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ABSTRACT

In this work, we revisit the problem of active sequential prediction-powered mean
estimation, where at each round one must decide the query probability of the
ground-truth label upon observing the covariates of a sample. Furthermore, if
the label is not queried, the prediction from a machine learning model is used
instead. Prior work proposed an elegant scheme that determines the query prob-
ability by combining an uncertainty-based suggestion with a constant probability
that encodes a soft constraint on the query probability. We explored different val-
ues of the mixing parameter and observed an intriguing empirical pattern: the
smallest confidence width tends to occur when the weight on the constant prob-
ability is close to one, thereby reducing the influence of the uncertainty-based
component. Motivated by this observation, we develop a non-asymptotic analysis
of the estimator and establish a data-dependent bound on its confidence interval.
Our analysis further suggests that when a no-regret learning approach is used to
determine the query probability and control this bound, the query probability con-
verges to the constraint of the max value of the query probability when it is chosen
obliviously to the current covariates. We also conduct simulations that corroborate
these theoretical findings.

1 INTRODUCTION

The mean estimation problem is a classical inference task that has seen revived interest in machine
learning and statistics over the last few years. While the conventional setting is well-understood,
numerous works have explored this problem under diverse settings and assumptions, aiming to en-
hance our understanding of the inherent challenges of learning from limited data. Recently, a line of
work has investigated the design of efficient mean estimators under the robust framework, including
the setting of a constant fraction of adversarial outliers (Cheng et al.|[2020), heavy-tailed symmetric
distributions without moment assumptions (Novikov et al.| 2023), mean-shift contamination in mul-
tivariate identity Gaussian distributions (Diakonikolas et al.||2025), sparse mean estimation in high
dimensions (Pensia, 2024), online high-dimensional mean estimation (Kane et al.l 2024). A few
other recent works have explored other structural considerations, such as collaborative normal mean
estimation in the presence of strategic agents (Chen et al., 2023, communication-efficient mean
estimation in a distributed setting (Ben-Basat et al.| [2024)), vector mean estimation under the shuf-
fle model of privacy (Asi et al.| 2024)), dynamic multi-group mean estimation (Aznag et al.,|2023),
leveraging favorable distribution structure to improve sub-Gaussian rate (Dang et al., 2023)), among
others. This variety of scopes in the mean estimation setup highlights its relevance as a foundational
task for inference.

A direction that has attracted substantial attention with the increasing integration of machine learn-
ing is mean estimation through an active inference perspective (Zrnic & Candes||2024). Specifically,
the problem focuses on estimating the mean label from a set of unlabeled observations, by leveraging
a limited label collection budget and the abundant but potentially biased predictions of a machine
learning model. Under this setup, active statistical inference provides a data collection strategy that
utilizes the budget more effectively by taking into consideration which labels it would be more ben-
eficial to acquire. Specifically, it prioritizes the collection of labels where the model exhibits higher
uncertainty and uses the model predictions for instances where the model is more confident. The
same work considers querying the labels in both the batch and sequential setting, where the latter
additionally allows updating the model as the ground-truth labels are obtained, and provides asymp-
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totically valid confidence intervals for the estimator in question in both cases. The non-asymptotic
analysis of the estimator was missing in the prior work.

In this work, we draw on the sequential active statistical inference perspective by providing non-
asymptotic guarantees for the sequential active mean estimation problem. While prior work of Zrnic
& Candes| (2024) have established the asymptotic normality of their proposed estimator, our work
investigates the sequential mean estimation problem further under the light of an online updating
scheme and provides a non-asymptotic analysis with guarantees that hold at any time while going
through the data. More specifically, we first formulate the scheme of active sequential mean estima-
tion as an online update step, and establish a convergence guarantee that incorporates the conditional
variance of the update direction and achieves a rate of O (1 / \/f) for sufficiently large ¢.

Furthermore, motivated by a series of experimental findings, which reveal an intriguing pattern of
the label sampling rule considered by previous work, we are led to examine more closely the role of
the model uncertainty component through the current covariate. In particular, to adhere to the budget
constraint and ensure a small variance of the estimator, Zrnic & Candes|(2024) derive a sampling
rule that is a mixture of the uniform rule and a model uncertainty estimator weighted by a mixing
constant. Our experimental findings across a variety of tasks indicates that employing the mixture
rule or relying solely on the uniform policy results in comparable confidence interval widths, with
the uniform policy occasionally producing marginally narrower intervals. This observation suggests
that, the contribution of model uncertainty with respect to the label of the current covariate might
be brittle in practice. Based on this insight, we formulate the problem of tuning the query policy as
an online learning task that does not rely on the current covariate, and whose validity is supported
by the strong sublinear regret guarantees of the classical Follow-the-Regularized-Leader (FTRL)
algorithm (Abernethy et al.,[2012). Remarkably, we demonstrate that under this no-regret learning
approach, the query policy converges to the maximum value permitted by the budget constraint. Our
theoretical findings are further validated through experiments on three real-world and one synthetic
dataset.

2 PRELIMINARIES AND NOTATION

We begin by introducing the problem setup. We consider the setting where we have access to a
sequence of data points x1, xs, ... 27 € X C R from an unknown, fixed distribution Px. Each data
point x; is associated with a ground-truth label y, € Y C R, drawn from an also unknown, fixed
distribution Py x. We assume that the ground-truth labels are not known a priori, and the cost to
obtain them could be high. We are interested in estimating the mean label 1, = E[y,]. Additionally,
we assume that at each time ¢ € [T'] we have access to a black-box predictive model f;(-) : X =Y,
which can continually evolve by using the samples collected up to round ¢ — 1 to update. More
specifically, we require f; € F;_1, where F; denotes the o-algebra generated by the first ¢ data
points zg, 1 < s < ¢.

Sequential active mean estimation seeks to construct an efficient estimator by observing data points
one at a time and deciding whether to query each ground-truth label. Under a limited labeling
budget, the objective is to sequentially acquire labels in a way that most effectively improves the
accuracy of the mean estimator. Specifically, if we denote by T;4; the total number of collected
labels, we require that the policy of querying the ground-truth label ensures E[T}4] < Ty, where we
assume that T, < T'. Let 7;(x;) denote the probability of collecting the label of data point x; at time
t, where m; € F;_1, and let & ~ Bernoulli(7;(z;)) denote the labeling decision used to indicate
whether the ground-truth label y; was collected (£, = 1) or not (§&; = 0). |Zrnic & Candes| (2024)

propose the sequential active mean estimator @ = 7 Zle ( filz) + (ye — fi(zy)) %) Ctis

easy to verify that @ is unbiased, i.e., E[&)] = u,. Notably, Zrnic & Candes|(2024) show that the
optimal choice of querying policy 7;” " is according to the uncertainty of the prediction model, and
it satisfies

Wfpt(fﬁt) X \/E [(il/t - ft(wt))2 |]:t71}7

where the above expression hides a normalization constant to ensure that E[x{""(z;)] < Tp/T.
However, since Py | x is unknown, the authors suggest fitting a model on past data (, i) to approxi-
mate the uncertainty u;(x;) by |y; — f¢(x¢)| for a given x4, and then setting the querying policy to be
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proportional to that estimate. To ensure that the budget constraint is met in practice, the remaining
budget at time ¢ is set as the difference between the expected budget to be used up to time ¢ and the
budget already used up to time t — 1,i.e. Ta ; = tTy/T — Tiabt—1. Then, the querying policy is set
to

me(ze) = min {nue (), TA7t}[071] ,

where the subscript [0, 1] denotes clipping to [0,1], 7; is a normalizing constant set to 7, =
Ty/ (TE [ut(x)]), and E [us(z)] is approximated empirically. This practical rule aims to balance
frequent sampling under high uncertainty against overusing the budget. However, since the esti-
mated uncertainty can be consistently low, and thus the budget could be underutilized, the policy
is occasionally set to 7 (x;) = (TA’t)[m]. An additional concern is that an inaccurate uncertainty

estimate may be close to zero, while the quantity |y, — f;(x;)| is actually large, which would in turn
yield an amplified estimator variance. To address this issue, the authors suggest that the policy is set
to a mix of the described policy with the uniform rule as

7 (@) = (1= Nme(ae) + Amif(z,),

where 7{"if(x,) = T},/T, and A € [0, 1]. In the presence of sufficient historical data, A can be tuned

by minimizing the empirical estimate of the estimator variance induced by the policy wt(k). However,

due to insufficient historical data in the sequential setting, A is set to a fixed value.

While the related work simply sets 0.07
the mixing parameter to 0.5, we Estimator
explore different parameter values [2C24] (mefngio.os)
for the mean estimation experiment o 5252} E::i::g;g;;
in Zrnic & Candes| (2024) by run- e [zC24] (mixing:0:8)
ning their public implementation on [2C24] (mixing=1.0)
the same post-election survey dataset

Center|(2020) as in their experiments.

o
o
&

Interval width
o
o
=

0.03
We keep all their other parameter
choices unchanged. Figure 1| shows
how the interval width varies with 0.02
the sampling budget 7 under dif- 1855 2370 3%9 3871 4946

ferent values of the mixing parame-
ter in the query policy We find
that setting A = 1, corresponding to
using the uniform query policy that
ignores model uncertainty, produces
confidence intervals that are slightly narrower than those obtained with A = 0.5. We further evalu-
ate the method on two additional real-world datasets and one synthetic dataset, and observe a similar
pattern, where the uniform query policy (A = 1) yields confidence intervals that are comparable to,
and often tighter than those from A = 0.5. Due to space constraints, the corresponding figures are
included in Appendix [A]

Figure 1: Post-election survey dataset. Interval width vs.
the sampling budget parameter 73, for different values of the
mixing parameter of the query probability scheme in [Zrnic
& Candes| (2024). Averaged over 10 repeated runs.

These similar empirical patterns motivate us to further investigate this observation. A plausible
initial explanation is that the empirical performance improves when less weight is assigned to
the uncertainty-based component, possibly because the uncertainty predictor may not be reliable.
However, our theoretical analysis later suggests that this factor alone may not account for the phe-
nomenon, which might be surprising.

3 RELATED WORK

Active Statistical Inference. The ideas in this work are motivated by the recent approach of Active
Statistical Inference (Zrnic & Candes} [2024). Extending this framework, Angelopoulos et al.| (2025)
propose a method that optimizes the sampling rate between gold-standard and pseudo-labels rather
than relying on a fixed label budget, and derive an improved active sampling policy. A recent work

'The code, provided in Jupyter notebook format, to reproduce Figure [1| as well as others in the paper is
available in the supplementary material.
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by |Gligori€ et al.| (2025)) utilizes LLM verbalized confidence scores to guide their sampling policy
and subsequently performs active inference by combining the LLM and human annotations.

Prediction Powered Inference. The Active Statistical Inference framework is grounded in the idea
of Prediction Powered Inference (PPI) Angelopoulos et al.| (2023al), which differs from the former
in that it assumes the availability of a small, pre-labeled dataset. The work of |Angelopoulos et al.
(2023b)) introduces PPI++, which improves the computational efficiency of PPI by addressing the
intractability of the original confidence interval construction and using a tuning parameter to con-
trol the influence of the model predictions based on their quality. Subsequent works (Dorner et al.,
2025 Mani et al., [2025) analyze the critical role of the correlation between the gold-standard and
model-generated labels for the performance of PPI. Following the original PPI formulation, sev-
eral works have proposed extensions and refinements in various directions, including addressing
estimator bias in the few-label regime (Eyre & Madras|, [2025)), incorporating an inverse probability
weighting (IPW) bias-correction term (Datta & Polson, 2025)), combining predictions from multiple
foundation models via a hybrid augmented IPW estimator (De Bartolomeis et al., [2025), applying
a stratification approach (Fisch et al.| [2024), exploring a bootstrap-based variant (Zrnic, [2024), em-
ploying Bayes-assisted approaches (Cortinovis & Caron, 20255 L1 & Ignatiadis, 2025)) and extending
the ideas of PPI to e-values (Csillag et al.| 2025). Other applications of the PPI framework include
LLM-assisted rank-set construction (Chatzi et al., 2024), average treatment effects from multiple
datasets (Wang et al.l [2025)), clinic trial outcomes (Poulet et al.l [2025)), autoevaluation in machine
learning systems (Boyeau et al., 2025; |Park et al.| [2025), machine learning generated surrogate
rewards for multi-armed bandits (Ji et al.| [2025b). A few other works have explored alternative
machine-learning assisted estimators, e.g., Schmutz et al.| (2023)); Egami et al.| (2023)); Miao et al.
(2023)); Miao & Lul(2024);/Gan et al. (2024).

We refer the reader to Appendix [B]for a more detailed discussion on related work.

4 NON-ASYMPTOTIC ANALYSIS OF THE MEAN ESTIMATOR

In this section, we provide the non-asymptotic analysis of the sequential active mean estimator.
Since the sequential active estimation setting requires going over the data points sequentially, we
can formulate the active mean estimator of Zrnic & Candes|(2024) as an online update step at each
time ¢ € [T, as

W1 = Wt + 1 (ft(l’t) + (ye — ft(mt))gt) ) (L

T m(2¢)

where we set the initial point w; = 0, and let T" be the horizon. We denote g; := fi(z:) + (y: —
fi (wt))% A simple calculation shows that E[g¢] = p,,, the mean of the random variable (y;);>1.

Before proceeding with the asymptotic analysis of (I)), we will need a technical lemma, known as
Freedman’s inequality, which is stated below for completeness.

Lemma 1 (Freedman’s inequality (Freedman, 1975), see also e.g., Lemma 3 in Rakhlin
et al.| (2012)). Let (1,...,(r be a martingale difference sequence with a uniform upper
bound |(;| < b,Vt. Denote V; the sum of conditional variances of (s’s., ie, V; =
Ei:l Var((s|Ci, - - - Cs—1)- Also, denote oy := /V;. Then, forany 0 < 6 < 1/e and T > 4,

we have

Prob (315 <T: i{s > 2max{2at,b\/log(1/5)} \/log(1/5)> < log(T)9.

Lemma [I| provides a concentration inequality for martingales, yielding a high-probability bound
on the deviation of a martingale sum from its mean that adapts to the accumulated conditional
variance. We are now ready to present the non-asymptotic analysis result for the sequential active
mean estimator, as detailed in Theorem

Theorem 1. Fix a time horizon T > 4. Assume each random variable g; is bounded, i.e.,
l9:| < G for a constant G > 0. Denote o} := E [(g; — py)*|Fi—1] the conditional variance,
where F;_1 is the filtration up to t — 1. Then, for any 6 € (0,1/e), with probability at least
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1-46,Vte[T]:

2 max {2\/57, G+ |uy|>\/10g (bgm)} \/log (57) . (1 - ) [

T

|We1 — py| <
@
t
where Sy = >, _, 02
Theorem [I| demonstrates a data-dependent bound on the accuracy of the update w; that holds with
high-probability at any time ¢ € [T]. We make a couple remarks on this result. When ¢ < T and

the (1 — %) |u,| term dominates the other term on , it is possible to observe a rate that is slower
than O(1/+/%) in the initial stage, i.e., 1 — % ~ 1. However, after this burn-in stage (i.e., when ¢ is

sufficiently large), the first term will eventually become dominant. Furthermore, when \/22:1 o2
dominates (G + |uy])+/log(log(T")/d), which happens easily when ¢ is sufficiently large and ¢ is

not too small, the rate becomes
Vs 02/log(log(T)/0)
T . 3)

lwi1 — pyl = O

Using the trivial bound 37 ;02 < 2t(G® + p2), we can further express the rate as

o (ﬂ\/(auﬂizplog(log( >/6>> 0().

5 POLICY OF QUERYING THE GROUND TRUTH

In the previous section, we discussed that the update w; of (El) will have a rate of O (Vt/T) =
O (1/+/t) in the worst case. An observation is that when Zzzl 02 < 2t(G? + i), one might get
an even faster rate than O(1/+/%). This motivates us to control the sum of the conditional variances,
ie., 22:1 ol = 22:1 E [(gs — #y)?|Fs—1], by proposing an algorithm to determine the query
probability of the ground-truth label online, which we detail next.

We begin by introducing the following observation on the decomposition of the conditional variance
of the update step, which will subsequently guide the choice of the online query policy.

Lemma 2. The conditional variance has the following decomposition:

E [(Qt - My)2|-7:t—1] =E ft(l”t)2 Fi1 (ye — ft(xt))2

+ 2B | fe(ze)(ye — fi(ze))

ft—1‘| - H§~

Furthermore, assume that the query policy at time t is F;_1-measurable, i.e., there exists a
random variable p; € |0, 1], measurable with respect to F;_1, such that 7¢(x) = pi. Then, we

have
1
IH] =—E ’ f“] :
Y43

We observe that the only term involving the query probability m;(x;) that contributes to
the conditional variance is E[(y; — fi(z¢))” - (at) |F:—1]. We now consider the query policy
at time t¢ that is fully determined by the information up to ¢ — 1. With this, we can
rewrite E[(y; — fi(z))* m(zf)|}—t 1] = iE[(yt — fu(x))? | Fi—1]. However, we note that

(ye — fe(ze))

(ys — ft(xt))2 %ﬁ)

E[(y: — fi(a4))? | Fi—1] cannot be known since this depends on the unknown distributions of y, and
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ft(x¢). Therefore, we assume that there is an oracle, denoted as ®;(z;) € R4, which is available at
time ¢ and provides an approximation of the quantity of interest, i.e.,

éq)t(wt) <E | (g~ folw)?

ftl] < CO(I)t(xt)7

for some constants o, ¢; > 0 such that @, (z;) ~ E[(y — fi(z¢))* | Fi—1]. Equipped with such an
oracle, we propose specifying the query probability p; based on the following rule:

t—1
1 D (xy)
— in y0;_ ~p?, where 0;_y := — ) 4
Dt argpg[lé{lﬂv 1D + 5P", where 6y 2 02 “®

where v > 0, 7 € (0, 1], 8 € (0, 7] are user-specified parameters, and we let 6y := 0. The following
lemma shows that p, has a closed-form expression.

Lemma 3. The update (4) has a closed-form expression, which is
pt = max{f, min{r, —v6;_1}}.

We note that one can specify 7 = T , where T3, denotes the targeted maximum number of rounds
in which the ground-truth is querled which ensures that the query probability p; at time ¢ does not
exceed the ratio % This constraint is also akin to the sampling rule E[p;] < % considered in|Zrnic
& Candes|(2024). On the other hand, the parameter 3 encourages certain exploration at each round
by preventing the query probability p; from becoming too close to 0.

The update (), in a nutshell, is one of the celebrated online learning algorithms called Follow-the-
Regularized-Leader (FTRL), (see, e.g.,|Abernethy et al.| (2012); Wang et al.| (2024), and Chapter 7
of |Orabona) (2019)). FTRL is known to enjoy a sublinear regret bound when the sequence of loss
functions is convex. We propose leveraging the strong guarantee of FTRL to determine the query
probability p; online. More specifically, in our scenario, one first determines the query probability
pt, after which it receives a loss function defined as ¢;(p) := W, which is a convex loss function

n (0,1]. In online learning, a common goal is to minimize the regret. In our setting, the regret
against a benchmark p, € [, 7] over ¢ rounds is defined as:
t t

Regret p* : Z ng(p*) _ Z (I)s(:Cq) . Z ’1)5(50.@)’ )

s=1 s=1 s=1 Ds s=1 P+

where the first sum is the cumulative loss of the updates (p;)s>1 and the second one is that of the
benchmark. A sublinear regret bound against any benchmark p, in the same decision space |3, 7]
of the learner implies that the sequence of query probabilities can compete with the best fixed query
probability in hindsight. On the other hand, given that the oracle’s output is non-negative, i.e.,
Vs : ®4(-) > 0, it follows that arg min,, ¢( . £s(p) = 7. Combining these implies that an online
learner may need to approach 7 eventually to achieve a sublinear regret. In other words, to maintain
sublinear regret, the query probabilities p; will need to converge toward the constraint upper bound

T = % In particular, we have that the average regret is in fact vanishing (a.k.a. no-regret learning),

ie., w — 0 as t — oo, as the following lemma shows.

Lemma 4. (see e.g., Theorem 3 in|Luo|(2017)) FTRL satisfies

— min,ex R(p)
i

)

t
Regret, (ps) < Z

dls(p)
dp

for any comparator p, € K := [, 7], where v > 0, R(p) := p and 0y = .
P=Ps

‘We note that Lemma [le is a classical result in online learning literature, see also Orabona (2019);
Shalev-Shwartz et al.| (2012). The guarantee suggests that if one chooses v = \F’ then the regret

of FTRL is O(\F ), which grows sublinearly with T, provided that the size of the derivative is
bounded. The following lemma shows that the size of the derivative in the regret bound is bounded
whenever the oracle’s output is bounded.
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Lemma 5. Assume that the range of oracle’s output is bounded, i.e., Vt : ®(xy) < B, for a

12
constant B > 0. Then, Vt : ‘Et‘ < g—f.

In the following theorem, we denote ;2 := 22:1 02‘_2( " the cumulative conditional variance ob-

tained under a fixed query probability pj., € K := [, 7], as if the method had committed the best
fixed probability in hindsight over t rounds rather than following the query policy from @, i.e.,

N . t
Py = argmillye(g 7 25:1 ls(p).

Theorem 2. Assume that there is an oracle that outputs ®;(x+) at each t such that é@t (x¢) <

E l(yt - ft(xt))2

}'t1] < co®¢(x¢) for some constant cg,c; > 0 and that vt : ®(z;) < B.

Set the parameter v =
least 1 — 0, V't € [T):

2 { 2V (G + gy o (252)  flog (1242

0
|wt+1—uy\ S T +<1

%. Using the query policy (EI) we have that, with probability at

)|,Uy|a

o

1
VT

N~

for any B € (0,7) and T € (0,1), where ¥, < coci0t2 + 2co
CO(R(PT:t)—mingeK R(p))VTB
3 :

<

What Theorem [2| shows is a data-dependent bound. We note that /¥, < coclai‘?t +
0] (Tl/ 4). From our earlier discussion, once a sufficient burn-in period has elapsed so that the

first term in the upper bound dominates, the non-asymptotic rate takes the form O (—VT‘I") =

*2
1) (VCO;WH + T§/4) , provided that § is not too small.

6 EXPERIMENTS

In this section, we report experimental results by comparing the proposed method with two base-
lines. For clarity, Algorithm|[T]presents the protocol for the task of active sequential mean estimation.
Compared to the procedure described in Algorithm 2 of Zrnic & Candes| (2024)), the key difference
is that we also update the uncertainty predictor whenever the ML model for label prediction is up-
dated. Furthermore, we split the dataset with ground-truth labels into two disjoint subsets, which
are accumulated as described on Line 13, and use these subsets to expand the data available for
updating the ML model f;; and its uncertainty predictor u,1, respectively. This treatment of the
disjoint training sets is intended to enable the uncertainty predictor to more accurately estimate the
uncertainty of the ML model when it is applied to unseen data at test time.

The first baseline was also considered in the prior work of Zrnic & Candes|(2024).

1 T

. T
w%mform = T ; (f(ze) + (ye — f(x4)&),  where £ ~ Bernoulli (7?) . (6)
For this baseline, we note that the ML predictor is fixed. As discussed in|Zrnic & Candes| (2024),
this comparison can showcase the benefit of data collection. Following the terminology of [Zrnic &
Candes|(2024), we refer to this baseline as “uniform sampling.”

The second baseline is the scheme proposed in Zrnic & Candes| (2024) for implementing Line 6
in Algorithm [I] which determines the query probability p;, as described in the earlier preliminary
section.

6.1 DATASETS AND EXPERIMENTAL SETUP

We compare the algorithms on three real-world datasets. The first dataset concerns the politeness
scores of texts based on human annotations, which is available from the works of Ji et al.| (2025a)
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Algorithm 1 Protocol of Active Sequential Mean Estimation

Require: Significance level parameter o € (0, 1), target sampling budget T, > 0, and batch size
B.
1: Initialize a machine learning (ML) model f;(-) : X — Y to predict the labels of data.
2: Initialize an uncertainty predictor uy (-, ) : X x f1(-) — R for the model’s predictions.
Initialize the dataset for updating the model Dy, and the dataset for the uncertainty predictor

b

Duncerlainty .

4: Set Dy < 0, w1 < 0

5. fort=1,...,T do

6:  Observe features x; of a sample and determine the query probability p; for getting its label.
7:  Sample the binary random variable & ~ Bernoulli(p;).

8. if& = 1 then

9: Obtain the ground-truth label y; and set Dynp < Dimp U { (24, 1) }-
10: Increase b by 1.
11:  endif

12:  if B = b then
13: Randomly split Dy, into two datasets with equal sizes, Dg, and Dag,.
14: Set Dlrain <~ DLra.in U D-‘. and set Duncertainty — Duncenainty ) DQ-

15: Update the ML model to f;;1(+) using the dataset Dyyiy; similarly, update the uncertainty

predictor w41 (-, ) : X X fiy1(-) — Ry using the dataset Dyncertainty-
16: Reset b + 0.

17:  else

18: ft+1 — .ft and Uty < Ut.

19:  endif

20:  Update the estimate wy41 = wy + = (ft(xt) + (yr — fe(zr)) z%)
21: end for

2 Set 6% e kX0 () + (e~ ) & —wria)

23: Output: (1 — a)-confidence interval C'I, = (w;m_l t 2102 %)

and Gligori€ et al.|(2025)). For each article, there is an associated 21-dimensional feature vector and
a score predicted by ChatGPT. We consider the task of regression for this dataset, where the ML
model is trained on the 22-dimensional vector (the 21 features plus the ChatGPT score) to predict
the average score of 5 human judgments. Following the suggestion in |Zrnic & Candes| (2024), an
uncertainty estimator u;(+,-) : X x fi() — R is used to predict the absolute error | f;(z:) — v
from x; without seeing the label y; beforehand. This predicted uncertainty is then used as the
input to their proposed scheme for determining the query probability p; at round ¢. The uncertainty
estimator is also updated based on the collected samples with queried ground-truth labels once every
batch of B labeled samples is collected, as depicted in Algorithm[I] For our proposed scheme, we
need to construct the approximation oracle ®;(x;). In practice, we implement this by performing a
linear regression on the squared residual error (f;(x;) — y;)? for the samples in Dypcertainty. and this
estimator is updated regularly after every batch of size B.

The second dataset concerns predicting the ratings of wine reviews, which is available in J1 et al.
(2025a). Each review is associated with the price of the wine and four additional binary attributes
representing the regions, along with the rating predicted by OpenAl’s GPT-40 mini based on the
reviewers’ comments. We also consider the task of regression for this dataset, where a linear regres-
sion model is trained on the aforementioned covariates to predict the human ratings. The uncertainty
predictor and the approximation oracle ®,(x) have the same form and are updated in the same fash-
ion as for the first dataset.

The third dataset is a post-election survey dataset considered in [Zrnic & Candes| (2024)), where the
original source is from (Center| (2020). This dataset includes the approval ratings of two politicians,
where approval is represented by y; € {0, 1}. Following the experimental setup in|Zrnic & Candes
(2024)), the ML model f(-) is implemented as an XGBoost model. Since the response y; is binary,
the task can be treated as a classification problem. We hence follow the treatment in|Zrnic & Candes
(2024) by using the uncertainty predictor as u:(z, ft(-)) = 2min{ fi(z¢), 1 — fi(z¢)} for their
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Figure 2: Politeness score analysis. Left: Intervals of randomly selected trials. Middle: Average confidence
width across repeated trials vs. sampling budget 73. Right: Percentage of trials that cover the true mean.
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Figure 3: Wine review analysis. Left: Intervals of randomly selected trials. Middle: Average confidence
width across repeated trials vs. sampling budget 73. Right: Percentage of trials that cover the true mean.
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Figure 4: Post-election survey.. Left: Intervals of randomly selected trials. Middle: Average confidence
width across repeated trials vs. sampling budget 73. Right: Percentage of trials that cover the true mean.

proposed scheme, where f;(x;) is the predicted probability of y; = 1 for x; given by the XGBoost
model. On the other hand, the required approximation oracle ®(x;) is trained in the same fashion as
in the first two tasks.

We also conduct experiments on a synthetic dataset, the details of which can be found in Appendix[E]

6.2 RESULTS

In this subsection, we report the results of the conducted experiments. Figures 2] - ] and Figure [6]
(provided in Appendix [E| due to space limitations) show the intervals of randomly selected trials,
average confidence width, and coverage for each of the datasets considered over 50 trials. Across all
four datasets examined, we find that the FTRL policy yields performance comparable to the mixture
policy proposed by |Zrnic & Candes| (2024), in the sense that both result in confidence intervals of
similar width, while both outperform the baseline policy. Notably, in two of the datasets, the FTRL
policy attains marginally narrower confidence intervals. With respect to coverage of the true mean,
all three policies yield a high proportion of confidence intervals that successfully include the true
value.

Our theoretical analysis and experimental findings consistently indicate that when the query prob-
ability p, at time ¢ is oblivious to the current covariates x;, while still permitted to depend on past
covariates or past uncertainty estimates, the optimal strategy is simply to set p; = % in accordance
with the sampling budget. This result, implies that constructing an uncertainty predictor, or lever-
aging uncertainty estimates in any form, does not appear to provide a clear advantage for this type
of policy. Perhaps unexpectedly, this rules out any benefit from conditioning on past covariates or
past uncertainty estimates. Furthermore, as our figures illustrate, even when the query probability
ignores the current covariates, FTRL, which quickly converges to the constant % and then maintains
it, performs on par with the more sophisticated scheme of Zrnic & Candes| (2024])), which explicitly
uses the current features z; to determine the query probability.
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A EXPERIMENTS ON THE EFFECT OF THE MIXING PARAMETER

In this section, we report the results of experiments on tuning the mixing constant in the mixture
policy of Zrnic & Candes| (2024]), evaluated across four different datasets. A detailed description of

these datasets is provided in Section[6]and Appendix [E|
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(c) Wine review dataset. (d) Synthetic dataset.

Figure 5: Interval width vs. the sampling budget parameter T3 for different values of the mixing
parameter of the query probability scheme in |Zrnic & Candes| (2024). Averaged over 50 repeated
runs.

B EXTENDED RELATED WORK

Active Statistical Inference. The ideas in this work are motivated by the recent approach of Active
Statistical Inference (Zrnic & Candes} [2024). Extending this framework, Angelopoulos et al.| (2025)
propose a method that optimizes the sampling rate between gold-standard and pseudo-labels rather
than relying on a fixed label budget, and derive an improved active sampling policy. A recent work
by |Gligori€ et al.| (2025)) utilizes LLM verbalized confidence scores to guide their sampling policy
and subsequently performs active inference by combining the LLM and human annotations.

Prediction Powered Inference. The Active Statistical Inference framework is grounded in the idea
of Prediction Powered Inference (PPI) |Angelopoulos et al.| (2023a), which differs from the for-
mer in that it assumes the availability of a small, pre-labeled dataset. The work of |Angelopoulos
et al.[(2023b) introduces PPI++, which improves the computational efficiency of PPI by addressing
the intractability of the original confidence interval construction and using a tuning parameter to
control the influence of the model predictions based on their quality. Subsequent works (Dorner
et al.,[2025; [Mani et al., 2025) analyze the critical role of the correlation between the gold-standard
and model-generated labels for the performance of PPIL. Focusing on the few-label regime, |[Eyre &
Madras| (2025)) argue that the PPI++ framework may lead to a significantly biased estimator that
is less efficient than classical inference by establishing its connection to univariate ordinary least
squares regression. Datta & Polson|(2025) examine the use of an inverse probability weighted (IPW)
bias-correction term in the PPI mean estimator, inspired by classical Horvitz—Thompson and Hajek
estimators. The work of [De Bartolomeis et al.| (2025) establishes a connection of PPI++ with the
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augmented inverse probability weighting (AIPW) estimator and propose an extension, which allows
utilizing predictions from multiple foundation models. To address cases where the model accuracy
varies across subdomains, [Fisch et al.[ (2024) apply a stratification approach to PPI. |Zrnic| (2024)
explore a bootstrap-based PPI variation to tackle arbitrary estimation problems. Xu et al.| (2025)
improve the PPI framework by proposing a safe PPI estimator that is always more efficient than
the initial supervised estimator and can be used for arbitrary inferential problems. |Li et al.|(2025)
generalize the ideas of PPI to a dynamic performative setting and show improved confidence regions
in the task of performative prediction. In a semi-supervised context, Zrnic & Candes|(2023) propose
a method of using the labeled datapoints for cross-fitting and using the fitted models to compute
the desired estimator. |Cortinovis & Caron| (2025) extend PPI by applying a Bayes-assisted frame-
work that uses prior knowledge on the accuracy of the model predictions. In the case of compound
estimation settings, |[L1 & Ignatiadis| (2025) adopt an approach that combines PPI with empirical
Bayes shrinkage to correct noisy predictions within each problem and subsequently uses these as
a shrinkage target. An interesting work by |Csillag et al.| (2025) presents a PPI framework based
on e-values. Other applications of the PPI framework include LLM-assisted rank-set construction
(Chatzi et al.| [2024)), average treatment effects from multiple datasets (Wang et al.,[2025), clinic trial
outcomes (Poulet et al.,|[2025)), evaluating the accuracy of machine learning systems (Boyeau et al.,
2025}, [Park et al.l 2025)), machine learning generated surrogate rewards for multi-armed bandits (Ji
et al., |2025b). A few other works have explored alternative machine-learning assisted estimators,
e.g. Schmutz et al.|(2023); [Egami et al.| (2023); Miao et al.| (2023); Miao & Lu| (2024); |Gan et al.
(2024).

C PROOFS OF THE THEORETICAL RESULTS IN SECTION

Theorem 1. Fix a time horizon T > 4. Assume each random variable g, is bounded, i.e., |g;| < G
for a constant G > 0. Denote 02 := [(gt — py)z\}},l] the conditional variance, where F;_1 is
the filtration up to t — 1. Then, for any § € (0,1/¢e), with probability at least 1 — 6, Vt € [T :

2max{2\/57, (G+|My|)\/10g(10g§T))}\/log (%) .
+ (1= 7 )

|wir1 — py| < T T

t
where Sy =Y _, 02

Proof. The difference of w; — p, can be decomposed into two terms. Specifically, we have
1 o 1 ¢ t

thrl_,uy:(T;gs>_,U*y:T;(gs_My)_(l_T>,uy~ @)
Let us analyze the second-to-last-term 3" (gs — jz,,) on . We note that (g5 — fty)s>1 forms a
martingale difference sequence, i.e., E[gs — pty | Fs—1] = 0, where Fs_; encodes all information
up to time s — 1. Furthermore, Vs : |gs — tty| < G + |y ]. Also, the conditional variance is

Var (gs - Myl}-sfl) =E [(95 - ,uy>2|]:sfl] = O’?

By Freedman’s inequality (Lemmal([T), we have, with probability 1 — ¢,

t
Yt e [T]: Z(gs—uy) < 2max { 2

s=1

> 02 (G + |uy|)V/log(log(T) /) ¢ \/log(log(T)/5).
s=1

(®)

Combining (7) and (8), we obtain the following holds simultaneously at all ¢ € [T'], with probability
at least 1 — ¢:

|wir1 — py

2 {2/S, 02,6+ Iy ) FoaoR 0] | VoRlos D),
< - +(1- 7 )

O
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D PROOFS OF THE THEORETICAL RESULTS IN SECTION 3]

Lemma 2. The conditional variance has the following decomposition:
E [(Qt - ,U*y)2|ft71}

=K lft(xt)2

Fi1| +E (yt_ft(xt))2 Fio1| +2E | fi(ze)(ye — fir(we))

]:tl‘| - Mi-

1
7Tt(l’t)

Furthermore, assume that the query policy at time t is F_1-measurable, i.e., there exists a random
variable p; € [0, 1], measurable with respect to F;_1, such that w(x¢) = ps. Then, we have

ftl] .

(ye — fe(ar))® —— (e — fe(24))?

1
E
Wt(.rt)

1
fH] _ L
Y43

Proof.

E [(gt - ,Uy)2|]:t—1}
=E g7 Fe—1] — 12

[ 2
=K 2 Foor| +E | (ye — 2 b \r | yom — &g
_ft(l‘t) 1] -(yt fi(z)) 2| fe(@e) (ye ft(l“t))m(xt) -1
— NZ
1
=E | fi(ze)?|Focr | +E (e — filze))? (2 Fioa| +2E | felwe)(ye — fir(xt)) ftl] - Mz,
(Tt
where the first equality follows from that E [g¢|F;—1] = py. O

Lemma 5. Assume that the range of oracle’s output is bounded, i.e., V't : ®(x;) < B, for a constant

212
B> 0. Then, vt : |6, < Zr.
Proof.
2 (1)2 B2 BZ
ve o |o| = o) BB
by by

where the first inequality follows from that V¢ : ®(x;) < B, and the last inequality uses that

Theorem 2. Assume that there is an oracle that outputs ®.(x;) at each t such that %Cbt(xt) <

E|(y: — ft(l”t))2

.7-}_11 < co®y(x) for some constant cy,c1 > 0 and that Vt : ®(x;) < B. Set

the parameter v = % %. Using the query policy (EI), we have that, with probability at least 1 — 6,
vt e [T):

o oG O

|U)t+1 - /’[’Z/‘ S T T

CO(R(pI:t)_mingE)C R(p))ﬁB
8 .

forany 3 € (0,7) and 7 € (0,1), where ¥; < coc1072 + QCoﬁ% +
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Proof. By Lemma[2]and the constraint that the query probability p, is fully determined in F;_;, we
have

Ut2 =E ft(xt)2 Fi1| + I%E [(yt - ft($t))2 Fi1| +2E | fe(ze)(ye — fe(@)) ftl] - Ni
<E | f(@)?|Fi1| +co (I)t]gjt) +2E | fe(ze) (ye — fe(ae)) Ft—1‘| - 1y
=E | fi(z:)*|Fi1| + o <(I)t£xt) + Bulm) _ @S:EQ) +2E | fi(z)(ye — fir(@e)) Ft—l]
i D1t Dt D1t
_ ngl
<E ft(fﬂt)2 Fioa| + - (ye — ft(ﬂﬁt)>2 Fi1| +co <q)t(mt) - (I)tixt))
| P1 Pt P1
+2E | fe(ze)(ye — fe(az)) Ft1‘| -
< 00010;2(15) + ¢ (‘I’t]gxt) _ @;&It)) 7
t 1:t

where the last inequality uses the fact that coc; > 1. We note that the above inequality holds for all

t. Hence, we have
t

S 02 < cocr0f + coRegret, (b1, ©)
s=1
by summing up the above inequality for each round. To proceed, we use the regret bound that we
have from Lemma [4}

R(p7.;) — minpex R(p)

Regret, (p7.;) <
t\P1:¢ . ~
0 5By Blpt) = minyex R()
Y
W, t B (Rlpi,) =~ minger Rp) VTB 10
VT B ﬂ
where (i) is from Lemma and (ii) is by the choice of 7 = f B Combmmg @) and b we have

t .
B R(pt.,) — R TB
202 < Coclaﬁ T 20— _|_ co (R(pi.4) e (p)) VT .

=t il 7

Using the above bound together with Theorem |l|leads to the result. This completes the proof.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 SYNTHETIC DATASET

The fourth dataset used in the experiments is a synthetic dataset that is generated for binary clas-
sification according to a logistic model. More specifically, the covariates z; € R? are indepen-
dently drawn from a multivariate normal distribution with zero mean and identity covariance Iy,
where d = 10. The true parameter vector w* is sampled independently from a normal distribution
with zero mean and covariance 0.5 - I;. Gaussian noise ¢; ~ N(0,107°) is added to each x, w

to produce the logits. The correspondig binary labels y; € {0, 1} are then generated according to
y; ~ Bernoulli (o (x] w* + €;)), where o(z) = 1/(1+e~*) denotes the sigmoid function. The ML
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model f;(-) is implemented as a logistic regression model whose uncertainty predictor is estimated
in the same way as in the post-election survey dataset, i.e., us (x4, fi(+)) = 2min{ fe(x:), 1— fi(as)}
using the predicted probabilities of f;(-). A linear regression model is trained to predict the approx-
imation oracle ®(z;) as in the previous tasks.

Figure[6] shows the experimental results on the synthetic dataset.

0.14
= S 0.9
! z 01 % .
T 0.09 21;) 0.8 FTRL
2 0.08 847 [zC24]
£ uniform sampling
0.06 06
0.35 0.40 0.45 0.50 0.55 146 187 240 306 391 147 208 269 330 392
confidence width Ty Th

Figure 6: Synthetic dataset. Left: Intervals of randomly selected trials. Middle: Average confidence width
across repeated trials vs. sampling budget 73. Right: Percentage of trials that cover the true mean.

E.2 EXPERIMENTAL SETUP

All experiments were repeated over 50 trials, and reported results correspond to the averages across
these trials. At the start of each trial, the data points were randomly permuted. For each experiment,
the budget T} was varied over five uniformly spaced values between 15% and 40% of the total num-
ber of data points 7T'. The interval width and coverage plots were obtained by linearly interpolating
between the values at these grid points.

In the experimental setup, the ML model f(-), uncertainty estimator w; (-, ), and oracle ®;(-) were
updated periodically after observing a batch of B data points. For the first two datasets (politeness
score and wine review analysis), the estimators were updated N = 50 times, while for the last two
datasets (post-election survey and synthetic data), they were updated N = 10 times. Accordingly,
the batch size was set to B = round (%)
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