table 10. Note that dropout probability is the probability of the input to a
neuron being turned off, not turned on.

Hyperparameter Search Space HOTC Inital Log
Resolution Interval

Optimiser [’RMSProp’, ’adam’, ’sgd’] N/A N/A
Learning Rate (10−6, 10−2) 1 True

Learning Rate Decay (10−8, 10−4) 1 True
Epochs (1, 5) 1 False

Batch Size (24, 28) 1 True
Dropout Probability of First (0.0, 0.9) 0.15 False

Fully-Connected Layer
Dropout Probability of Second (0.0, 0.9) 0.15 False

Fully-Connected Layer

Table 10: Search spaces for VGG-CIF10.

B SOFTWARE AND HARDWARE DETAILS

All experiments were evaluated on Google Colab: the Google Compute Engine backend consisted
of two single-core Intel Xeon CPUs of clock frequency 2.2 GHz, each accommodating two threads.
The total RAM available was 12.68 GB. For experiments with 3LC-MNIST and VGG-CIF10, the
environment was accelerated with an NVIDIA Tesla T4 GPU. While HOTC was implemented in
Python by us, open-source Python libraries were used for the other techniques: Optuna (Akiba et al.
(2019)) version 2.10 for RS, BO-TPE, CMA-ES and HB; Bayesianoptimisation (Nogueira (2014))
version 1.2 for BO-GP, and hpbandster (AutoML (2019)) version 0.7 for BOHB.

The configuration parameters of HOTC were set for each problem according to the heuristics de-
scribed in part 5.2, and are listed in table 11. For RS, BO-GP, BO-TPE and CMA-ES only the
number of trials were varied according to the time for which optimisation was to be performed.
The time of optimisation for each problem can be seen in the graph of figure 2. For multi-fidelity
techniques: HB and BOHB, the number of trials, the minimum and maximum budget values, and
the step size with which the minimum budget was increased to the maximum were set to reasonable
values based on the data to achieve good performance - these values are described in table 12. Apart
from this, all other configurations were left with the default values from their respective library
implementations.

For HB and BOHB, the multi-fidelity budget was the fraction of the training data used to train the
machine learning model in all problems except KNN-C-Wine. Since the size of the modified wine
dataset, 130, was small compared to the maximum searched value of K i.e., 100, the budget was
defined as the fraction of the total number of data features (which was 13) used in training.

13

Under review as a conference paper at ICLR 2023

Problem Assumed Maximum Number Minimum Number Minimum Resolution
Tucker of Completion of Elements for Real-Valued
Rank Cycles Grid Search Hyperparameters

KNN-C-Wine [1,1,1] 5 51 N/A
KNN-R-Calh [1,1] 5 51 N/A

RF-FC [1,1,1,1,1] 4 51 N/A
3LC-MNIST [1] ×11 3 0 0.25
VGG-CIF10 [1] ×7 2 0 0.05

Table 11: Configuration parameters of HOTC in different machine learning problems.

Problem Minimum Budget Maximum Budget Step Size
KNN-C-Wine 2/13 13/13 1/13
KNN-R-Calh 0.2 1.0 0.2

RF-FC 0.2 1.0 0.2
3LC-MNIST 0.2 1.0 0.2
VGG-CIF10 0.2 1.0 0.2

Table 12: Multi-fidelity budget limits used for HB and BOHB in the different machine learning
problems.

14

	Introduction
	Related work
	Tensor Preliminaries
	Investigation of the Low Rank Property of Hyperparameter Tensors
	Mapping the Hyperparameter search space to the tensor
	Setup for Tensor Completion Experiments
	Tensor Completion Results

	Tensor Completion for Hyperparameter optimisation
	The Proposed Algorithm
	Heuristics to Enhance Performance

	Evaluation of HOTC Against Alternative Hyperparameter Optimisation Techniques
	Implementation Details
	Numerical Results

	Conclusion
	Hyperparameter Search Spaces
	Tensor Completion Experiments
	Hyperparameter Optimisation Experiments

	Software and Hardware details

