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Abstract

Significant progress has been made in spoken
question answering in recent years. However,
many of the existing methods including Large
Audio Language Models (LALMs), have only
been developed for short audio files and have
difficulty in processing long audio. Speech Re-
trieval Augmented Generation (SRAG) follows
the success of RAG in processing long-form
speech, where an effective retriever serves as a
critical first step. However, cross-modal retriev-
ers in SRAG remain understudied, with current
approaches either relying on pipeline methods
(ASR followed by text RAG) or generic audio-
text alignment models. To address this chal-
lenge, we propose proposes CLSR, an end-to-
end contrastive language-speech retriever that
efficiently extracts question-relevant segments
from long audio recordings for downstream
RAG processing. Unlike conventional speech-
text contrastive models that directly align cross-
modal representations, CLSR introduces an
intermediate step by first mapping acoustic
features into text-like representations before
alignment, bridging the modality gap more
effectively. Experimental results across four
cross-modal retrieval datasets demonstrate that
CLSR outperforms both end-to-end speech-text
retrievers and pipeline approaches combining
ASR with text retrieval. Our pre-trained CLSR
model establishes a new state-of-the-art in
cross-modal language-speech alignment, signif-
icantly surpassing previous general language-
audio model like CLAP, thereby providing a ro-
bust foundation for advancing practical SRAG
applications.

1 Introduction

Question Answering (QA) task requires the model
to find the answer to a question from a given con-
text. If the answer is a span in the context, then the
task is called extractive QA; If the answer cannot
be directly obtained from the context and requires
further reasoning by the model, this task is called
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Figure 1: Using a small speech RAG model to simplify
long audio context into several audio segments can help
improve the quality of subsequent LALM response.

abstractive QA (Shih et al., 2023a). In the Spoken
Question Answering (SQA) task, the given con-
text is in audio format (Li et al., 2018), and some
complex SQA tasks require questions also in audio
format (Shon et al., 2022). Although there are many
improvement on SQA (Lee et al., 2019; You et al.,
2022), most SQA models are only applicable to
short audio (less than 1 minute). In real life, many
dialogue scenarios, such as meetings, lectures and
online conversations, involve voice recordings of
10 minutes or more, which is difficult for existing
SQA methods.

At present, Large Language Model (LLM) is
developing rapidly. Represented by GPT (Brown,
2020) and LLaMA (Touvron et al., 2023), LLMs
have achieved success in many traditional NLP
tasks, including QA task. In the speech domain,
there are also many LLMs that demonstrate impres-
sive speech understanding capabilities (Chu et al.,
2023; Radford et al., 2023). Retrieval augmented
generation (RAG) introduces external knowledge
into LLLM to enhance their natural language under-
standing capabilities (Gupta et al., 2024). Specif-
ically, it introduces a retriever before the LLM,



which calculates the similarity between each chunk
in the database and the user’s input query, and then
selects the top-k chunks with the highest similarity
as additional inputs for the LLM. In this way, LLM
can better understand the user’s query and provide
more satisfactory answers. For QA task, if the in-
put context is a thousand-word article, the role of
RAG is to extract the most relevant chunks from
the article as the input for the LLM, avoiding the
introduction of invalid information to decrease the
answer accuracy and inference speed. Given this,
in long SQA tasks, can we also use RAG to extract
problem-related segments and use them as input
for subsequent LALM?

In this paper, we propose CLSR, an end-to-end
contrastive language-speech retriever, which sim-
plifies long speech recordings into several audio
clips that are most relevant to the question. Then
the audio clips is used for subsequent LALM infer-
ence. Unlike typical end-to-end speech-to-text con-
trastive learning models, CLSR does not attempt
to align acoustic representations and text represen-
tations into the same semantic space. Instead, it
first converts the acoustic representations into text-
like representations, and then aligns the text-like
representations with the real text representations.
For the extraction of text-like representations, we
mainly use Continuous Integrate-and-Fire (CIF) to
achieve the mapping of acoustic representations
from time steps to token numbers, and then use an
adaptor based on vector quantizer (VQ) to refine
the acoustic representations into text-like represen-
tations. We compare CLSR with typical end-to-end
speech-text retriever and pipeline retriever which
combines speech-to-text model and text contrastive
learning model on four datasets: Spoken-SQuAD,
LibriSQA, SLUE-SQA-5, and DRCD. The exper-
imental results show that CLSR has the strongest
retrieval performance, which indicates that with
text-like representation as a bridge between acous-
tic representation and text representation, CLSR
can better capture the similarities and differences
between the two modalities, thus more accurately
pairing speech and text or speech and speech. The
contributions of this paper are as follows:

(1) To our knowledge, this is the first work to
introduce the concept of RAG into the field of
SQA and use it to solve long speech problems.

(2) The CLSR we propose first converts acoustic
representations into text-like representations,
and then aligns the text-like representations

with text representations, which can better al-
leviate modal differences and achieve cross-
modal alignment.

(3) The proposed model achieves SOTA on four
four datasets: Spoken-SQuAD, LibriSQA,
SLUE-SQA-5 and DRCD.

2 Related Work

Currently, there are many works related to SQA.
Chuang et al. (2019) propose a pre-trained model
called SpeechBERT for the end-to-end SQA task.
Through the training stage called initial phonetic
spatial joint embedding for audio words, it aligns
the generated audio embeddings with the text em-
beddings generated by BERT in the same hidden
space. Shih et al. (2023a) introduce GSQA, which
empowers the SQA system to engage in abstrac-
tive reasoning. They firstly utilize HuBERT to
convert the input speech into discrete units, then
use a sequence-to-sequence SQA model finetuned
from text QA model, LongT5, to generate answers
in the form of discrete units. Lin et al. (2024)
foucus on the open-domain SQA and the scenario
where paired speech-text data is unavailable. They
propose SpeechDPR, which uses the bi-encoder
retriever framework and learns a sentence level
semantic representation space by extracting knowl-
edge from the combined model of ASR and text
retriever. Johnson et al. (2024) introduce a retriever
that employs deep Q-learning to bypass irrelevant
audio segments in longer audio files, enhancing
SQA efficiency. The latter two articles are related
to retriever, which is similar to our paper, but they
have defects: the performance of the former is
worse than that of the pipeline model, and the latter
can only segment the audio at a fixed length, which
can not guarantee that all the key information is in
the same segment.

Since the birth of GPT, RAG has developed
rapidly, while speech RAG has less work. Yang
et al. (2024) use RAG for spoke lanauage under-
standing (SLU). They first use a pre-trained ASR
encoder to extract acoustic features, and then use
similarity calculation to find similar audio-text la-
bel pairs in the training set, and then introduce the
label information into the SLU decoder through
the cross attention mechanism. Wang et al. (2024)
propose a joint speech and language model based
on RAG, which can better perform the name en-
tity recognition task. They calculate the similarity
between the input speech query embeddings and



the entity embeddings in the database to extract K
entities most related to the problem, and use these
entities as additional inputs to the model. There is
currently no SRAG model for long SQA task.

3 Method

3.1 Preliminary
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Figure 2: The architecture of typical end-to-end speech-
text contrastive model.

Take the SQA task whose questions are in text
format and contexts are in speech format as the ex-
ample. Let X be the context, which is a speech se-
quence with T frames, X = {x1,z2,23,...,2¢}.
Let Y be the question, which is a sequence of to-
kens, and its length is n. Each token is in the
vocabulary V., Y = {y1,y2,¥3,...,yn | yi € V}.
Figure 4 shows the architecture of typical end-to-
end text- speech contrastive model, such as CLAP
(Wu et al., 2023). This kind of model first uses
a speech encoder A(.) and a text encoder B(.) to
extract acoustic features A(X) and text features
B(Y'), respectively, and then uses cosine similarity
to characterize the similarity Z between the two
features. The formula is as follows, where ||.||
refers to taking the L2 norm.

Zxy = A - 1B

The features contrastive learning model used are
sentence level. There are generally two methods
for extracting sentence level features. One is to in-
troduce a trainable CLS token and encode it together
with other tokens. Then the score of the CLS token
is used as the feature of the entire sentence; An-
other method is to average the token-level features
of length n into the features of length 1. These two
methods are also applicable for extracting features
of the entire audio.

When training, the model learns to minimize
the negative log likelihood (NLL) between the rep-
resentation of the question and its paired context.
The NLL loss is divided into two parts, one is the

retrieval from question to context, and the other is
the retrieval from context to question. The specific
formula is as follows, where n refers to the total
number of problem context pairs in the dataset.
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Figure 3: The architecture of proposed model, CLSR.
CIF stands for Continuous Integration and File, while
VQ stands for vector quantizer. The red line is only used
during training.

Figure 4 shows the specific architecture of CLSR.
The left half is a non-autoregressive attention
encoder-decoder framework based on CIF (Dong
and Xu, 2020). It receives the speech context X
and outputs the corresponding token probability
distribution D, D = {d;,ds,ds,...,d,}. Both
speech encoder and decoder adopt the SAN-M
(Gao et al., 2020) structure, which is a special
Transformer (Vaswani et al., 2017) layer that com-
bines self-attention mechanism with deep feed-
forward sequential memory networks (DFSMN).
Firstly, the framework uses the speech encoder to
extract acoustic features H°.

H?® = SpeechEncoder(X)

And then maps H® from the time step to the
number of tokens through the soft and monotonic
alignment mechanism, CIF, obtaining an acoustic
representation £, which is aligned with the token
probability distribution.

E* = CIF(H®)



Then, it predicts the corresponding token dis-
tribution through the speech decoder and a full-
connected layer.

D =W - Decoder(H?®, E*) + b

Follow Gao et al. (2022), we use a sampler to
optimize the training process of this framework.
The sampler does not contain learnable parameters
and aims to enhance the context modeling ability
of the decoder by sampling text features into £'“.

The right half of CLSR is a Transformer-based
text encoder that receives either a text embeddgins
EY or a text-like embeddings EY/ as input and
output corresponding text representation. We get
the sentence-level representation by inserting CLS
token.

H' = TextEncoder(EY)

The text-like embeddings is obtained by map-
ping the token distribution through the VQ adaptor.

EY = VQAdaptor(D)

3.3 Continuous Integrate-and-Fire
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Figure 4: The explanation of CIF workflow. The gray
box on the right shows an example of CIF, where o =
{0.8,0.3,0.4,0.4,0.1} and the threshold 3=1.

Figure 4 explains the workflow of CIF. Through
convolution operation and linear mapping, it
calculates the weight distribution o, a =
{ag,a9,a3,...,04 | a; € [0,1]}. Each a; shows
the valid information contained in relevant h; of
the acoustic feature H7 1.

ar.p =W - conv(Hi.p) +b

Then, it gathers the weights and combines H7. -
until the total weight hits a specified threshold £,
signaling that an acoustic boundary has been at-
tained. When reaching the threshold, if the current
state of o overflows, it will be used for the next
round of weight accumulation. The right side of

Figure 4 provides an example of a scaling process,
where o = {0.8,0.3,0.4,0.4,0.1} and the thresh-
old 5=1. Itis clear that 5 — a1 = 0.2 < ao, so
g 18 divided into aig; = 0.2 and a9 = 0.1, where
a1 1s used to calculate the first integrated embed-
ding c; and aa; is used for subsequent embedding
calculations. So, e = a1 X h1 + a91 X hs, and
€2 = o9 X hg + ag X hg + a4y X hgy + a5 X hs.

3.4 Sampler

To enhance the ability of the selected non autore-
gressive AED framework to model token probabil-
ity distributions, we introduce a training optimiza-
tion module called sampler. If we enable sampler,
the training of the framework will become two
rounds. In the first round of training, we do not use
samplers and directly use the acoustic features E'®
obtained from the CIF module to predict the proba-
bility distribution of tokens. Through argmaz, we
can obtain the transcription result Y **",

Y*" = arg max(W - Decoder(H?®, E*) + b)
Y€V

By comparing Y %" with the real context Y °°", we
can determine the tokens with transcription errors
and their locations. In the second round of train-
ing, sampler is enabled. It strengthens acoustic
representation ¢ by incorporating text features
E€, which is the embedding of Y °". Specifically,
the sampler combines the correct embeddings of
error tokens in E° into £?, and generates the se-
mantic features £/°. Not every error token’s correct
embedding will be incorporated into £, this is
determined by the mixing ratio A, A € (0,1).

N
E* = sampler(E, B, [A Y (4™ # yi")])
=1

Afterwards, use E®instead of £ to calculate the
probability distribution of the tokens.

D' =W - Decoder(H*®, E®) + b

It should be noted that, during the first pass of
training, no gradient backpropagation is performed
and Y**" is only used to determine the sampling
number of the sampler. D’ obtained in the second
pass is used to calculate the ASR loss.

Regarding the real text embeddings E°¢, Gao
et al. (2022) uses the embedding layer of the speech
decoder to obtain it. However, in our proposed
model, this layer is not trained and its weights will



be difficult to represent the text embedding space.
Therefore, we use the weights of linear layer which
is used to obtain the probability distribution of the
tokens to calculate E°.
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Figure 5: The mapping process of the adaptor.

After obtaining the probability distribution D
of the tokens, we will use an adaptor to map it

to the text-like embedding EY/. The adaptation
process is divided into two steps: quantification
and mapping. The quantization process converts
the probability distribution of each token into the
index of token which has the highest probability
in the vocabulary. The design of VQ is inspired
by (Shih et al., 2023b), we firstly choose the token
index ¢q,, with the highest probability in each token
distribution d;1/, which can be expressed as:

Gv, where v = arg maxd;y
v, €V

@ 1s not differentiable,if g, is directly introduced
into the training process, the computational graph
will break. When not considering g, the value for
gradient propagation should be the token probabil-
ity distribution processed by softmax, P, and the
formula for p; is as follows, where  is a hyper-
parameter and we set v = 0.1.

,Div]" /)

Through straight-through gradient estimator
(Bengio et al., 2013), we can remove p; from

pi = softmax([Di,. ..

the computational graph and introduce g,into the
graph while ensuring gradient continuity. The spe-
cific formula is as follows, where sg(z) = x and
d%sg(m) = 0 is the stop gradient operator.

pi == Qv + Di — 59(Pi)

Let’s denote the quantized token probability dis-
tribution as D"9. Next, we will map the distribution
to the embedding layer of the text encoder. The
specific operation is showed in the 5, that is, multi-
plying distribution and the weights of embedding
layer in a matrix.

EY = Matmul(D", W)

3.6 Loss Function

The adopted framework calculates three loss func-
tions when training: the cross-entropy (CE), the
mean absolute error (MAE), and the minimum
word error rate (MWER) loss. CE and MWER
are used to optimize the model’s transcription abil-
ity, while MAE guides the CIF to convergence.
According to Gao et al. (2022), the loss function of
the ASR part is:

Lasr =7LoE + LY (z,y")

> pi | @)Wy y*)—W]
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We also use NLL loss to optimize the model’s
ability for aligning the question representation and
context representation. The total loss function can
be formulated as follows, where « and (3 are used

to control the proportion of CIF loss and contrastive
loss, « € (0,1), 8 € (0,1).

Liotal = (1 —a— B)Lasr + aLyrae + BLNLL

4 Experiment

4.1 Configuration

Dataset Language Type Size
Question  Context Train Val Test
Spoken-SQuAD English Text Speech 37,107 5,351
Spoken-SQuAD* English Text Speech 29,227 3,884
LibriSQA English Text Speech 104,014 2620 -
SLUE-SQA-5 English Speech Speech 46,186 1,939 2,382
DRCD* Chinese Speech Speech 25,321 1,425 -

Table 1: Datasets used in experiments. The dataset
with asterisks has been filtered to achieve one-to-one
correspondence between problems and contexts

We conduct experiments on four datasets:
Spoken-SQuAD (Li et al., 2018), LibriSQA (Zhao



etal., 2024), SLUE-SQA-5 (Shon et al., 2022), and
DRCD. Table 1 displays detailed information about
these datasets.

Li et al. (2018) use Google text-to-speech (TTS)
system to generate the spoken version of the ar-
ticles in SQuAD (Rajpurkar, 2016). Considering
that SQuUAD is a many-to-one dataset, where mul-
tiple questions correspond to the same context, it
is not suitable for training text-speech retrievers.
Therefore, we filter the original Spoken-SQuAD
dataset to ensure that each question and context
corresponded one-to-one, and the filtered dataset is
referred to as Spoken SQuAD*.

LibriSQA is adapted from the ASR dataset lib-
rispeech (Panayotov et al., 2015). The authors input
the textual document of each speech segment into
Librispeech into ChatGPT and request ChatGPT to
generate corresponding text question-answer pairs.
We use the first part of LibriSQA which presents
questions without options, and the answers are com-
plete sentences.

SLUE-SQA-5 is adapted from 5 text QA datasets
and the questions and contexts in it are all authentic
audio recordings. DRCD (Shao et al., 2018) is orig-
inally a Chinese QA dataset. Similar to SQuAD, it
is also a many-to-one dataset. We first filter it into
a one-to-one dataset, and then use the TTS model
(Li et al., 2020) to synthesize the speech versions
of each question-context pair for its training set.
Lee et al. (2018) offer spoken version of DRCD’s
dev set and we use it for testing.

We use 220M Paraformer (Gao et al., 2022) and
BGE-base (Chen et al., 2024) to build CLSR. And
BGE is freezed when training. We consider two
models as baseline: one is the end-to-end text-
speech contrastive model like Fig 4, and the other is
the cascaded model that first uses automatic speech
recognition (ASR) model to convert speech into
text and then performs text QA task. For the for-
mer, we choose CLAP and SpeechDPR for compar-
ison. For the latter, we use Whisper (Radford et al.,
2023), which is promising in ASR, as ASR module
and BGE-base as the text QA module. The Whis-
per’s size is 244M. In the experiment, word error
rate (WER) is used to measure the ASR perfor-
mance, and top-k question-to-context and context-
to-question retrieval recall are used to measure the
retrieval performance. We build the experiment en-
vironment based on Funasr (Gao et al., 2023) and
ModelScope. The « and /3 of the loss is set to %
We train until the model converges and the train-
ing epoch is at most 60. We consistently use the

Adam optimizer with a learning rate of 5Se-5, and
the training is conducted on a GeForce RTX-3090.

4.2 Main Result

Table 2 shows the comparison results of CLSR
and other models on four datasets. We addition-
ally provide the results of using BGE for clean text
question-context retrieval. In terms of end-to-end
text-to-speech contrastive models, the results of
CLSR are significantly better than those of CLAP
and SpeechDPR. We found that CLAP cannot learn
the relevance between text question and speech
context well on Spoken-SQuAD* and LibriSQA,
which indicates that CLAP is not suitable for text-
to-speech content alignment. In fact, CLAP is more
suitable for audio and text alignment. Additionally,
since CLAP cannot perform speech to speech align-
ment, we do not perform experiments on the other
two datasets.

SpeechDPR is committed to using text-less data
for training. Although they use ASR models and
text QA models for knowledge distillation, the
lack of data makes it difficult for them to achieve
good performance. It is worth noting that we do
not conduct large-scale pre-training before training
CLSR. All excellent contrastive learning models
like BGE have undergone long-term pre-training,
so they have strong retrieval capabilities. Nonethe-
less, CLSR still achieves results second only to
BGE for clean text retrieval and even exceeded
BGE’s results on Spoken-SQuAD*, which reflects
the superiority of CLSR’s structure.

Compared with conventional end-to-end con-
trastive models that directly perform text-to-speech
alignment (or speech-to-speech alignment), CLSR
uses text-like representations to alleviate the differ-
ences between speech and text modalities. It first
maps speech representations into text-like repre-
sentations, and then aligns the text-like representa-
tions with the real text representations (or text-like
representations with text-like representations) on
the text modality. With the powerful performance
of text contrastive models, this can better achieve
alignment between speech and text (or speech and
speech), thereby more accurately pairing with the
context closest to the question.

When conducting a comparative analysis of
CLSR and Whisper+BGE, we find that their re-
trieval performances on three English datasets are
very close, but CLSR had certain advantages. In
terms of transcription ability, CLSR is significantly
stronger than WhisBGE. This shows that joint train-



Dataset Model Paradigm Type ASR Q-C Retrieval (1) C-Q Retrieval (1)
Question Context WER (]) R@l R@5 R@I0 R@l R@5 R@I0
BGE E2E Text Text 0 67.12 8520 8944 65.63 8414 89.06
Spoken-SQuAD* CLAP E2E Text Speech - 2.93 9.92 14.84 320 10.15 1523
Whisper+BGE  Pipeline Text Transcript 19.39 69.93 86.61 90.53 67.97 8576 89.65
CLSR E2E Text Speech 15.14 70.03 86.90 90.68 67.84 85.69 90.17
BGE E2E Text Text 0 8691 9431 9592 86.87 9473  96.60
LibriSQA CLAP E2E Text Speech - 0.04 0.19 0.38 0.08 0.19 0.50
Whisper+BGE  Pipeline Text Transcript 4.32 83.70 9328 9492 8515 9340 95.27
CLSR E2E Text Speech 4.09 85.04 9336 95.04 8553 94.01 95.57
BGE E2E Text Text 0 3871 7226 8434 3568 70.11 82.28

SLUE-SQA-5 SpeechDPR E2E Speech Speech - - - 19.94* - - -
Whisper+BGE  Pipeline  Transcript — Transcript 36.41 2998 6041 7271 2985 60.75 73.47
CLSR E2E Speech Speech 16.69 30.65 62.19 7443 29.89 62.18 73.05
DRCD* BGE E2E Text Text 0 90.67 97.12 98.74 89.26 97.75 98.39
CLSR E2E Speech Speech 5.56 76.21 87.79 90.03 7523 8821 91.51

Table 2: Main results of proposed model in four datasets. Results for BGE are included as a reference benchmark,
showing theoretical limits under optimal ASR conditions (100% accuracy). The SpeechDPR’s paper just offers the
result of R@20. CLAP is composed of HTSAT (Chen et al., 2022) and RoBERTa (Liu, 2019).

ing of CLSR can optimize both the ASR module
and the contrastive learning module. Considering
that Whisper’s Chinese speech recognition abil-
ity is not outstanding, we don’t train Whisper on
DRCD*.

4.3 Ablation Result

To demonstrate the effectiveness of the quantizer
and sampler in CLSR, as well as the possibility of
multi-stage training to improve model performance.
We conduct a series of ablation experiments on
Spoken-SQuAD, and the results are shown in Ta-
ble 3. The first two rows of the results show the
value of the quantizer. When the quantizer is not
used, although the model can have a lower WER,
the model’s comparative learning ability will sig-
nificantly decrease: The top-10 retrieval recall rate
of "CLSR w/o VQ" can only be comparable to
top-1 retrieval recall rate of "CLSR w/ VQ". The
results of the sixth and seventh rows show the ef-
fectiveness of sampler. After introducing sampler,
CLSR not only improves retrieval ability, but also
improves ASR performance.

Before joint training, we can pre-train the ASR
module and BGE module of CLSR separately. In
the experiment, we use 460 hours of clean lib-
rispeech data to pre-train Paraformer, and use
Spoken-SQuAD’s clean text question-context pairs
to train BGE. Comparing the second and fourth
rows of the experimental results, it is not difficult to
find that pre-training BGE is meaningful, and using
pre-trained BGE in joint training improves the var-
ious retrieval metrics of CLSR by about 6%. In ad-

dition, through the comparison between the fourth
and sixth rows, it can be found that pre-training
Paraformer can improve the model’s transcription
performance while also slightly improving its re-
trieval ability. It should be noted that in order to
improve the training speed of the model, we froze
BGE, which has strong retrieval performance, dur-
ing joint training. Therefore, we can freeze the
ASR module after joint training and train BGE for
a few epochs separately, which is called post-train
in the table. It is hoped that this approach can make
BGE better adapt to the text-like representation
provided by the ASR module. Unfortunately, post-
train can only slightly improve the performance of
the model, as evidenced by rows 2 and 3, 4 and
5, 7 and 8 in the table. In short, through ablation
experiments, we have shown that both quantizers
and samplers are inseparable for CLSR, and that
pre-training the ASR module and BGE module of
CLSR is of significant importance.
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Figure 6: The correlation between the retrieval ability
and speech recognition ability of CLSR.



Pre-train Joint-train Post-train ASR Q-C Retrieval (1) C-Q Retrieval (1)
ASR BGE VQ Sampler BGE WER () R@l R@5 R@I0 R@l R@5 R@IO0
X X X X X 1613 1529 34.14 4418 1575 36.11 46.16
X X v X X 17.00 42,52 7146 7836 46.86 72.66 79.95
X X v X v 17.00 45.11 7531 8290 48.05 7582 83.18
X v v X X 17.00 48.10 78.28 8498 4945 7679 83.42
X v v X v 17.00 48.31 78.55 84.73 50.08 77.16 83.68
v v v X X 16.18 49.00 79.20 85.69 50.31 77.48 84.21
v v v v X 15.01 49.65 79.61 8591 50.59 7771 84.38
v v v v v 15.01 49.82 79.63 8583 50.63 77.69 84.56
Table 3: Ablation results in Spoken-SQuAD.
Dataset Model Paradigm ASR Q-C Retrieval (1) C-Q Retrieval (1)
WER (]) R@l1 R@5 R@10 R@l R@5 R@I10
ParaBGE E2E - 17.79 38.68 4835 17.03 38.31 4891
Spoken-SQuAD
CLSR E2E 15.01 49.82 79.63 8583 50.63 77.69 84.56
LibriSQA ParaBGE E2E - 2931 50.27 59.70 20.57 39.28 49.28
CLSR E2E 4.09 85.04 9336 95.04 8553 94.01 95.57
SLUE-SQA-5 ParaBGE E2E - 731  21.83 3275 7.52 2196 33.12
CLSR E2E 16.69 30.65 62.19 7443 2989 62.18 73.05

Table 4: Comparison results between traditional E2E contrastive model and CLSR.

To evaluate the impact of transcription error on
CLSR’s retrieval ability, we conduct the experiment
on Spoken-SQuAD and present the results on Fig 6.
Overall, WER is positively correlated with retrieval
recall rate, with smaller WER resulting in higher
recall rates. Specifically, on Spoken-SQuAD, the
WER of approximately 16.75 is the watershed of
CLSR retrieval capability. If the WER is greater
than 16.75, the recall rate of the model will signifi-
cantly decrease.

In order to further demonstrate the superiority
of the proposed model over the traditional E2E
speech-related contrastive model which is com-
posed of two encoders, we construct a new base-
line: ParaBGE, to compare the retrieval capability
with CLSR. ParaBGE is composed of speech en-
coder of Paraformer and text encoder of BGE. The
size of each module in both models are the same
as those in CLSR. The experimental results are
shown in Table 4. All retrieval metrics of CLSR
far exceed ParaBGE, indicating that CLSR has a
stronger question-context alignment ability. Al-
though ParaBGE can optimize parameters towards
the direction of aligning question and context rep-
resentation during training, its performance is not
ideal. As we mentioned earlier, such model heavily
rely on pre-training with large-scale corpora. How-
ever, high-quality speech-text pairs are already very

scarce, so for E2E speech related retrieval models,
it is difficult to achieve excellent results. However,
CLSR alleviates the modal differences between
speech and text by using text-like representation as
a bridge, shifting the alignment of speech to text
alignment. With the powerful generalization ability
of text contrastive learning models, it can achieve
excellent retrieval capabilities comparable to cas-
cade models and text contrastive models without
the need for long-term, large-scale pre-training.

5 Conclusion

In this paper, we propose CLSR, an end-to-end
contrastive language-speech retriever, which can
simplifies long speech recordings’ clips into a few
clips that are most relevant to the question. By
using text-like representation as a transition state,
CLSR can better achieve cross-modal or speech
modal alignment between question and context
than ordinary end-to-end speech-related contrastive
models. The experimental results show that the re-
trieval performance of CLSR not only far exceeds
existing end-to-end speech-related retriever, but is
also comparable to cascaded models and text re-
triever. In the future, we will attempt to combine
CLSR with LALM to enable it to perform various
complex long audio comprehension tasks.



Limitations

While CLSR demonstrates strong performance
in speech retrieval tasks, there are two limita-
tions. First, the current model primarily focuses
on speech content, but future work could extend
its capabilities to handle general audio signals, in-
cluding environmental sounds, music, and other
acoustic events, thereby enabling more comprehen-
sive audio-based retrieval augmented generation.
Second, the present implementation is limited to
single-language support, necessitating future devel-
opment of multilingual capabilities through addi-
tional training on diverse language datasets. These
extensions would significantly enhance the model’s
versatility and practical applications across differ-
ent audio domains and linguistic contexts.
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