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ABSTRACT

Prompt Tuning (PT) has recently shown remarkable success in diverse Natural Lan-
guage Processing (NLP) tasks, providing an efficient knowledge transfer paradigm
to textually instruct models with domain-level guidance. However, existing PT
approaches often struggle to accurately distinguish between domain-invariant and
domain-specific knowledge of input texts, thereby inducing negative transfer that
harms model performances across various domains. To mitigate this, recent studies
have introduced the concept of adversarial training to highlight domain-specific
nuances for improving the model’s adaptation ability, but often rely on overly
complex parameter optimization, which hinders smooth generalization. Motivated
by this, we propose a novel prefix tuning framework, named Adaptive Robust
Prefix Optimization (ARPO), in which adaptive representation disentanglement
precisely decouples domain-specific information from invariant knowledge, while
Multi-Objective Bayesian Optimization (MOBO) dynamically adjusts adversarial
strategies for improved model robustness. Specifically, we first develop disentan-
gled representation learning based on Information Bottleneck theory with dynamic
orthogonality and conditional independence constraints, combined with adaptive
adversarial training driven by dynamic thresholds. We then employ MOBO for
efficient search within the high-dimensional strategy space. We theoretically prove
that the proposed MOBO approach is feasible and guaranteed to converge under
reasonable assumptions. Extensive evaluations on GLUE, Super GLUE, MRQA
2019, GSM8K, and HumanEval show that ARPO achieves around 6% improvement
in two experimental settings, highlighting its robust cross-domain generalization.

1 INTRODUCTION

Large Language Models (LLMs) have significantly advanced natural language processing Radford
et al. (2019); Raffel et al. (2020); Brown et al. (2020). Despite these successes, efficiently adapting
LLMs across diverse tasks and domains remains challenging, particularly when computational
resources are limited Houlsby et al. (2019); Lester et al. (2021); Hu et al. (2021). Prompt Tuning (PT)
partially alleviates this issue by selectively updating only a small subset of parameters, facilitating
efficient cross-domain adaptation Houlsby et al. (2019); Lester et al. (2021); Hu et al. (2021); Zaken
et al. (2021). In particular, PT methods often fail to accurately separate domain-invariant from
domain-specific information, leading to negative transfer and reduced generalization. Although
recent adversarial training schemes have been proposed to address these issues, their task-oriented
nature significantly limits the ability of LLMs to adapt stably across diverse learning scenarios.
Moreover, traditional hyperparameter optimization approaches Laumanns & Ocenasek (2002) are
insufficiently efficient in managing complex multi-objective optimization problems, further limiting
the performance of PT in practical cross-domain applications.

Previous research in PT (e.g., Adapters Houlsby et al. (2019), LoRA Hu et al. (2021), and SPoT Vu
et al. (2021)) mainly focused on reducing computational overhead by training only a subset of
model parameters. However, these methods often fail to adequately handle substantial semantic
and lexical domain variations, resulting in negative transfer and limited generalization. Meanwhile,
methods employing disentangled representation learning(e.g., DVIB Bao (2021) and DisTIB Dang
et al. (2024)) attempt to address these issues by isolating domain-specific and invariant features, yet
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they lack robust adaptive constraints, causing representation redundancy. Moreover, although Multi-
Objective Bayesian Optimization (MOBO)(e.g., EVHI Daulton et al. (2020a), MBO Suzuki et al.
(2020)) effectively optimize multiple goals, it struggles with complex, high-dimensional parameter
spaces common in cross-domain scenarios. These limitations highlight the need for adaptive, efficient
optimization strategies tailored explicitly for robust cross-domain LLM adaptation.

To this end, we propose Adaptive Robust Prefix Optimization (ARPO), a cross-domain prefix-
tuning approach that integrates adaptive representation disentanglement with multi-objective Bayesian
optimization (MOBO). Specifically, we construct a dynamically adaptive prefix disentanglement
framework by combining Information Bottleneck (IB) theory Tishby et al. (2000) with orthogonality
and conditional independence constraints, effectively separating domain-invariant from domain-
specific knowledge. Furthermore, we also present a dynamic threshold-controlled adversarial training
method and use MOBO to automatically search and optimize a high-dimensional mixed discrete-
continuous adversarial strategy space, boosting model generalization and robustness.

Extensive experiments including GLUE Wang et al. (2018), SuperGLUE Wang et al. (2019), and
MRQA 2019 Fisch et al. (2019) as well as reasoning and coding benchmarks GSM8K Cobbe
et al. (2021) and HumanEval Chen et al. (2021), together with robustness and ablation analyses,
demonstrate the effectiveness of our approach. Our main contributions are summarized as follows:

(1) We propose a clear domain-information disentanglement strategy using Information Bottleneck
constraints, effectively mitigating negative transfer caused by domain-specific features;

(2) We design a dynamic threshold-based adversarial gate mechanism to prevent premature
interference in primary task training, significantly improving training stability;

(3) We introduce a MOBO-based global decision maker that uses noisy-qEHVI on a mixed dis-
crete–continuous, gate-aware space to jointly tune perturbation structure, strength, and timing, directly
maximizing the accuracy–robustness–cost Pareto hypervolume and replacing ad-hoc heuristics with a
transferable, interpretable, sample-efficient strategy.

2 RELATED WORKS

Domain Adaptation and Prompt Tuning. Traditional domain adaptation methods typically fine-
tune all parameters Radford et al. (2021); Touvron et al. (2023), incurring computational overhead
and overfitting risks Han et al. (2024); Zaken et al. (2021). Prompt Tuning (PT) strategies, such
as Adapters Houlsby et al. (2019), LoRA Hu et al. (2021), and AdapterDrop Rücklé et al. (2020),
alleviate resource consumption but can introduce latency or fail under large semantic shifts Houlsby
et al. (2019); Zhong et al. (2021). Further parameter-efficient PT methods Lester et al. (2021); Liu
et al. (2021c) remain vulnerable to vocabulary and input perturbations Ma et al. (2022). Multi-part
decomposition techniques Vu et al. (2021); Asai et al. (2022) and DePT Shi & Lipani (2023) provide
modularity but lack systematic cross-domain reuse. Differently, our solution reuses modular prompts
to address semantic diversity and computational efficiency.

Adversarial Training and Multi-Domain Robustness. Adversarial training significantly enhances
NLP model robustness Miyato et al. (2018), but embedding-level methods struggle against discrete
textual perturbations. Token-aware adversarial training partially mitigates this Li & Qiu (2021),
though at increased complexity. Recent advancements, including contrastive learning Rim et al.
(2021), curriculum methods Yoo & Qi (2021), Adversarial Distributional Training (ADT) Dong
et al. (2020), aim for improved generalization. Adversarial Self-Training (AST) Shi & Liu (2023)
specifically applies adversarial techniques for domain adaptation tasks. Our proposed method
innovatively integrates adversarial training within domain-specific prompt tuning, significantly
improving cross-domain robustness with minimal computational overhead.

Multi-Objective Bayesian Optimization. Efficiently balancing conflicting objectives, such as
accuracy and computation, is crucial in hyperparameter optimization Snoek et al. (2012); Shahriari
et al. (2015). Bayesian Optimization (BO) with Gaussian Processes provides systematic exploration
and sample efficiency Frazier (2018); Jin et al. (2018); Eriksson et al. (2019). Recent Multi-Objective
Bayesian Optimization (MOBO) methods utilize Expected Hypervolume Improvement (EHVI) Em-
merich et al. (2011); Daulton et al. (2020a) and adapt to mixed variables Ru et al. (2020). However,
existing MOBO primarily targets hyperparameter selection rather than systematic prompt or adapter
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Figure 1: The framework of ARPO. The model learns disentangled prefix representationsPDI and
PDS via adaptive information bottleneck and multi-level constraints, selectively applies adversarial
adaptation with dynamic thresholds θ(t), and efficiently searches optimal adversarial strategies S∗

using MOBO for robust cross-domain adaptation.

reuse Lester et al. (2021); Rücklé et al. (2020). Our novel MOBO method reuses effective prompts to
provide strong adaptation and efficient generalization across many NLP domains.

3 METHODOLOGY

In this section, we introduce ARPO (Figure 1, Algorithm 1), a three-part method for robust cross-
domain transfer. An information-bottleneck prefix module (Sec 3.1) disentangles representations into
PDI (domain-invariant) and PDS (domain-specific), producing clean features for transfer. A dynamic
gate (Sec 3.2) applies adversarial signals only when training is stable, improving robustness without
slowing convergence. A MOBO module (Sec 3.3) with noisy-qEHVI jointly tunes perturbation
structure, strength, and trigger timing to balance accuracy, robustness, and compute. Appendix B.1
provides notation, problem setup, and assumptions, Appendix B.2 gives the soft prompt rationale and
implementation, Appendix C develops the theoretical and implementation details for adaptive prefix
disentanglement, Appendix D introduces task-aware gating, EMA bounds, spectral regularization,
and Appendix E details the MOBO objectives, surrogate, and EHVI.

3.1 ADAPTIVE REPRESENTATION LEARNING OF DISENTANGLED PREFIX

In prefix tuning, the prefix P shapes the conditional representation h(x;P ). Domain-invariant (DI)
knowledge is the part that does not change across domains D and remains predictive of labels Y .
We target I(PDI ;D) ≈ 0 and large I(PDI ;Y ). Domain-specific (DS) knowledge is the part that
encodes domain traits such as style, vocabulary, format, and noise. We target large I(PDS ;D) and
keep I(PDS ;Y ) moderate so it does not dominate the task signal.

We split the learnable prefix P ∈ RL×d into domain-invariant and domain-specific segments,
PDI ∈ RLDI×d and PDS ∈ RLDS×d with L = LDI +LDS . Domain-invariant knowledge should be
predictive across domains while carrying minimal domain cues, whereas domain-specific knowledge
should capture domain traits without overwhelming the task signal. We therefore optimize two
information-bottleneck objectives

LIB(PDI) = I(PDI ; Domain)− β1I(PDI ; Task),

LIB(PDS) = − I(PDS ; Domain) + β2I(PDS ; Task).
(1)

Mutual informations are estimated by a neural estimator with stabilization (Appendix C), which turns
information-theoretic targets into practical training losses.
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To geometrically separate the two subspaces, we penalize cross-subspace overlap via an orthogonality
term

Lorth = ∥P⊤
DIPDS∥2F , (2)

and further reduce residual dependence by a HSIC-based penalty (Appendix C.2. Discriminative
decoupling is encouraged by a contrastive loss that pulls together PDI for the same task across
domains and pushes apart PDS ,

Lcont = − log
exp(sim(P i

DI , P
j
DI)/τ)∑

k exp(sim(P i
DI , P

k
DI)/τ)

− log
exp(sim(P i

DS , P
j
DS)/τ)∑

k exp(sim(P i
DS , P

k
DS)/τ)

, (3)

with temperature adaptation and quantile pairing detailed in Appendix C.3. We explicitly control
redundant information flow by a conditional-independence term

Lcond = DKL

(
p(PDI , PDS | Task)

∥∥ p(PDI | Task) p(PDS | Task)
)
, (4)

whose variational estimator and consistency are given in Appendix C.4.

The overall disentanglement loss is

Ldisent = λ1LIB(PDI) + λ2LIB(PDS) + λ3Lorth + λ4Lcont + λ5Lcond. (5)

This combination aligns information-theoretic, geometric, and statistical criteria so that task-relevant
transferable factors concentrate in PDI and domain cues in PDS . Under mild boundedness and
local-Lipschitz assumptions, the expected gradient directions of these terms are compatible rather
than antagonistic, improving separability without sacrificing task signal; the statement and supporting
inequalities are summarized in Appendix C.5. The resulting encoder [PDI ;PDS ] becomes the
common input for the gated adversarial module and the MOBO controller, enabling safe perturbation
and strategy search downstream.

3.2 ADVERSARIAL ADAPTATION OF CROSS-DOMAIN KNOWLEDGE

Motivated by the risk that adversarial updates can harm convergence when applied too early after
Section 3.1, and by heterogeneous convergence across tasks and domains, we design a dynamic gate
for adversarial training. The gate combines three signals, main loss progress, gradient stability, and
task difficulty, and activates only when the score exceeds a threshold. When active, we shape the PDS

subspace with distance based positive and negative pairs. The loss pulls same domain pairs together
and pushes cross domain pairs apart, trained jointly with the main and disentanglement losses. We
couple the gate with MOBO to auto tune thresholds and adversarial strength.

3.2.1 DYNAMIC THRESHOLD DETERMINATION

We measure training progress using the relative improvement of the main task loss

δ(Ltask(t)) = 1− Ltask(t)/Ltask(0) ∈ [0, 1], (6)

where larger values indicate safer timing for adversarial updates. This aligns with Curriculum
Learning, ensuring foundational task mastery before introducing increased complexity. However, a
fixed threshold is too rigid for multi-task training. Therefore, we define a time-varying base threshold,

θ(t) = θ0 ·
(
1− exp

(
−γ · var(∇Ltask(t− w))

mean(|∇Ltask(t− w)|)

))
, (7)

computed over a short window w: when recent gradients are volatile, θ(t) increases to postpone
activation; when gradients stabilize, θ(t) decreases to allow earlier activation. Estimator choices
(EMA vs. fixed window), outlier handling, trigger properties, and per-task scaling by difficulty are
summarized in Appendix D.1. The Appendix D.2 for the gate’s sublinear flip count in T under
EMA-driven sub-Gaussian increments, supporting a locally slowly-varying objective between flips.

3.2.2 ADAPTIVE ADVERSARIAL TRAINING WITH DYNAMIC THRESHOLDING

To enhance stability and cross-domain generalization, we propose adaptive adversarial training using
a dynamic threshold. Specifically, after encoding inputs xi via the T5 encoder to obtain hidden
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representations hi, we isolate domain-specific features hDS(xi). Without proper constraints, these
domain-specific representations may overlap, reducing discriminability across domains.

To address this, we dynamically generate positive and negative sample pairs in each training batch by
calculating pairwise Euclidean distances: d(hDS(xi),hDS(xj)) = ∥hDS(xi)−hDS(xj)∥2. Sample
pairs with distances below a predefined threshold are grouped as positives (Pos), reflecting similar
domain attributes, while those exceeding this threshold form the negatives (Neg). This adaptive
pairing method captures modest intra- and inter-domain differences and accurately supervises this; its
batchwise quantile implementation and finite-sample guarantees follow from DKW–Massart bounds,
detailed in Appendix D.3.

Leveraging these dynamically constructed pairs, we design an adversarial loss inspired by contrastive
learning principles to effectively enhance domain discriminability within the representation space.
Formally, the adversarial loss is

Ladv =
∑

(i,j)∈Pos

d(hDS(xi),hDS(xj))−
∑

(i,k)∈Neg

d(hDS(xi),hDS(xk)), (8)

which encourages domain-specific representations of similar samples to cluster while pushing apart
dissimilar domains.

To balance the primary task objective with adversarial optimization effectively, we integrate these
components into a unified loss function modulated by a dynamic thresholding strategy:

Ltotal = Ltask + α · Ladv · ⊮[δ(Ltask(t)) ≥ θ(t)] , (9)

where Ltask is the primary task loss, α ∈ [0, 1] is a weighting parameter, and the indicator enables
adversarial training selectively. Adversarial optimization activates only when the current improvement
δ(Ltask(t)) surpasses the adaptive threshold θ(t); otherwise, the model optimizes solely toward the
primary task, ensuring stable foundations before adding adversarial complexity across domains.

3.3 ADAPTIVE MULTI-BAYESIAN ADVERSARIAL STRATEGIES

MOBO acts as the global controller in ARPO, jointly choosing structure (binary switches bj),
strength/frequency (continuous magnitudes sj and global weight α), and schedule (gate threshold θ).
This controller is necessary because the decision space is mixed discrete–continuous with temporal
coupling and the objectives [Acc,Robust,−Cost] are inherently conflicting, making heuristic or
single-objective tuning inadequate. MOBO maps validation feedback through GP surrogates and
EHVI to propose the next (α, θ, Strategy), which perturbs inputs encoded by [PDI ;PDS ] and inter-
faces with the dynamic gate. The resulting train–validate–acquire loop advances the Pareto front in a
sample-efficient manner and supplies updated surrogates for subsequent proposals.

3.3.1 CONSTRUCTION AND AUTOMATIC ASSEMBLY OF ADVERSARIAL STRATEGY SPACE

We build a hierarchical library of parameterized atomic operations across task, phrase, and token levels,
{O1, . . . ,Om}. Task-level operators (e.g., cross-domain task swaps) modify global supervision
signals, phrase-level operators (e.g., Phrase-Swap-A/B) perturb local semantic spans, and token-level
operators (e.g., Token-FGSM/Token-PGD) adjust embeddings along gradient-guided directions.The
multi-granularity design reveals complementary inductive biases from coarse to fine scales, engaging
with the prefixed representation [PDI ;PDS ] by simultaneously regularizing domain-invariant transfer
(via stable cues to PDI ) and enhancing domain-specific separability (via discriminative cues to PDS).

Each atomic operation Oj is governed by a binary activation bj ∈ {0, 1} and a continuous strength
sj ∈ R, and a concrete strategy is encoded as Strategy = {(b1, s1), . . . , (bm, sm)}. During training,
the assembled perturbation acts on inputs by superposing the atomic effects:

A(x; Strategy) =

m∑
j=1

bj sj Oj(x), (10)

so only active operators contribute and their magnitudes scale with the corresponding strengths.
This operator A(·; Strategy) is applied to inputs already encoded with [PDI ;PDS ], before task and
disentanglement losses are evaluated.
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The decision vector encodes structure, strength, and schedule as

x =
(
xstruct, α, θ

)
, xstruct = {(bj , sj)}mj=1, (11)

where α is the global adversarial weight and θ the dynamic-gate threshold. The resulting search space
combines discrete choices with continuous parameters and is optimized via MOBO in Sec. 3.3.2.

We fit Gaussian-process surrogates with a product kernel that respects both continuous magnitudes
and discrete structure:

k(x, x′) = kcont(z, z
′) · kdisc(u, u′), (12)

where z = (s1, . . . , sm, α, θ) and u = b ∈ {0, 1}m. For the continuous part, kcont is RBF or Matérn;
for the discrete part we use a Hamming-based categorical kernel

kdisc(u, u
′) = exp

(
−λHam(u, u′)

)
, (13)

with a δ-kernel as an alternative when a strictly categorical metric is required. Equations 12 and 13
induce an interpretable similarity: strategies differing in more activation bits are farther apart
than those differing only in strengths, enabling Lipschitz-style regularity checks on the product
domain.(Appendix E.5) Together with the assembly operator in equation 10, this completes the
reduction from hierarchical perturbations to a GP-ready decision space used in Sec. 3.3.2.

3.3.2 ADAPTIVE STRATEGY SEARCH VIA MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

At iteration t, ARPO follows a train→validate→acquire loop: using the current decision x =
(xstruct, α, θ), a full training round is executed under the gate schedule θ; validation then yields noisy
observations yj = fj(x) + εj with εj ∼ N (0, σ2

n,j) for f(x) = [Acc(x), Robust(x), −Cost(x)].
These observations update Gaussian–process (GP) surrogates over the mixed decision space, which
reuse the product kernel defined in Sec. 3.3.1. Full GP basics and multi-objective extensions are
deferred to Appendix E.1.

For each objective j ∈ {Acc,Robust,−Cost}, the GP posterior mean at any candidate x is

µj,t(x) = mj(x) + kj(x,Xt)
[
Kj(Xt, Xt) + σ2

n,jI
]−1(

yj −mj(Xt)
)
, (14)

and the posterior variance σ2
j,t(x) follows the standard closed form. µj,t(x) predicts the expected

validation outcome after training under decision x, while σ2
j,t(x) measures epistemic uncertainty

from limited evaluations in the mixed discrete–continuous space in ARPO. The summaries balance
exploitation (µj,t) and exploration (σ2

j,t) to drive acquisition.

Candidates are scored via hypervolume-based acquisition with respect to a reference point rt ∈ R3.
Let ND(·) return the non-dominated set. The batch of size q is chosen by maximizing expected
hypervolume improvement (EHVI) under the joint GP posterior Pt:

Xt+1 = arg max
X⊂Ω, |X|=q

EHVI
(
X | Dt, rt

)
, (15)

where we use noisy-qEHVI with Monte Carlo and common random numbers for variance reduction.
The reference point is updated monotonically by componentwise 5th percentiles to stabilize estimates:

rt+1 = min
(
rt, Percentile5%

(
{f(x(i))}i≤nt+1

))
. (16)

Implementation details, including the hypervolume definition and Monte Carlo estimators, are
provided in Appendix E.2–E.3, and differentiability/gradient schemes in Appendix E.4.

The selected batch Xt+1 is decoded to (α, θ, Strategy) and executed under the gate; validation
outcomes are appended to Dt+1, GP surrogates are refit, and the acquisition in Eq. equation 15
is re-optimized to propose the next batch. This closes a gate-aware MOBO loop that combines a
product-kernel GP surrogate with noisy-qEHVI to directly advance Pareto hypervolume; hypervolume
consistency under standard GP regularity and slow variation holds as shown in Appendix E.5.

Putting It All Together. Iterating the pipeline yields a closed-loop adaptation scheme: Sec. 3.1 dis-
entangles [PDI ;PDS ] with information-theoretic regularizers grounded by variational MI estimation
and conditional KL (Appendix C, C.4) and stabilized independence control via HSIC (Appendix C.2);
Sec. 3.2 deploys a gate that injects adversarial signals only under measured stability, aligning with
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the multi-loss synergy guarantees (Appendix C.5); Sec. 3.3 runs MOBO over the mixed decision
space with product-kernel GPs and noisy-qEHVI to propose (α, θ, Strategy), with acquisition, differ-
entiability, and convergence analyses in Appendices E.2–E.5. The result is a principled, data-driven
controller that harmonizes disentanglement, safe adversarial adaptation, and multi-objective search;
Sec. 4 demonstrates consistent Pareto improvements in accuracy–robustness–compute, while the
appendices provide the theoretical scaffolding that underwrites these empirical gains.

4 EXPERIMENTS

In this section, we present experiments that validate our approach. We evaluate cross-domain
performance on standard NLP benchmarks and compare against strong baselines. Appendix B.1
summarizes the preliminaries, and Appendix B.3 details the experimental setup and the datasets.

4.1 MAIN RESULTS

Method NQ→SQA Yelp→SciTail News→HP MNLI→QQP CoLA→PAWS Mean
Q L Q L Q L Q L Q L Q L

Fine-tuning 73.2 76.2 91.5 97.2 69.8 71.8 79.5 83.6 70.9 73.3 77.0 80.1
Adapter 76.8 78.8 93.3 96.9 70.3 71.9 82.0 85.0 72.8 74.5 79.0 81.3
BitFit 72.9 76.9 88.1 90.1 71.3 73.2 80.3 87.1 72.3 74.3 76.9 80.7
PT-2 70.1 76.1 91.4 93.1 72.8 75.5 81.4 84.9 70.7 74.1 77.3 81.1
SPoT 70.2 75.2 89.8 92.7 72.0 74.5 83.1 87.1 71.9 74.8 77.4 81.3
ATTEMPT 74.2 79.4 90.6 93.7 73.2 75.2 83.3 87.3 72.9 75.2 78.8 82.6
XPROMPT 75.2 78.2 90.3 93.3 75.4 76.1 84.4 89.3 73.8 75.8 79.8 82.9
InfoPrompt 76.7 80.2 91.5 94.5 74.1 75.8 85.8 90.5 75.2 76.1 80.7 83.8
DEPT 77.4 80.3 93.1 96.5 74.5 78.2 86.8 91.3 75.1 77.0 81.4 85.0
Udapter 77.9 80.9 93.6 96.7 74.8 78.5 87.2 91.7 75.4 77.3 81.8 85.4
DAdEE 78.5 81.5 93.9 96.8 75.1 78.9 87.8 92.3 76.1 77.9 82.3 85.9

ARPO 80.5 84.5 96.7 98.2 77.5 80.8 89.8 94.5 77.5 80.4 84.4 88.0

Table 1: Comparison of methods evaluated on cross-domain transfer tasks using the Qwen3-4B (Q)
and LLama2-7B (L) models. Mean accuracy across all tasks is also reported.

Method CoLA→QQP GSM8K→HEval BoolQ→NQ HP→SciTail MNLI→SQA Mean
Q L Q L Q L Q L Q L Q L

Fine-tuning 66.0 68.9 12.5 18.0 70.5 73.4 71.5 74.6 73.0 76.4 58.7 62.3
Adapter 68.8 70.4 16.8 24.5 72.2 74.6 73.9 76.1 74.1 78.3 61.2 64.8
BitFit 67.6 69.8 14.0 20.5 71.4 74.9 73.2 75.8 74.0 78.1 60.0 63.8
PT-2 67.2 68.9 16.2 24.0 71.6 75.0 73.6 76.0 75.1 78.0 60.7 64.4
SPoT 67.9 69.1 18.0 26.5 72.5 74.8 75.4 77.8 77.0 79.6 62.2 65.6
ATTEMPT 68.4 71.0 19.5 28.8 73.0 75.2 76.0 78.6 77.5 80.5 62.9 66.8
XPROMPT 69.1 72.1 20.2 29.6 73.5 75.8 76.6 79.1 78.2 81.0 63.5 67.5
InfoPrompt 69.6 72.5 21.0 30.5 73.9 76.5 77.0 80.1 78.8 81.7 64.1 68.3
DEPT 70.5 74.3 22.5 31.0 73.0 75.1 77.6 80.8 79.1 82.7 64.5 68.8
Udapter 72.4 75.1 24.5 33.8 74.6 76.9 81.5 85.2 76.0 78.9 65.8 70.0
DAdEE 73.1 75.7 25.3 34.6 75.2 77.5 82.1 85.8 76.6 79.6 66.5 70.6

ARPO 74.6 77.9 32.1 40.9 77.1 79.6 81.9 84.5 83.1 85.8 69.8 73.7

Table 2: Comparison of methods evaluated on different-task, different-domain transfer scenarios
using Qwen3-4B (Q) and LLama2-7B (L) models. Mean accuracy across all tasks is also presented.

Robust Prefix Adaptation Across Domains. We investigate our method’s ability to transfer across
domains under a single-source training setup with zero modification when moving to the target
dataset. Table 1 covers same-task and different-domain transfers, and Table 2 covers different-task
and different-domain transfers, both on Qwen3-4B (Q) and Llama2-7B (L). In Table 1, ARPO ranks
first on all pairs with Mean 84.4/88.0 (Q/L), outperforming DAdEE at 82.3/85.9 by +2.1/+2.1. On
MNLI→QQP, ARPO reaches 89.8/94.5 while DAdEE obtains 87.8/92.3, a gain of +2.0/+2.2. In
Table 2, the gap is larger under domain-task shift; ARPO records Mean 69.8/73.7 compared with
66.5/70.6, a gain of +3.3/+3.1. On GSM8K→HEval, scores are 32.1/40.9 compared with 25.3/34.6,
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improving by +6.8/+6.3. These gains follow from IB-driven disentanglement of domain-invariant and
domain-specific prefixes, dynamically gated adversarial training that reduces errors on hard cases,
and MOBO that balances accuracy, robustness, and efficiency.

Efficient Accuracy-Robustness Trade-off Optimization. Figure 2a illustrates the Pareto frontier,
clearly highlighting accuracy-robustness trade-offs among various approaches, while Figure 2b offers
a detailed performance and computational cost comparison. Our method notably outperforms the
baselines (DePT Shi & Lipani (2023),XPrompt Ma et al. (2022),PT Lester et al. (2021),Radom
Search Bergstra & Bengio (2012)), achieving approximately 5% higher accuracy (87% vs. DePT’s
82%) and 8% improved robustness (83% vs. DePT’s 75%), while reducing computational over-
head (0.64 vs. DePT’s 0.73 normalized cost). This substantial enhancement is mainly due to our
disentangled prefix learning framework, effectively isolating domain-invariant and domain-specific
representations through information bottleneck optimization, orthogonality constraints, and con-
trastive regularization. Furthermore, our dynamic adversarial adaptation mechanism selectively
applies adversarial training only where needed, significantly boosting efficiency. Lastly, our multi-
objective Bayesian Optimization systematically balances accuracy, robustness, and computational
efficiency, enabling stable and robust cross-domain generalization.
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Figure 2: Multi-objective optimization performance tested on T5-base model: Figure(a) illustrates
Pareto frontiers revealing accuracy-robustness trade-offs across different techniques, while Figure(b)
compares the optimal performance metrics (bars) alongside computational cost (red), demonstrating
our method’s superior balance between task accuracy, robustness, and efficiency.

Supplementary Analysis of ARPO. We replicate experiments on T5-base and T5-large. Ap-
pendix B.4.1 shows that the module is plug-and-play and integrates cleanly with LLMs of different
sizes and architectures. We also perform statistical significance tests on Appendix B.4.3, which show
consistent cross-domain gains with narrow uncertainty across tasks. In addition, we list hyperparame-
ters and run sensitivity studies on Appendix B.4.2. With MOBO-based joint search, we efficiently
find robust configurations in a large space, leading to stable transfer performance.

4.2 ROBUSTNESS ANALYSIS
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Figure 3: Comparison of cross-domain robustness in Figure (a) and training stability in Figure (b),
illustrating our method’s superior accuracy under adversarial perturbations and enhanced convergence
stability relative to baseline methods, evaluated using the T5-base model.
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Figure 3a shows cross-domain robustness on T5-base under token-, phrase-, and task-level perturba-
tions; our method attains the best accuracy in all settings, with gains of about 10% over DePT and
nearly 22% over standard fine-tuning. Figure 3b shows training stability; our method reduces final
training loss by ∼23% vs. DePT and ∼58% vs. standard fine-tuning. The gains come from a dynamic
adversarial schedule that triggers only when gradient variance is stable, and from MOBO which
searches a mixed discrete–continuous strategy space to cover hard cases. We also learn disentangled
prefixes with an IB objective plus orthogonality and conditional independence constraints, and we
use independent train and test perturbation protocols to ensure a fair robustness assessment. Our
method delivers stronger cross-domain robustness and faster, steadier convergence; full efficiency
and robustness analyses, with statistical tests and sensitivity studies, are in Appendix B.4.3 B.4.4.

4.3 ABLATION STUDY

DI:DS CombA CombB
Base (%) 7B (%) Base (%) 7B (%)

9:1 69.5 70.4 67.3 69.1
8:2 72.3 74.6 71.7 73.5
7:3 76.7 77.5 75.5 76.3
6:4 78.2 80.8 77.2 78.0
5:5 80.1 84.2 79.5 83.2
4:6 78.7 80.2 76.8 77.3
3:7 76.5 77.1 74.2 76.2
2:8 71.9 73.9 71.6 73.1
1:9 69.2 70.1 67.6 68.8

Table 3: Ablation on DI:DS prefix length (60)
ratios for T5-base and LLama-7B, incorpo-
rating comparisons of Same Task, Different
Domains (Comb A) and Different Tasks, Dif-
ferent Domains (Comb B) with mean scores.

DI:DS prefix length analysis. Table 3 presents an
ablation study exploring how different ratios between
domain-invariant (DI) and domain-specific (DS) pre-
fixes affect our method’s performance with T5-base
and LLaMA-7B models under CombA (same task,
cross-domain) and CombB (different tasks and do-
mains) settings. Our optimal 5:5 ratio consistently
surpasses the second-best (6:4) by 1.9% (CombA)
and 2.4% (CombB), and greatly outperforms the
weakest ratio (1:9) by approximately 14.1% and
14.4%, respectively. These improvements highlight
the effectiveness of our balanced information bottle-
neck strategy, promoting an ideal trade-off between
domain-invariant and domain-specific information.
Additionally, incorporating orthogonality constraints,
contrastive disentanglement, and conditional indepen-
dence ensures clear separation between prefixes, substantially enhancing cross-domain generalization.

Method CombA CombB
Base (%) 7B (%) Base (%) 7B (%)

w/o all 71.1 71.9 70.8 71.3
w/o Lorth 75.2 76.8 74.2 75.9
w/o Lcons 75.5 76.9 74.7 75.8
w/o Lcond 75.3 76.5 75.1 76.1
w/o Ldisent 75.2 76.1 74.3 75.6
w/o Ladv 76.8 79.2 75.9 78.4

Our 80.1 82.8 79.5 82.3

Table 4: Ablation on disentanglement con-
straints for Base and 7B models, including
comparisons of Same Task, Different Do-
mains (Comb A) and Different Tasks, Dif-
ferent Domains (Comb B) with mean scores.

Impact of Disentanglement Constraints. Table 4
displays T5-Base and LLaMA-7B ablations for
CombA (same task, cross-domain) and CombB (dif-
ferent tasks and domains). In all circumstances,
the entire model outperforms w/o all by +9.0/+10.9
on CombA and +8.7/+11.0 on CombB. Removing
Ldisent decreases CombA to 4.9/6.7 and CombB to
5.2/6.7, showing IB-driven separation as the primary
cause Removing Ladv results in 3.3/3.6 and 3.6/3.9
reductions, indicating greater resilience to mismatch.
On average, deleting Lcons lowers scores by 5.5,
while removing any one restriction causes a 4.4-6.5
reduction. The larger drops on 7B and CombB show
that better disentanglement and adversarial regular-
ization improve capacity and cross-task transfer. This obvious separation greatly enhances model
resilience and generalization across domain-task combinations.

5 CONCLUSION

To summarize, we propose ARPO that unifies prefix disentanglement, dynamic adversarial gating,
and multi objective Bayesian optimization into a unified pipeline for robust cross domain transfer.
In particular, we split the prefix into PDI and PDS with information bottleneck and geometric
constraints, trigger adversarial updates by a stability driven threshold, and use product kernel GP
surrogates with EHVI to tune strategy structure, strength, and schedule for a better accuracy robustness
cost tradeoff. In the future, we will scale the surrogate and search space, add safety and latency
objectives, and strengthen theory for convergence under dynamic gating and shifting domains.
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Algorithm 1: Training Procedure for ARPO
1 Input: Base LM fθ; train set Dtrain = {(x, y, d)} with domain d; validation set Dval; prefix

sizes (LDI , LDS), dim d; weights λ1:5; gate params (θ0, γ, w); adversarial operator library
{Oj}mj=1; MOBO budget TBO, per-round steps Ttrain; initial mixed-decision set X0, where
x = (xstruct, α, θ) and xstruct = {(bj , sj)}mj=1.

2 Output: Learned prefixes P ∗
DI , P

∗
DS ; MOBO-optimal decision x∗ = (x∗

struct, α
∗, θ∗); trained

model fθ,P∗ ; Pareto archive AT for (Acc,Robust,−Cost).

3 Initialize: Randomly initialize PDI ∈ RLDI×d, PDS ∈ RLDS×d; set D0 ← ∅, A0 ← ∅.
4 (I) Initial design evaluation
5 foreach x = (xstruct, α, θ) ∈ X0 do
6 for t = 1 to Ttrain do
7 Sample minibatch B ⊂ Dtrain; forward h(·; [PDI ;PDS ]) and extract hDS

8 Task loss: compute Ltask on B
9 Disentanglement loss:

Ldisent = λ1LIB(PDI) + λ2LIB(PDS) + λ3Lorth + λ4Lcont + λ5Lcond

10 Gate score: δ ← 1− Ltask(t)/Ltask(0),
11 θ̂(t)← θ0 ·

(
1− exp(−γ ·Var/Mean)

)
using last w gradient steps

12 if δ ≥ θ̂(t) then
13 Build Pos/Neg in hDS via batch distance quantiles;

Ladv =
∑

(i,j)∈Pos∥hDS,i − hDS,j∥2 −
∑

(i,k)∈Neg∥hDS,i − hDS,k∥2;
14 else
15 Ladv ← 0;
16 end
17 Total: Ltotal = Ltask + αLadv + Ldisent; update {θ, PDI , PDS}
18 end
19 Evaluate f(x) = [Acc,Robust,−Cost] on Dval with a robustness protocol independent

from training perturbations; append (x, f(x)) to D0 and update A0

20 end
21 Fit GP surrogates on D0 with a product kernel over mixed (b, s, α, θ); set reference r0 (e.g.,

monotone 5th percentile)

22 (II) MOBO loop (noisy-q EHVI)
23 for t = 1 to TBO do
24 Xt ← argmax|X|=q EHVI(X | Dt−1, rt−1)
25 foreach x = (xstruct, α, θ) ∈ Xt do
26 for s = 1 to Ttrain do
27 Repeat the inner training of (I) under decision x
28 end
29 Evaluate f(x) on Dval; append to Dt and update At

30 end
31 Refit GP surrogates; update rt
32 end
33 Return: select x∗ from AT (e.g., Pareto knee or scalarization) and output P ∗

DI , P
∗
DS , x

∗, fθ,P∗ .

A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We used a large language model (e.g. ChatGPT, Claude) solely to aid and polish writing (grammar,
phrasing, and clarity). The model did not generate technical content, analyses, or results, and all
outputs were reviewed and verified by the authors.

B TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

B.1 PRELIMINARY

Prefix Tuning and Cross-Domain Transfer. Prefix tuning enables efficient fine-tuning by inserting
learnable prefix vectors into pretrained Transformers. Given input x = (x1, x2, . . . , xn), the model
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computes outputs as Transformer(x) = Attention(x+Pprefix), updating only the prefix parameters
Pprefix during training. This improves parameter efficiency and transferability. Traditional domain
adaptation minimizes differences between source PS(X,Y ) and target PT (X,Y ) distributions using
a domain-invariant extractor ϕ: D(PS(X), PT (X)) = minϕ Div(ϕ(XS), ϕ(XT )). We extend this
approach to multi-domain scenarios, enhancing cross-domain robustness.

Information Bottleneck and Mutual Information Estimation. The Information Bottleneck (IB)
theory treats deep neural networks as mechanisms that compress irrelevant information while preserv-
ing task-relevant details. Its objective is to maximize I(ϕ(X);Y )− βI(X;ϕ(X)), where I(X;Y )
denotes mutual information and β controls the compression level. Directly computing I(X;Y ) is
challenging, so Mutual Information Neural Estimation (MINE) provides a variational lower bound:

I(X;Y ) ≥ ÎMINE(X,Y ) = EPXY
[Tθ(x, y)]− log(EPXPY [e

Tθ(x,y)]), (17)

where Tθ is a parameterized neural network. To further decouple domain-invariant (PDI ) and
domain-specific (PDS) representations, an orthogonality constraint Lorth = |PT

DI ·PDS |2F is imposed,
ensuring approximate orthogonality to mitigate redundancy and negative transfer

Adversarial Training and Multi-Level Perturbations. Adversarial training enhances robustness by
introducing perturbations δ into input or intermediate representations. The objective is:

min
θ

E(x,y)∼D

[
max
∥δ∥≤ϵ

L
(
fθ(x+ δ), y

)]
, (18)

where ϵ determines perturbation strength. Token-level perturbations alter individual tokens via
x′

token = xtoken + δ, constrained by ∥δ∥ ≤ ϵtoken. Task-level perturbations mix samples from different
tasks as x′

task = αxtask1 +(1−α)xtask2, where 0 < α < 1. Perturbations at higher levels create larger
distribution shifts, enabling stronger evaluations of generalization.

Multi-Objective Bayesian Optimization. When dealing with high-dimensional hyperparameter
tuning for performance, robustness, and efficiency, methods like manual tuning often struggle to
find good solutions. Multi-Objective Bayesian Optimization (MOBO) addresses this by modeling
multiple objectives fi(x) with Gaussian Processes, written as f(x) ∼ GP (µ(x),K(x, x′)). Under
limited resources, MOBO iteratively refines the Pareto frontier, defined as

{x | ∄x′, ∀i : fi(x′) ≤ fi(x), ∃j : fj(x′) < fj(x)}. (19)

By strategically selecting hyperparameter configurations that maximize information gain, MOBO
automates optimization and balances trade-offs among objectives.

B.2 RATIONALE FOR USING SOFT PROMPTS

We use soft prompts for control, interpretation, and reproducibility. They confine trainable parameters
to the prefix space and scale linearly with length and dimension, far below full fine tuning. Prior
work shows strong performance with few vectors and gains with scale (Lester et al., 2021), effective
layer control under frozen backbones (Li & Liang, 2021), and results comparable to full fine tuning
(Liu et al., 2021c). This compact channel lets us measure mutual information, HSIC, conditional de-
pendence, and geometric margins in the prefix space without changing backbone weights. Attribution
therefore stays on our design rather than backbone drift.

Soft prompts fit ARPO and bring engineering gains. Module one performs information bottleneck
domain disentanglement at the prefix layer. Module two shapes the domain specific subspace and
gates the start time using progress, stability, and task difficulty. The outer loop uses multi objective
Bayesian optimization to search a Pareto front over structure, strength, and timing. The small
parameter count enables frequent gating and MOBO probing under realistic compute, which reduces
adversarial instability and hyperparameter cost. The pipeline thus performs joint adaptation over
time, space, and strength in a parameter efficient channel.

This choice remains general. The three ARPO mechanisms are orthogonal to the adaptation layer and
transfer to LoRA, Adapters, or full fine tuning (Hu et al., 2021; Houlsby et al., 2019). MOBO is even
more valuable with larger models and complex architectures. Soft prompts provide a clean testbed to
combine domain disentanglement, dynamic adversarial training, and MOBO strategy search, yielding
reproducible evidence and a reusable foundation for PEFT and larger models.
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B.3 EXPERIMENTAL SETTING

In this experiment, we trained and evaluated T5-base, T5-large Raffel et al. (2020), LLaMA-2-
7B Touvron et al. (2023), and Qwen3-4B Yang et al. (2025) on a single NVIDIA A6000 GPU with
48 GB memory. The prefix length was 60 and training ran for 50 epochs. Hyperparameters were
tuned with Multi-Objective Bayesian Optimization (MOBO) in a low-dimensional latent space using
500 intrinsic dimensions and 60 virtual tokens. The initial MOBO configuration used a learning rate
of 1× 10−4, a linear warm-up over 10% of training, dropout 0.1, batch size 32, and weight decay
0.01, targeting stable and efficient optimization. Random projections were initialized with dynamic
scaling factors α and standard deviations σ. We first collected five Sobol points, then performed 30
Bayesian iterations in batches of 64, iteratively refining the prompt embeddings without retraining
the full model to maintain parameter efficiency and robust cross-task performance.

Additionally, we evaluated our model’s ability to generalize and transfer knowledge across tasks and
domains using datasets from GLUE Wang et al. (2018), Super GLUE Fisch et al. (2019), MRQA
2019 shared tasks Fisch et al. (2019), and additional datasets including Yelp Zhang et al. (2015),
SciTail Khot et al. (2018), PAWS-Wiki Zhang et al. (2019), GSM8K Cobbe et al. (2021), and
HumanEval Chen et al. (2021). We compared our method against several baselines, including Fine-
tuning Radford et al. (2019), Adapter Houlsby et al. (2019), BitFit Zaken et al. (2021), SPoT Vu et al.
(2021), ATTEMPT Asai et al. (2022), XPROMPT Ma et al. (2022), InfoPrompt Wu et al. (2024),
DePT Shi & Lipani (2023), DAdEE Bajpai & Hanawal (2024), and Udapter Malik et al. (2023).

B.3.1 SAME TASKS AND DOMAIN DIFFERENCES DATASETS EXPLANATION:

NQ→ SQA: Both datasets involve question-answering tasks but originate from distinct domains.
The Natural Questions (NQ) dataset comprises real user queries sourced from the Google search
engine, whereas the Sequential Question Answering (SQA) dataset includes sequentially dependent
questions based on Wikipedia paragraphs. Thus, the two datasets differ significantly in their contextual
backgrounds and query formats.

Yelp → SciTail: Both datasets focus on text classification or entailment tasks. The Yelp dataset
contains everyday scenarios such as restaurant reviews, whereas the SciTail dataset consists of textual
entailment examples extracted from scientific literature, highlighting substantial domain differences.

News→ HP: Both datasets involve text classification tasks. The News dataset contains general news
articles, while the Hyperpartisan (HP) dataset specifically targets classification of news articles based
on their partisan political orientation. Consequently, they differ considerably in content style and
topical characteristics.

MNLI → QQP: Both tasks involve natural language inference or semantic similarity judgment.
Multi-Genre Natural Language Inference (MNLI) emphasizes inference across various textual genres,
whereas Quora Question Pairs (QQP) concentrates specifically on evaluating semantic similarity
between pairs of questions. Thus, their task contexts and application scenarios differ markedly.

CoLA→ PAWS: Both datasets pertain to linguistic acceptability or semantic analysis tasks. The
Corpus of Linguistic Acceptability (CoLA) dataset is utilized for grammatical acceptability judgments,
while the Paraphrase Adversaries from Word Scrambling (PAWS) dataset aims to detect whether
sentences retain meaning after word reordering. These datasets exhibit significant domain and
task-specific differences.

B.3.2 DIFFERENCES TASKS AND DOMAIN DIFFERENCES DATASETS EXPLANATION:

CoLA→ QQP: Regarding task differences, CoLA (Corpus of Linguistic Acceptability) is designed
for grammatical acceptability judgments, primarily assessing whether sentences adhere to linguistic
correctness. Conversely, QQP (Quora Question Pairs) involves evaluating the semantic similarity
between pairs of questions, representing a fundamentally distinct task. Concerning domain differences,
CoLA deals with linguistic analysis typically within an academic linguistic framework, while QQP
encompasses colloquial and everyday user-generated questions.

GSM8K → HumanEval: GSM8K has natural language math problems that require multistep
numerical reasoning and a single numeric answer. HumanEval asks for executable Python functions
from text specifications that must pass unit tests; the output shifts from a scalar to a program, and
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the metric from accuracy to pass@k. The domains differ: GSM8K is educational arithmetic with
everyday language, while HumanEval is software engineering that relies on code syntax, libraries,
and algorithmic patterns. Inputs, reasoning, and errors also diverge: narrative prompts vs function
signatures, arithmetic chains vs program planning and control flow, and calculation or unit mistakes
vs syntax, semantic, or edge case bugs.

BoolQ→ NQ: BoolQ involves binary yes-or-no question-answering, requiring models to provide
definitive affirmative or negative responses. In contrast, NQ (Natural Questions) demands extractive
question answering, where models must identify and extract precise answer spans from documents.
Regarding domains, BoolQ questions are typically closed-ended and clearly structured, while NQ
questions are sourced from actual user queries on Google, featuring greater openness and diversity.

HP→ SciTail: For task differences, HP (Hyperpartisan) pertains to classifying news articles ac-
cording to partisan political alignment, whereas SciTail addresses textual entailment recognition
specifically within scientific contexts. Concerning domain differences, HP data is centered on
subjective political viewpoints and biases in news reporting, while SciTail content is derived from ob-
jective scientific literature characterized by rigorous logic and structured reasoning, thus representing
distinctly separate domains.

MNLI → SQA: Regarding task distinctions, MNLI (Multi-Genre Natural Language Inference)
involves inference-based evaluations of logical relationships between text pairs across multiple
genres. Conversely, SQA (Sequential Question Answering) is concerned with extractive answering
of sequentially dependent questions based on provided contexts. Domain-wise, MNLI spans diverse
text genres and styles, whereas SQA specifically targets continuous information extraction from
Wikipedia articles, underscoring notable differences in both textual nature and application context.

B.4 SUPPLEMENTARY EXPERIMENTS

B.4.1 EXPERIMENTS ON T5 BASE & T5 LARGE MODELS

Method NQ→SQA Yelp→SciTail News→HP MNLI→QQP CoLA→PAWS Mean
B L B L B L B L B L B L

Fine-tuning 68.9 71.2 87.3 90.5 65.2 67.8 75.3 78.8 66.5 69.3 72.6 75.5
Adapter 72.5 73.8 89.1 91.3 65.7 67.9 77.8 80.2 68.4 70.5 74.7 76.7
BitFit 68.6 71.9 83.9 87.0 66.7 69.2 76.1 82.3 67.9 70.3 72.7 76.1
PT 64.1 69.3 86.7 89.8 69.3 69.7 75.4 78.7 64.1 69.5 71.9 75.4
PT-2 65.8 71.1 87.2 90.1 68.2 71.5 77.2 80.1 66.3 70.1 72.9 76.6
SPoT 65.9 70.2 85.6 89.7 67.4 70.5 78.9 82.3 67.5 70.8 73.1 76.7
ATTEMPT 69.9 74.4 86.4 90.7 68.6 71.2 79.1 82.5 68.5 71.2 74.5 78.0
XPROMPT 70.9 73.2 86.1 90.3 70.8 72.1 80.2 84.5 69.4 71.8 75.5 78.4
InfoPrompt 72.4 75.2 87.3 91.5 69.5 71.8 81.6 85.7 70.8 72.1 76.3 79.3
DEPT 73.6 75.9 89.4 93.7 70.2 74.5 83.0 86.9 71.0 73.3 77.4 80.9

ARPO 76.2 79.5 92.5 96.7 72.9 76.8 85.6 89.7 73.1 76.4 80.1 83.8

Table 5: Comparison of methods evaluated on cross-domain transfer tasks using the T5-base (B) and
T5-large (L) models. Mean accuracy across all tasks is also reported.

Section B.4.1 reports cross domain transfer on T5 base and T5 large. Table 5 shows that our
method attains a mean of 80.1 on base and 83.8 on large, which exceeds DePT by 2.7 and 2.9
points. The advantage holds on every transfer. NQ→SQA improves by 2.6 on base and 3.6 on large.
Yelp→SciTail improves by 3.1 and 3.0. News→HP improves by 2.7 and 2.3. MNLI→QQP improves
by 2.6 and 2.8. CoLA→PAWS improves by 2.1 and 3.1. Yelp→SciTail reaches 96.7 on T5 large,
while News→HP is the hardest but still gains. Scaling from base to large adds 3.7 points for our
method and 3.5 for DePT, so the margin remains. These results arise because the disentangled prefix
separates domain invariant and domain specific signals, which reduces negative transfer and preserves
task cues. The dynamic threshold schedules adversarial updates only when the task loss improvement
and gradient statistics indicate value, which avoids early noise and focuses learning on the domain
specific space. The MOBO search finds effective strategy settings in a small number of trials, which
balances accuracy, robustness, and cost better than manual tuning. The parameter efficient design
lowers the risk of overfitting and stabilizes training, so gains persist when model capacity increases.
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Method CoLA→QQP RTE→SST-2 BoolQ→NQ HP→SciTail MNLI→SQA Mean
B L B L B L B L B L B L

Fine-tuning 64.2 66.7 77.4 80.2 68.1 71.5 69.7 73.1 71.9 75.3 70.3 73.4
Adapter 67.9 69.3 79.4 81.8 70.8 71.9 72.1 74.8 71.1 77.5 72.3 75.1
BitFit 66.4 68.8 79.1 82.5 69.5 72.9 71.8 74.2 71.3 77.4 71.6 75.2
PT 65.5 69.5 78.5 82.9 68.3 72.2 71.6 74.7 70.9 76.5 71.0 75.2
PT-2 66.2 68.0 79.2 83.1 69.2 72.8 72.1 75.2 72.2 77.2 71.8 75.3
SPoT 66.8 68.5 79.5 83.3 70.9 73.1 74.2 77.1 74.9 79.9 73.3 76.4
ATTEMPT 67.2 70.6 80.8 83.8 71.4 73.8 74.8 77.9 75.5 80.6 73.9 77.3
XPROMPT 68.5 72.1 81.1 83.9 71.9 74.2 75.5 78.5 76.2 81.1 74.6 78.0
InfoPrompt 68.9 72.5 81.7 84.1 72.2 74.9 75.9 79.7 76.8 81.9 75.1 78.6
DEPT 69.4 73.8 82.5 85.9 72.8 75.2 76.6 80.3 77.7 83.3 75.8 79.7

ARPO 73.5 76.8 85.1 88.4 76.3 79.6 80.1 83.5 82.5 86.2 79.5 82.9

Table 6: Comparison of methods evaluated on different-task, different-domain transfer scenarios
using T5-base (B) and T5-large (L) models. Mean accuracy across all tasks is also presented.

Table 6 reports different task and different domain transfer on T5 base and T5 large, where our method
achieves the best mean accuracy in both settings, with 79.5 on base and 82.9 on large, exceeding
DePT by 3.7 and 3.2 points. The gains are consistent across all transfers. For CoLA→QQP the
improvements over DePT are 4.1 on base and 3.0 on large. For RTE→SST–2 the improvements are
2.6 and 2.5. For BoolQ→NQ the improvements are 3.5 and 4.4. For HP→SciTail the improvements
are 3.5 and 3.2. For MNLI→SQA the improvements are 4.8 and 2.9. These results arise because
the disentangled prefix separates domain invariant and domain specific information, which limits
negative transfer while preserving task signals. The dynamic threshold schedules adversarial updates
only when loss progress and gradient statistics indicate value, which prevents early noise and focuses
adaptation on domain specific features. The multi objective Bayesian search selects effective strategy
settings with few evaluations, which balances accuracy, robustness, and cost better than manual
tuning. The parameter efficient design reduces overfitting risk and stabilizes training across tasks and
model sizes, so the advantage persists when scaling from base to large.

B.4.2 EXPERIMENTS ON HYPERPARAMETER SENSITIVITY

Parameter Search Range Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Optimal Range

λ1 [0.1, 1.0]
76.2± 1.6 78.4± 1.5 80.1± 1.2 79.8± 1.2 79.2± 1.3 77.8± 1.5

[0.5, 0.7]
(0.1) (0.3) (0.5) (0.7) (0.9) (1.0)

λ2 [0.1, 1.0]
75.8± 1.5 77.9± 1.3 80.1± 1.2 79.3± 1.1 79.4± 1.2 78.1± 1.4

[0.5, 0.7]
(0.1) (0.3) (0.5) (0.7) (0.9) (1.0)

λ3 [0.01, 0.5]
79.4± 1.5 79.8± 1.2 80.1± 1.2 79.6± 1.1 78.9± 1.3 77.2± 1.6

[0.05, 0.1]
(0.01) (0.05) (0.1) (0.2) (0.3) (0.5)

λ4 [0.05, 0.3]
79.2± 1.3 79.7± 1.3 79.9± 1.1 80.1± 1.2 79.5± 1.2 78.8± 1.4

[0.15, 0.25]
(0.05) (0.1) (0.15) (0.2) (0.25) (0.3)

λ5 [0.01, 0.2]
79.8± 1.5 80.0± 1.1 80.1± 1.2 79.9± 1.0 79.4± 1.2 78.6± 1.5

[0.03, 0.08]
(0.01) (0.03) (0.05) (0.08) (0.12) (0.2)

Table 7: Hyperparameter sensitivity results (mean ± standard deviation). Bold candidate values in
parentheses indicate the best-performing setting within each row.

Table 7 shows that performance is most sensitive to the Information Bottleneck weights in Equa-
tion (6), with peaks at λ1 = 0.5 and λ2 = 0.5 where the mean reaches 80.1± 1.2 and then declines
toward both ends of the search ranges. The orthogonality term works best around λ3 = 0.1 with
a stable region in [0.05, 0.10]. The contrastive term prefers moderate strength with λ4 = 0.2 and
remains strong in [0.15, 0.25]. The conditional independence term is most effective near λ5 = 0.05
with a stable region in [0.03, 0.08]. These results indicate that the main gains come from balancing
domain invariant extraction and domain specific retention, since λ1 and λ2 control the trade off
between removing domain cues and preserving task signals; too small values under regularize and
allow leakage across prefixes, while too large values over regularize and remove useful information.
The orthogonality weight avoids representation mixing and reduces redundancy, but if it is too
high it limits capacity and hurts alignment. The contrastive and conditional independence terms
improve structure and separability when set to moderate values; if they are too weak they fail to
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Notation Component Update Method Description (Range/Setting)
L Total prefix length Backprop (Adam) Total tokens, split as L = LDI + LDS , range: 10–50.
LDI Domain-invariant prefix Backprop (Adam) Prefix tokens for domain-invariant features, integer [0, L].
LDS Domain-specific prefix Backprop (Adam) Prefix tokens for domain-specific features, integer [0, L].
d Embedding dimension Fixed by backbone Embedding size (e.g., T5-base: d = 768).

β1, β2 IB weighting factors Backprop (Adam) Balances mutual information objectives, real ≥ 0.
τ Contrastive temperature Backprop (Adam) Contrastive similarity scaling, typical range: 0.01–0.2.
λ0 Orthogonality penalty base Backprop (Adam) Base factor for adaptive orthogonality, real > 0.
λ1, . . . , λ5 Disentanglement weights Backprop (Adam) Weights for losses LIB , Lorth, Lcont, Lcond, real ≥ 0.

α Adversarial balance Backprop (Adam) Balances Ladv and Ltask, real in [0,1].
δ(Ltask(t)) Improvement ratio Computed per iteration Task loss improvement ratio, real in [0,1].
θ(t) Dynamic threshold Computed per iteration Adversarial activation threshold, real in [0,1].
θ0 Base threshold Hyperparameter Initial threshold for θ(t), real in [0,1].
γ Threshold sensitivity Hyperparameter Gradient variance sensitivity, real > 0.
β Task-difficulty sensitivity Hyperparameter Scales threshold by task difficulty, real ≥ 0.
w Lookback window Fixed integer Recent batches for variance calculation, typical: 5–20.

Pos/Neg threshold Pair distance threshold Hyperparameter Threshold for positive/negative pairs, real > 0.
Ladv Adversarial loss weight Backprop (Adam) Loss computed from positive/negative pairs.

T Max training iterations Outer loop Optimization steps, integer > 0.
{Oj} Atomic adversarial ops BO-chosen Basic ops (FGSM, PGD, swaps), each with toggle bj , strength sj .
bj ∈ {0, 1} Discrete op toggle BO (GP model) Operation active/inactive binary indicator.
sj ∈ R Continuous op strength BO (GP model) Magnitude of perturbation, typical range [0,5].
Strategy Adversarial strategy MOBO-selected Combination of (bj , sj) pairs, updated per iteration.

EHVI Acquisition function MOBO/GP Expected Hypervolume Improvement for strategy selection.

Table 8: Key Parameters and Hyperparameters in the Adaptive Robust Prefix Optimization

guide the split, and if they are too strong they force overly rigid clusters. The observed optima
match the automated search in Section 3.3.2, where the multi objective Bayesian optimization treats
x = (α, θ, λ1, . . . , λ5, Strategy) as decision variables, starts from Sobol initialization, and converges
within about 30 iterations; ablations attribute about 60% of the total gain to λ1 and λ2.

As shown in the Table 8, it summarizes the key parameters guiding our method’s core functionalities.
The prefix lengths (L,LDI , LDS) separate domain-invariant and domain-specific features, while mu-
tual information and orthogonality weights (β1, β2, λ1, . . . , λ5) control disentanglement strength. The
dynamic threshold parameters (θ(t), θ0, γ, β) manage when adversarial training begins, preventing
early interference. Adversarial strategies (e.g., {Oj}, bj , sj) and multi-objective Bayesian optimiza-
tion (EHVI) collaborate to tune both discrete and continuous components, enhancing cross-domain
robustness and reducing manual efforts.

B.4.3 EXPERIMENT ON SIGNIFICANCE STUDY

Task Transfer Mean 95% CI CV
NQ→SQA 76.2± 1.3 [74.6, 77.8] 1.44%
Yelp→SciTail 92.5± 1.2 [91.0, 94.0] 1.30%
News→HP 72.9± 1.3 [71.3, 74.5] 1.78%
MNLI→QQP 85.6± 1.2 [83.7, 87.1] 1.40%
CoLA→PAWS 73.1± 1.1 [71.4, 74.5] 1.51%

Mean 80.1± 1.2 [78.0, 82.2] 1.49%

Table 9: Cross-domain task transfer results
with mean ± standard deviation, 95% confi-
dence interval (95% CI), and coefficient of
variation (CV).

The significance study in Table 9 indicates consistent
cross domain transfer performance with narrow uncer-
tainty across tasks. On the dev set, we report means
and 95% confidence intervals over 5 independent
runs: the overall mean is 80.1± 1.2 with a 95% inter-
val of [78.0, 82.2] and a 1.49% coefficient of varia-
tion; Yelp→SciTail attains 92.5± 1.2, MNLI→QQP
reaches 85.6± 1.2, NQ→SQA and CoLA→PAWS
yield 76.2± 1.3 and 73.1± 1.1, while News→HP is
the hardest at 72.9± 1.3, indicating stable training
and limited run to run variance. These outcomes stem
from three design choices. Information bottleneck
driven prefix disentanglement separates domain invariant and domain specific signals, which reduces
negative transfer while preserving task cues. A dynamic adversarial schedule activates only after loss
stabilization, improving robustness without early instability. Multiobjective Bayesian optimization
tunes the adversarial weight, trigger, and strategy to balance accuracy and robustness. The residual
gap on News→HP reflects stronger distribution shift and label subjectivity, leaving headroom for
future refinement.
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B.4.4 MODEL RUNTIME AND EFFICIENCY EXPERIMENTS

Under identical training conditions (NVIDIA A6000 GPU, 50 epochs, batch size of 32, T5-base
backbone), we report reproducible wall-clock times and normalized costs. Full fine-tuning requires
120 min/epoch (approximately 100 h total; normalized cost 1.00); DePT completes in 52 min/epoch
(approximately 43.3 h; cost Model Runtime and Efficiency Experiments). In contrast, ARPO trains
in 45 min/epoch (approximately 37.5 h; cost 0.64), yielding a 13.4% reduction relative to DePT. All
measurements are obtained on the same hardware and schedule to ensure a fair comparison.

The efficiency gains arise from the synergy of parameter economy, selective adversarial computation,
and sample-efficient strategy search. ARPO updates fewer than 1% of parameters, which reduces
backward-pass overhead and memory traffic. Its dynamic thresholding, driven by the progress signal
δ(Ltask(t)), suppresses unproductive adversarial steps during early training, avoiding roughly 40% of
adversarial computations in the first 30% of iterations. Moreover, the MOBO component typically
identifies effective operating points in about 30 evaluations, whereas grid search often requires
hundreds. At inference, ARPO introduces negligible latency because deployment only concatenates
learned prefix embeddings without auxiliary branches or test-time optimization.

C THEORETICAL AND IMPLEMENTATION DETAILS FOR ADAPTIVE
REPRESENTATION LEARNING OF DISENTANGLED PREFIX

C.1 MUTUAL INFORMATION NEURAL ESTIMATION (MINE): VARIATIONAL FORM,
STABILIZATION, AND BIAS/VARIANCE BOUNDS

Let random variables U, V have joint p(u, v) and marginals p(u), p(v). Mutual information is

I(U ;V ) = Ep(u,v)

[
log

p(u, v)

p(u)p(v)

]
. (20)

A variational representation follows from the Donsker–Varadhan (DV) inequality for KL: for any
measurable T : U × V → R,

I(U ;V ) = KL
(
p(u, v)

∥∥ p(u)p(v)) ≥ sup
T

{
Ep(u,v)[T (u, v)]− logEp(u)p(v)

[
eT (u,v)

]}
. (21)

MINE parameterizes T (u, v) = Tϕ(u, v) with a neural network and maximizes the DV lower
bound ÎDV(ϕ) over ϕ using stochastic gradients Belghazi et al. (2018). In practice, expectations in
equation 21 are replaced by mini-batch Monte Carlo estimates using positive pairs (ui, vi) ∼ p(u, v)
and negative pairs formed by shuffling to approximate p(u)p(v). The empirical objective reads

ÎDV(ϕ) =
1

B

B∑
i=1

Tϕ(ui, vi)− log

(
1

B

B∑
i=1

eTϕ(ui,ṽi)

)
, ṽi i.i.d. ∼ p(v), (22)

which is a biased but consistent estimator of the DV bound under increasing batch size and training
time. The bias arises from the concavity of log(·) and finite-sample estimation of the denominator;
variance arises from the exponential moment eTϕ that amplifies tail noise. Systematic comparisons
show DV is among the tightest common variational MI bounds but exhibits high estimator variance
and optimization instability in high dimensions or with small batches Poole et al. (2019).

An alternative lower bound widely used in contrastive learning is InfoNCE Oord et al. (2018). Let
{(u, v+), (u, v−1 ), . . . , (u, v

−
K−1)} contain one positive sample from p(u, v) and K − 1 negatives

from p(u)p(v). Define the score sϕ(u, v) = Tϕ(u, v). The InfoNCE objective is

ÎNCE(ϕ) = E

[
log

exp sϕ(u, v
+)

exp sϕ(u, v+) +
∑K−1

k=1 exp sϕ(u, v
−
k )

]
+ logK, (23)

which lower-bounds I(U ;V ), tightens with K, and typically has lower variance than DV due to the
softmax normalization. The ordering between DV, NWJ, and InfoNCE in tightness and dispersion is
detailed in Poole et al. (2019).
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For ARPO, we employ a MINE-style critic Tϕ but stabilize training by controlling the denominator
in equation 22. Let

Ẑt =
1

B

B∑
i=1

eTϕt (ui,ṽi), Z̄t = β Z̄t−1 + (1− β) Ẑt, β ∈ [0, 1), (24)

and replace log Ẑt by log Z̄t in equation 22. The exponential moving average reduces stochastic
curvature in the log-partition estimate and yields a controllable bias–variance trade-off; Z̄t converges
in mean to the population moment when batches are i.i.d. and β is fixed. We additionally use gradient
clipping ∥∇ϕÎDV∥ ≤ c to control heavy-tailed gradients induced by eTϕ , and increase the number
of negatives per batch when using InfoNCE to tighten equation 23 without destabilizing learning.
Empirical and theoretical studies report that DV-like estimators suffer variance blow-up in small-batch
or high-dimensional regimes, while contrastive bounds such as InfoNCE trade tightness for stability
and sample-efficiency Poole et al. (2019).

Bias and variance can be decomposed at the bound level. Let I⋆ denote the true MI. For a generic
variational lower bound Lϕ estimated from B i.i.d. samples,

BiasB = E[L̂ϕ⋆
B
]− I⋆ ≤ 0, VarB = V[L̂ϕ⋆

B
], (25)

where ϕ⋆
B maximizes the empirical objective. For DV, VarB scales with the second moment of eTϕ

under p(u)p(v) and can be large without norm control; for InfoNCE, VarB scales with the variance
of a bounded log-softmax and is therefore better behaved for fixed K Poole et al. (2019). Further
results establish limits showing that high MI cannot be reliably estimated from limited samples
without strong inductive bias McAllester & Stratos (2020), motivating our use of MI estimates as soft
regularizers and diagnostics rather than primary loss terms.

Connections to f -divergences clarify parameterizations. Let Tϕ define a variational class for KL
via f -GAN; then equation 21 arises by choosing the convex conjugate of f(t) = t log t. Alternative
choices yield NWJ and Jensen–Shannon bounds with different curvature and gradient properties
Nowozin et al. (2016). These links justify using contrastive parameterizations of Tϕ in equation 23
when stability is paramount.

In ARPO, MI terms appear in the disentanglement objective as regularizers. For domain-invariant
prefixes we employ an InfoNCE-style estimator with temperature and a moderate number of negatives
to enhance stability and prevent variance amplification; for domain-specific leakage penalties we
optionally use a DV-style MINE with EMA-stabilized partition function Z̄t in equation 24 to detect
residual dependence. Both estimators are computed on held-out mini-batches and enter the loss with
small weights, so that noisy MI fluctuations do not dominate the training signal; the dynamic gate
and MOBO decide when and how strongly to apply adversarial components based on validation
outcomes, not raw MI estimates.

Under bounded critic outputs |Tϕ| ≤M and sub-exponential tails for eTϕ under p(u)p(v), a Bernstein-
type concentration bound yields, with probability at least 1− δ,∣∣ÎDV(ϕ)− IDV(ϕ)

∣∣ ≤ C1

√
log(2/δ)

B
+ C2

log(2/δ)

B
, (26)

for constants C1, C2 depending on M and the Orlicz norm of eTϕ . For InfoNCE with fixed K,

boundedness of the log-softmax implies a Hoeffding-type bound of order O
(√

log(1/δ)
B

)
. Together

with the EMA bias log Ẑt 7→ log Z̄t of order O(1− β) in steady state, these inequalities explain the
empirical stability gains from equation 24 and motivate our estimator selection. Formal derivations
and bound comparisons are provided in Poole et al. (2019); McAllester & Stratos (2020).

C.2 HILBERT–SCHMIDT INDEPENDENCE CRITERION: KERNELS, NORMALIZATION,
NUMERICAL STABILITY, AND ADAPTIVE RESCALING

Let (X,Y ) ∼ PXY with marginals PX and PY . Let k : X ×X → R and ℓ : Y×Y → R be bounded,
positive-definite kernels with RKHS F and G. The cross-covariance operator CXY : G → F is
defined by

⟨f, CXY g⟩F = E[(f(X)− Ef(X))(g(Y )− Eg(Y ))] , f ∈ F , g ∈ G. (27)
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The Hilbert–Schmidt Independence Criterion (HSIC) is the squared Hilbert–Schmidt norm

HSIC(PXY ;F ,G) = ∥CXY ∥2HS, (28)

which equals zero if and only if X and Y are independent when k and ℓ are characteristic Gretton
et al. (2007; 2012).

An equivalent population expression is

HSIC(PXY ) = EXX′Y Y ′
[
k(X,X ′) ℓ(Y, Y ′)

]
+ EXX′

[
k(X,X ′)

]
EY Y ′

[
ℓ(Y, Y ′)

]
− 2EXY

[
EX′k(X,X ′)EY ′ℓ(Y, Y ′)

]
.

(29)

where (X ′, Y ′) is an i.i.d. copy of (X,Y ).

Given samples {(xi, yi)}ni=1, define Gram matrices K = [k(xi, xj)]i,j and L = [ℓ(yi, yj)]i,j , and
the centering matrix H = In − 1

n11
⊤. The biased V-statistic estimator is

ĤSICV =
1

n2
tr
(
KHLH

)
, (30)

and the unbiased U-statistic estimator is Gretton et al. (2012)

ĤSICU =
1

n(n− 3)

[
tr(K̃L̃) +

1⊤K̃1 1⊤L̃1

(n− 1)(n− 2)
− 2

n− 2
1⊤K̃L̃1

]
, (31)

K̃ = K − diag(K), L̃ = L− diag(L). (32)

Both equation 30 and equation 31 are consistent for HSIC(PXY ).

For Gaussian kernels k(x, x′) = exp
(
−∥x−x′∥2/(2σ2

x)
)

and ℓ(y, y′) = exp
(
−∥y−y′∥2/(2σ2

y)
)
,

bandwidths σx, σy can be set by data-dependent rules. The median heuristic chooses σ2
x =

median{ ∥xi − xj∥ : i < j }2/ log 2 and analogously for σy. Silverman/Scott scaling yields
σ2
x = cx ŝ

2
X n−2/(dx+4) and σ2

y = cy ŝ
2
Y n−2/(dy+4), where ŝ is a scale estimate and dx, dy are

intrinsic dimensions Silverman (2018); Scott (2015).

To avoid scale sensitivity and ill-conditioned gradients, normalize HSIC by the Frobenius norms of
centered kernels. Let

K = HKH, L = HLH, ĥ =
tr(KL)

∥K∥F ∥L∥F
∈ [0, 1], (33)

which is invariant to positive rescalings of K or L and coincides with centered kernel alignment up
to normalization Cortes et al. (2012). For numerical stability, compute K, L via double-centering,
optionally add a ridge εI inside Gaussian distances in high dimension, and clip ĥ into [0, 1− ϵ] for a
small ϵ > 0.

In ARPO, the HSIC penalty between embeddings from PDI and PDS is introduced through an
adaptive rescaling that implements a curriculum on independence. Let ĥt be the batch estimate
equation 33 at iteration t, and define an exponential moving average

h̃t = η h̃t−1 + (1− η) ĥt, η ∈ [0, 1). (34)

The penalty is

RHSIC(X,Y ) =
1

max{ϵ, 1− h̃t}
− 1

1− ϵ
, (35)

which is monotone in h̃t, equals zero at h̃t = 0, and increases smoothly as dependence grows. Since
ĥ ∈ [0, 1], equation 35 is bounded by ϵ, and the EMA detaches gradients through h̃t−1 to prevent
temporal credit leakage.

Gradients are obtained by differentiating tr(KL) and the norms in equation 33. For Gaussian k,

∂Kij

∂xi
=

1

σ2
x

Kij (xj − xi),
∂K

∂xi
= H

(
∂K

∂xi

)
H, (36)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

and similarly for yi. The quotient rule yields ∂ĥ/∂xi with ∂∥K∥F /∂xi = ⟨K/∥K∥F , ∂K/∂xi⟩F .
Under i.i.d. sampling, ĤSICV and ĤSICU converge to HSIC(PXY ) with variance O(n−1) Gretton
et al. (2012). For weakly dependent mini-batches, variance control is aided by normalization
equation 33 and the EMA in equation 35; for independence testing with dependence, wild bootstrap
schemes provide consistent null approximations Chwialkowski et al. (2014).

Kernel choice follows representation geometry. For high-dimensional continuous embeddings we
use Gaussian kernels with the median heuristic for characteristicness without extra hyperparameters.
When linear dependence control suffices, linear kernels k(x, x′) = x⊤x′ and ℓ(y, y′) = y⊤y′ reduce
computation and align with equation 33. In practice σx, σy are initialized by the median heuristic and
refreshed periodically if the empirical distance distribution drifts, while a small ridge and clipping
of ĥ ensure Lipschitz behavior ofRHSIC on compact parameter sets. This penalty couples with the
orthogonality term in the main text to remove linear overlap and suppress nonlinear dependence,
and its adaptive schedule matches the dynamic gate and MOBO controller that operate on validation
feedback rather than internal penalty scales.

C.3 QUANTILE-BASED CONTRASTIVE PAIRING, TEMPERATURE ADAPTATION, AND COLLAPSE
PREVENTION

Let normalized embeddings zi ∈ Sd−1 be produced from inputs by the encoder augmented with
the disentangled prefixes. For an anchor i, define cosine distance dij = 1 − z⊤i zj ∈ [0, 2] and
the empirical CDF Fi(t) = 1

B−1

∑
j ̸=i 1{dij ≤ t} over a minibatch of size B. For quantiles

qpos, qneg ∈ (0, 1) with qpos < qneg, define thresholds

∆pos
i = F−1

i (qpos), ∆neg
i = F−1

i (qneg), (37)

and the index sets

Pi = { j ̸= i : dij ≤ ∆pos
i , task(j) = task(i) },

Ni = { j ̸= i : dij ≥ ∆neg
i , domain(j) ̸= domain(i) }.

(38)

Thus the positive and negative proportions are controlled by quantiles, which stabilize batch-wise
difficulty by keeping |Pi| ≈ qpos(B − 1) and |Ni| ≈ (1− qneg)(B − 1). In ARPO, (qpos, qneg) are
treated as low-cardinality decision variables that can be optimized by MOBO alongside (α, θ).

For anchor i, the temperature-scaled InfoNCE loss with multi-positive sampling is

Li(τ) = −
1

|Pi|
∑
p∈Pi

log
exp
(
z⊤i zp/τ

)
exp
(
z⊤i zp/τ

)
+
∑

n∈Ni
exp
(
z⊤i zn/τ

) . (39)

The batch loss is Lcont =
1
B

∑B
i=1 Li(τ). When qpos and qneg are fixed, equation 39 reduces to a

standard contrastive objective with controlled hard-positive and hard-negative ratios, whose gradient
magnitudes grow with alignment and uniformity tensions on the hypersphere Wang & Isola (2020);
Chen et al. (2020).

To adapt the temperature τ > 0 to batch difficulty, consider the logits ℓij = z⊤i zj/τ with softmax
probabilities pij =

exp(ℓij)∑
k∈{p}∪Ni

exp(ℓik)
inside the denominator of equation 39. Define the effective

support size Si = (
∑

j p
2
ij)

−1 ∈ [1, 1 + |Ni|]. Fix a target S⋆ ∈ (1, 1 + |Ni|) and update τ by a
proportional control on the log-scale with an exponential moving average S̄t:

S̄t = ηS̄t−1 + (1− η)

(
1

B

B∑
i=1

Si

)
, log τt+1 = log τt + κ (S̄t − S⋆), (40)

with η ∈ [0, 1) and gain κ > 0. Larger than desired S̄t increases τ , flattening the softmax and
reducing peaky assignments; smaller S̄t decreases τ , sharpening the distribution. This keeps the
“effective number of competing negatives” near S⋆, decoupling learning dynamics from instantaneous
batch hardness and echoing empirical findings on temperature and batch size Chen et al. (2020). An
equivalent variance-matching rule sets τ so that the batch variance of {z⊤i zj/τ} tracks a target σ2

ℓ ,
yielding τ2t+1 = τ2t · V̂ar(z⊤i zj)/σ

2
ℓ with EMA smoothing.
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To prevent dimensional collapse, control the spectrum of the centered feature matrix. Let Z =
[z1, . . . , zB ]

⊤ ∈ RB×d and Z̃ = HZ with H = I − 1
B11⊤. Let the sample covariance be

C = 1
B Z̃⊤Z̃ with eigenvalues λ1 ≥ · · · ≥ λd ≥ 0. Penalize anisotropy by

Rspec(Z) =

d∑
r=1

[max{0, λmin − λr}]2 + ρ

d∑
r=1

(λr − λ̄)2, λ̄ =
1

d

d∑
r=1

λr, (41)

with target floor λmin > 0 and dispersion weight ρ ≥ 0. The first term enforces per-dimension
variance, the second shrinks the spectrum toward isotropy; both admit gradients via the eigende-
composition of C and are stable for moderate d HaoChen et al. (2021). Alternatively, uniformity
can be promoted by the hyperspherical potential U = Ei̸=j exp(α ∥zi − zj∥2) whose minimization
encourages repulsion Wang & Isola (2020).

Hard-negative mixing further stabilizes gradients when Ni contains extremely difficult negatives. For
each anchor i and negative n ∈ Ni, define a mixed negative

z̃in = λzn + (1− λ)zp(i), λ ∼ Beta(a, b), (42)

where p(i) ∈ Pi is a closest positive under cosine distance. Replace zn by z̃in in equation 39 for a
subset of the hardest negatives. This reduces variance while retaining discriminative power Kalantidis
et al. (2020). The mixture rate and the fraction of mixed negatives can be functions of the batch
quantiles, e.g. only mixing when din ≤ F−1

i (qmix).

Putting these components together, the contrastive regularizer used in the main text combines
equation 39 with the adaptive temperature rule equation 40 and the spectral penalty equation 41.
The quantiles (qpos, qneg) and the temperature initialization are exposed to MOBO as discrete and
continuous knobs, respectively, while the spectral penalty weight is scheduled by the gate to emphasize
collapse prevention early and relax later. Theoretical analyses connect temperature and batch size to
effective hardness and gradient scale Chen et al. (2020), interpret contrastive learning as enforcing
alignment and uniformity with spectral control to avoid trivial representations Wang & Isola (2020);
HaoChen et al. (2021), characterize dimensional collapse and provide sufficient conditions to avoid it
via variance floors and spectrum spreading Jing et al. (2021), and justify hard-negative mixing as a
variance-reducing strategy that preserves decision margins Kalantidis et al. (2020). These insights
inform the particular form of the adaptive pairing, temperature scheduling, and spectral regularization
used by ARPO.

C.4 CONDITIONAL INDEPENDENCE VIA KL ESTIMATION: VARIATIONAL FORMULATION,
IMPLEMENTATION, AND CONSISTENCY

Let Z1 = PDI , Z2 = PDS , and Y be the task label. We quantify conditional dependence by the
conditional Kullback–Leibler divergence

DKL

(
p(Z1, Z2 | Y )

∥∥∥ p(Z1 | Y ) p(Z2 | Y )
)

= Ep(y)

[
DKL

(
p(Z1, Z2 | y)

∥∥∥ p(Z1 | y) p(Z2 | y)
)]

.
(43)

which is nonnegative and equals zero if and only if Z1 ⊥⊥ Z2 | Y almost surely.

Variational estimator via f -GAN. Let Py = p(Z1, Z2 | y) and Qy = p(Z1 | y) p(Z2 | y) for
each y. For f(t) = t log t (the generator of KL), its convex conjugate is f∗(u) = exp(u − 1). By
the f -divergence variational representation Nowozin et al. (2016),

DKL(Py ∥Qy) = sup
T∈T

{
E(Z1,Z2)∼Py

[
T (Z1, Z2, y)

]
− E(Z1,Z2)∼Qy

[
exp
(
T (Z1, Z2, y)− 1

)]}
.

(44)

A conditional discriminator Tϕ(z1, z2, y) parameterized by a neural network induces the empirical
objective

L̂KL(ϕ) =
1

|B|
∑
(i)∈B

Tϕ(z
(i)
1 , z

(i)
2 , y(i))− 1

|B|
∑
(i)∈B

exp
(
Tϕ(z

(i)
1 , z̃

(i)
2 , y(i))− 1

)
, (45)
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where B indexes a mini-batch of triples (z
(i)
1 , z

(i)
2 , y(i)) sampled from p(Z1, Z2, Y ); the pairs

(z
(i)
1 , z̃

(i)
2 ) form negatives by conditionally shuffling Z2 within the stratum {j : y(j) = y(i)} so that

(z
(i)
1 , z̃

(i)
2 ) ∼ Qy(i) . Averaging equation 45 over strata yields an estimator of equation 43. Under

standard f -GAN regularity (rich T , absolute continuity, and optimization accuracy), the supremum
in equation 44 is attained and the empirical maximizer ϕn is consistent for DKL(Py∥Qy) as n→∞
Nowozin et al. (2016).

Stratified sampling and variance control. Let Y be the support of Y . Writing equation 43 as

DKL

(
p(Z1, Z2 | Y )| p(Z1 | Y )p(Z2 | Y )

)
=
∑
y∈Y

πy ∆(y), ∆(y) := DKL(Py∥Qy), πy := p(y),

(46)
we estimate each ∆(y) with equation 45 restricted to stratum y, and combine by the plug-in D̂ =∑

y π̂y ∆̂(y). When strata are imbalanced, importance reweighting or class-balanced mini-batches
reduce estimator variance. For small |{i : y(i) = y}|, we add L2 regularization on Tϕ and early
stopping to avoid overfitting, and we clip discriminator outputs so that |Tϕ| ≤ M to ensure sub-
exponential tails of exp(Tϕ − 1).

Consistency statement. Assume: (i) Y is finite and miny πy > 0; (ii) Py ≪ Qy for all y; (iii) the
discriminator class T is dense in L1(Py) for every y and optimization reaches the global maximizer
in equation 44; (iv) i.i.d. samples from p(Z1, Z2, Y ). Then D̂

p−→ DKL(p(Z1, Z2 | Y ) ∥ p(Z1 |
Y )p(Z2 | Y )) as n → ∞. The proof follows from uniform convergence of L̂KL to its population
counterpart in each stratum and Slutsky’s theorem when combining strata, as in standard f -divergence
variational estimation Nowozin et al. (2016).

Relation to the Donsker–Varadhan form. Using the Donsker–Varadhan representation of KL
with the same conditional shuffling (Py, Qy) yields the alternative objective

sup
T∈T

{
EPy

[T ]− logEQy
[exp(T )]

}
, (47)

which is equivalent to equation 44 up to the log transformation. In practice, equation 44 often yields
more stable gradients than equation 47 because the conjugate f∗(u) = exp(u− 1) can be combined
with output clipping to control exponential tails.

Kernel-based conditional independence as a complementary diagnostic. As a stability check
for the discriminator-based estimator, we compute a kernel conditional independence statistic
based on the conditional cross-covariance operator CZ1Z2|Y in reproducing kernel Hilbert spaces
(RKHS). Let k1, k2, kY be bounded characteristic kernels on the supports of Z1, Z2, Y . The squared
Hilbert–Schmidt norm ∥CZ1Z2|Y ∥2HS equals zero if and only if Z1 ⊥⊥ Z2 | Y . An empirical estimator
can be formed by residualizing Z1 and Z2 on Y via kernel ridge regression and then computing an
HSIC statistic between the residual features Fukumizu et al. (2007); Gretton et al. (2005). Under
mixing and boundedness conditions, the statistic concentrates around zero under the null and is
strictly positive otherwise. We therefore treat a large ∥ĈZ1Z2|Y ∥2HS as corroborating evidence when
the variational discriminator signals dependence; when the discriminator training is unstable, the
kernel statistic serves as a fallback detector.

Integration into ARPO. The conditional-KL penalty used in the main text

Lcond = DKL

(
p(PDI , PDS | Task)

∥∥∥ p(PDI | Task) p(PDS | Task)
)

(48)

is implemented by the stratified f -GAN estimator equation 45 with output clipping and class-
balanced batches Nowozin et al. (2016). For additional robustness, we monitor a kernel conditional-
independence score computed with Gaussian kernels and median heuristics for bandwidths Fukumizu
et al. (2007); Gretton et al. (2005). In ablations, the discriminator-based estimator offers sharper
gradients for reducing leakage, while the kernel statistic provides a stable sanity check across training
regimes. This dual view justifies the penalty’s inclusion in the disentanglement loss and explains its
empirical stability.
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Finite-sample concentration. If |Tϕ| ≤M almost surely and exp(Tϕ − 1) has sub-exponential
Orlicz norm bounded uniformly in ϕ, then for any fixed stratum y and mini-batch size By ,∣∣∆̂(y)−∆(y)

∣∣ = OP

(√
1

By

)
, (49)

by Bernstein-type inequalities for sub-exponential variables. Aggregating across strata as in equa-
tion 46 yields ∣∣D̂ −D

∣∣ = OP

(∑
y

πy

√
1

By

)
, (50)

which guides batch allocation when classes are imbalanced.

The variational form equation 44 and its conditions follow from f -GAN theory Nowozin et al. (2016);
the kernel conditional-independence construction follows from kernel measures of conditional
dependence and HSIC-based testing Fukumizu et al. (2007); Gretton et al. (2005). We refer to the
cited works for operator-theoretic details and asymptotic distributions.

C.5 SYNERGY OF MULTI-LOSS OPTIMIZATION: GRADIENT INTERFERENCE, PROJECTION,
AND REWEIGHTING

Let θ denote all trainable parameters that contribute to the two-prefix encoder [PDI ;PDS ]. Consider
the composite disentanglement objective

Ldisent = λ1LIB(PDI) + λ2LIB(PDS) + λ3Lorth + λ4Lcont + λ5Lcond. (51)
Write task wise gradients

g1 := ∇θLIB(PDI), g2 := ∇θLIB(PDS), g3 := ∇θLorth,

g4 := ∇θLcont, g5 := ∇θLcond.
(52)

Define the instantaneous cosine similarity cos(ga, gb) := ⟨ga, gb⟩/(∥ga∥ ∥gb∥) and the conflict
indicator Iab := I{⟨ga, gb⟩ < 0}. Gradient interference arises when cos(ga, gb) < 0 for some pair
(a, b), a phenomenon broadly studied in multi-task learning as negative gradient interaction and
Pareto trade-offs Sener & Koltun (2018).

Assumptions. There exist constants G,L, σ > 0 such that for all θ in a compact set Θ,

∥gk(θ)∥ ≤ G, ∥gk(θ)− gk(θ
′)∥ ≤ L∥θ− θ′∥, E

[
(gk − Egk)(gk − Egk)⊤

]
⪯ σ2I. (53)

Moreover, the orthogonality and conditional-KL penalties locally enforce
⟨∇θLorth,∇θLIB(PDI)⟩ ≥ 0, ⟨∇θLcond,∇θLIB(PDS)⟩ ≥ 0, (54)

when P⊤
DIPDS is large and DKL(p(PDI , PDS | Y )∥p(PDI | Y )p(PDS | Y )) is large, respectively;

this captures that g3, g5 act to decouple rather than to oppose g1, g2.

Projection step. Given {gk}mk=1 at a mini-batch, define the PCGrad-style projected gradients Yu
et al. (2020)

g̃a = ga −
∑
b̸=a

min{⟨ga, gb⟩, 0}
∥gb∥2

gb, a = 1, . . . ,m, (55)

applied sequentially so that ⟨g̃a, g̃b⟩ ≥ 0 for all a ̸= b. The aggregated descent direction is gproj :=∑
k λkg̃k. Projection-based surgery is consistent with conflict-averse formulations that explicitly steer

updates toward the intersection of per-task descent cones Liu et al. (2021b) and with multi-objective
MTL views Sener & Koltun (2018).

Normalization and reweighting. Set wk := λk/∥gk∥α with α ∈ [0, 1] and define

gnorm :=

m∑
k=1

wk gk, gproj-norm :=

m∑
k=1

wk g̃k. (56)

When α = 1, each task contributes unit-norm information as in gradient normalization Chen et al.
(2018); impartial multi-task scalings and conflict-averse updates motivate α ∈ (0, 1] and adaptive
{λk} Liu et al. (2021a;b).
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Conflict probability upper bound. Define the instantaneous conflict probability
Π(θ) := P

(
∃ a ̸= b : ⟨ga(θ), gb(θ)⟩ < 0

)
. (57)

Under equation 53 and a sub-Gaussian model for centered gradients, there exists c > 0 such that for
any ϵ > 0,

P
(
⟨ga − Ega, gb − Egb⟩ < −⟨Ega,Egb⟩ − ϵ

)
≤ exp

(
− c ϵ2

σ2G2

)
. (58)

If the regularizers make ⟨Ega,Egb⟩ ≥ δ > 0 for (a, b) ∈ {(1, 3), (2, 5)} and nonnegative otherwise,
then

Π(θ) ≤ m(m− 1) exp

(
− c δ2

σ2G2

)
, (59)

so that stronger alignment (larger δ) exponentially suppresses conflicts in expectation. This aligns
with empirical and theoretical observations that balancing and projection reduce interference in MTL
Yu et al. (2020); Chen et al. (2018); Liu et al. (2021a;b).

Angle improvement by projection. For any (a, b) with ⟨ga, gb⟩ < 0, the step equation 55 yields

⟨g̃a, gb⟩ = ⟨ga, gb⟩ −
⟨ga, gb⟩
∥gb∥2

⟨gb, gb⟩ = 0, (60)

and for any third task c ̸= a, b,

⟨g̃a, gc⟩ = ⟨ga, gc⟩ −
min{⟨ga, gb⟩, 0}

∥gb∥2
⟨gb, gc⟩ ≥ ⟨ga, gc⟩ −

|⟨ga, gb⟩|
∥gb∥

∥gc∥. (61)

Hence projection cannot worsen alignment with gb and degrades alignment with gc by at most a
controlled term. Summing across pairs and combining with equation 56 gives a net nonnegative
effect on the average cosine

cos :=
2

m(m− 1)

∑
1≤a<b≤m

cos(g̃a, g̃b), (62)

relative to its unprojected counterpart, consistent with conflict-averse updates Liu et al. (2021b).

Synergy proposition. Let m = 5 and consider P = {(1, 3), (2, 5)} induced by orthogonality
and conditional-independence penalties. Suppose there exists δ > 0 such that ⟨Ega,Egb⟩ ≥ δ for
(a, b) ∈ P and ⟨Ega,Egb⟩ ≥ 0 otherwise. Then for any α ∈ (0, 1] and any PCGrad schedule,

E
[
cos(gproj-norm)

]
≥ E

[
cos(gnorm)

]
≥ cos(Eg1, . . . ,Eg5)− C

σ

G
, (63)

for a universal constant C depending only on m. Consequently the expected average pairwise angle
is nonnegative and becomes strictly positive whenever cos(Eg1, . . . ,Eg5) > C σ/G. Moreover,

Πproj-norm(θ) ≤ Πnorm(θ) ≤ m(m− 1) exp

(
− c δ2

σ2G2

)
. (64)

Inequality equation 63 follows from zeroing of negative inner-products by equation 55 and con-
centration of random inner products around their means; equation 64 follows from equation 59.
These arguments connect to gradient surgery Yu et al. (2020), gradient normalization and impartial
balancing Chen et al. (2018); Liu et al. (2021a), and multi-objective MTL Sener & Koltun (2018).

Gate-aware slow variation and finite-switch control. Let the dynamic gate generate a binary
process {st} for adversarial updates with EMA triggers and thresholds θmin ≤ θt ≤ θmax. If
martingale differences driving the trigger are sub-Gaussian, the number of sign changes of st over
T rounds is OP(

√
T ) by Azuma–Hoeffding. This slow variation yields locally stationary gradient

statistics between flips, justifying the stability assumptions used when coupling with MOBO and
Pareto-aware updates Sener & Koltun (2018).

The projection operator equation 55 and conflict-averse views Yu et al. (2020); Liu et al. (2021b),
together with normalization and adaptive weighting Chen et al. (2018); Liu et al. (2021a), provide a
principled mechanism that increases alignment among {gk}, suppresses destructive interference as
in equation 59–equation 64, and respects the multi-objective structure of disentanglement Sener &
Koltun (2018).
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D THEORETICAL AND IMPLEMENTATION DETAILS FOR ADVERSARIAL
ADAPTATION

D.1 TASK-DIFFICULTY-AWARE DYNAMIC THRESHOLDING FOR ADVERSARIAL ADAPTATION

We keep the three losses in the main paper unchanged (Ltask, Ladv, Ltotal). Our goal is to decide when
to activate the adversarial term so that training remains stable and generalizes across domains.

We use two signals. The progress signal δ measures the relative improvement of Ltask from its initial
value. The stability signal r summarizes recent gradient noise as the ratio between the variance of
∇Ltask and the mean absolute gradient over a short history. A larger r means unstable optimization.
We map r to a global threshold θ(t) that increases with instability. When δ exceeds this threshold,
we enable the adversarial term; otherwise we delay it. To avoid flickering near the boundary, we use
hysteresis: the on-condition uses a slightly higher threshold than the off-condition. This reduces
frequent on–off switching and improves convergence.

We then scale the threshold per task using an explicit measure of task difficulty. The final per-task
threshold is

θtask(t) = θ(t) · (1 + β · difficultytask), (65)

where β controls the strength of scaling. A higher threshold delays adversarial activation on harder
tasks. This is consistent with the idea of curriculum: easy tasks see the adversarial signal earlier; hard
tasks focus on the primary objective until learning is more stable.

The difficulty coefficient combines short-horizon variability and convergence speed:

difficultytask =
σ(L(t−w:t)

task )

|µ(∆L(t−w:t)
task )|+ ϵ

. (66)

Here σ(L(t−w:t)
task ) is the sample standard deviation of the task loss over the last w steps. It measures

stability: larger values mean more fluctuation. The term µ(∆L(t−w:t)
task ) is the average step-wise

decrease of the loss over the same window. It measures convergence speed: larger values mean faster
decrease. ϵ > 0 avoids division by zero. Intuitively, a task is harder when its loss fluctuates more and
decreases more slowly, so the ratio is larger. To make tasks comparable, we normalize both statistics
by their warm-up baselines collected in the first 2w steps. This removes scale effects across tasks.
We also clip extreme difficulty values at a high percentile and cap θtask(t) by θmax ≤ 1 to preserve
activations on very hard tasks.

To ensure cross-task comparability and improve robustness, we follow four implementation details.
First, we estimate statistics with either a fixed sliding window or an exponential moving average
(EMA), and we match their effective window lengths. When regime shifts or task alternation occur, we
prefer EMA and apply early bias correction. Second, to suppress outlier-driven false activations, we
perform robust preprocessing before computing σ and µ: MAD-based Winsorization, Huberization,
and global gradient-norm clipping. These steps make the difficulty estimate reflect trends rather than
noise. Third, we clip the difficulty by percentile to avoid extreme inflation, and we cap θtask(t) by
θmax ≤ 1 so that very hard tasks still have a chance to activate. Fourth, in multi-task parallel training,
we synchronize all statistics across devices (e.g., with all-reduce) to prevent gate inconsistency.

This scaling strategy is compatible with curriculum learning. Easy tasks have smaller difficultytask,
cross the threshold earlier, enter adversarial training sooner, and benefit from improved inter-domain
separability. Hard tasks introduce the adversarial term later, after the primary loss becomes stable,
which reduces the disturbance from premature adversarial updates to the main optimization trajectory.

D.2 GATE FLIPPING IS SUBLINEAR: AN AZUMA–HOEFFDING BOUND FOR EMA-DRIVEN
TRIGGERS

Let {Ft}t≥0 be the natural filtration and let the primary validation signal be

Yt = µ + ξt, E[ξt | Ft−1] = 0, |ξt| ≤ c a.s., (67)
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so that {ξt} is a bounded martingale-difference sequence. The gate statistic is an exponentially
weighted moving average (EMA)

St = (1− η)

t∑
k=1

η t−k Yk + η tS0, η ∈ [0, 1), (68)

and the gate flips when St crosses a threshold interval [θmin, θmax] with θmin < θmax. Denote by NT

the total number of flips (up- plus down-crossings) on {1, . . . , T}.

We first center the process. Write Ỹt = Yt − µ = ξt and the centered EMA

S̃t = (1− η)

t∑
k=1

η t−k ξk + η tS̃0, S̃0 = S0 − µ. (69)

Define the increment

∆t := S̃t − η S̃t−1 = (1− η) ξt, |∆t| ≤ (1− η)c. (70)

Hence {∆t,Ft} is a bounded martingale-difference sequence and the linearly filtered process {S̃t}
obeys

S̃t = η S̃t−1 +∆t, E[S̃t | Ft−1] = η S̃t−1. (71)

We control threshold crossings by an up- and down-crossing argument. For any a < b, let UT (a, b)

be the number of up-crossings of [a, b] by {S̃t}Tt=0. A standard consequence of Doob’s up-crossing
inequality applied to an appropriate supermartingale transform of S̃t yields

E[UT (a, b)] ≤
E
[
(S̃T − a)−

]
+ a+

b− a
, (72)

and the same bound holds for down-crossings by symmetry; see, e.g., Doob’s up-crossing inequality
and its corollaries in standard martingale texts and concentration references. In our bounded-increment
setting, |S̃t| ≤ |S̃0|+

∑t
k=1 |∆k| ≤ |S̃0|+ (1− η)c t, and therefore

E[UT (θmin − µ, θmax − µ)] ≤ C0 + (1− η)c T

θmax − θmin
, C0 := |S̃0|+ |θmin − µ|. (73)

This expectation bound is linear in T and is in general tight for adversarial sequences. We now
strengthen it to a high-probability OP(

√
T ) control by combining Azuma–Hoeffding and a renewal-

style decomposition into excursions.

Define the stopping times

τ0 := 0, τm+1 := inf{t > τm : S̃t /∈ [a, b]}, a = θmin − µ, b = θmax − µ. (74)

Each excursion [τm, τm+1) contains at most one flip. Moreover, to exit [a, b] from the interior
starting at time τm, the partial sum of martingale differences

∑τm+ℓ
t=τm+1 ∆t must exceed the margin

min{b− S̃τm , S̃τm − a}. Since |∆t| ≤ (1− η)c, Azuma–Hoeffding inequality implies that for any
ℓ ≥ 1 and any x > 0,

P

(
max
1≤k≤ℓ

∣∣∣ τm+k∑
t=τm+1

∆t

∣∣∣ ≥ x

∣∣∣∣∣ Fτm

)
≤ 2 exp

(
− x2

2 ℓ (1− η)2c2

)
, (75)

e.g., (Boucheron et al., 2013b, Theorem 2.8) or the Azuma–Hoeffding lecture notes Ledoux (2006).

Set x = 1
2 (b− a). With probability at least 1− 2 exp

(
− (b−a)2

8 ℓ (1−η)2c2

)
, no exit occurs within the next

ℓ steps. Choosing

ℓ⋆ =

⌈
(b− a)2

8 (1− η)2c2
log

(
2T

δ

)⌉
, (76)

and applying a union bound over at most T candidate blocks shows that, with probability at least
1− δ, each excursion consumes at least ℓ⋆ iterations. Consequently, the total number of excursions
and hence flips up to time T obeys the high-probability bound

NT ≤
T

ℓ⋆
= O

(
(1− η)2c2

(θmax − θmin)2
T

log(2T/δ)

)
(w.p. ≥ 1− δ). (77)
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To obtain the advertised O(
√
T ) rate, refine the blocking by letting the block length grow like

ℓm ≍ m and applying the Azuma–Hoeffding tail equation 75 with x = 1
2 (b− a) to each block. A

standard peeling/renewal argument then yields

P

(
NT > C1 + C2

(1− η)c

θmax − θmin

√
T log

2T

δ

)
≤ δ, (78)

for universal constants C1, C2 > 0 depending only on the initialization and the contraction η; see the
generic proof patterns for upcrossing counts via martingale oscillation and concentration (Boucheron
et al., 2013b, Chap. 2), Ledoux (2006). Inequality equation 78 gives the desired sublinear OP(

√
T )

control of gate flips.

We finally state the slow-variation corollary used by MOBO. Let It denote any validation objective
measured once per iteration and assume a Lipschitz-in-time drift model∣∣E[It+1 − It | Ft]

∣∣ ≤ κ, |It+1 − It| ≤ B a.s. (79)

Between consecutive flips, the excursion length is at least of order Ω
( (θmax−θmin)

2

(1−η)2c2

)
with high

probability by equation 76. Hence, over any inter-flip segment [τm, τm+1),∣∣∣∣∣
τm+1−1∑
t=τm

(It+1 − It)

∣∣∣∣∣ ≤ κ (τm+1 − τm) = OP(1), (80)

so that It is locally slowly-varying on inter-flip windows. This justifies the quasi-stationarity assump-
tion used by the noisy-qEHVI acquisition between gate changes in the main text.

The ingredients are standard: bounded martingale differences for the EMA innovation equation 70,
Azuma–Hoeffding oscillation control equation 75, and excursion counting via blocking and peeling
culminating in equation 78. Textbook treatments of Azuma–Hoeffding and related martingale
concentration inequalities can be found in (Boucheron et al., 2013b, Theorems 2.6–2.8), with
complementary lecture-note derivations in Ledoux (2006). Up- and down-crossing techniques
underlying equation 72 are classical and may be consulted in standard martingale references.

D.3 QUANTILE-THRESHOLD PAIRING: STATISTICAL CONSISTENCY AND NONASYMPTOTIC
ERROR VIA DKW–MASSART

Let {Zi}ni=1 be i.i.d. real-valued with distribution function F , empirical CDF F̂n(x) =
1
n

∑n
i=1 1{Zi ≤ x}, and population q-quantile F−1(q) := inf{x : F (x) ≥ q}; define the em-

pirical quantile F̂−1
n (q) analogously. In ARPO, Zi denotes the batchwise pairwise distance (or

similarity) used to form positives/negatives by quantiles qpos, qneg ∈ (0, 1) (cf. Appendix C.3).

Uniform CDF concentration (DKW with Massart’s sharp constant). For any ε > 0,

P
(
sup
x∈R

∣∣F̂n(x)− F (x)
∣∣ > ε

)
≤ 2 e−2nε2 , (81)

which is the Dvoretzky–Kiefer–Wolfowitz inequality with Massart’s sharp constant Massart (1990);
Boucheron et al. (2013a); Dvoretzky et al. (1956). Equivalently, with probability at least 1− δ,

sup
x

∣∣F̂n(x)− F (x)
∣∣ ≤ εn,δ where εn,δ :=

√
1

2n
log

2

δ
. (82)

From uniform CDF error to quantile error. For any nondecreasing right-continuous F , define its
local modulus of continuity

ωF (ε) := sup
{
|x− x′| : |F (x)− F (x′)| ≤ ε

}
. (83)

Then the inversion monotonicity implies the deterministic implication

sup
x

∣∣F̂n(x)− F (x)
∣∣ ≤ ε =⇒

∣∣F̂−1
n (q)− F−1(q)

∣∣ ≤ ωF (ε), (84)
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hence, combining equation 82–equation 84,

P
(∣∣F̂−1

n (q)− F−1(q)
∣∣ ≤ ωF

(
εn,δ

))
≥ 1− δ. (85)

If F is strictly increasing with density f = F ′ satisfying f(x) ≥ fmin > 0 on a neighborhood of
x⋆ := F−1(q), then ωF (ε) ≤ ε/fmin, and equation 85 sharpens to

P

(∣∣F̂−1
n (q)− F−1(q)

∣∣ ≤ 1

fmin

√
1

2n
log

2

δ

)
≥ 1− δ. (86)

Proof of equation 84 uses the monotonicity of F and F̂n, and the equivalence between CDF sup-norm
control and the Hausdorff distance of their epigraphs; see (Boucheron et al., 2013a, Ch. 2) for a
standard treatment. The density bound follows from the inverse function theorem applied locally to
F .

Application to ARPO batch quantile thresholds. Let n = B − 1 when the anchor-wise distance
set excludes self-pairs in a mini-batch of size B. Setting q ∈ {qpos, qneg} yields, with probability at
least 1− δ, ∣∣∆̂(pos/neg) −∆(pos/neg)

∣∣ ≤ ωF

(√ 1

2(B − 1)
log

2

δ

)
, (87)

where ∆(·) := F−1(q) is the population quantile of the anchor’s pairwise-distance law. Under a
local density lower bound fmin around F−1(q), equation 87 further reduces to the explicit PAC-style
radius ∣∣∆̂(pos/neg) −∆(pos/neg)

∣∣ ≤ 1

fmin

√
1

2(B − 1)
log

2

δ
. (88)

Thus the positive/negative proportions controlled by (qpos, qneg) remain stable in the presence of
mini-batch fluctuations, and when the quantile levels are treated as low-cardinality decisions within
MOBO, their stochasticity is governed by the explicit nonasymptotic bounds equation 87–equation 88.
This justifies the use of quantile-threshold pairing in Appendix C.3 and in Sec. 3.2.

D.4 TEMPERATURE ADAPTATION AND SPECTRAL REGULARIZATION: SUFFICIENT
CONDITIONS FOR COLLAPSE PREVENTION

Let {zi}Bi=1 ⊂ Sd−1 be ℓ2-normalized embeddings. For an anchor i, define the cosine similarity
sij = z⊤i zj ∈ [−1, 1] and the temperature-scaled InfoNCE loss with multi-positives and quantile-
selected negatives (cf. Appendix C.3):

Li(τ) = −
1

|Pi|
∑
p∈Pi

log
exp(sip/τ)

exp(sip/τ) +
∑

n∈Ni
exp(sin/τ)

. (89)

The batch objective is LNCE(τ) =
1
B

∑B
i=1 Li(τ).

Effective support size controlled by temperature. Let

pij(τ) =
exp(sij/τ)∑

k∈{p}∪Ni
exp(sik/τ)

, Si(τ) =

 ∑
j∈{p}∪Ni

p2ij(τ)

−1

. (90)

Then Si(τ) ∈ [1, 1 + |Ni|] is nondecreasing in τ . Consequently there exists a continuous, strictly
increasing mapping τ 7→ E[Si(τ)] so that, for any prescribed S⋆ ∈ (1, 1 + |Ni|), one can select τ⋆
with E[Si(τ

⋆)] = S⋆. This establishes that τ controls the “softmax effective number of negatives,”
aligning with empirical observations that larger batch size or effective negatives improve uniformity
on the hypersphere while small τ emphasizes alignment Chen et al. (2020); Wang & Isola (2020). A
practical controller is the EMA rule

S̄t = ηS̄t−1 + (1− η)
1

B

B∑
i=1

Si(τt), log τt+1 = log τt + κ(S̄t − S⋆), (91)

which keeps Si(τt) near S⋆ and decouples transient batch hardness from gradient magnitude.
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Alignment–uniformity decomposition and temperature. Let the alignment term be

A = E(x,x+)∥z(x)− z(x+)∥22, (92)

and the uniformity term be the hyperspherical potential

Uα = logE(x,x′) exp
(
α∥z(x)− z(x′)∥22

)
, α > 0. (93)

Then minimizing equation 89 can be viewed as minimizing a surrogate ofA while implicitly reducing
Uα through repulsion among negatives Wang & Isola (2020). Moreover, increasing τ increases Si(τ)
in equation 90, which enlarges the set of influential negatives and lowers the hyperspherical potential
at stationarity, thus improving uniformity without destroying alignment if positives are retained via
multi-positive sampling and moderate τ Chen et al. (2020); Wang & Isola (2020).

Spectral form and sufficient conditions to avoid dimensional collapse. Let Z = [z1, . . . , zB ]
⊤ ∈

RB×d, Z̃ = HZ with H = I − 1
B11⊤, and the sample covariance C = 1

B Z̃⊤Z̃ with eigenvalues
λ1 ≥ · · · ≥ λd ≥ 0. Spectral contrastive analyses show that contrastive objectives maximize a
graph Laplacian Rayleigh quotient and widen spectral gaps, linking repulsion to spread of the feature
spectrum HaoChen et al. (2021). Consider the spectral regularizer

Rspec(Z) =

d∑
r=1

[
max{0, λmin − λr}

]2
+ ρ

d∑
r=1

(λr − λ̄)2, λ̄ =
1

d

d∑
r=1

λr, (94)

with λmin > 0 and ρ ≥ 0. Then any stationary point of LNCE(τ) + βRspec(Z) with β > 0 satisfies
the variational inequality

λr ≥ min{λmin, λ̄−

√√√√ 1
d

d∑
s=1

(λs − λ̄)2} for all r, (95)

hence avoids dimensional collapse (∃r : λr = 0) provided λmin > 0 or the dispersion term is
strong enough to keep λ̄ away from zero. This matches the sufficient conditions identified in spectral
analyses and in studies of dimensional collapse that require either variance floors per direction or
isotropy promotion to prevent degeneration to a low-dimensional cone Kalantidis et al. (2020).

Temperature, batch size, and stability region. For fixed encoder capacity and data distribution,
the gradient of equation 89 w.r.t. zi has magnitude

∥∇ziLi(τ)∥ ≍
1

τ

(
Ep∈Pi [1− cos∠(zi, zp)] +

∑
n∈Ni

pin(τ) [1− cos∠(zi, zn)]
)
, (96)

so larger Si(τ) (achieved by larger batch or τ ) redistributes mass across more negatives and reduces
gradient variance, improving numerical stability; too small τ sharpens the softmax, increasing
variance and favoring collapse unless countered by spectral spreading equation 94 or negative mixing
Kalantidis et al. (2020); HaoChen et al. (2021). Combining equation 91 and equation 94 therefore
yields a sufficient recipe: maintain an effective support S⋆ away from 1 and enforce a nontrivial
spectral floor to guarantee that at least r principal components carry nonzero variance, avoiding
dimensional collapse Jing et al. (2021).

Hard-negative mixing as variance control. Let z̃in = λzn + (1− λ)zp(i) with λ ∼ Beta(a, b)
for the hardest negatives; replacing zn by z̃in in equation 89 interpolates logits and reduces curvature
of the log-sum-exp, yielding a lower-variance gradient estimator while preserving decision margins
Kalantidis et al. (2020). This complements temperature control and spectrum regularization to enlarge
the stable training region after the dynamic gate is activated.

Summary of sufficient conditions. Assume: normalized embeddings, InfoNCE with temperature τ ,
EMA rule equation 91 maintaining Si(τ) in a compact subset of (1, 1+ |Ni|], and spectral regularizer
equation 94 with λmin > 0 or ρ > 0. Then any limit point of gradient descent on LNCE(τ) +
βRspec(Z) avoids dimensional collapse and exhibits a nondegenerate covariance spectrum; moreover,
alignment is preserved by multi-positive sampling and moderate τ , and uniformity is improved via
increased effective negatives as in equation 90 & equation 91 Wang & Isola (2020); Jing et al. (2021);
Kalantidis et al. (2020).
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E OVERVIEW OF ARPO MOBO FRAMEWORK

According to methodolgy 3.3, we aim to optimize multiple objectives simultaneously while accom-
modating adversarial constraints such as accuracy, efficiency, and cross-domain robustness. We
adopt a Multi-objective Bayesian Optimization framework, where Gaussian Process models Snoek
et al. (2012) serve as flexible surrogates for each objective, and the Expected Hypervolume Improve-
ment Daulton et al. (2020a) acquisition function guides the selection of candidate points, including
adversarial strategies and hyperparameters, for evaluation. This appendix offers a comprehensive the-
oretical foundation for our MOBO approach, covering Gaussian Process regression fundamentals for
each objective, the formal definitions of hypervolume and hypervolume improvement, the derivation
of EHVI (both exact and approximate), the methodology for computing EHVI gradients with respect
to decision variables, a rigorous convergence proof demonstrating asymptotic alignment with the true
Pareto front Hernández-Lobato et al. (2016), and practical considerations pertinent to ARPO’s mixed
discrete-continuous domain and dynamic threshold scheduling.

E.1 GAUSSIAN PROCESS REGRESSION BASICS

E.1.1 GP PRIOR AND POSTERIOR

Consider a training set consisting of n observed input-output pairs {(xi, yi)}ni=1, where each xi ∈
X ⊆ Rd and yi ∈ R represents a realization of an unknown objective function f : X → R. Under
the Gaussian Process (GP) framework Snoek et al. (2012), f is treated as a sample from a distribution
over functions,

f(x) ∼ GP
(
m(x), k(x, x′)

)
, (97)

where m(x) denotes the mean function and k(·, ·) the covariance (kernel) function. A common, yet
often sufficiently general, choice is to assume m(x) ≡ 0 and to use the Radial Basis Function (RBF)
kernel,

k(x, x′) = exp
(
−∥x−x′∥2

2ℓ2

)
, (98)

with a positive length-scale parameter ℓ. When ℓ is relatively small, f(x) can vary rapidly over X ,
whereas a larger ℓ imposes smoother function behavior.

After observing the data D = {(xi, yi)}ni=1, the posterior distribution of f at any new point x∗

remains Gaussian,

f(x∗)
∣∣ D ∼ N(µ(x∗), σ2(x∗)

)
, (99)

where
µ(x∗) = k(x∗, X)T

[
K(X,X) + σ2

nI
]−1

Y,

σ2(x∗) = k(x∗, x∗)− k(x∗, X)T
[
K(X,X) + σ2

nI
]−1

k(X,x∗).
(100)

and X is the concatenation of all training inputs x1, . . . , xn. The vector k(x∗, X) stores covariances
between x∗ and each xi, and K(X,X) is the covariance matrix whose entries are k(xi, xj). The
scalar σ2

n may capture observation noise in the data, and I is the identity matrix of suitable dimension.
The posterior variance σ2(x∗) quantifies the uncertainty in predicting f(x∗), decreasing in regions
well-covered by training data and increasing elsewhere.

E.1.2 EXTENSION TO MULTIPLE OBJECTIVES

In the ARPO setting, there are multiple objectives {fj(x)}Mj=1. Each objective fj : X → R is
independently modeled by a distinct Gaussian Process,

fj(·) ∼ GP
(
mj(·), kj(·, ·)

)
, (101)

leading to posterior means {µj(x)} and posterior variances {σ2
j (x)}. If observational noise is present,

the term σ2
n in each GP model accounts for that uncertainty. In the multi-objective scenario, each GP

posterior evaluates both expected performance and predictive uncertainty along a particular objective
dimension, thereby enabling trade-off analysis across multiple criteria in ARPO.
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E.2 DEFINITION AND DERIVATION OF EHVI

In multi-objective optimization, the overarching goal is to discover a comprehensive set of Pareto-
optimal solutions (the Pareto front) Belakaria et al. (2019); Röpke et al. (2024). A solution on the
Pareto front cannot be improved in one objective without sacrificing another. To compare different
Pareto fronts quantitatively, we frequently employ the Hypervolume (HV) metric, which measures
the dominated volume relative to a reference point Daulton et al. (2020b).

E.2.1 HYPERVOLUME AND HYPERVOLUME IMPROVEMENT

Let P =
{
f
(
x(1)

)
, . . . , f

(
x(k)

)}
denote the current Pareto front Hernández-Lobato et al. (2016)

consisting of k objective vectors in RM . Choose a reference point r ∈ RM such that each coordinate
of r is worse (i.e., smaller for maximization problems) than those of any point in P . Define the
hypervolume of P with respect to r as

HV(P ) = λ
( k⋃
i=1

[
f(x(i)), r

])
, (102)

where λ(·) denotes the Lebesgue measure in M -dimensional space, and
[
f(x(i)), r

]
is the (axis-

aligned) hyper-rectangle spanned by f(x(i)) and r. In practice, one typically ensures that r is chosen
so that it is dominated by every point in P , guaranteeing a meaningful volume calculation.

To gauge the marginal impact of adding a new candidate point x to the front, we introduce the notion
of Hypervolume Improvement (HI):

HI
(
f(x)

)
= HV

(
P ∪ {f(x)}

)
− HV(P ). (103)

Positive HI indicates that f(x) contributes to expanding the Pareto front in objective space, whereas
HI = 0 indicates that f(x) is dominated by or lies within the current Pareto front P .

E.2.2 EXPECTED HYPERVOLUME IMPROVEMENT

Since f(x) is not deterministic but rather follows a predictive distribution inferred from our Gaussian
Process (GP) model (see Section E.1), the actual value f(x) for a new candidate x is uncertain. We
thus define the Expected Hypervolume Improvement (EHVI) Daulton et al. (2020a) by taking the
expectation of HI

(
f(x)

)
under the posterior of f(x):

EHVI(x) = E
[
HI
(
f(x)

) ∣∣ D] =

∫
HI
(
f(x)

)
p
(
f(x) | x,D

)
df(x), (104)

where p
(
f(x) | x,D

)
is the posterior distribution of f(x) given the data D. Because HI(f(x))

captures how much f(x) extends the current Pareto set, the EHVI integral naturally balances ex-
ploration (accounting for predictive uncertainty) and exploitation (emphasizing high-likelihood
improvement). Therefore, points with both a potentially large improvement and high posterior vari-
ance can achieve higher EHVI values, making EHVI a robust sequential criterion in multi-objective
Bayesian optimization.

E.3 CALCULATION AND DETAILED DERIVATION OF EHVI

In our ARPO framework, each objective follows a GP posterior, implying that at any candidate x, the
distribution of f(x) is (multi)normal. Denote

f(x) ∼ N
(
µ(x), Σ(x)

)
, (105)

where µ(x) ∈ RM is the vector of predictive posterior means across M objectives, and Σ(x) ∈
RM×M is the posterior covariance matrix. In the simplest case of independent objectives, Σ(x) is
diagonal, though in principle objectives can be correlated.
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E.3.1 TWO-DIMENSIONAL (2D) ANALYTICAL FORM

For the special case of two objectives
(
f1, f2

)
, we can often derive a closed-form or piecewise-integral

expression for EHVI. Suppose the current Pareto front P can be represented by {
(
ai, bi

)
}ki=1 ⊂ R2.

Let µ(x) = [µ1(x), µ2(x)]
T be the predictive means, and let the posterior covariance matrix reduce

to

Σ(x) =

[
σ2
11 σ12

σ21 σ2
22

]
, (106)

where σ12 = σ21 quantifies correlation. In many treatments, we assume independence, so σ12 = 0,
but the more general correlated case can also be approached with integration or advanced box
decomposition methods.

Let
(
r1, r2

)
be a chosen reference point. A common 2D EHVI formula employs integrating over the

domain [ai, r1]× [bi, r2] and summing across i. Specifically,

EHVI(x) =

k∑
i=1

∫ r1

ai

∫ r2

bi

(
r1 − y1

) (
r2 − y2

)
p
(
y | x,D

)
dy2 dy1, (107)

where y = [y1, y2] ∈ R2 and p(y | x,D) is the bivariate normal pdf with mean µ(x) and covariance
Σ(x). By substituting the bivariate normal pdf, we can exploit standard normal cdf Φ(·) and pdf ϕ(·)
transformations. As shown in various references (e.g. Daulton et al. (2020)), one obtains simplified
expressions involving Φ

(
r1−ai

σ11

)
, ϕ
(
r1−ai

σ11

)
, and analogous terms for the second dimension.

In the simpler case where f1 and f2 are independent under the posterior (i.e. σ12 = 0), a compact
form emerges. Denoting µ1(x) and µ2(x) as the means, and σ11, σ22 as the standard deviations in
each dimension, one often sees:

EHVI(x) =
k∑

i=1

[
(r1 − µ1(x)) Φ

(
r1 − ai
σ11

)
+ σ11 ϕ

(
r1 − ai
σ11

)]
×
[
(r2 − µ2(x)) Φ

(
r2 − bi
σ22

)
+ σ22 ϕ

(
r2 − bi
σ22

)]
,

(108)

where each (ai, bi) lies on the current Pareto set in 2D. This expression is derived by explicitly
performing the 2D integral of equation equation 107 using known Gaussian pdf/cdf integrals. Concep-
tually, each dimension’s partial improvement and probability of achieving that improvement factorize
under the independence assumption.

E.3.2 HIGH-DIMENSIONAL OR GENERAL CASE

For higher-dimensional settings (M > 2), deriving a fully closed-form solution for EHVI becomes
exceedingly complex due to multi-dimensional integration and the combinatorial complexity of
partitioning non-dominated regions. One typically relies on numerical approximations, such as:

EHVI(x) ≈ 1

N

N∑
j=1

HI
(
f (j)(x)

)
, where f (j)(x) ∼ N

(
µ(x),Σ(x)

)
. (109)

Here, f (j)(x) ∈ RM are random draws from the posterior. We compute each HI
(
f (j)(x)

)
by checking

how f (j)(x) expands the current Pareto front in M -dimensional space relative to r. Techniques like
Quasi-Monte Carlo (QMC) sampling (e.g. Sobol sequences) can reduce variance and accelerate
convergence compared to purely random sampling.

In the ARPO methodology, EHVI plays a central role in deciding which candidate points (or
adversarial strategies, hyperparameter configurations, etc.) to evaluate next. By integrating over the
predictive distribution from the GP surrogates for multiple objectives, EHVI automatically seeks
solutions that can simultaneously improve domain robustness, accuracy, and other metrics while
acknowledging model uncertainty.
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E.4 GRADIENTS OF EHVI

E.4.1 CHAIN RULE FOR EHVI COMPUTATION

Recall that, at a candidate point x, the posterior distribution of f(x) is assumed to be a (multivariate)
normal with mean µ(x) ∈ RM and covariance Σ(x) ∈ RM×M . The EHVI acquisition function can
be written in integral form as

αEHVI(x) =

∫
HVI

(
{y}

)
pdf
(
y; µ(x), Σ(x)

)
dy,

where HVI
(
{y}

)
is the hypervolume improvement contributed by the objective vector y. Because

µ(x) and Σ(x) both depend on x, differentiating αEHVI(x) w.r.t. x necessitates the chain rule applied
to integrals of normal pdf/cdf expressions.

Dependence of µ(x) and Σ(x) on x. Each coordinate of µ(x), namely µj(x), is given by expres-
sions of the form

µj(x) = k
(
x,X

)T
K−1

(
Yj −mj(X)

)
, (110)

in accordance with the standard GP posterior mean formula (see also equation 14). Likewise, the
diagonal or off-diagonal terms of Σ(x) can be written using the variance formulas equation 15 and
any covariance terms for correlated objectives if present. In any case, one obtains

∂µj(x)

∂x
=

∂

∂x

[
k
(
x,X

)T
K−1 (Yj −mj)

]
, (111)

where k(x,X) is the kernel vector w.r.t. the training set X . Analogous chain-rule expansions apply
to each component of Σ(x).

Example of differentiating cdf terms (2D case). When M = 2, a simplified demonstration of the
chain rule emerges. Suppose y = [y1, y2]. In computing partial derivatives of integrands that involve
terms like

Φ
(

yj−µj(x)
σj(x)

)
, (112)

the derivative w.r.t. x becomes
∂

∂x
Φ
(

yj−µj(x)
σj(x)

)
= ϕ

(
yj−µj(x)

σj(x)

) [
− 1

σj(x)

∂µj(x)

∂x
− yj − µj(x)

σ2
j (x)

∂σj(x)

∂x

]
, (113)

where ϕ(·) and Φ(·) are the standard normal pdf and cdf, respectively. This pattern generalizes to
more complicated integrals in higher dimensions once one carefully enumerates partial derivatives of
each normal pdf/cdf factor.
Lemma E.1 (Chain Rule for∇xαEHVI(x)). Let αEHVI(x) be defined by the integral of HVI

(
{y}

)
against a multivariate normal pdf whose mean µ(x) and covariance Σ(x) both depend smoothly on
x. Suppose Fubini’s theorem permits exchanging differentiation and integration. Then

∂αEHVI(x)

∂x
=

∫
HVI

(
{y}

) ∂

∂x

[
pdf
(
y; µ(x), Σ(x)

)]
dy, (114)

and the derivative of the normal pdf factor is obtained by applying the chain rule to µ(x) and Σ(x)
within its exponent and normalization terms.

Practical Differentiation Schemes. For higher-dimensional objectives (M > 2) or more intricate
kernels, purely symbolic differentiation of αEHVI(x) is often infeasible. A common alternative
is a sampling-based Monte Carlo (MC) or Quasi–Monte Carlo (QMC) approximation combined
with auto–differentiation, enabled by reparameterizing the GP posterior samples; this yields unbi-
ased pathwise gradients of the MC estimator and scales well to parallel (q-batch) and constrained
MOBO Daulton et al. (2020b); Balandat et al. (2020). In lower dimensions (2D/3D), hypervolume
box/stripe decompositions admit closed-form or partially closed-form integrals whose derivatives can
be taken analytically; in practice, differentiable EHVI estimators and lookahead HV-based criteria are
also effective and easier to implement in modern autodiff frameworks Daulton et al. (2020b; 2023).
Regardless of the chosen scheme, the chain rule (Lemma E.1) ensures that ∇xαEHVI(x) correctly
accounts for how both the GP posterior mean and variance vary with x; in MC/QMC settings this is
obtained via the reparameterization trick for Gaussian posteriors Kingma & Welling (2013).
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E.5 CONVERGENCE PROOF IN THE ARPO FRAMEWORK

In this section, we present a more rigorous and formula-oriented derivation that establishes the asymp-
totic convergence of our EHVI-based multi-objective Bayesian optimization (MOBO) procedure in
the ARPO setting, where each decision vector x ∈ Rd may encode discrete switches, continuous
intensities, or dynamic thresholdsDaulton et al. (2020a).

E.5.1 PRELIMINARIES AND ASSUMPTIONS

Assumption E.2 (Compact Domain). There exists a compact set X ⊂ Rd such that all feasible
decision vectors lie in X . Consequently, any continuous function on X attains a global maximum.
Assumption E.3 (GP Posterior Consistency). Let fj : X → R be the j-th objective. The posterior
mean µj,n(x) from the Gaussian Process model of fj satisfies

lim
n→∞

sup
x∈X

∣∣∣µj,n(x)− fj(x)
∣∣∣ = 0 w.h.p., (115)

and the posterior variance σ2
j,n(x)→ 0 pointwise in x. This implies that each GP surrogate converges

uniformly to fj as n→∞.
Assumption E.4 (EHVI Regularity). The EHVI acquisition function

αEHVI(x) = E
[
HVI

(
{f(x)}

) ∣∣∣ Dn

]
(116)

is either (i) analytically or piecewise-integrably defined (for lower-dimensional objectives) and is
continuous w.r.t. x, or (ii) given by a Monte Carlo (MC) or Quasi-MC approximation that is differen-
tiable w.r.t. x (e.g. through reparameterization). Hence we assume no pathological discontinuities or
non-measurable behavior in αEHVI.
Assumption E.5 (Positivity of EHVI in Improving Regions). Suppose the current non-dominated set
is P(n). If there exists a region Ω ⊆ X such that any x ∈ Ω can yield f(x) which improves upon
P(n) in at least one objective without sacrificing the others, then

inf
x∈Ω

αEHVI(x) > 0. (117)

Equivalently, potential improvements have strictly positive expected hypervolume gain.

E.5.2 NOTATION AND SETUP FOR ITERATION

At iteration n, we have data Dn and a surrogate posterior for each fj . We then select

x(n+1) = argmax
x∈X

αEHVI(x | Dn), (118)

and observe f
(
x(n+1)

)
. The set {f(x(1)), . . . , f(x(n))} ⊂ RM forms the collection of discovered

solutions, from which we extract the non-dominated subset P(n). Let P⋆ be the true Pareto front of
the underlying multi-objective problem:

P⋆ =
{
z ∈ RM : ∄ z′ s.t. z′ dominates z

}
. (119)

E.5.3 KEY TECHNICAL LEMMAS

We first provide two lemmas that bridge the gap between the GP posterior accuracy and the EHVI
search mechanism Yang et al. (2019).
Lemma E.6 (Uniform Convergence of Surrogate vs. True Functions). Under Assumption E.3, for
each objective fj , there exist sequences ϵj,n → 0 such that

sup
x∈X

∣∣∣µj,n(x)− fj(x)
∣∣∣ ≤ ϵj,n with high probability. (120)

Furthermore, let ϵn = maxj ϵj,n. Then ϵn → 0 and

sup
x∈X

M∑
j=1

∣∣∣µj,n(x)− fj(x)
∣∣∣ ≤ M ϵn, (121)

which implies uniform approximation of all fj by µj,n.
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Lemma E.7 (EHVI Sensitivity to Posterior Error). Consider any x ∈ X , and let f̃(x) denote the
random vector distributed according to the GP posterior with mean µn(x) and covariance Σn(x),
while the true f(x) is deterministic. Suppose ∥µn(x)− f(x)∥ ≤ δ for some δ ≥ 0. Let

α
(n)
EHVI(x) = E

[
HVI

(
{f̃(x)}

)]
, α⋆

EHVI(x) = HVI
(
{f(x)}

)
. (122)

If the hypervolume measure is Lipschitz in its input vector with a constant LHV > 0 (on a bounded
domain), then ∣∣α(n)

EHVI(x)− α⋆
EHVI(x)

∣∣ ≤ LHV

(
δ + ηn

)
, (123)

where ηn ≥ 0 accounts for posterior variance or sampling approximation. As n→∞, δ, ηn → 0 by
Assumption E.3, implying α

(n)
EHVI(x)→ HVI

(
{f(x)}

)
.

Lemma E.6 formalizes the uniform convergence of each GP mean to the true function, while
Lemma E.7 indicates that when the GP posterior is accurate, the expected hypervolume improvement
under the surrogate closely approximates the “ideal” improvement if we had direct access to f .

E.5.4 MAIN CONVERGENCE THEOREM

Theorem E.8 (Asymptotic Convergence of EHVI-based MOBO in ARPO). Suppose Assumptions
E.2–E.5 hold. Let {x(n)} be generated by

x(n+1) = argmax
x∈X

αEHVI(x | Dn), (124)

and define P(n) to be the set of non-dominated points among {f(x(1)), . . . , f(x(n))}. Let P⋆ denote
the true Pareto front. Then

lim
n→∞

sup
z∈P⋆

min
y∈P(n)

∥z− y∥ = 0. (125)

In other words, P(n) converges in supremum norm to P⋆.

Proof. Step 1 (Posterior Accuracy). By Lemma E.6, each GP surrogate µj,n uniformly approxi-
mates fj as n→∞. Denote δn = ϵn → 0 from that lemma. Also, posterior variances σ2

j,n(x)→ 0,
so uncertainty about each objective diminishes over time.

Step 2 (EHVI Approximation to True Improvement). Lemma E.7 guarantees that αEHVI(x |Dn)
converges to HVI({f(x)}) uniformly in x. Thus, if f(x) strictly improves the current front, then
eventually αEHVI(x) must become sufficiently positive to out-compete dominated alternatives.

Step 3 (Positivity of EHVI in Improving Regions). Assumption E.5 implies that whenever there
is a region R ⊂ X containing points capable of enhancing the non-dominated set, the EHVI values
in R remain strictly positive. By maximizing EHVI each iteration, the algorithm will select some
x ∈ R in finitely many steps, yielding an actual function observation f(x) that enlarges or refines the
front P(n).

Step 4 (Excluding Fully Dominated Solutions). If x is such that f(x) lies strictly within the current
front’s dominated region, αEHVI(x) will be near zero once the GP posterior is accurate. Thus such x
will not be chosen infinitely often. Consequently, repeated selections concentrate on improvements
or unexplored high-EHVI regions.

Step 5 (Convergence to the True Pareto Front). Suppose there is z ∈ P⋆ not approximated within
ε > 0 by any y ∈ P(n). Then there must exist xz ∈ X such that f(xz) is close to z (by definition of
P⋆). However, from Step 2 and Step 3, αEHVI(xz) remains positive if f(xz) can improve P(n). The
algorithm will eventually pick xz (or a point nearby) and discover f(xz), reducing the distance to z
below ε. Because this argument holds for every z ∈ P⋆, we conclude

lim
n→∞

max
z∈P⋆

min
y∈P(n)

∥z− y∥ = 0. (126)

Hence P(n) converges to the true Pareto front P⋆.
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E.5.5 IMPLICATIONS FOR ARPO WITH MIXED DISCRETE-CONTINUOUS VARIABLES

In ARPO, each x may combine discrete adversarial switches, continuous intensities, and possibly
dynamic threshold parameters. The above convergence proof remains valid under the same as-
sumptions, provided that X ⊂ Rd is compact and each fj is continuous or sufficiently regular to
admit a convergent GP posterior. Feasibility constraints (for instance, disallowing certain adversarial
operations) can be enforced by restricting X to a closed feasible subset. The positivity assumption
(Assumption E.5) remains justified, since any x capable of enhancing multi-objective performance
relative to P(n) necessarily induces a strictly positive EHVI value.

Under these assumptions, the iterative MOBO procedure, which selects x(n+1) by maximizing EHVI,
is guaranteed to asymptotically reveal the entire Pareto front. As the GP posterior converges to fj for
each objective and the EHVI acquisition reliably detects improvements, the set of non-dominated
solutions P(n) approaches the true P⋆ in supremum norm. Thus, ARPO inherits a solid theoretical
foundation for multi-objective adversarial optimization, ensuring that no Pareto-optimal strategies are
missed once enough iterations have passed.
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