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ABSTRACT

Prompt Tuning (PT) has recently shown remarkable success in diverse Natural Lan-
guage Processing (NLP) tasks, providing an efficient knowledge transfer paradigm
to textually instruct models with domain-level guidance. However, existing PT
approaches often struggle to accurately distinguish between domain-invariant and
domain-specific knowledge of input texts, thereby inducing negative transfer that
harms model performances across various domains. To mitigate this, recent studies
have introduced the concept of adversarial training to highlight domain-specific
nuances for improving the model’s adaptation ability, but often rely on overly
complex parameter optimization, which hinders smooth generalization. Motivated
by this, we propose a novel prefix tuning framework, named Adaptive Robust
Prefix Optimization (ARPO), in which adaptive representation disentanglement
precisely decouples domain-specific information from invariant knowledge, while
Multi-Objective Bayesian Optimization (MOBO) dynamically adjusts adversarial
strategies for improved model robustness. Specifically, we first develop disentan-
gled representation learning based on Information Bottleneck theory with dynamic
orthogonality and conditional independence constraints, combined with adaptive
adversarial training driven by dynamic thresholds. We then employ MOBO for
efficient search within the high-dimensional strategy space. We theoretically prove
that the proposed MOBO approach is feasible and guaranteed to converge under
reasonable assumptions. Extensive evaluations on GLUE, Super GLUE, MRQA
2019, GSM8K, and HumanEval show that ARPO achieves around 6% improvement
in two experimental settings, highlighting its robust cross-domain generalization.

1 INTRODUCTION

Large Language Models (LLMs) have significantly advanced natural language processing |Radford
et al. (2019); Raffel et al.| (2020); |Brown et al.| (2020). Despite these successes, efficiently adapting
LLMs across diverse tasks and domains remains challenging, particularly when computational
resources are limited |Houlsby et al.| (2019); Lester et al.| (2021); [Hu et al.|(2021)). Prompt Tuning (PT)
partially alleviates this issue by selectively updating only a small subset of parameters, facilitating
efficient cross-domain adaptation Houlsby et al.|(2019)); Lester et al.|(2021)); Hu et al.| (2021); Zaken
et al.| (2021). In particular, PT methods often fail to accurately separate domain-invariant from
domain-specific information, leading to negative transfer and reduced generalization. Although
recent adversarial training schemes have been proposed to address these issues, their task-oriented
nature significantly limits the ability of LLMs to adapt stably across diverse learning scenarios.
Moreover, traditional hyperparameter optimization approaches Laumanns & Ocenasek| (2002) are
insufficiently efficient in managing complex multi-objective optimization problems, further limiting
the performance of PT in practical cross-domain applications.

Previous research in PT (e.g., Adapters Houlsby et al.[(2019), LoRA Hu et al.|(2021), and SPoT |[Vu
et al.| (2021)) mainly focused on reducing computational overhead by training only a subset of
model parameters. However, these methods often fail to adequately handle substantial semantic
and lexical domain variations, resulting in negative transfer and limited generalization. Meanwhile,
methods employing disentangled representation learning(e.g., DVIB Bao| (2021)) and DisTIB Dang
et al.| (2024)) attempt to address these issues by isolating domain-specific and invariant features, yet
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they lack robust adaptive constraints, causing representation redundancy. Moreover, although Multi-
Objective Bayesian Optimization (MOBO)(e.g., EVHI |Daulton et al.| (2020a), MBO |Suzuki et al.
(2020)) effectively optimize multiple goals, it struggles with complex, high-dimensional parameter
spaces common in cross-domain scenarios. These limitations highlight the need for adaptive, efficient
optimization strategies tailored explicitly for robust cross-domain LLM adaptation.

To this end, we propose Adaptive Robust Prefix Optimization (ARPO), a cross-domain prefix-
tuning approach that integrates adaptive representation disentanglement with multi-objective Bayesian
optimization (MOBO). Specifically, we construct a dynamically adaptive prefix disentanglement
framework by combining Information Bottleneck (IB) theory Tishby et al.|(2000) with orthogonality
and conditional independence constraints, effectively separating domain-invariant from domain-
specific knowledge. Furthermore, we also present a dynamic threshold-controlled adversarial training
method and use MOBO to automatically search and optimize a high-dimensional mixed discrete-
continuous adversarial strategy space, boosting model generalization and robustness.

Extensive experiments including GLUE Wang et al.| (2018)), SuperGLUE |Wang et al.|(2019), and
MRQA 2019 [Fisch et al.| (2019) as well as reasoning and coding benchmarks GSM8K |Cobbe
et al.| (2021) and HumanEval [Chen et al.| (2021), together with robustness and ablation analyses,
demonstrate the effectiveness of our approach. Our main contributions are summarized as follows:

(1) We propose a clear domain-information disentanglement strategy using Information Bottleneck
constraints, effectively mitigating negative transfer caused by domain-specific features;

(2) We design a dynamic threshold-based adversarial gate mechanism to prevent premature
interference in primary task training, significantly improving training stability;

(3) We introduce a MOBO-based global decision maker that uses noisy-¢gEHVI on a mixed dis-
crete—continuous, gate-aware space to jointly tune perturbation structure, strength, and timing, directly
maximizing the accuracy-robustness—cost Pareto hypervolume and replacing ad-hoc heuristics with a
transferable, interpretable, sample-efficient strategy.

2 RELATED WORKS

Domain Adaptation and Prompt Tuning. Traditional domain adaptation methods typically fine-
tune all parameters [Radford et al.|(2021)); Touvron et al.|(2023)), incurring computational overhead
and overfitting risks [Han et al.| (2024); Zaken et al.| (2021)). Prompt Tuning (PT) strategies, such
as Adapters Houlsby et al.|(2019), LoRA Hu et al.| (2021}, and AdapterDrop Riicklé et al.|(2020),
alleviate resource consumption but can introduce latency or fail under large semantic shifts Houlsby
et al.| (2019); |Zhong et al.[(2021)). Further parameter-efficient PT methods |Lester et al.| (2021); |[Liu
et al.[(2021c)) remain vulnerable to vocabulary and input perturbations Ma et al.|(2022). Multi-part
decomposition techniques |Vu et al.| (2021); |Asai et al.[(2022) and DePT |Shi & Lipani| (2023) provide
modularity but lack systematic cross-domain reuse. Differently, our solution reuses modular prompts
to address semantic diversity and computational efficiency.

Adpversarial Training and Multi-Domain Robustness. Adversarial training significantly enhances
NLP model robustness Miyato et al.|(2018), but embedding-level methods struggle against discrete
textual perturbations. Token-aware adversarial training partially mitigates this |Li & Qiu (2021]),
though at increased complexity. Recent advancements, including contrastive learning [Rim et al.
(2021), curriculum methods [Yoo & Q1 (2021)), Adversarial Distributional Training (ADT) Dong
et al.| (2020), aim for improved generalization. Adversarial Self-Training (AST) Shi & Liu/(2023)
specifically applies adversarial techniques for domain adaptation tasks. Our proposed method
innovatively integrates adversarial training within domain-specific prompt tuning, significantly
improving cross-domain robustness with minimal computational overhead.

Multi-Objective Bayesian Optimization. Efficiently balancing conflicting objectives, such as
accuracy and computation, is crucial in hyperparameter optimization Snoek et al.|(2012); [Shahriari
et al.|(2015). Bayesian Optimization (BO) with Gaussian Processes provides systematic exploration
and sample efficiency |[Frazier| (2018)); Jin et al.|(2018); |[Eriksson et al.|(2019). Recent Multi-Objective
Bayesian Optimization (MOBO) methods utilize Expected Hypervolume Improvement (EHVI) Em-
merich et al.|(2011); |Daulton et al.| (2020a) and adapt to mixed variables |Ru et al.| (2020). However,
existing MOBO primarily targets hyperparameter selection rather than systematic prompt or adapter
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Figure 1: The framework of ARPOQO. The model learns disentangled prefix representations Pp; and
Ppgs via adaptive information bottleneck and multi-level constraints, selectively applies adversarial
adaptation with dynamic thresholds 6(t), and efficiently searches optimal adversarial strategies S*
using MOBO for robust cross-domain adaptation.

reuse [Lester et al.| (2021); Riicklé et al.[(2020). Our novel MOBO method reuses effective prompts to
provide strong adaptation and efficient generalization across many NLP domains.

3 METHODOLOGY

In this section, we introduce ARPO (Figure[T] Algorithm([T)), a three-part method for robust cross-
domain transfer. An information-bottleneck prefix module (Sec[3.1) disentangles representations into
Ppr (domain-invariant) and Ppg (domain-specific), producing clean features for transfer. A dynamic
gate (Sec[3.2) applies adversarial signals only when training is stable, improving robustness without
slowing convergence. A MOBO module (Sec [3.3) with noisy-gEHVI jointly tunes perturbation
structure, strength, and trigger timing to balance accuracy, robustness, and compute. Appendix [B.T]
provides notation, problem setup, and assumptions, Appendix [B.2] gives the soft prompt rationale and
implementation, Appendix [C|develops the theoretical and implementation details for adaptive prefix
disentanglement, Appendi)% introduces task-aware gating, EMA bounds, spectral regularization,
and Appendix [E|details the MOBO objectives, surrogate, and EHVI.

3.1 ADAPTIVE REPRESENTATION LEARNING OF DISENTANGLED PREFIX

In prefix tuning, the prefix P shapes the conditional representation i (x; P). Domain-invariant (DI)
knowledge is the part that does not change across domains D and remains predictive of labels Y.
We target I(Ppy; D) = 0 and large I(Ppr;Y). Domain-specific (DS) knowledge is the part that
encodes domain traits such as style, vocabulary, format, and noise. We target large I(Ppg; D) and
keep I(Pps;Y’) moderate so it does not dominate the task signal.

We split the learnable prefix P € REL*? into domain-invariant and domain-specific segments,
Pp; € REpi*d and Ppg € REPs*d with L = Lp; + Lpg. Domain-invariant knowledge should be
predictive across domains while carrying minimal domain cues, whereas domain-specific knowledge
should capture domain traits without overwhelming the task signal. We therefore optimize two
information-bottleneck objectives

EIB(PDI) = I(PD];DOHlaiIl) - ﬂlf(PD[;TaSk),
E]B(Pps) = 7I(PD5;DOH1aiH) + ﬂgI(PDS;Task).

Mutual informations are estimated by a neural estimator with stabilization (Appendix [C)), which turns
information-theoretic targets into practical training losses.

ey
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To geometrically separate the two subspaces, we penalize cross-subspace overlap via an orthogonality
term

Loren = ||PprPpsll, 2
and further reduce residual dependence by a HSIC-based penalty (Appendix [C.2] Discriminative
decoupling is encouraged by a contrastive loss that pulls together Pp; for the same task across
domains and pushes apart Ppg,

g ORI Ph/T) | explsim(Phs. Ph)/7)
Dok eXP(Sim(PprEz)/T) Dok eXP(Sim(PJZDsans)/T),

with temperature adaptation and quantile pairing detailed in Appendix [C.3] We explicitly control
redundant information flow by a conditional-independence term

Leont = —1

3)

Leond = DKL(p(PDI,PDs | Task) || p(Ppr | Task) p(Pps | Task)), 4)

whose variational estimator and consistency are given in Appendix [C.4]

The overall disentanglement loss is
Laisent = ML1B(Ppr) + A2 L18(Pps) + A3Lorth + AaLeont + AsLeond- (5)

This combination aligns information-theoretic, geometric, and statistical criteria so that task-relevant
transferable factors concentrate in Ppy and domain cues in Ppg. Under mild boundedness and
local-Lipschitz assumptions, the expected gradient directions of these terms are compatible rather
than antagonistic, improving separability without sacrificing task signal; the statement and supporting
inequalities are summarized in Appendix The resulting encoder [Ppr; Ppg] becomes the
common input for the gated adversarial module and the MOBO controller, enabling safe perturbation
and strategy search downstream.

3.2 ADVERSARIAL ADAPTATION OF CROSS-DOMAIN KNOWLEDGE

Motivated by the risk that adversarial updates can harm convergence when applied too early after
Section [3.1] and by heterogeneous convergence across tasks and domains, we design a dynamic gate
for adversarial training. The gate combines three signals, main loss progress, gradient stability, and
task difficulty, and activates only when the score exceeds a threshold. When active, we shape the Ppg
subspace with distance based positive and negative pairs. The loss pulls same domain pairs together
and pushes cross domain pairs apart, trained jointly with the main and disentanglement losses. We
couple the gate with MOBO to auto tune thresholds and adversarial strength.

3.2.1 DYNAMIC THRESHOLD DETERMINATION

We measure training progress using the relative improvement of the main task loss
5(£task(t)) =1- ‘Ctask(t)/ﬁtask(o) S [07 1]7 (6)

where larger values indicate safer timing for adversarial updates. This aligns with Curriculum
Learning, ensuring foundational task mastery before introducing increased complexity. However, a
fixed threshold is too rigid for multi-task training. Therefore, we define a time-varying base threshold,

=00 (1o (1 ST

computed over a short window w: when recent gradients are volatile, 6(¢) increases to postpone
activation; when gradients stabilize, 0(t) decreases to allow earlier activation. Estimator choices
(EMA vs. fixed window), outlier handling, trigger properties, and per-task scaling by difficulty are
summarized in Appendix [D.1] The Appendix [D.2]for the gate’s sublinear flip count in 7" under
EMA-driven sub-Gaussian increments, supporting a locally slowly-varying objective between flips.

3.2.2 ADAPTIVE ADVERSARIAL TRAINING WITH DYNAMIC THRESHOLDING

To enhance stability and cross-domain generalization, we propose adaptive adversarial training using
a dynamic threshold. Specifically, after encoding inputs z; via the T5 encoder to obtain hidden
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representations h;, we isolate domain-specific features hpg(x;). Without proper constraints, these
domain-specific representations may overlap, reducing discriminability across domains.

To address this, we dynamically generate positive and negative sample pairs in each training batch by
calculating pairwise Euclidean distances: d(hpgs(z;), hps(z;)) = ||hps(z;) —hps(x;)||2. Sample
pairs with distances below a predefined threshold are grouped as positives (Pos), reflecting similar
domain attributes, while those exceeding this threshold form the negatives (Neg). This adaptive
pairing method captures modest intra- and inter-domain differences and accurately supervises this; its
batchwise quantile implementation and finite-sample guarantees follow from DKW-Massart bounds,
detailed in Appendix [D.3]

Leveraging these dynamically constructed pairs, we design an adversarial loss inspired by contrastive
learning principles to effectively enhance domain discriminability within the representation space.
Formally, the adversarial loss is

Lay= Y d(hps(z:),hps(z;)) = > d(hps(z:), hps(ar)), ®)

(i,7)€Pos (i,k)ENeg

which encourages domain-specific representations of similar samples to cluster while pushing apart
dissimilar domains.

To balance the primary task objective with adversarial optimization effectively, we integrate these
components into a unified loss function modulated by a dynamic thresholding strategy:

Liotal = Liask + & + Lagy '“4[5(£lask(t)) > e(t)] ) ©

where L, is the primary task loss, o € [0, 1] is a weighting parameter, and the indicator enables
adversarial training selectively. Adversarial optimization activates only when the current improvement
§(Liask (t)) surpasses the adaptive threshold 6(t); otherwise, the model optimizes solely toward the
primary task, ensuring stable foundations before adding adversarial complexity across domains.

3.3 ADAPTIVE MULTI-BAYESIAN ADVERSARIAL STRATEGIES

MOBO acts as the global controller in ARPO, jointly choosing structure (binary switches b;),
strength/frequency (continuous magnitudes s; and global weight «), and schedule (gate threshold 6).
This controller is necessary because the decision space is mixed discrete—continuous with temporal
coupling and the objectives [Acc, Robust, —Cost] are inherently conflicting, making heuristic or
single-objective tuning inadequate. MOBO maps validation feedback through GP surrogates and
EHVI to propose the next («, 6, Strategy), which perturbs inputs encoded by [Ppr; Pps]| and inter-
faces with the dynamic gate. The resulting train—validate—acquire loop advances the Pareto front in a
sample-efficient manner and supplies updated surrogates for subsequent proposals.

3.3.1 CONSTRUCTION AND AUTOMATIC ASSEMBLY OF ADVERSARIAL STRATEGY SPACE

We build a hierarchical library of parameterized atomic operations across task, phrase, and token levels,
{01, ...,0p,}. Task-level operators (e.g., cross-domain task swaps) modify global supervision
signals, phrase-level operators (e.g., Phrase-Swap-A/B) perturb local semantic spans, and token-level
operators (e.g., Token-FGSM/Token-PGD) adjust embeddings along gradient-guided directions.The
multi-granularity design reveals complementary inductive biases from coarse to fine scales, engaging
with the prefixed representation [Pp; Ppg| by simultaneously regularizing domain-invariant transfer
(via stable cues to Ppr) and enhancing domain-specific separability (via discriminative cues to Ppg).

Each atomic operation O is governed by a binary activation b; € {0, 1} and a continuous strength
s; € R, and a concrete strategy is encoded as Strategy = {(b1,51),. .., (bm, Sm)}. During training,
the assembled perturbation acts on inputs by superposing the atomic effects:

A(x; Strategy) = ij 5; 0;(z), (10)
=1

so only active operators contribute and their magnitudes scale with the corresponding strengths.
This operator A(-; Strategy) is applied to inputs already encoded with [Ppr; Pps], before task and
disentanglement losses are evaluated.
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The decision vector encodes structure, strength, and schedule as

r = (mstruc‘m «, 9)7 Tstruct — {(b]wsj)};n:h (11)

where « is the global adversarial weight and 6 the dynamic-gate threshold. The resulting search space
combines discrete choices with continuous parameters and is optimized via MOBO in Sec.[3.3.2]

We fit Gaussian-process surrogates with a product kernel that respects both continuous magnitudes
and discrete structure:

k(:c,:c') = kcont(zazl) : kdisc(uau/)a (12)
where z = (s1,...,8m,®,0) andu = b € {0, 1}™. For the continuous part, kcont is RBF or Matérn;
for the discrete part we use a Hamming-based categorical kernel

kaise(u,u') = exp(—AHam(u,u)), (13)

with a §-kernel as an alternative when a strictly categorical metric is required. Equations[I2]and[T3]
induce an interpretable similarity: strategies differing in more activation bits are farther apart
than those differing only in strengths, enabling Lipschitz-style regularity checks on the product
domain.(Appendix Together with the assembly operator in equation [I0} this completes the
reduction from hierarchical perturbations to a GP-ready decision space used in Sec.[3.3.2]

3.3.2 ADAPTIVE STRATEGY SEARCH VIA MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

At iteration ¢, ARPO follows a train—validate—acquire loop: using the current decision x =
(Tstruct, @, 0), a full training round is executed under the gate schedule #; validation then yields noisy
observations y; = f;(z) + &; with e; ~ N(0, 07, ;) for f(z) = [Acc(x), Robust(x), —Cost(x)].
These observations update Gaussian—process (GP) surrogates over the mixed decision space, which
reuse the product kernel defined in Sec. [3.3.1] Full GP basics and multi-objective extensions are
deferred to Appendix

For each objective j € {Acc, Robust, —Cost}, the GP posterior mean at any candidate x is
-1
pe(x) = my(x) + kj (2, Xo) [K;(X0, Xo) + 0p 1] (y; —mi(Xy)), (14)

and the posterior variance ait(m) follows the standard closed form. () predicts the expected

validation outcome after training under decision x, while 0727t(:c) measures epistemic uncertainty
from limited evaluations in the mixed discrete—continuous space in ARPO. The summaries balance
exploitation (u; ;) and exploration (a?_t) to drive acquisition.

Candidates are scored via hypervolume-based acquisition with respect to a reference point r; € R3.
Let ND() return the non-dominated set. The batch of size ¢ is chosen by maximizing expected
hypervolume improvement (EHVI) under the joint GP posterior P;:
X1 =arg  max EHVI(X | D, rt)7 (15)
XcQ, |X|=q
where we use noisy-¢gEHVI with Monte Carlo and common random numbers for variance reduction.
The reference point is updated monotonically by componentwise Sth percentiles to stabilize estimates:

riyl = min(rt, Percentilesy, ({f(z(i))}igmﬂ)). (16)

Implementation details, including the hypervolume definition and Monte Carlo estimators, are
provided in Appendix and differentiability/gradient schemes in Appendix

The selected batch X, is decoded to (v, 8, Strategy) and executed under the gate; validation
outcomes are appended to D, 1, GP surrogates are refit, and the acquisition in Eq. equation [T5]
is re-optimized to propose the next batch. This closes a gate-aware MOBO loop that combines a
product-kernel GP surrogate with noisy-gEHVI to directly advance Pareto hypervolume; hypervolume
consistency under standard GP regularity and slow variation holds as shown in Appendix [E.5]

Putting It All Together. Iterating the pipeline yields a closed-loop adaptation scheme: Sec. dis-
entangles [Ppr; Ppg| with information-theoretic regularizers grounded by variational MI estimation
and conditional KL (Appendix [C} [C.4) and stabilized independence control via HSIC (Appendix[C.2));
Sec. deploys a gate that injects adversarial signals only under measured stability, aligning with
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the multi-loss synergy guarantees (Appendix [C.5)); Sec. [3.3]runs MOBO over the mixed decision
space with product-kernel GPs and noisy-gEHVI to propose («, 6, Strategy), with acquisition, differ-
entiability, and convergence analyses in Appendices[E.2HE.5| The result is a principled, data-driven
controller that harmonizes disentanglement, safe adversarial adaptation, and multi-objective search;
Sec. 4| demonstrates consistent Pareto improvements in accuracy—robustness—compute, while the
appendices provide the theoretical scaffolding that underwrites these empirical gains.

4 EXPERIMENTS

In this section, we present experiments that validate our approach. We evaluate cross-domain
performance on standard NLP benchmarks and compare against strong baselines. Appendix
summarizes the preliminaries, and Appendix [B.3|details the experimental setup and the datasets.

4.1 MAIN RESULTS

NQ—SQA | Yelp—SciTail | News—HP | MNLI-QQP | COLA—PAWS |  Mean
Q L | Q L | Q L Q L [ Q L | Q L

Fine-tuning | 73.2 762 | 91.5 97.2 69.8 71.8 | 79.5 83.6 70.9 73.3 77.0 80.1
Adapter 76.8 78.8 | 93.3 96.9 70.3 719 | 82.0 85.0 72.8 74.5 79.0 813

Method

BitFit 729 769 | 88.1 90.1 713 732 | 80.3 87.1 72.3 74.3 76.9 80.7
PT-2 70.1 76.1 | 91.4  93.1 72.8 755 | 81.4 84.9 70.7 74.1 713 81.1
SPoT 702 752 | 89.8 927 72.0 745 | 83.1 87.1 71.9 74.8 774 813

ATTEMPT | 742 79.4 | 90.6  93.7 | 732 752 | 833 87.3 72.9 75.2 78.8 82.6
XPROMPT | 752 782 | 903 933 754 76.1 | 84.4 89.3 73.8 75.8 79.8 829
InfoPrompt | 76.7 802 | 91.5 945 74.1 75.8 | 85.8 90.5 75.2 76.1 80.7 83.8

DEPT 774 803 | 93.1 965 | 745 782|868 913 |751 770 | 8l4 850
Udapter | 77.9 809 | 93.6 967 | 748 785|872 917 | 754 773 |818 854
DAJEE 785 815|939 968 |751 789|878 923 |761 779 |83 859
ARPO | 805 845|967 982 |775 808 |89.8 945 [77.5 804 | 844 880

Table 1: Comparison of methods evaluated on cross-domain transfer tasks using the Qwen3-4B (Q)
and LLama2-7B (L) models. Mean accuracy across all tasks is also reported.

| COLA—QQP | GSMSK—HEval | BoolQ—NQ | HP—SciTail | MNLI-SQA | Mean

Method

| Q L | Q L |Q L JQ L |AQ L |[Q L
Fine-tuning | 66.0 68.9 12.5 18.0 70.5 734 | 71.5 746 | 73.0 76.4 58.7 623
Adapter 68.8 70.4 16.8 24.5 722 746 | 73.9 76.1 | 74.1 78.3 61.2 64.8
BitFit 67.6 69.8 14.0 20.5 714 749 | 732 758 | 74.0 78.1 60.0 63.8
PT-2 67.2 68.9 16.2 24.0 71.6 750 | 73.6 76.0 | 75.1 78.0 60.7 644
SPoT 67.9 69.1 18.0 26.5 725 748 | 754 778 | 77.0 79.6 62.2 65.6

ATTEMPT | 684  71.0 19.5 28.8 73.0 752 | 760 78.6 | 715 80.5 629 66.8
XPROMPT | 69.1 72.1 20.2 29.6 735 758 | 766 79.1 | 782  81.0 63.5 67.5
InfoPrompt | 69.6  72.5 21.0 30.5 739 765 | 770 80.1 | 78.8 81.7 64.1 683

DEPT 705 743 | 225 31.0 73.0 751 | 77.6 80.8 | 79.1 82.7 | 645 68.8
Udapter 724 751 24.5 33.8 746 769 |8l5 8.2 |760 789 |658 700
DAJEE 731 757 | 253 34.6 752 775 | 821 858 |76.6 79.6 | 665 70.6
ARPO | 746 779 | 32.1 40.9 | 771 796 819 845 | 831 858 | 698 737

Table 2: Comparison of methods evaluated on different-task, different-domain transfer scenarios
using Qwen3-4B (Q) and LLama2-7B (L) models. Mean accuracy across all tasks is also presented.

Robust Prefix Adaptation Across Domains. We investigate our method’s ability to transfer across
domains under a single-source training setup with zero modification when moving to the target
dataset. Table[T]covers same-task and different-domain transfers, and Table [2] covers different-task
and different-domain transfers, both on Qwen3-4B (Q) and Llama2-7B (L). In Table[T] ARPO ranks
first on all pairs with Mean 84.4/88.0 (Q/L), outperforming DAJEE at 82.3/85.9 by +2.1/4+2.1. On
MNLI—QQP, ARPO reaches 89.8/94.5 while DAJEE obtains 87.8/92.3, a gain of +2.0/4+2.2. In
Table [2] the gap is larger under domain-task shift; ARPO records Mean 69.8/73.7 compared with
66.5/70.6, a gain of +3.3/+3.1. On GSM8K—HEval, scores are 32.1/40.9 compared with 25.3/34.6,
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improving by +6.8/+6.3. These gains follow from IB-driven disentanglement of domain-invariant and
domain-specific prefixes, dynamically gated adversarial training that reduces errors on hard cases,
and MOBO that balances accuracy, robustness, and efficiency.

Efficient Accuracy-Robustness Trade-off Optimization. Figure 2a]illustrates the Pareto frontier,
clearly highlighting accuracy-robustness trade-offs among various approaches, while Figure [2b]offers
a detailed performance and computational cost comparison. Our method notably outperforms the
baselines (DePT |Shi & Lipani| (2023),XPrompt Ma et al.| (2022),PT Lester et al.| (2021),Radom
Search Bergstra & Bengio| (2012)), achieving approximately 5% higher accuracy (87% vs. DePT’s
82%) and 8% improved robustness (83% vs. DePT’s 75%), while reducing computational over-
head (0.64 vs. DePT’s 0.73 normalized cost). This substantial enhancement is mainly due to our
disentangled prefix learning framework, effectively isolating domain-invariant and domain-specific
representations through information bottleneck optimization, orthogonality constraints, and con-
trastive regularization. Furthermore, our dynamic adversarial adaptation mechanism selectively
applies adversarial training only where needed, significantly boosting efficiency. Lastly, our multi-
objective Bayesian Optimization systematically balances accuracy, robustness, and computational
efficiency, enabling stable and robust cross-domain generalization.

Pareto Frontiers for Accuracy and Robustness Performance and Comyg i Cost C
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(a) Pareto Frontiers Optimization Trajectory (b) Trade-off Comparison

Figure 2: Multi-objective optimization performance tested on T5-base model: Figure(a) illustrates
Pareto frontiers revealing accuracy-robustness trade-offs across different techniques, while Figure(b)
compares the optimal performance metrics (bars) alongside computational cost (red), demonstrating
our method’s superior balance between task accuracy, robustness, and efficiency.

Supplementary Analysis of ARPO. We replicate experiments on T5-base and T5-large. Ap-
pendix [B:4.T| shows that the module is plug-and-play and integrates cleanly with LLMs of different
sizes and architectures. We also perform statistical significance tests on Appendix [B.4.3] which show
consistent cross-domain gains with narrow uncertainty across tasks. In addition, we list hyperparame-
ters and run sensitivity studies on Appendix [B.4.2] With MOBO-based joint search, we efficiently
find robust configurations in a large space, leading to stable transfer performance.

4.2 ROBUSTNESS ANALYSIS

Cross-Domain Robustness Under Different Adversarial Perturbations Training Stability Analysis

Task-level Perturbation 6
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Figure 3: Comparison of cross-domain robustness in Figure (a) and training stability in Figure (b),
illustrating our method’s superior accuracy under adversarial perturbations and enhanced convergence
stability relative to baseline methods, evaluated using the T5-base model.
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Figure [3a] shows cross-domain robustness on T5-base under token-, phrase-, and task-level perturba-
tions; our method attains the best accuracy in all settings, with gains of about 10% over DePT and
nearly 22% over standard fine-tuning. Figure [3b|shows training stability; our method reduces final
training loss by ~23% vs. DePT and ~58% vs. standard fine-tuning. The gains come from a dynamic
adversarial schedule that triggers only when gradient variance is stable, and from MOBO which
searches a mixed discrete—continuous strategy space to cover hard cases. We also learn disentangled
prefixes with an IB objective plus orthogonality and conditional independence constraints, and we
use independent train and test perturbation protocols to ensure a fair robustness assessment. Our
method delivers stronger cross-domain robustness and faster, steadier convergence; full efficiency
and robustness analyses, with statistical tests and sensitivity studies, are in Appendix [B.4.3|B.4.4]

4.3 ABLATION STUDY

DI:DS prefix length analysis. Table [3| presents an

. . . ; A B
ablation study exploring how different ratios between pr:DS | 5 (;ombm 7 | 5 (;()mbm a
domain-invariant (DI) and domain-specific (DS) pre- - | Base (%) | (4") | asei”) | 7B (%)
fixes affect our method’s performance with T5-base 2;2 gg:; ;2:6 % %’:;
and LLaMA-7B models under CombA (same task, 7:3 76.7 71.5 75.5 76.3

- i i - 6:4 78.2 80.8 772 78.0
cross domgm) and CombB (dlfferen.t tasks gnd do s 801 842 95 AR
mains) settings. Our optimal 5:5 ratio consistently 46 787 80.2 76.8 773
surpasses the second-best (6:4) by 1.9% (CombA) ;:; 76.; 7;; 74.2 7§.2

: 71. 73. 71. 73.1
and 2.4% (CombB), and greatly outperforms the 1o 692 701 P 688

weakest ratio (1:9) by approximately 14.1% and
14.4%, respectively. These improvements highlight T,p1e 3: Ablation on DI:DS prefix length (60)
the effectiveness of our balanced information bottle- o105 for T5-base and LLama-7B incorpo-
neck strategy, promoting an ideal trade-off between rating comparisons of Same Task, Different
domain-invariant and domain-specific information. pymains (Comb A) and Different Tasks, Dif-

Additionally, incorporating orthogonality constraints, farent Domains (Comb B) with mean scores.
contrastive disentanglement, and conditional indepen-

dence ensures clear separation between prefixes, substantially enhancing cross-domain generalization.

Impact of Disentanglement Constraints. Table

. . CombA CombB

displays T5-Base and LLaMA-7B ablations for = Method | s (;;" B | 5 (;)m 8%

. . ase (7o 0 ase (7o 4
CombA (same task, cross-domain) and CombB (dif- — | 3 | o | e | o
ferent tasks and domains). In all circumstances,  ws ‘Zmb 752 768 742 759
the entire model outperforms w/o all by +9.0/+10.9 w;o ﬁmm 722 72!5) 72} 72113

. w/0 Leond 75.3 76. 75. 76.

on CombA and +8.7/+11.0 on CombB. Removing [, "z | 5 761 743 756
Lgisent decreases CombA to 4.9/6.7 and CombB to W/O Lady 76.8 79.2 75.9 78.4
5.2/6.7, showing IB-driven separation as the primary  Our 80.1 | 828 | 795 | 823

cause Removing L,q4, results in 3.3/3.6 and 3.6/3.9 ] ]
reductions, indicating greater resilience to mismatch. 1able 4: Ablation on disentanglement con-
On average, deleting Lcons lowers scores by 5.5, Straints .for Base and 7B modelg, including
while removing any one restriction causes a 4.4-6.5 comparisons of Same Task, Different Do-
reduction. The larger drops on 7B and CombB show Mains (Comb A) and Different Tasks, Dif-
that better disentanglement and adversarial regular- ferent Domains (Comb B) with mean scores.
ization improve capacity and cross-task transfer. This obvious separation greatly enhances model
resilience and generalization across domain-task combinations.

5 CONCLUSION

To summarize, we propose ARPO that unifies prefix disentanglement, dynamic adversarial gating,
and multi objective Bayesian optimization into a unified pipeline for robust cross domain transfer.
In particular, we split the prefix into Pp; and Ppg with information bottleneck and geometric
constraints, trigger adversarial updates by a stability driven threshold, and use product kernel GP
surrogates with EHVI to tune strategy structure, strength, and schedule for a better accuracy robustness
cost tradeoff. In the future, we will scale the surrogate and search space, add safety and latency
objectives, and strengthen theory for convergence under dynamic gating and shifting domains.
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Algorithm 1: Training Procedure for ARPO

1 Input: Base LM fy; train set Dy,.q:n, = {(2,y, d)} with domain d; validation set D,,;; prefix
sizes (Lpr, Lps), dim d; weights \1.5; gate params (g, 7, w); adversarial operator library
{Oj ;7‘:1; MOBO budget 150, per-round steps 7i,in; initial mixed-decision set X, where
T = (xslructv «, 9) and Tyt = {(bj7 5])}?:1

2 Output: Learned prefixes P}, ;, P}y o; MOBO-optimal decision z* = (2}, &, 0*); trained
model fy p~; Pareto archive Ar for (Acc, Robust, —Cost).

3 Initialize: Randomly initialize Pp; € REP1¥4 Ppg € REPs¥d; set Dy < 0, Ay < 0.

4 (I) Initial design evaluation
s foreach v = (zuer, ¢, 0) € X do

6 for t =1 to 1}, do
7 Sample minibatch B C Dy.qin; forward h(-; [Ppr; Pps|) and extract hpg
8 Task loss: compute L4, on B
9 Disentanglement loss:
Ldisent = )\1[:IB (PDI) + )\QLIB(PDS) + >\3£0rth, + >\4£cont + )\SE(:ond
10 Gate score: 6 < 1 — Lia51(t)/Liask(0),
1 O(t) + 6o- (1 — exp(— - Var/Mean)) using last w gradient steps
12 if 0 > 0(t) then
13 Build Pos/Neg in hpg via batch distance quantiles;
Laav =3 jyeposlhps,i = hps jllz2 = 2 kyeneg D5 — hps.ll2:

14 else
15 ‘ Laodw < 0;
16 end
17 Total: Lioiar = Liask + & Ladw + Ldisents update {0, ]DDI7 Pps}
18 end
19 Evaluate f(z) = [Acc, Robust, —Cost] on D,,; with a robustness protocol independent

from training perturbations; append (z, f(z)) to Dy and update Ay
20 end

2z Fit GP surrogates on Dy with a product kernel over mixed (b, s, «, 8); set reference ry (e.g.,
monotone Sth percentile)

2 (IT) MOBO loop (noisy-¢ EHVI)
23 fort =1to TBO do

24 X+ argmax|y|—q EHVI(X | Dy 1,14 1)

25 foreach © = (zyer, ¢, ) € X, do

26 for s = 1 to 1}, do

27 | Repeat the inner training of (I) under decision x
28 end

29 Evaluate f(z) on D,4;; append to D; and update A;
30 end

3 Refit GP surrogates; update r,

32 end

33 Return: select z* from A7 (e.g., Pareto knee or scalarization) and output P}, ;, Pyg, z*, fo, p=.

A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We used a large language model (e.g. ChatGPT, Claude) solely to aid and polish writing (grammar,
phrasing, and clarity). The model did not generate technical content, analyses, or results, and all
outputs were reviewed and verified by the authors.

B TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

B.1 PRELIMINARY

Prefix Tuning and Cross-Domain Transfer. Prefix tuning enables efficient fine-tuning by inserting
learnable prefix vectors into pretrained Transformers. Given input x = (1, 2, . . ., Z5, ), the model
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computes outputs as Transformer(x) = Attention(x + Pprefix ), updating only the prefix parameters
P prefix during training. This improves parameter efficiency and transferability. Traditional domain
adaptation minimizes differences between source Ps(X,Y") and target Pr(X,Y") distributions using
a domain-invariant extractor ¢: D(Pg(X), Pr(X)) = ming Div(¢(Xs), #(X7)). We extend this
approach to multi-domain scenarios, enhancing cross-domain robustness.

Information Bottleneck and Mutual Information Estimation. The Information Bottleneck (IB)
theory treats deep neural networks as mechanisms that compress irrelevant information while preserv-
ing task-relevant details. Its objective is to maximize I(¢(X);Y) — SI(X; ¢(X)), where I(X;Y)
denotes mutual information and 3 controls the compression level. Directly computing I(X;Y) is
challenging, so Mutual Information Neural Estimation (MINE) provides a variational lower bound:

I(X;Y) > Iyme(X,Y) = Ep,, [Ty(z, y)] — log(EPx Py [eT0®¥)]), (17)

where T} is a parameterized neural network. To further decouple domain-invariant (Ppy) and
domain-specific (Pps) representations, an orthogonality constraint Lo, = | P2 - Pps|% is imposed,
ensuring approximate orthogonality to mitigate redundancy and negative transfer

Adpversarial Training and Multi-Level Perturbations. Adversarial training enhances robustness by
introducing perturbations ¢ into input or intermediate representations. The objective is:

min B ) [max £(fo(x +9).v)]. (18)

where € determines perturbation strength. Token-level perturbations alter individual tokens via
Tforen = Lroken + 0, constrained by ||]] < €ioken. Task-level perturbations mix samples from different
tasks as z(,q = a%wski + (1 — @) Trsk2, Where 0 < o < 1. Perturbations at higher levels create larger
distribution shifts, enabling stronger evaluations of generalization.

Multi-Objective Bayesian Optimization. When dealing with high-dimensional hyperparameter
tuning for performance, robustness, and efficiency, methods like manual tuning often struggle to
find good solutions. Multi-Objective Bayesian Optimization (MOBO) addresses this by modeling
multiple objectives f;(x) with Gaussian Processes, written as f(z) ~ GP(u(x), K(x,2’)). Under
limited resources, MOBO iteratively refines the Pareto frontier, defined as

{z |82, Vi: fi(a') < fiz), 35« fi(a") < f3(2)} (19)

By strategically selecting hyperparameter configurations that maximize information gain, MOBO
automates optimization and balances trade-offs among objectives.

B.2 RATIONALE FOR USING SOFT PROMPTS

We use soft prompts for control, interpretation, and reproducibility. They confine trainable parameters
to the prefix space and scale linearly with length and dimension, far below full fine tuning. Prior
work shows strong performance with few vectors and gains with scale (Lester et al.|[2021), effective
layer control under frozen backbones (L1 & Liang} 2021)), and results comparable to full fine tuning
(Liu et al., [2021c)). This compact channel lets us measure mutual information, HSIC, conditional de-
pendence, and geometric margins in the prefix space without changing backbone weights. Attribution
therefore stays on our design rather than backbone drift.

Soft prompts fit ARPO and bring engineering gains. Module one performs information bottleneck
domain disentanglement at the prefix layer. Module two shapes the domain specific subspace and
gates the start time using progress, stability, and task difficulty. The outer loop uses multi objective
Bayesian optimization to search a Pareto front over structure, strength, and timing. The small
parameter count enables frequent gating and MOBO probing under realistic compute, which reduces
adversarial instability and hyperparameter cost. The pipeline thus performs joint adaptation over
time, space, and strength in a parameter efficient channel.

This choice remains general. The three ARPO mechanisms are orthogonal to the adaptation layer and
transfer to LoRA, Adapters, or full fine tuning (Hu et al.} 2021} |Houlsby et al.,|2019). MOBO is even
more valuable with larger models and complex architectures. Soft prompts provide a clean testbed to
combine domain disentanglement, dynamic adversarial training, and MOBO strategy search, yielding
reproducible evidence and a reusable foundation for PEFT and larger models.
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B.3 EXPERIMENTAL SETTING

In this experiment, we trained and evaluated T5-base, T5-large Raffel et al.| (2020), LLaMA-2-
7B [Touvron et al.| (2023), and Qwen3-4B |Yang et al.|(2025) on a single NVIDIA A6000 GPU with
48 GB memory. The prefix length was 60 and training ran for 50 epochs. Hyperparameters were
tuned with Multi-Objective Bayesian Optimization (MOBO) in a low-dimensional latent space using
500 intrinsic dimensions and 60 virtual tokens. The initial MOBO configuration used a learning rate
of 1 x 1074, a linear warm-up over 10% of training, dropout 0.1, batch size 32, and weight decay
0.01, targeting stable and efficient optimization. Random projections were initialized with dynamic
scaling factors o and standard deviations o. We first collected five Sobol points, then performed 30
Bayesian iterations in batches of 64, iteratively refining the prompt embeddings without retraining
the full model to maintain parameter efficiency and robust cross-task performance.

Additionally, we evaluated our model’s ability to generalize and transfer knowledge across tasks and
domains using datasets from GLUE Wang et al.| (2018)), Super GLUE |[Fisch et al.| (2019), MRQA
2019 shared tasks |[Fisch et al.|(2019), and additional datasets including Yelp Zhang et al.| (2015),
SciTail Khot et al.| (2018)), PAWS-Wiki [Zhang et al.| (2019), GSM8K |Cobbe et al.| (2021}, and
HumanEval |Chen et al.|(2021)). We compared our method against several baselines, including Fine-
tuning Radford et al.|(2019), Adapter[Houlsby et al.|(2019), BitFit Zaken et al.[(2021), SPoT Vu et al.
(2021), ATTEMPT |Asai et al.[(2022), XPROMPT [Ma et al.| (2022), InfoPrompt |Wu et al.| (2024),
DePT Shi & Lipani| (2023)), DAJEE Bajpai & Hanawall (2024), and Udapter Malik et al.| (2023).

B.3.1 SAME TASKS AND DOMAIN DIFFERENCES DATASETS EXPLANATION:

NQ — SQA: Both datasets involve question-answering tasks but originate from distinct domains.
The Natural Questions (NQ) dataset comprises real user queries sourced from the Google search
engine, whereas the Sequential Question Answering (SQA) dataset includes sequentially dependent
questions based on Wikipedia paragraphs. Thus, the two datasets differ significantly in their contextual
backgrounds and query formats.

Yelp — SciTail: Both datasets focus on text classification or entailment tasks. The Yelp dataset
contains everyday scenarios such as restaurant reviews, whereas the SciTail dataset consists of textual
entailment examples extracted from scientific literature, highlighting substantial domain differences.

News — HP: Both datasets involve text classification tasks. The News dataset contains general news
articles, while the Hyperpartisan (HP) dataset specifically targets classification of news articles based
on their partisan political orientation. Consequently, they differ considerably in content style and
topical characteristics.

MNLI — QQP: Both tasks involve natural language inference or semantic similarity judgment.
Multi-Genre Natural Language Inference (MNLI) emphasizes inference across various textual genres,
whereas Quora Question Pairs (QQP) concentrates specifically on evaluating semantic similarity
between pairs of questions. Thus, their task contexts and application scenarios differ markedly.

CoLA — PAWS: Both datasets pertain to linguistic acceptability or semantic analysis tasks. The
Corpus of Linguistic Acceptability (CoLA) dataset is utilized for grammatical acceptability judgments,
while the Paraphrase Adversaries from Word Scrambling (PAWS) dataset aims to detect whether
sentences retain meaning after word reordering. These datasets exhibit significant domain and
task-specific differences.

B.3.2 DIFFERENCES TASKS AND DOMAIN DIFFERENCES DATASETS EXPLANATION:

CoLA — QQP: Regarding task differences, CoLA (Corpus of Linguistic Acceptability) is designed
for grammatical acceptability judgments, primarily assessing whether sentences adhere to linguistic
correctness. Conversely, QQP (Quora Question Pairs) involves evaluating the semantic similarity
between pairs of questions, representing a fundamentally distinct task. Concerning domain differences,
CoLA deals with linguistic analysis typically within an academic linguistic framework, while QQP
encompasses colloquial and everyday user-generated questions.

GSMS8K — HumanEval: GSMS8K has natural language math problems that require multistep
numerical reasoning and a single numeric answer. HumanEval asks for executable Python functions
from text specifications that must pass unit tests; the output shifts from a scalar to a program, and
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the metric from accuracy to pass@k. The domains differ: GSM8K is educational arithmetic with
everyday language, while HumanEval is software engineering that relies on code syntax, libraries,
and algorithmic patterns. Inputs, reasoning, and errors also diverge: narrative prompts vs function
signatures, arithmetic chains vs program planning and control flow, and calculation or unit mistakes
Vs syntax, semantic, or edge case bugs.

BoolQ — NQ: BoolQ involves binary yes-or-no question-answering, requiring models to provide
definitive affirmative or negative responses. In contrast, NQ (Natural Questions) demands extractive
question answering, where models must identify and extract precise answer spans from documents.
Regarding domains, BoolQ questions are typically closed-ended and clearly structured, while NQ
questions are sourced from actual user queries on Google, featuring greater openness and diversity.

HP — SciTail: For task differences, HP (Hyperpartisan) pertains to classifying news articles ac-
cording to partisan political alignment, whereas SciTail addresses textual entailment recognition
specifically within scientific contexts. Concerning domain differences, HP data is centered on
subjective political viewpoints and biases in news reporting, while SciTail content is derived from ob-
jective scientific literature characterized by rigorous logic and structured reasoning, thus representing
distinctly separate domains.

MNLI — SQA: Regarding task distinctions, MNLI (Multi-Genre Natural Language Inference)
involves inference-based evaluations of logical relationships between text pairs across multiple
genres. Conversely, SQA (Sequential Question Answering) is concerned with extractive answering
of sequentially dependent questions based on provided contexts. Domain-wise, MNLI spans diverse
text genres and styles, whereas SQA specifically targets continuous information extraction from
Wikipedia articles, underscoring notable differences in both textual nature and application context.

B.4 SUPPLEMENTARY EXPERIMENTS

B.4.1 EXPERIMENTS ON T5 BASE & TS5 LARGE MODELS

NQ—SQA | Yelp—SciTail | News—HP | MNLI-QQP | CoLA—PAWS | Mean
| B L | B L | B L |B L | B L | B L

Fine-tuning | 689 71.2 | 87.3  90.5 652 67.8 | 753 78.8 66.5 69.3 726 5.5
Adapter 72.5 73.8 | 89.1 91.3 657 679 | 77.8 80.2 68.4 70.5 747 76.7

Method

BitFit 686 719|839 870 | 667 69.2 | 76.1 82.3 67.9 70.3 727 76.1
PT 64.1 693 | 867 898 | 693 69.7| 754 787 64.1 69.5 719 754
PT-2 65.8 71.1 | 87.2  90.1 682 715|772  80.1 66.3 70.1 729 76.6
SPoT 659 702|856 897 |674 705|789 823 67.5 70.8 73.1  76.7

ATTEMPT | 699 744 | 864  90.7 68.6 712 | 79.1 82.5 68.5 71.2 74.5 78.0
XPROMPT | 709 73.2 | 86.1 90.3 70.8 72.1 | 80.2 84.5 69.4 71.8 755 784
InfoPrompt | 72.4 752 | 87.3 915 69.5 718 | 81.6 85.7 70.8 72.1 763 793
DEPT 73.6 759 | 894 937 702 745 | 83.0 86.9 71.0 73.3 774 809

ARPO | 762 795|925 967 | 729 768|856 89.7 | 731 76.4 80.1 83.8

Table 5: Comparison of methods evaluated on cross-domain transfer tasks using the T5-base (B) and
T5-large (L) models. Mean accuracy across all tasks is also reported.

Section reports cross domain transfer on T5 base and T5 large. Table [5] shows that our
method attains a mean of 80.1 on base and 83.8 on large, which exceeds DePT by 2.7 and 2.9
points. The advantage holds on every transfer. NQ—SQA improves by 2.6 on base and 3.6 on large.
Yelp— SciTail improves by 3.1 and 3.0. News—HP improves by 2.7 and 2.3. MNLI—QQP improves
by 2.6 and 2.8. CoLA—PAWS improves by 2.1 and 3.1. Yelp—SciTail reaches 96.7 on T5 large,
while News—HP is the hardest but still gains. Scaling from base to large adds 3.7 points for our
method and 3.5 for DePT, so the margin remains. These results arise because the disentangled prefix
separates domain invariant and domain specific signals, which reduces negative transfer and preserves
task cues. The dynamic threshold schedules adversarial updates only when the task loss improvement
and gradient statistics indicate value, which avoids early noise and focuses learning on the domain
specific space. The MOBO search finds effective strategy settings in a small number of trials, which
balances accuracy, robustness, and cost better than manual tuning. The parameter efficient design
lowers the risk of overfitting and stabilizes training, so gains persist when model capacity increases.
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CoLA—QQP | RTE—SST-2 | BoolQ—NQ | HP—SciTail | MNLISQA | Mean

Method
\ B L \ B L \ B L \ B L \ B L \ B L

Fine-tuning | 64.2  66.7 774 802 | 68.1 715 |69.7 731 | 719 753 703 734
Adapter 67.9 69.3 794 81.8 | 70.8 719 | 72.1 748 | 71.1 71.5 723 75.1
BitFit 664  68.8 79.1 825 | 695 729 | 718 742 | 713 77.4 716 752
PT 65.5 69.5 78.5 829 | 683 722 |71.6 747 | 709 76.5 71.0 752
PT-2 66.2  68.0 79.2  83.1 69.2 728 | 721 752 | 722 77.2 71.8 753
SPoT 66.8 68.5 79.5 833 | 709 73.1 | 742 77.1 | 749 79.9 733 764

ATTEMPT | 67.2  70.6 80.8 838 | 714 738 | 748 779 | 755 80.6 | 739 773
XPROMPT | 685  72.1 8l.1 839 | 719 742 | 755 785 | 762  8l.1 74.6 78.0
InfoPrompt | 689  72.5 81.7 841 | 722 749 | 759 79.7 | 76.8 819 | 75.1 78.6
DEPT 694  73.8 825 859 | 728 752 | 76.6 803 | 77.7 83.3 75.8  79.7

ARPO 735 768 | 851 884 |763 79.6 |80.1 835 |85 862 |795 829

Table 6: Comparison of methods evaluated on different-task, different-domain transfer scenarios
using TS5-base (B) and T5-large (L) models. Mean accuracy across all tasks is also presented.

Table[6]reports different task and different domain transfer on T5 base and T5 large, where our method
achieves the best mean accuracy in both settings, with 79.5 on base and 82.9 on large, exceeding
DePT by 3.7 and 3.2 points. The gains are consistent across all transfers. For COLA—QQP the
improvements over DePT are 4.1 on base and 3.0 on large. For RTE—SST-2 the improvements are
2.6 and 2.5. For BoolQ—NQ the improvements are 3.5 and 4.4. For HP— SciTail the improvements
are 3.5 and 3.2. For MNLI—SQA the improvements are 4.8 and 2.9. These results arise because
the disentangled prefix separates domain invariant and domain specific information, which limits
negative transfer while preserving task signals. The dynamic threshold schedules adversarial updates
only when loss progress and gradient statistics indicate value, which prevents early noise and focuses
adaptation on domain specific features. The multi objective Bayesian search selects effective strategy
settings with few evaluations, which balances accuracy, robustness, and cost better than manual
tuning. The parameter efficient design reduces overfitting risk and stabilizes training across tasks and
model sizes, so the advantage persists when scaling from base to large.

B.4.2 EXPERIMENTS ON HYPERPARAMETER SENSITIVITY

Parameter Search Range Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Optimal Range
762+16 784+15 80.1+12 798+1.2 79.2+13 7T7.8+1.5

A [0.1,1.0] [0.5,0.7]
©.1) 03) 0.5) 0.7 0.9) (1.0)
758+15 TT.9+13 801412 793+11 794412 781+1.4
A 0.1,1.0 0.5,0.7
? [0-1,1.0] ©.1) 0.3) (0.5) 0.7) (0.9) (1.0) [05,0.7]
794+15 798+12 80.1+12 T79.6+1.1 789413 7T7.2+1.6
. .01,0. 05,0.1
A3 [0-01,0.5] 0.01) (0.05) 0.1) 02) 0.3) 0.5) [0.05,0.1]
792413 797413 T799+1.1 80.1+12 795+12 788+1.4
A 0.05 0.15,0.25
* [0-05,0.3] (0.05) ©.1) (0.15) 0.2) (0.25) 0.3) [0-15,0.25}
=4
N 0on02) TOSELS S00ELL S0IE12 TO9E10 TOAEL2 TEOELS 00000
0.01) (0.03) (0.05) (0.08) 0.12) 02)

Table 7: Hyperparameter sensitivity results (mean =+ standard deviation). Bold candidate values in
parentheses indicate the best-performing setting within each row.

Table [7| shows that performance is most sensitive to the Information Bottleneck weights in Equa-
tion (6), with peaks at A\; = 0.5 and A\ = 0.5 where the mean reaches 80.1 &= 1.2 and then declines
toward both ends of the search ranges. The orthogonality term works best around A3 = 0.1 with
a stable region in [0.05,0.10]. The contrastive term prefers moderate strength with Ay, = 0.2 and
remains strong in [0.15,0.25]. The conditional independence term is most effective near A5 = 0.05
with a stable region in [0.03, 0.08]. These results indicate that the main gains come from balancing
domain invariant extraction and domain specific retention, since A; and A, control the trade off
between removing domain cues and preserving task signals; too small values under regularize and
allow leakage across prefixes, while too large values over regularize and remove useful information.
The orthogonality weight avoids representation mixing and reduces redundancy, but if it is too
high it limits capacity and hurts alignment. The contrastive and conditional independence terms
improve structure and separability when set to moderate values; if they are too weak they fail to
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Notation Component Update Method Description (Range/Setting)

L Total prefix length Backprop (Adam) Total tokens, splitas L = Lpr + Lpg, range: 10-50.
Lpr Domain-invariant prefix Backprop (Adam) Prefix tokens for domain-invariant features, integer [0, L].
Lps Domain-specific prefix Backprop (Adam) Prefix tokens for domain-specific features, integer [0, L].
d Embedding dimension Fixed by backbone Embedding size (e.g., T5-base: d = 768).

B, B2 IB weighting factors Backprop (Adam) Balances mutual information objectives, real > 0.

T Contrastive temperature Backprop (Adam) Contrastive similarity scaling, typical range: 0.01-0.2.

Ao Orthogonality penalty base ~ Backprop (Adam) Base factor for adaptive orthogonality, real > 0.

Alyeay As Disentanglement weights Backprop (Adam) Weights for losses L1 g, Lorth, Lconts Leonds real > 0.

« Adversarial balance Backprop (Adam) Balances L,qy and Ly, real in [0,1].

O(Liask(t)) Improvement ratio Computed per iteration  Task loss improvement ratio, real in [0,1].

0(t) Dynamic threshold Computed per iteration ~ Adversarial activation threshold, real in [0,1].

[ Base threshold Hyperparameter Initial threshold for (t), real in [0,1].

¥ Threshold sensitivity Hyperparameter Gradient variance sensitivity, real > 0.

B8 Task-difficulty sensitivity Hyperparameter Scales threshold by task difficulty, real > 0.

w Lookback window Fixed integer Recent batches for variance calculation, typical: 5-20.
Pos/Neg threshold  Pair distance threshold Hyperparameter Threshold for positive/negative pairs, real > 0.

Laav Adversarial loss weight Backprop (Adam) Loss computed from positive/negative pairs.

T Max training iterations Outer loop Optimization steps, integer > 0.

{0} Atomic adversarial ops BO-chosen Basic ops (FGSM, PGD, swaps), each with toggle b;, strength s;.
b; € {0,1} Discrete op toggle BO (GP model) Operation active/inactive binary indicator.

s; €R Continuous op strength BO (GP model) Magnitude of perturbation, typical range [0,5].

Strategy Adversarial strategy MOBO-selected Combination of (b;, s;) pairs, updated per iteration.
EHVI Acquisition function MOBO/GP Expected Hypervolume Improvement for strategy selection.

Table 8: Key Parameters and Hyperparameters in the Adaptive Robust Prefix Optimization

guide the split, and if they are too strong they force overly rigid clusters. The observed optima
match the automated search in Section 3.3.2, where the multi objective Bayesian optimization treats
x = (a,0,A,...,\s, Strategy) as decision variables, starts from Sobol initialization, and converges
within about 30 iterations; ablations attribute about 60% of the total gain to A1 and As.

As shown in the Table[8] it summarizes the key parameters guiding our method’s core functionalities.
The prefix lengths (L, Lpr, Lps) separate domain-invariant and domain-specific features, while mu-
tual information and orthogonality weights (51, 82, A1, - . - , A5) control disentanglement strength. The
dynamic threshold parameters (6(t), 6o, ~y, ) manage when adversarial training begins, preventing
early interference. Adversarial strategies (e.g., {O;}, b;, s;) and multi-objective Bayesian optimiza-
tion (EHVI) collaborate to tune both discrete and continuous components, enhancing cross-domain
robustness and reducing manual efforts.

B.4.3 EXPERIMENT ON SIGNIFICANCE STUDY

The significance study in Table[9]indicates consistent

. . Task Transfer | Mean | 95% CI | CV

cross domain transfer performance with narrow uncer-
. (%)
tainty across tasks. On the dev set, we report means NQ=SQA | 76.24 1.3 | [74.6,77.8] | 1.44%
. . Yelp—SciTail | 92.541.2 | [91.0,94.0] | 1.30%
and 95% confidence 1.ntervals over 5 1ndepeqdent News—sHP 729+ 1.3 | [71.3.745] | 1.78%
runs: the overall mean is 80.1 4+ 1.2 with a 95% inter- ~ MNLI—QQP | 85.6+1.2 | [83.7,87.1] | 1.40%
val of [78.0, 82.2] and a 1.49% coefficient of varia- COLA—-PAWS | 73.1+1.1 | [71.4,74.5] | 1.51%
tion; Yelp—SciTail attains 92.5 + 1.2, MNLI—-QQP Mean | 80.1+12 [78.0,82.2] | 1.49%

reaches 85.6 +£ 1.2, NQ—SQA and CoLA—PAWS
yield 76.2 £ 1.3 and 73.1 &= 1.1, while News—HP is
the hardest at 72.9 4 1.3, indicating stable training . )
and limited run to run variance. These outcomes stem dence interval (95% CI), and coefficient of
from three design choices. Information bottleneck Vvariation (CV).

driven prefix disentanglement separates domain invariant and domain specific signals, which reduces
negative transfer while preserving task cues. A dynamic adversarial schedule activates only after loss
stabilization, improving robustness without early instability. Multiobjective Bayesian optimization
tunes the adversarial weight, trigger, and strategy to balance accuracy and robustness. The residual
gap on News—HP reflects stronger distribution shift and label subjectivity, leaving headroom for
future refinement.

Table 9: Cross-domain task transfer results
with mean =+ standard deviation, 95% confi-
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B.4.4 MODEL RUNTIME AND EFFICIENCY EXPERIMENTS

Under identical training conditions (NVIDIA A6000 GPU, 50 epochs, batch size of 32, T5-base
backbone), we report reproducible wall-clock times and normalized costs. Full fine-tuning requires
120 min/epoch (approximately 100 h total; normalized cost 1.00); DePT completes in 52 min/epoch
(approximately 43.3 h; cost Model Runtime and Efficiency Experiments). In contrast, ARPO trains
in 45 min/epoch (approximately 37.5 h; cost 0.64), yielding a 13.4% reduction relative to DePT. All
measurements are obtained on the same hardware and schedule to ensure a fair comparison.

The efficiency gains arise from the synergy of parameter economy, selective adversarial computation,
and sample-efficient strategy search. ARPO updates fewer than 1% of parameters, which reduces
backward-pass overhead and memory traffic. Its dynamic thresholding, driven by the progress signal
0(Lisk (t)), suppresses unproductive adversarial steps during early training, avoiding roughly 40% of
adversarial computations in the first 30% of iterations. Moreover, the MOBO component typically
identifies effective operating points in about 30 evaluations, whereas grid search often requires
hundreds. At inference, ARPO introduces negligible latency because deployment only concatenates
learned prefix embeddings without auxiliary branches or test-time optimization.

C THEORETICAL AND IMPLEMENTATION DETAILS FOR ADAPTIVE
REPRESENTATION LEARNING OF DISENTANGLED PREFIX

C.1 MUTUAL INFORMATION NEURAL ESTIMATION (MINE): VARIATIONAL FORM,
STABILIZATION, AND BIAS/VARIANCE BOUNDS

Let random variables U, V have joint p(u, v) and marginals p(u), p(v). Mutual information is

p(u,v) }

I(U;V)=E,(yo |log ————~1 . (20)
SV =Byt 08 520

A variational representation follows from the Donsker—Varadhan (DV) inequality for KL: for any

measurable T : U x V — R,

I(U;V) =KL (p(u, v) H p(u)p(v)) > Sl%p {Ep(uyv)[T(u, v)] — log Ep,(u)p(v) |:6T(u,v)} } . @D

MINE parameterizes T'(u,v) = Ty(u,v) with a neural network and maximizes the DV lower
bound Iny (¢) over ¢ using stochastic gradients Belghazi et al.| (2018). In practice, expectations in
equation [21|are replaced by mini-batch Monte Carlo estimates using positive pairs (u;, v;) ~ p(u,v)
and negative pairs formed by shuffling to approximate p(u)p(v). The empirical objective reads

B B

- 1 1 . .

Inv(¢) = B ZT¢(1Li,vi) — log(B ZeT’P(““ ")> , 0; id.d. ~ p(v), (22)
i=1 i=1

which is a biased but consistent estimator of the DV bound under increasing batch size and training
time. The bias arises from the concavity of logp and finite-sample estimation of the denominator;
variance arises from the exponential moment e*¢ that amplifies tail noise. Systematic comparisons
show DV is among the tightest common variational MI bounds but exhibits high estimator variance
and optimization instability in high dimensions or with small batches [Poole et al.|(2019).

An alternative lower bound widely used in contrastive learning is InfoNCE |Oord et al.|(2018)). Let
{(u,v"), (u,v7),..., (u,vx_,)} contain one positive sample from p(u,v) and K — 1 negatives
from p(u)p(v). Define the score s4(u, v) = Ty (u, v). The InfoNCE objective is

exp s¢(u, vT)

Incr(¢) = E |log -
ee(?) exp 55 (1, v7) + n ! expsg(u, ;)

+ log K, (23)

which lower-bounds I(U; V'), tightens with K, and typically has lower variance than DV due to the
softmax normalization. The ordering between DV, NW1J, and InfoNCE in tightness and dispersion is
detailed in Poole et al.| (2019).
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For ARPO, we employ a MINE-style critic T but stabilize training by controlling the denominator
in equation 22} Let

B
= 1 s = > >
7 = E;e%(% Vo L=pLiat (=P 2, B, (24)

and replace log Z by log Z; in equation The exponential moving average reduces stochastic
curvature in the log-partition estimate and yields a controllable bias—variance trade-off; Z; converges
in mean to the population moment when batches are i.i.d. and g is fixed. We additionally use gradient
clipping ||V4Ipv|| < cto control heavy-tailed gradients induced by e?%, and increase the number
of negatives per batch when using InfoNCE to tighten equation 23] without destabilizing learning.
Empirical and theoretical studies report that DV-like estimators suffer variance blow-up in small-batch
or high-dimensional regimes, while contrastive bounds such as InfoNCE trade tightness for stability
and sample-efficiency |Poole et al. (2019).

Bias and variance can be decomposed at the bound level. Let I, denote the true MI. For a generic
variational lower bound L4 estimated from B i.i.d. samples,

Biasp = E[Z%] -1, <0, Varg = V[Edﬁg]v (25)

where ¢% maximizes the empirical objective. For DV, Varg scales with the second moment of ¢
under p(u)p(v) and can be large without norm control; for InfoNCE, Varp scales with the variance
of a bounded log-softmax and is therefore better behaved for fixed K |Poole et al.|(2019). Further
results establish limits showing that high MI cannot be reliably estimated from limited samples
without strong inductive bias McAllester & Stratos|(2020), motivating our use of MI estimates as soft
regularizers and diagnostics rather than primary loss terms.

Connections to f-divergences clarify parameterizations. Let T}, define a variational class for KL
via f-GAN; then equationarises by choosing the convex conjugate of f(t) = tlogt. Alternative
choices yield NWJ and Jensen—Shannon bounds with different curvature and gradient properties
Nowozin et al| (2016). These links justify using contrastive parameterizations of Ty in equation 23|
when stability is paramount.

In ARPO, MI terms appear in the disentanglement objective as regularizers. For domain-invariant
prefixes we employ an InfoNCE-style estimator with temperature and a moderate number of negatives
to enhance stability and prevent variance amplification; for domain-specific leakage penalties we
optionally use a DV-style MINE with EMA-stabilized partition function Z; in equation [24to detect
residual dependence. Both estimators are computed on held-out mini-batches and enter the loss with
small weights, so that noisy MI fluctuations do not dominate the training signal; the dynamic gate
and MOBO decide when and how strongly to apply adversarial components based on validation
outcomes, not raw MI estimates.

Under bounded critic outputs |T},| < M and sub-exponential tails for 7 under p(u)p(v), a Bernstein-
type concentration bound yields, with probability at least 1 — 6,

[ Tov(¢) — Inv(¢)] < Cy 10%(;/5) +C2log(§/6)7

for constants C7, Cy depending on M and the Orlicz norm of e7#. For InfoNCE with fixed K,

(26)

boundedness of the log-softmax implies a Hoeffding-type bound of order O( k’g%/&> . Together

with the EMA bias log Z\t + log Z; of order O(1 — f3) in steady state, these inequalities explain the
empirical stability gains from equation [24]and motivate our estimator selection. Formal derivations
and bound comparisons are provided in|Poole et al. (2019); McAllester & Stratos| (2020).

C.2 HILBERT-SCHMIDT INDEPENDENCE CRITERION: KERNELS, NORMALIZATION,
NUMERICAL STABILITY, AND ADAPTIVE RESCALING

Let (X,Y) ~ Pxy with marginals Px and Py. Letk : X x X — Rand ¢ : Y x) — R be bounded,
positive-definite kernels with RKHS F and G. The cross-covariance operator Cxy : G — F is
defined by

(f, Cxyg)r = E[(f(X) —Ef(X))(g(Y) -Eg(Y))], feF, geg. 27)
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The Hilbert—Schmidt Independence Criterion (HSIC) is the squared Hilbert—Schmidt norm
HSIC(Pxy; F,G) = ||Cxv s, (28)

which equals zero if and only if X and Y are independent when k and ¢ are characteristic |Gretton
et al|(2007;[2012).

An equivalent population expression is
HSIC(Pxy) = ]EXX«yy/[k(X, Xy, Y’)} + EXX/[k(X, X’)] Eyy/[E(Y, Y’)}

, , (29)
- ZEXY[IEX/k(X, X')Ey 0(Y,Y )].

where (X’,Y”) is an i.i.d. copy of (X,Y).

Given samples {(z;,y;)}7—,, define Gram matrices K = [k(z;,x;)]; ; and L = [€(y;, y;)]i,;» and
the centering matrix H = I, — %llT. The biased V-statistic estimator is

— 1
HSICy = ﬁtr(KHLH), (30)
and the unbiased U-statistic estimator is |Gretton et al. (2012)
— 1 . 1TK11711 2 .
HSICy = —— |tr(KL — 1"KIL1 31
ey LS T sy g ! S
K = K — diag(K), L = L — diag(L). (32)

Both equation|30|and equation are consistent for HSIC(Pxy ).

For Gaussian kernels k(z, ') = exp(— ||z —2'||?/(202)) and £(y, ') = exp(— |ly—¢/[|*/(203)).

2

bandwidths o,0, can be set by data-dependent rules. The median heuristic chooses o7 =

median{ [|z; — z;|| : i < j}?/log?2 and analogously for o,. Silverman/Scott scaling yields
02 = ¢y % n2/( and 02 = ¢, 53 n=2/ (4T where § is a scale estimate and d,, d,, are
intrinsic dimensions Silverman| (2018)); [Scott (2015]).

To avoid scale sensitivity and ill-conditioned gradients, normalize HSIC by the Frobenius norms of
centered kernels. Let

K=HKH, L=HLH, h = _tr(KL)

K|l 7 IL[ 7
which is invariant to positive rescalings of K or L and coincides with centered kernel alignment up
to normalization [Cortes et al.| (2012)). For numerical stability, compute K, L via double-centering,
optionally add a ridge I inside Gaussian distances in high dimension, and clip 4 into [0, 1 — €] for a
small € > 0.

e [0,1], (33)

In ARPO, the HSIC penalty between embeddings from Pp; and Ppg is introduced through an
adaptive rescaling that implements a curriculum on independence. Let h; be the batch estimate

equation [33|at iteration ¢, and define an exponential moving average
he = nhe_1+(1—n) T, n€[0,1). (34)
The penalty is
1 1
max{e, 1 — h;} C1-¢€
which is monotone in Ay, equals zero at hy = 0, and increases smoothly as dependence grows. Since

he [0, 1], equation [35|is bounded by €, and the EMA detaches gradients through hi_1 to prevent
temporal credit leakage.

Rusic(X,Y) =

(35)

Gradients are obtained by differentiating tr(KL) and the norms in equation For Gaussian k,

K. 1 K K
J L= = Ky (5 — @), 0 :H(8 )H, (36)

ox; o2 Ox; Ox;
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and similarly for y;. The quotient rule yields 0h/dz; with 9||K||z/dz; = (K/|K| p, OK/Ox;) .
Under i.i.d. sampling, HSICy and HSICy converge to HSIC(Pxy ) with variance O(n~1) Gretton
et al.| (2012). For weakly dependent mini-batches, variance control is aided by normalization
equation [33|and the EMA in equation[35} for independence testing with dependence, wild bootstrap
schemes provide consistent null approximations |Chwialkowski et al.[(2014)).

Kernel choice follows representation geometry. For high-dimensional continuous embeddings we
use Gaussian kernels with the median heuristic for characteristicness without extra hyperparameters.
When linear dependence control suffices, linear kernels k(z, ') = 2" 2" and £(y,y') = y "y reduce
computation and align with equation In practice o, o, are initialized by the median heuristic and
refreshed periodically if the empirical distance distribution drifts, while a small ridge and clipping

of h ensure Lipschitz behavior of Rysic on compact parameter sets. This penalty couples with the
orthogonality term in the main text to remove linear overlap and suppress nonlinear dependence,
and its adaptive schedule matches the dynamic gate and MOBO controller that operate on validation
feedback rather than internal penalty scales.

C.3 QUANTILE-BASED CONTRASTIVE PAIRING, TEMPERATURE ADAPTATION, AND COLLAPSE
PREVENTION

Let normalized embeddings z; € S%~! be produced from inputs by the encoder augmented with
the disentangled prefixes. For an anchor i, define cosine distance d;; = 1 — 2;'z; € [0,2] and

the empirical CDF F;(t) = 55> ;i H{dij < t} over a minibatch of size B. For quantiles
Ipos, Gneg € (0,1) With gpos < gneg, define thresholds
AP = F Hgpos), AT = F (qneg); (37)
and the index sets
Pi={j#i: dij <AP?”, task(j) = task(s) }, 38)
N;={j#i: djj > A;®, domain(j) # domain(i) }.

Thus the positive and negative proportions are controlled by quantiles, which stabilize batch-wise
difficulty by keeping | P;| & gpos(B — 1) and |N;| = (1 — gneg)(B — 1). In ARPO, (gpos, Gneg) are
treated as low-cardinality decision variables that can be optimized by MOBO alongside (c, ).

For anchor ¢, the temperature-scaled InfoNCE loss with multi-positive sampling is

PR exp(z 2p/7)
Lir) = |¢%|2;;10gexp(2f2p/7)4—§:neA@eXP(Z;z”/T).

(39)

The batch loss is Leont = % Zil L;(7). When g5 and gyeg are fixed, equation [39|reduces to a
standard contrastive objective with controlled hard-positive and hard-negative ratios, whose gradient
magnitudes grow with alignment and uniformity tensions on the hypersphere Wang & Isola (2020);
Chen et al.|(2020).

To adapt the temperature 7 > 0 to batch difficulty, consider the logits £;; = z,” z; /7 with softmax
exp(£ij)
Zke{p}uj\/’i Cxp(eik)
support size S; = (3_,p7;)~" € [1,1 + |N;]. Fix a target S* € (1,1 + |N]) and update 7 by a

proportional control on the log-scale with an exponential moving average S;:

probabilities p;; = inside the denominator of equation |39} Define the effective

B

_ _ 1 _

Sy =nSi—1+(1—n) (B E Si) ; log 711 =log 7 + K (S — S¥), (40)
i=1

with n € [0,1) and gain £ > 0. Larger than desired S; increases 7, flattening the softmax and
reducing peaky assignments; smaller S; decreases 7, sharpening the distribution. This keeps the
“effective number of competing negatives” near S*, decoupling learning dynamics from instantaneous
batch hardness and echoing empirical findings on temperature and batch size (Chen et al.[(2020). An
equivalent variance-matching rule sets 7 so that the batch variance of {2, z;/7} tracks a target o2,

yielding 72, , = 72 - Var(z]' z;) /0% with EMA smoothing.
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To prevent dimensional collapse, control the spectrum of the centered feature matrix. Let Z =
[21,...,25]" € RP*and Z = HZ with H = T — %llT. Let the sample covariance be

C= %Z T Z with eigenvalues A\; > --- > A\g > 0. Penalize anisotropy by
d

d B o d
Repec(Z) = Zjl [max{0, Amin — A }]° + P;O\r -V A= ; Ar, (@D
with target floor A\, > 0 and dispersion weight p > 0. The first term enforces per-dimension
variance, the second shrinks the spectrum toward isotropy; both admit gradients via the eigende-
composition of C' and are stable for moderate d HaoChen et al.| (2021). Alternatively, uniformity
can be promoted by the hyperspherical potential U = E,; exp(a|[2; — zj||?) whose minimization
encourages repulsion Wang & Isola (2020).

Hard-negative mixing further stabilizes gradients when A; contains extremely difficult negatives. For
each anchor 7 and negative n € V;, define a mixed negative

Zin = Azn + (1= A)2p(), A ~ Beta(a, b), (42)

where p(i) € P; is a closest positive under cosine distance. Replace z, by Z;, in equationfor a
subset of the hardest negatives. This reduces variance while retaining discriminative power |Kalantidis
et al.| (2020). The mixture rate and the fraction of mixed negatives can be functions of the batch
quantiles, e.g. only mixing when d;,, < Fi_1 (Gmix)-

Putting these components together, the contrastive regularizer used in the main text combines
equation [39| with the adaptive temperature rule equation 40| and the spectral penalty equation
The quantiles (qpos, qneg) and the temperature initialization are exposed to MOBO as discrete and
continuous knobs, respectively, while the spectral penalty weight is scheduled by the gate to emphasize
collapse prevention early and relax later. Theoretical analyses connect temperature and batch size to
effective hardness and gradient scale |Chen et al.|(2020), interpret contrastive learning as enforcing
alignment and uniformity with spectral control to avoid trivial representations [Wang & Isolal (2020);
HaoChen et al.| (2021)), characterize dimensional collapse and provide sufficient conditions to avoid it
via variance floors and spectrum spreading Jing et al.|(2021), and justify hard-negative mixing as a
variance-reducing strategy that preserves decision margins Kalantidis et al.|(2020). These insights
inform the particular form of the adaptive pairing, temperature scheduling, and spectral regularization
used by ARPO.

C.4 CONDITIONAL INDEPENDENCE VIA KL ESTIMATION: VARIATIONAL FORMULATION,
IMPLEMENTATION, AND CONSISTENCY

Let Z1 = Ppr, Zo = Ppg, and Y be the task label. We quantify conditional dependence by the
conditional Kullback—Leibler divergence
DKL(p(Zla Zy|Y) Hp(Zl 1Y) p(Z2 | Y))
(43)
- Ep<y)[DKL(p<zl, 2, |y)||p(Z1 | 9)p(2: | M.

which is nonnegative and equals zero if and only if Z; 1L Z5 | Y almost surely.

Variational estimator via f-GAN. Let P, = p(Z1,Z; | y) and Q, = p(Z;1 | y) p(Z2 | y) for
each y. For f(t) = tlogt (the generator of KL), its convex conjugate is f*(u) = exp(u — 1). By
the f-divergence variational representation Nowozin et al.[(2016),

Dic (P, 11Qy) = sup {E(z, 2,15, [T(Z1, Z2, )]
TeT (44)

—Ez,2:)~0,  ex0(T (21, Z2,y) — 1)] }

A conditional discriminator T (21, 22, y) parameterized by a neural network induces the empirical
objective

En(6) = o= 3 Ty(7, 20,y 0) > exp(To(af?, 57, y0) 1), @43)
| (1)eB ‘Bl (i)eB
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where B indexes a mini-batch of triples (z&i), zéi),y(i)) sampled from p(Zy, Z5,Y"); the pairs
(zy), éél)) form negatives by conditionally shuffling Z, within the stratum {j : 3) = (¥} so that
(z@, éél)) ~ Q). Averaging equation @5|over strata yields an estimator of equation Under
standard f-GAN regularity (rich 7, absolute continuity, and optimization accuracy), the supremum
in equation[44]is attained and the empirical maximizer ¢, is consistent for Dky,(P[|Q,) as n — oo

Nowozin et al.|(2016).

Stratified sampling and variance control. Let ) be the support of Y. Writing equation [43]as

Dx(p(Z1, Z2 | Y)|p(Z1 | Y)p(Z2 | Y)) = Z Ty Aly),  A(y) := Dxn(Py|Qy), 7y :=p(y),
yey

(46)

we estimate each A(y) with equationrestricted to stratum y, and combine by the plug-in D=

>y Ty A(y). When strata are imbalanced, importance reweighting or class-balanced mini-batches

reduce estimator variance. For small [{i : y(*) = y}|, we add Lo regularization on T}, and early
stopping to avoid overfitting, and we clip discriminator outputs so that |T;;| < M to ensure sub-
exponential tails of exp(Ty — 1).

Consistency statement. Assume: (i) ) is finite and min, 7, > 0; (ii) P, < @, for all y; (iii) the
discriminator class 7 is dense in L' (P,) for every y and optimization reaches the global maximizer
in equation (iv) i.i.d. samples from p(Z7, Z2,Y). Then DL Dx1,(p(Z1,Z2 | Y) || p(Z1 |
Y)p(Z2 | Y)) as n — oo. The proof follows from uniform convergence of L1 to its population

counterpart in each stratum and Slutsky’s theorem when combining strata, as in standard f-divergence
variational estimation Nowozin et al.| (2016).

Relation to the Donsker—Varadhan form. Using the Donsker—Varadhan representation of KL
with the same conditional shuffling (P,, @, ) yields the alternative objective

sup {Ep, [T] — log Eq, [exp(T)]}, 47)
TeT

which is equivalent to equation [44]up to the log transformation. In practice, equation 4] often yields
more stable gradients than equation [47]because the conjugate f*(u) = exp(u — 1) can be combined
with output clipping to control exponential tails.

Kernel-based conditional independence as a complementary diagnostic. As a stability check
for the discriminator-based estimator, we compute a kernel conditional independence statistic
based on the conditional cross-covariance operator Cz, z,|y in reproducing kernel Hilbert spaces
(RKHS). Let k1, k2, ky be bounded characteristic kernels on the supports of Z;, Z5, Y. The squared
Hilbert-Schmidt norm ||Cz, z, v || equals zero if and only if Z; 1L Z5 | Y. An empirical estimator
can be formed by residualizing Z; and Z5 on Y via kernel ridge regression and then computing an
HSIC statistic between the residual features [Fukumizu et al.| (2007); |Gretton et al.| (2005). Under
mixing and boundedness conditions, the statistic concentrates around zero under the null and is
strictly positive otherwise. We therefore treat a large ||C, 7. 75|y || as corroborating evidence when
the variational discriminator signals dependence; when the discriminator training is unstable, the
kernel statistic serves as a fallback detector.

Integration into ARPO. The conditional-KL penalty used in the main text

Leona = Dice(p(Ppr, Pos | Task) || p(Por | Task) p(Pps | Task) ) (48)

is implemented by the stratified f-GAN estimator equation 45| with output clipping and class-
balanced batches Nowozin et al.|(2016). For additional robustness, we monitor a kernel conditional-
independence score computed with Gaussian kernels and median heuristics for bandwidths |Fukumizu
et al.| (2007); |Gretton et al.[(2005). In ablations, the discriminator-based estimator offers sharper
gradients for reducing leakage, while the kernel statistic provides a stable sanity check across training
regimes. This dual view justifies the penalty’s inclusion in the disentanglement loss and explains its
empirical stability.
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Finite-sample concentration. If |7;;| < M almost surely and exp (7}, — 1) has sub-exponential
Orlicz norm bounded uniformly in ¢, then for any fixed stratum y and mini-batch size B,

Ay) - Aw)| = Op< Bl> , (49)

Y
by Bernstein-type inequalities for sub-exponential variables. Aggregating across strata as in equa-

tion [46] yields
~ 1
|D - D| =0P<Zﬁy\/3>, (50)
" Y

which guides batch allocation when classes are imbalanced.

The variational form equation [44]and its conditions follow from f-GAN theory Nowozin et al.|(2016);
the kernel conditional-independence construction follows from kernel measures of conditional
dependence and HSIC-based testing |[Fukumizu et al.|(2007)); Gretton et al.| (2005). We refer to the
cited works for operator-theoretic details and asymptotic distributions.

C.5 SYNERGY OF MULTI-LOSS OPTIMIZATION: GRADIENT INTERFERENCE, PROJECTION,
AND REWEIGHTING

Let 6 denote all trainable parameters that contribute to the two-prefix encoder [Ppr; Ppg]. Consider
the composite disentanglement objective

Ldisent = ML1B(Ppr) + X Lre(Pps) + A3Lorth + AaLcont + AsLeond- 5D
Write task wise gradients
91 :=VoLrp(Ppr), 92 := VoLis(Pps), 93 := VoLortn,

52)
g4 = v9£contvg5 = v«9£cond- (

Define the instantaneous cosine similarity cos(ga,gs) = (ga, 9)/(|l9all [|gs|]) and the conflict
indicator I, := I{(g4, g») < 0}. Gradient interference arises when cos(gq, g») < 0 for some pair
(a,b), a phenomenon broadly studied in multi-task learning as negative gradient interaction and
Pareto trade-offs |Sener & Koltun|(2018).

Assumptions. There exist constants GG, L, o > 0 such that for all § in a compact set O,

lge @) <G, llge(0) = gu(@) < LIO 0", E[(9x —Ege)(gr — Egr) '] = 0*1. (53)
Moreover, the orthogonality and conditional-KL penalties locally enforce
(VoLortn, VoLr1s(Ppr)) > 0, (VoLeond, VoLrp(Pps)) > 0, (54)

when P}, Ppg is large and D1, (p(Ppr, Pps | Y)||p(Ppr | Y)p(Pps | Y)) is large, respectively;
this captures that gs, g5 act to decouple rather than to oppose g1, g2.

Projection step. Given {g; }7", at a mini-batch, define the PCGrad-style projected gradients|Yu
et al.|(2020)

- min{(ga, gs), 0
AP . uL LI (55)
2 ol

applied sequentially so that (g,, g») > 0 for all a # b. The aggregated descent direction is gproj 1=
>k Mgk Projection-based surgery is consistent with conflict-averse formulations that explicitly steer

updates toward the intersection of per-task descent cones |Liu et al.[(2021b) and with multi-objective
MTL views [Sener & Koltun/(2018)).

Normalization and reweighting. Set wy, := A/||gr||* with o € [0, 1] and define

m m
Gnorm ‘= Z Wk Gk YJproj-norm ‘= Z Wk gk (56)
k=1 k=1
When a = 1, each task contributes unit-norm information as in gradient normalization Chen et al.
(2018)); impartial multi-task scalings and conflict-averse updates motivate o € (0, 1] and adaptive
{Ar}Liu et al.| (2021a}b).
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Conflict probability upper bound. Define the instantaneous conflict probability
1) := ]P’(Ha #b: (g9.(0),95(0)) < 0). (57

Under equation[53|and a sub-Gaussian model for centered gradients, there exists ¢ > 0 such that for
any € > 0,

ce?
P((9a — Egas 9o — Egs) < —(Ega, Ege) — €) < exp (—UQGQ) - (58)
If the regularizers make (Eg,,Egy) > 6 > 0 for (a,b) € {(1,3),(2,5)} and nonnegative otherwise,
then

2
I1(0) < m(m — 1) exp (—06;22) , (59)

so that stronger alignment (larger ¢) exponentially suppresses conflicts in expectation. This aligns

with empirical and theoretical observations that balancing and projection reduce interference in MTL
Yu et al.|(2020); Chen et al.|(2018)); [Liu et al.| (2021atb).

Angle improvement by projection. For any (a, b) with (g,, g») < 0, the step equationyields

<gaagb>
lgsl1?

(Gas 9b) = (Gas ) — (96> 9v) = 0, (60)

and for any third task ¢ # a, b,

mintloo 0200 0, ) > (gurge) — Mg en

lgn]2 s

Hence projection cannot worsen alignment with g, and degrades alignment with g. by at most a
controlled term. Summing across pairs and combining with equation [56] gives a net nonnegative
effect on the average cosine

<§avgc> = <gaagc> -

2 ~ ~
COS (= ——~ g c08(Jas Gb), (62)
m(m - 1) 1<a<b<m

relative to its unprojected counterpart, consistent with conflict-averse updates |Liu et al.| (2021b).

Synergy proposition. Let m = 5 and consider P = {(1,3),(2,5)} induced by orthogonality
and conditional-independence penalties. Suppose there exists 6 > 0 such that (Eg,,Eg,) > ¢ for
(a,b) € P and (Eg,,Egs) > 0 otherwise. Then for any a € (0, 1] and any PCGrad schedule,
___ ___ __ o
E[cos(gproj_norm)] > E[cos(gnorm)} > cos(Egy,...,Egs) — C rel
for a universal constant C depending only on m. Consequently the expected average pairwise angle
is nonnegative and becomes strictly positive whenever ¢os(Egy, . .., Egs) > C o/G. Moreover,

(63)

o2G?
Inequality equation [63] follows from zeroing of negative inner-products by equation [55| and con-
centration of random inner products around their means; equation [64] follows from equation [59]

These arguments connect to gradient surgery|Yu et al.| (2020), gradient normalization and impartial
balancing |Chen et al.|(2018)); [Liu et al.|(2021al), and multi-objective MTL [Sener & Koltun| (2018).

2
Hproj—norm(e) S Hnorm(a) S m(m - 1) exp <_ 65 ) . (64)

Gate-aware slow variation and finite-switch control. Let the dynamic gate generate a binary
process {s;} for adversarial updates with EMA triggers and thresholds Opin < 0 < Opax. If
martingale differences driving the trigger are sub-Gaussian, the number of sign changes of s, over
T rounds is Op(v/T) by Azuma—Hoeffding. This slow variation yields locally stationary gradient
statistics between flips, justifying the stability assumptions used when coupling with MOBO and
Pareto-aware updates |Sener & Koltun|(2018)).

The projection operator equation@] and conflict-averse views|Yu et al.| (2020)); Liu et al.| (2021D)),
together with normalization and adaptive weighting Chen et al.|(2018)); Liu et al.[(2021a), provide a
principled mechanism that increases alignment among { gy, }, suppresses destructive interference as
in equation [59-equation [64] and respects the multi-objective structure of disentanglement Sener &
Koltun| (2018).
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D THEORETICAL AND IMPLEMENTATION DETAILS FOR ADVERSARIAL
ADAPTATION

D.1 TASK-DIFFICULTY-AWARE DYNAMIC THRESHOLDING FOR ADVERSARIAL ADAPTATION

We keep the three losses in the main paper unchanged (Liask, Ladv, Liotal)- Our goal is to decide when
to activate the adversarial term so that training remains stable and generalizes across domains.

We use two signals. The progress signal § measures the relative improvement of Ly, from its initial
value. The stability signal » summarizes recent gradient noise as the ratio between the variance of
V L,k and the mean absolute gradient over a short history. A larger  means unstable optimization.
We map r to a global threshold 6(t) that increases with instability. When § exceeds this threshold,
we enable the adversarial term; otherwise we delay it. To avoid flickering near the boundary, we use
hysteresis: the on-condition uses a slightly higher threshold than the off-condition. This reduces
frequent on—off switching and improves convergence.

We then scale the threshold per task using an explicit measure of task difficulty. The final per-task
threshold is

Orask (1) = O(t) - (1 + 3 - difﬁcultytask)7 (65)

where 3 controls the strength of scaling. A higher threshold delays adversarial activation on harder
tasks. This is consistent with the idea of curriculum: easy tasks see the adversarial signal earlier; hard
tasks focus on the primary objective until learning is more stable.

The difficulty coefficient combines short-horizon variability and convergence speed:
t—w:t
U(’Ct(ask ))

(ALE ) e

task

difficulty,, g =

(66)

Here U(E(t_w:t)) is the sample standard deviation of the task loss over the last w steps. It measures

task
stability: larger values mean more fluctuation. The term u(AEt(;S;w:t)) is the average step-wise

decrease of the loss over the same window. It measures convergence speed: larger values mean faster
decrease. € > 0 avoids division by zero. Intuitively, a task is harder when its loss fluctuates more and
decreases more slowly, so the ratio is larger. To make tasks comparable, we normalize both statistics
by their warm-up baselines collected in the first 2w steps. This removes scale effects across tasks.
We also clip extreme difficulty values at a high percentile and cap 0y, (t) by Omax < 1 to preserve
activations on very hard tasks.

To ensure cross-task comparability and improve robustness, we follow four implementation details.
First, we estimate statistics with either a fixed sliding window or an exponential moving average
(EMA), and we match their effective window lengths. When regime shifts or task alternation occur, we
prefer EMA and apply early bias correction. Second, to suppress outlier-driven false activations, we
perform robust preprocessing before computing o and p: MAD-based Winsorization, Huberization,
and global gradient-norm clipping. These steps make the difficulty estimate reflect trends rather than
noise. Third, we clip the difficulty by percentile to avoid extreme inflation, and we cap 6, (¢) by
Omax < 1 so that very hard tasks still have a chance to activate. Fourth, in multi-task parallel training,
we synchronize all statistics across devices (e.g., with all-reduce) to prevent gate inconsistency.

This scaling strategy is compatible with curriculum learning. Easy tasks have smaller difficulty,,,
cross the threshold earlier, enter adversarial training sooner, and benefit from improved inter-domain
separability. Hard tasks introduce the adversarial term later, after the primary loss becomes stable,
which reduces the disturbance from premature adversarial updates to the main optimization trajectory.

D.2 GATE FLIPPING IS SUBLINEAR: AN AZUMA—-HOEFFDING BOUND FOR EMA-DRIVEN
TRIGGERS

Let {F; }+>0 be the natural filtration and let the primary validation signal be

Yy = p + &, E[& | Fi-1] =0, €] < cas., (67)
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so that {&;} is a bounded martingale-difference sequence. The gate statistic is an exponentially
weighted moving average (EMA)

t

S = 1= 0" Y +9'S%.  nelo), (68)
k=1

and the gate flips when S; crosses a threshold interval [f1in, Omax] With Opin < Opax. Denote by Np
the total number of flips (up- plus down-crossings) on {1,...,T}.

We first center the process. Write Y; = Y; — 1 = & and the centered EMA

Se= 0= 07 e + 'Sy,  So =50 —p. (69)

M~

>
Il

1
Define the increment
At = St — ’l?gtfl = (1 — ’I]) §t7 |At‘ S (1 — ?7)0 (70)
Hence {A,, F;} is a bounded martingale-difference sequence and the linearly filtered process {.S;}
obeys : 3 3 ~
Sy = nSi—1+ Ay, E[S; | Fi—1] = nSi-1. (71)

We control threshold crossings by an up- and down-crossing argument. For any a < b, let Ur(a, b)
be the number of up-crossings of [a, b] by {S;}~_,. A standard consequence of Doob’s up-crossing
inequality applied to an appropriate supermartingale transform of S; yields

E[(ST - a)_] +at
b—a ’

and the same bound holds for down-crossings by symmetry; see, e.g., Doob’s up-crossing inequality
and its corollaries in standard martingale texts and concentration references. In our bounded-increment

setting, | S;| < |So| + 22:1 |Ak| < |So] + (1 = n)ct, and therefore
Co+ (1—n)eT

omax - 0min ’
This expectation bound is linear in 7" and is in general tight for adversarial sequences. We now

strengthen it to a high-probability Op(\/f ) control by combining Azuma—Hoeffding and a renewal-
style decomposition into excursions.

E[Ur(a,b)] < (72)

IE[UT(emin — M, emax - ,u)] S C'0 = ‘SO| + |9min - ,U/| (73)

Define the stopping times

70 := 0, Tm1 = inf{t > 7, : S, ¢ [a,b]}, a = Omin — ty b= Oax — pb. (74)
Each excursion [7,,,, Trmt1) contains at most one flip. Moreover, to exit [a, b] from the interior
starting at time T7,,,, the partial sum of martingale differences ZZE: f +1 A¢ must exceed the margin
min{b — S, , S, — a}. Since |A;| < (1 — n)c, Azuma—Hoeffding inequality implies that for any
¢ >1andany z > 0,

Tm+k
P| max ‘ E At‘ >
1<k</t
T T t=Tmtl

22
]-"Tm> < 2exp(—2€(1 —77)262> ) (75)

e.g., (Boucheron et al.| 2013bl, Theorem 2.8) or the Azuma—Hoeffding lecture notes Ledoux|(2006).

Set z = (b — a). With probability at least 1 — 2 exp( — %), no exit occurs within the next
¢ steps. Choosing
(b—a)? 2T
= | —->—=1 — 76

and applying a union bound over at most 7' candidate blocks shows that, with probability at least
1 — 6, each excursion consumes at least £* iterations. Consequently, the total number of excursions
and hence flips up to time 7" obeys the high-probability bound

T (1 —n)2c? T
Npr < = O((gmax = Gomn)? log(?T/6)> (wp. >1-9). a7
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To obtain the advertised O(+/T) rate, refine the blocking by letting the block length grow like
{, < m and applying the Azuma-Hoeffding tail equation|75|with z = (b — a) to each block. A
standard peeling/renewal argument then yields

Hmax — Umi

IP’(NT > Cl+02& T10g2(5T> < 6, (78)

for universal constants C'1, Cy > 0 depending only on the initialization and the contraction 7); see the
generic proof patterns for upcrossing counts via martingale oscillation and concentration (Boucheron

et al., 2013b, Chap. 2),|Ledoux| (2006). Inequality equation gives the desired sublinear Op(v/T)
control of gate flips.

We finally state the slow-variation corollary used by MOBO. Let I, denote any validation objective
measured once per iteration and assume a Lipschitz-in-time drift model

|Ellis1 — L | F]| < K, 41— 1| < Bas. (79)
Between consecutive flips, the excursion length is at least of order 9(%) with high
probability by equation Hence, over any inter-flip segment [T, Ty 41)s

Tm+171

> Ui — 1)

t=Tm

< H(Tm+1 _Tm) = O}P’(l), (80)

so that I; is locally slowly-varying on inter-flip windows. This justifies the quasi-stationarity assump-
tion used by the noisy-gEHVI acquisition between gate changes in the main text.

The ingredients are standard: bounded martingale differences for the EMA innovation equation |70
Azuma-Hoeffding oscillation control equation|/5] and excursion counting via blocking and peeling
culminating in equation Textbook treatments of Azuma—Hoeffding and related martingale
concentration inequalities can be found in (Boucheron et al. [2013b, Theorems 2.6-2.8), with
complementary lecture-note derivations in [Ledoux| (2006). Up- and down-crossing techniques
underlying equation [72]are classical and may be consulted in standard martingale references.

D.3 QUANTILE-THRESHOLD PAIRING: STATISTICAL CONSISTENCY AND NONASYMPTOTIC
ERROR VIA DKW-MASSART

Let {Z;}", be iid. real-valued with distribution function F, empirical CDF F,(z) =
L3 1 1{Z; < z}, and population g-quantile F~'(q) := inf{z : F(z) > q}; define the em-
pirical quantile F,;!(q) analogously. In ARPO, Z; denotes the batchwise pairwise distance (or
similarity) used to form positives/negatives by quantiles gpos, gneg € (0, 1) (cf. Appendix|C.3).

Uniform CDF concentration (DKW with Massart’s sharp constant). For any ¢ > 0,
P(sup‘ﬁn(ﬂc) - F(z)| > 5) < 2¢72m” (81)
z€R

which is the Dvoretzky—Kiefer—Wolfowitz inequality with Massart’s sharp constant Massart| (1990);
Boucheron et al.|(2013a); Dvoretzky et al.| (1956). Equivalently, with probability at least 1 — 0,

sup|ﬁn(x)—F(x)| < ens Where e,5:= %logf. (82)

From uniform CDF error to quantile error. For any nondecreasing right-continuous F', define its
local modulus of continuity

wr(e) = sup{ |z —2'|: |F(z) - F(z')| <e}. (83)
Then the inversion monotonicity implies the deterministic implication

sup|Fo(2) — F(z)| <e = |F7Y(q) — FY(q)| < wr(e), (84)
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hence, combining equation[82}-equation [84]
P(|F M a) — F o) < wrlens)) > 1-6. (85)

If F is strictly increasing with density f = F” satisfying f(x) > fmin > 0 on a neighborhood of
x* := F~1(q), then wp(¢) < €/ fumin, and equationsharpens to

~_ _ 1 1 2
P<|Fn1<q)—F Hg)| < fmin\/%log(;) > 1-46. (86)

Proof of equationuses the monotonicity of F' and ﬁn, and the equivalence between CDF sup-norm
control and the Hausdorff distance of their epigraphs; see (Boucheron et al., 2013al Ch. 2) for a
standard treatment. The density bound follows from the inverse function theorem applied locally to
F.

Application to ARPO batch quantile thresholds. Letn = B — 1 when the anchor-wise distance
set excludes self-pairs in a mini-batch of size B. Setting ¢ € {gpos, gneg } Yields, with probability at
least 1 — 4,

| Apos/neg) _ A(pos/neg)| < wF( _t log 2) (87)

- 2(B-1) 5/’

where A() = F~1(q) is the population quantile of the anchor’s pairwise-distance law. Under a
local density lower bound f,;,, around F' -1 (q), equation 87| further reduces to the explicit PAC-style
radius
1 1 2

A(pos/neg) _ A (pos/neg)| log 2.
| | 5log 5 (38)

- f min 2(B
Thus the positive/negative proportions controlled by (¢pos, gneg) remain stable in the presence of
mini-batch fluctuations, and when the quantile levels are treated as low-cardinality decisions within
MOBO, their stochasticity is governed by the explicit nonasymptotic bounds equation [§7}-equation[88]
This justifies the use of quantile-threshold pairing in Appendix [C.3]and in Sec.[3.2]

D.4 TEMPERATURE ADAPTATION AND SPECTRAL REGULARIZATION: SUFFICIENT
CONDITIONS FOR COLLAPSE PREVENTION

Let {z;}2, C S?~! be f5-normalized embeddings. For an anchor 4, define the cosine similarity

Si5 = ZZT zj € [—1,1] and the temperature-scaled InfoNCE loss with multi-positives and quantile-
selected negatives (cf Appendix @])
exp(Sip/T)
Li(r) = (89)
|77 | Z exp (sip/T) + ZnEN exp(sin/T)"

The batch objective is Lncr(T) = & Zi:l Li(7).
Effective support size controlled by temperature. Let
-1

Py = 20 gy [ 2] (90)

Lrepron; XP(Sik/7) JE{PIUN;

Then S;(7) € [1,1 4 |N;|] is nondecreasing in 7. Consequently there exists a continuous, strictly
increasing mapping 7 — E[S;(7)] so that, for any prescribed S* € (1, i|), one can select 7*
with E[S;(7*)] = S*. This establishes that 7 controls the “softmax effective number of negatives,”
aligning with empirical observations that larger batch size or effective negatives improve uniformity
on the hypersphere while small 7 emphasizes alignment |Chen et al.| (2020); Wang & Isola (2020). A
practical controller is the EMA rule

St = ﬁSt 1 + 1 — Z S Tt IOg Tt+1 = IOth + Kl(gt - S*), (91)

which keeps S;(7¢) near S* and decouples transient batch hardness from gradient magnitude.
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Alignment-uniformity decomposition and temperature. Let the alignment term be

A =B 2(@) — 273, (92)
and the uniformity term be the hyperspherical potential
U = IOgE(m,z/) exp (allz(‘r) - Z(m/)||%>> a>0. (93)

Then minimizing equation[89]can be viewed as minimizing a surrogate of A while implicitly reducing
U,, through repulsion among negatives Wang & Isola|(2020). Moreover, increasing 7 increases S;(7)
in equation 90| which enlarges the set of influential negatives and lowers the hyperspherical potential
at stationarity, thus improving uniformity without destroying alignment if positives are retained via
multi-positive sampling and moderate 7|Chen et al.[(2020); Wang & Isolal (2020).

Spectral form and sufficient conditions to avoid dimensional collapse. Let Z = [z1,...,zp]" €
RB*d 7 — HZ with H = I — %llT, and the sample covariance C' = %ZTZ with eigenvalues
A1 > -+ > Ag > 0. Spectral contrastive analyses show that contrastive objectives maximize a

graph Laplacian Rayleigh quotient and widen spectral gaps, linking repulsion to spread of the feature
spectrum |HaoChen et al.|(2021). Consider the spectral regularizer

d d d
Rupee(Z) = 32 [max{0 huss ~ A1 493 (0 2% A=23"A, 04
r=1

r=1

with Apin > 0 and p > 0. Then any stationary point of Lxcg(7) + 8 Rspec(Z) with > 0 satisfies
the variational inequality

d
1 Z()\s — )2} forallr, 95)

s=1

Ar > min{ Apin, A\ —

hence avoids dimensional collapse (3r : A, = 0) provided Ani, > 0 or the dispersion term is
strong enough to keep A away from zero. This matches the sufficient conditions identified in spectral
analyses and in studies of dimensional collapse that require either variance floors per direction or
isotropy promotion to prevent degeneration to a low-dimensional cone |[Kalantidis et al.| (2020).

Temperature, batch size, and stability region. For fixed encoder capacity and data distribution,
the gradient of equation 89| w.r.t. z; has magnitude

1
Vol = 2 (Bpemlt - con L(zi 2] + 3 pin(r)[L— cos Lz z)]). ©6)
neN;

so larger S;(7) (achieved by larger batch or 7) redistributes mass across more negatives and reduces
gradient variance, improving numerical stability; too small 7 sharpens the softmax, increasing
variance and favoring collapse unless countered by spectral spreading equation [94] or negative mixing
Kalantidis et al.| (2020); HaoChen et al.|(2021). Combining equation @] and equation@] therefore
yields a sufficient recipe: maintain an effective support S* away from 1 and enforce a nontrivial
spectral floor to guarantee that at least r principal components carry nonzero variance, avoiding
dimensional collapse Jing et al.|(2021)).

Hard-negative mixing as variance control. Let Z;,, = Az, + (1 — A)z,(;) with A ~ Beta(a, b)
for the hardest negatives; replacing z,, by Z;,, in equation [89]interpolates logits and reduces curvature
of the log-sum-exp, yielding a lower-variance gradient estimator while preserving decision margins
Kalantidis et al.|(2020). This complements temperature control and spectrum regularization to enlarge
the stable training region after the dynamic gate is activated.

Summary of sufficient conditions. Assume: normalized embeddings, InfoNCE with temperature 7,
EMA rule equation[91| maintaining S;(7) in a compact subset of (1, 1 + |;|], and spectral regularizer
equation with Apin > 0 or p > 0. Then any limit point of gradient descent on Lxcgr(T) +
BRspec(Z) avoids dimensional collapse and exhibits a nondegenerate covariance spectrum; moreover,
alignment is preserved by multi-positive sampling and moderate 7, and uniformity is improved via
increased effective negatives as in equation [@] & equation @]Wang & Isolal (2020); Jing et al.| (2021);
Kalantidis et al.| (2020]).
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E OVERVIEW OF ARPO MOBO FRAMEWORK

According to methodolgy we aim to optimize multiple objectives simultaneously while accom-
modating adversarial constraints such as accuracy, efficiency, and cross-domain robustness. We
adopt a Multi-objective Bayesian Optimization framework, where Gaussian Process models |Snoek]
et al.| (2012) serve as flexible surrogates for each objective, and the Expected Hypervolume Improve-
ment Daulton et al.|(2020a)) acquisition function guides the selection of candidate points, including
adversarial strategies and hyperparameters, for evaluation. This appendix offers a comprehensive the-
oretical foundation for our MOBO approach, covering Gaussian Process regression fundamentals for
each objective, the formal definitions of hypervolume and hypervolume improvement, the derivation
of EHVI (both exact and approximate), the methodology for computing EHVI gradients with respect
to decision variables, a rigorous convergence proof demonstrating asymptotic alignment with the true
Pareto front|Hernandez-Lobato et al.|(2016), and practical considerations pertinent to ARPO’s mixed
discrete-continuous domain and dynamic threshold scheduling.

E.1 GAUSSIAN PROCESS REGRESSION BASICS

E.1.1 GP PRIOR AND POSTERIOR

Consider a training set consisting of n observed input-output pairs {(x;,y;)}_;, where each z; €
X C R% and y; € R represents a realization of an unknown objective function f: X — R. Under
the Gaussian Process (GP) framework [Snoek et al.| (2012), f is treated as a sample from a distribution
over functions,

f(x) ~ GP(m(z), k(z,2")), 97)

where m(z) denotes the mean function and k(-, -) the covariance (kernel) function. A common, yet
often sufficiently general, choice is to assume m(z) = 0 and to use the Radial Basis Function (RBF)
kernel,

k(z,2") = exp(—%), (98)

with a positive length-scale parameter ¢. When / is relatively small, f(x) can vary rapidly over X,
whereas a larger £ imposes smoother function behavior.

After observing the data D = {(x;,y;)}"_;, the posterior distribution of f at any new point x*
remains Gaussian,

J@) D~ N(pa"), 0*(@")), (99)
where
* * T 2 -1
pw(z®) = k(z*, X)' [K(X,X)+0,1] Y, (100)
o2 (z%) = k(a*, a*) — k(2*, X)T[K(X, X) + 021 "' k(X, 27).
and X is the concatenation of all training inputs x1, . . ., 2,,. The vector k(z*, X) stores covariances

between z* and each z;, and K (X, X) is the covariance matrix whose entries are k(x;,x;). The
scalar o2 may capture observation noise in the data, and [ is the identity matrix of suitable dimension.
The posterior variance o2(z*) quantifies the uncertainty in predicting f(z*), decreasing in regions
well-covered by training data and increasing elsewhere.

E.1.2 EXTENSION TO MULTIPLE OBJECTIVES

In the ARPO setting, there are multiple objectives {f;(x)}}L.
independently modeled by a distinct Gaussian Process,

£i() ~ GP(my(-), k;(-,-)), (101)

leading to posterior means {;(x)} and posterior variances {0 (x)}. If observational noise is present,

the term o2 in each GP model accounts for that uncertainty. In the multi-objective scenario, each GP
posterior evaluates both expected performance and predictive uncertainty along a particular objective

dimension, thereby enabling trade-off analysis across multiple criteria in ARPO.

Each objective f;j: X — R is
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E.2 DEFINITION AND DERIVATION OF EHVI

In multi-objective optimization, the overarching goal is to discover a comprehensive set of Pareto-
optimal solutions (the Pareto front) Belakaria et al.| (2019); Ropke et al.|(2024). A solution on the
Pareto front cannot be improved in one objective without sacrificing another. To compare different
Pareto fronts quantitatively, we frequently employ the Hypervolume (HV) metric, which measures
the dominated volume relative to a reference point Daulton et al.|(2020b).

E.2.1 HYPERVOLUME AND HYPERVOLUME IMPROVEMENT

Let P = { f (x(l)), o f (x(k))} denote the current Pareto front [Hernandez-Lobato et al.| (2016}

consisting of k objective vectors in RM . Choose a reference point 7 € R™ such that each coordinate
of r is worse (i.e., smaller for maximization problems) than those of any point in P. Define the
hypervolume of P with respect to r as

k

HV(P) = A(U [F(zD), r]), (102)

i=1

where A(-) denotes the Lebesgue measure in M -dimensional space, and [ f (@), r| is the (axis-

aligned) hyper-rectangle spanned by f(z()) and 7. In practice, one typically ensures that r is chosen
so that it is dominated by every point in P, guaranteeing a meaningful volume calculation.

To gauge the marginal impact of adding a new candidate point x to the front, we introduce the notion
of Hypervolume Improvement (HI):

HI(f(z)) = HV(PU{f(x)}) — HV(P). (103)

Positive HI indicates that f(x) contributes to expanding the Pareto front in objective space, whereas
HI = 0 indicates that f(x) is dominated by or lies within the current Pareto front P.

E.2.2 EXPECTED HYPERVOLUME IMPROVEMENT

Since f(x) is not deterministic but rather follows a predictive distribution inferred from our Gaussian
Process (GP) model (see Section , the actual value f(z) for a new candidate x is uncertain. We
thus define the Expected Hypervolume Improvement (EHVI) Daulton et al.| (2020a)) by taking the
expectation of HI(f(z)) under the posterior of f(z):

EHVI(z) = E[Hl(f(x)) |D} - /Hl(f(x))p(f(x) | 2, D) df (), (104)

where p(f(z) | #,D) is the posterior distribution of f(x) given the data D. Because HI(f(z))
captures how much f(z) extends the current Pareto set, the EHVI integral naturally balances ex-
ploration (accounting for predictive uncertainty) and exploitation (emphasizing high-likelihood
improvement). Therefore, points with both a potentially large improvement and high posterior vari-
ance can achieve higher EHVI values, making EHVI a robust sequential criterion in multi-objective
Bayesian optimization.

E.3 CALCULATION AND DETAILED DERIVATION OF EHVI

In our ARPO framework, each objective follows a GP posterior, implying that at any candidate x, the
distribution of f(x) is (multi)normal. Denote

f@) ~ M), B(a)). (105)

where p(z) € RM is the vector of predictive posterior means across M objectives, and X(z) €
RM*M i the posterior covariance matrix. In the simplest case of independent objectives, () is
diagonal, though in principle objectives can be correlated.
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E.3.1 TWO-DIMENSIONAL (2D) ANALYTICAL FORM

For the special case of two objectives ( f1, f2) , we can often derive a closed-form or piecewise-integral
expression for EHVL. Suppose the current Pareto front P can be represented by { (ai, bi) 1k CR2

Let p(x) = [u1(x), pa(x)] be the predictive means, and let the posterior covariance matrix reduce
to

2
S(z) = {U” J”}, (106)

2
021 039

where 019 = 091 quantifies correlation. In many treatments, we assume independence, so o135 = 0,
but the more general correlated case can also be approached with integration or advanced box
decomposition methods.

Let (1"1, 7’2) be a chosen reference point. A common 2D EHVI formula employs integrating over the
domain [a;,r1] X [b;, T2] and summing across 4. Specifically,

k 1 pT2
EHVI(z) = Z / / (r1—wy1) (r2 —y2) p(y | 2, D) dya dy1, (107)
i=1 Jai /b

where y = [y1,92] € R? and p(y | =, D) is the bivariate normal pdf with mean () and covariance
3(x). By substituting the bivariate normal pdf, we can exploit standard normal cdf ®(-) and pdf ¢(-)
transformations. As shown in various references (e.g. Daulton et al. (2020)), one obtains simplified

expressions involving $( =2 ), ¢ ©=2¢), and analogous terms for the second dimension.
011 011

In the simpler case where f; and f5 are independent under the posterior (i.e. 012 = 0), a compact
form emerges. Denoting 11 (z) and ps(x) as the means, and o171, 029 as the standard deviations in
each dimension, one often sees:

k

EHVI(z) =Y [(rl — 1 (2)) q)(rl - ai> +o1 </><7"10— a)]

g
i—1 11 11

<[ oo (222 oo 222)].

where each (a;, b;) lies on the current Pareto set in 2D. This expression is derived by explicitly
performing the 2D integral of equation equation [[07)using known Gaussian pdf/cdf integrals. Concep-
tually, each dimension’s partial improvement and probability of achieving that improvement factorize
under the independence assumption.

(108)

E.3.2 HIGH-DIMENSIONAL OR GENERAL CASE

For higher-dimensional settings (M > 2), deriving a fully closed-form solution for EHVI becomes
exceedingly complex due to multi-dimensional integration and the combinatorial complexity of
partitioning non-dominated regions. One typically relies on numerical approximations, such as:

N
EHVI(z) ~ %ZHI(f(j)(z)), where ) (z) ~ Mp(z),E(2)). (109)

Here, f) () € RM are random draws from the posterior. We compute each HI(f ) (a:)) by checking

how ) (z) expands the current Pareto front in A/-dimensional space relative to . Techniques like
Quasi-Monte Carlo (QMC) sampling (e.g. Sobol sequences) can reduce variance and accelerate
convergence compared to purely random sampling.

In the ARPO methodology, EHVI plays a central role in deciding which candidate points (or
adversarial strategies, hyperparameter configurations, etc.) to evaluate next. By integrating over the
predictive distribution from the GP surrogates for multiple objectives, EHVI automatically seeks
solutions that can simultaneously improve domain robustness, accuracy, and other metrics while
acknowledging model uncertainty.
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E.4 GRADIENTS OF EHVI

E.4.1 CHAIN RULE FOR EHVI COMPUTATION

Recall that, at a candidate point x, the posterior distribution of f(x) is assumed to be a (multivariate)
normal with mean p(x) € RM and covariance ¥(z) € RM*M_ The EHVI acquisition function can
be written in integral form as

apm(z) = [ HVI({y}) pii(ys o). 2(a)) dy.

where HVI({y}) is the hypervolume improvement contributed by the objective vector y. Because
p(x) and X(x) both depend on z, differentiating agyyi(x) w.r.t.  necessitates the chain rule applied
to integrals of normal pdf/cdf expressions.

Dependence of p+(z) and 3(z) on z. Each coordinate of p(x), namely p;(z), is given by expres-
sions of the form

pi(@) = k(z, X) K (ijmj(X)) (110)

in accordance with the standard GP posterior mean formula (see also equation [I4). Likewise, the
diagonal or off-diagonal terms of 3(z) can be written using the variance formulas equation|15|and
any covariance terms for correlated objectives if present. In any case, one obtains

Ouj(x 0 T ._

Majix() = o[k X) KT (1 - my)]. (111)
where k(x, X) is the kernel vector w.r.t. the training set X. Analogous chain-rule expansions apply
to each component of 3(x).

Example of differentiating cdf terms (2D case). When M = 2, a simplified demonstration of the
chain rule emerges. Suppose y = [y1, y=2|. In computing partial derivatives of integrands that involve
terms like

o Lzle)), (112)
the derivative w.r.t. x becomes
0 N o 1 Ou;(x) y; — pi(x) Ooj(x)
— P w — Yi /"J(x) _ J _ J J J 113
5 () = o) | o () Ox @) o o an

where ¢(-) and ®(-) are the standard normal pdf and cdf, respectively. This pattern generalizes to
more complicated integrals in higher dimensions once one carefully enumerates partial derivatives of
each normal pdf/cdf factor.

Lemma E.1 (Chain Rule for V,aguvi(2)). Let apuvi(z) be defined by the integral of HVI({y})
against a multivariate normal pdf whose mean p(x) and covariance X(x) both depend smoothly on
x. Suppose Fubini’s theorem permits exchanging differentiation and integration. Then

604EHV1(96)

. = /HVI({y}) ((% [pdf(y; w(zx), E(x))}dy, (114)

and the derivative of the normal pdf factor is obtained by applying the chain rule to p(x) and 3(x)
within its exponent and normalization terms.

Practical Differentiation Schemes. For higher-dimensional objectives (M > 2) or more intricate
kernels, purely symbolic differentiation of agpyi(x) is often infeasible. A common alternative
is a sampling-based Monte Carlo (MC) or Quasi—Monte Carlo (QMC) approximation combined
with auto—differentiation, enabled by reparameterizing the GP posterior samples; this yields unbi-
ased pathwise gradients of the MC estimator and scales well to parallel (g-batch) and constrained
MOBO Daulton et al.|(2020b); Balandat et al.[|(2020). In lower dimensions (2D/3D), hypervolume
box/stripe decompositions admit closed-form or partially closed-form integrals whose derivatives can
be taken analytically; in practice, differentiable EHVI estimators and lookahead HV-based criteria are
also effective and easier to implement in modern autodiff frameworks Daulton et al.| (2020bj 2023)).
Regardless of the chosen scheme, the chain rule (Lemma ensures that V,aggyi(x) correctly
accounts for how both the GP posterior mean and variance vary with x; in MC/QMC settings this is
obtained via the reparameterization trick for Gaussian posteriors Kingma & Welling| (2013).
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E.5 CONVERGENCE PROOF IN THE ARPO FRAMEWORK

In this section, we present a more rigorous and formula-oriented derivation that establishes the asymp-
totic convergence of our EHVI-based multi-objective Bayesian optimization (MOBO) procedure in
the ARPO setting, where each decision vector x € R4 may encode discrete switches, continuous
intensities, or dynamic thresholdsDaulton et al.|(2020a).

E.5.1 PRELIMINARIES AND ASSUMPTIONS

Assumption E.2 (Compact Domain). There exists a compact set X C R¢ such that all feasible
decision vectors lie in X'. Consequently, any continuous function on X attains a global maximum.

Assumption E.3 (GP Posterior Consistency). Let f;: X — R be the j-th objective. The posterior
mean p; ,(x) from the Gaussian Process model of f; satisfies

lim sup’ujm(x)f fj(z)‘ =0 whp, (115)

n—oo reX

and the posterior variance 032 "

uniformly to f; as n — oo.
Assumption E.4 (EHVI Regularity). The EHVI acquisition function

apnvi(r) = E{HVI({f@)}) ‘Dn] (116)

is either (i) analytically or piecewise-integrably defined (for lower-dimensional objectives) and is
continuous w.r.t. z, or (ii) given by a Monte Carlo (MC) or Quasi-MC approximation that is differen-
tiable w.r.t. x (e.g. through reparameterization). Hence we assume no pathological discontinuities or
non-measurable behavior in agvi.

() — 0 pointwise in 2. This implies that each GP surrogate converges

Assumption E.5 (Positivity of EHVI in Improving Regions). Suppose the current non-dominated set
is P(")_ If there exists a region 2 C X such that any = € € can yield f () which improves upon
P in at least one objective without sacrificing the others, then

;ggaEHVI(w) > 0. (117)

Equivalently, potential improvements have strictly positive expected hypervolume gain.

E.5.2 NOTATION AND SETUP FOR ITERATION
At iteration n, we have data D,, and a surrogate posterior for each f;. We then select

() = arg max aggvi(x | Dn), (118)
reX

and observe f(z("*1)). The set {f(z),... f(z(™)} C RM forms the collection of discovered

solutions, from which we extract the non-dominated subset P(™). Let P* be the true Pareto front of
the underlying multi-objective problem:

P = {z e RM : A2’ s.t. 2’ dominates z}. (119)

E.5.3 KEY TECHNICAL LEMMAS

We first provide two lemmas that bridge the gap between the GP posterior accuracy and the EHVI
search mechanism |Yang et al.|(2019).

Lemma E.6 (Uniform Convergence of Surrogate vs. True Functions). Under Assumption|E.3} for
each objective f;, there exist sequences €; ,, — 0 such that

sup‘yj,n(x) — fJ(x)’ < €jn with high probability. (120)
reX

Furthermore, let €, = max; €; . Then €, — 0 and

M
sup 3~ |pyn(a) = fy(x)| < M, (121)
reX

Jj=1

which implies uniform approximation of all f; by pi; r.

38



Under review as a conference paper at ICLR 2026

Lemma E.7 (EHVI Sensitivity to Posterior Error). Consider any z € X, and let f(z) denote the
random vector distributed according to the GP posterior with mean p.,,(x) and covariance X, (x),
while the true f(x) is deterministic. Suppose ||y, (z) — £(x)|| < § for some 6 > 0. Let

ofii(@) = EHVI({E@)})].  afui(@) = HVI({£@)}). (122)

If the hypervolume measure is Lipschitz in its input vector with a constant Lyy > 0 (on a bounded
domain), then

‘O‘gﬁw(ﬂv) - aEHVI(fﬂ)’ < Lpv (5 + 7771); (123)

where n, > 0 accounts for posterior variance or sampling approximation. As n — 00, 8,1, — 0 by
(n)

Assumption implying oy (z) — HVI({f(2)}).
Lemma formalizes the uniform convergence of each GP mean to the true function, while

Lemma E.7|indicates that when the GP posterior is accurate, the expected hypervolume improvement
under the surrogate closely approximates the “ideal” improvement if we had direct access to f.

E.5.4 MAIN CONVERGENCE THEOREM

Theorem E.8 (Asymptotic Convergence of EHVI-based MOBO in ARPO). Suppose Assumptions

hold. Let {x™} be generated by

" = argmax agnvi(z | Dn), (124)
TEX

and define P™) to be the set of non-dominated points among {f(z(")), ... f(x("™)}. Let P* denote

the true Pareto front. Then

lim sup min |z —y| = 0. (125)
n—00 zcpx yeP(n)

In other words, P("") converges in supremum norm to P*.

Proof. Step 1 (Posterior Accuracy). By Lemma each GP surrogate 115 ,, uniformly approxi-
mates f; as n — co. Denote §,, = €, — 0 from that lemma. Also, posterior variances 0']2-’”(37) — 0,
so uncertainty about each objective diminishes over time.

Step 2 (EHVI Approximation to True Improvement). Lemma [E.7| guarantees that agwvi(z|Dy)
converges to HVI({f(x)}) uniformly in . Thus, if f(z) strictly improves the current front, then
eventually aggyi(x) must become sufficiently positive to out-compete dominated alternatives.

Step 3 (Positivity of EHVI in Improving Regions). Assumption implies that whenever there
is aregion R C X containing points capable of enhancing the non-dominated set, the EHVI values
in R remain strictly positive. By maximizing EHVI each iteration, the algorithm will select some
2 € R in finitely many steps, yielding an actual function observation f(z) that enlarges or refines the

front P(™).

Step 4 (Excluding Fully Dominated Solutions). If x is such that f(x) lies strictly within the current
front’s dominated region, aggyi(2) will be near zero once the GP posterior is accurate. Thus such z
will not be chosen infinitely often. Consequently, repeated selections concentrate on improvements
or unexplored high-EHVI regions.

Step 5 (Convergence to the True Pareto Front). Suppose there is z € P* not approximated within
£ > 0byany y € P(™). Then there must exist z, € X such that f(z.) is close to z (by definition of
P*). However, from Step 2 and Step 3, agnvi(2,) remains positive if f(x,) can improve P (™) The
algorithm will eventually pick x. (or a point nearby) and discover f(z ), reducing the distance to z
below ¢. Because this argument holds for every z € P*, we conclude

lim max min |z—yl| = 0. (126)
n—r00 zEP* yeP(n)

Hence P converges to the true Pareto front P*. O
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E.5.5 IMPLICATIONS FOR ARPO WITH MIXED DISCRETE-CONTINUOUS VARIABLES

In ARPO, each z may combine discrete adversarial switches, continuous intensities, and possibly
dynamic threshold parameters. The above convergence proof remains valid under the same as-
sumptions, provided that X C R? is compact and each f; is continuous or sufficiently regular to
admit a convergent GP posterior. Feasibility constraints (for instance, disallowing certain adversarial
operations) can be enforced by restricting X to a closed feasible subset. The positivity assumption
(Assumption [E.5) remains justified, since any x capable of enhancing multi-objective performance
relative to (™) necessarily induces a strictly positive EHVI value.

Under these assumptions, the iterative MOBO procedure, which selects z("+1) by maximizing EHVI,
is guaranteed to asymptotically reveal the entire Pareto front. As the GP posterior converges to f; for
each objective and the EHVI acquisition reliably detects improvements, the set of non-dominated
solutions P("™) approaches the true P* in supremum norm. Thus, ARPO inherits a solid theoretical
foundation for multi-objective adversarial optimization, ensuring that no Pareto-optimal strategies are
missed once enough iterations have passed.
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