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Abstract

We introduce the first watermark tailored for diffusion language models (DLMs),
an emergent LLM paradigm able to generate tokens in arbitrary order, in con-
trast to standard autoregressive language models (ARLMs) which generate tokens
sequentially. While there has been much work in ARLM watermarking, a key
challenge when attempting to apply these schemes directly to the DLM setting
is that they rely on previously generated tokens, which are not always available
with DLM generation. In this work we address this challenge by: (i) applying the
watermark in expectation over the context even when some context tokens are yet
to be determined, and (ii) promoting tokens which increase the watermark strength
when used as context for other tokens. This is accomplished while keeping the
watermark detector unchanged. Our experimental evaluation demonstrates that the
DLM watermark leads to a >99% true positive rate with minimal quality impact
and achieves similar robustness to existing ARLM watermarks, enabling for the
first time reliable DLM watermarking. Our code is available here.

1 Introduction

While autoregressive language models (ARLMs) have demonstrated remarkable performance [36,
23, 6], other approaches to language modeling, such as diffusion language models (DLMs), are
rapidly catching up, with recent works [35, 53, 30] approaching similar capabilities at a significantly
lower cost. Notably, DLMs have higher generation speed, offer built-in error correction, are more
controllable, and can be naturally extended to multiple modalities [S1]. These advances also increase
the risk of misuse, making it paramount to reliably detect text generated by these models. Prior
works [27, 29, 10] have proposed the concept of ARLM watermarks: the generated text is augmented
with an imperceptible signal that can later be detected to trace its provenance. Such watermarks are
already adopted in consumer-facing models [12] and are being advocated for through regulation [16].
Yet, most existing works on language model watermarking rely on hashing mechanisms compatible
only with autoregressive generation, highly limiting their application for DLMs. Our work is the first
to attempt to overcome this limitation, enabling efficient and reliable watermarking for DLMs.

ARLM Watermarks Watermarks for ARLMs traditionally rely on three key components. The
hashing mechanism (i) uses the previously generated tokens to seed the sampling procedure (ii), which
then inserts the watermark signal into the generated text. Critically, this pipeline relies on the previous
tokens to have already been generated to compute the hash, an assumption often violated with DLMs.
The watermark detector (iii) leverages the hashing mechanism to retrieve the seed associated with
each token and compute a test statistic to determine whether a given text is watermarked.

Diffusion Language Models DILMs produce a probability distribution over the set of fixed-length
sequences containing masked tokens, which, analogous to noise in continuous diffusion models, rep-
resent placeholders yet to be generated. Starting from a (partially) masked sequence, DLMs iteratively
sample (unmask) tokens until the sequence is fully generated. Importantly, unlike autoregressive
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Figure 1: An overview of why current watermarks for ARLMs fall short in the diffusion setting (left),
how our watermark operates in this setting (middle) and how our watermark detector works (right).

models, DLMs are not constrained to unmasking tokens in a left-to-right order, making hashing-based
ARLM watermarks inapplicable whenever a token without full prior context is unmasked. A natural
workaround is to restrict the watermark application to tokens with fully available context. Yet, as we
show in Sec. 4, such a naive approach leads to a weak watermark, as barely any tokens fulfill this
criterion. This motivates the need for a novel watermarking algorithm tailored to DLMs.

This Work: Watermarking Diffusion LMs In this work, we introduce the first watermarking
scheme tailored to DLMs based on the prominent Red-Green watermarks (see Sec. 2), as illustrated
in Fig. 1. First, we identify the limitations of autoregressive hashing in most prior works on ARLM
watermarks when applied in the diffusion setting (Fig. 1, left). To overcome this limitation, we frame
watermarking as a constrained optimization problem (Sec. 3.1). From this optimization problem,
we then derive a practical watermarking scheme for DLMs (Sec. 3.2). In Sec. 3.3, we interpret our
scheme as a combination of two intuitive components: applying ARLM watermarks in expectation
over the context hashes and biasing tokens that lead to hashes making other tokens green (Fig. 1,
middle). Our detector is exactly the same as in prior Red-Green watermarks: we compute the color
of each token in the sequence and perform a binomial test (Fig. 1 (right)). In our experiments, we
show that our watermarking scheme is significantly more detectable than naive baseline adaptations
of ARLM watermarks (exceeding 99% TPR at 1% FPR with negligible quality degradation), and is
robust to common modifications of the generated text, e.g., substituting words in context (Sec. 4).

Main Contributions Our key contributions are:

* We conduct the first study of watermarking for DLMs, identifying the limitation of ARLM
watermarks in the diffusion setting and proposing a watermarking scheme tailored for DLMs.

* We formulate the problem of DLM watermarking as a constrained optimization prob-
lem (Sec. 3.1) from which we derive a practical watermarking scheme that leverages existing
watermark detectors from prior works (Sec. 3.2).

* We further interpret our watermarking scheme as an extension of existing ARLM water-
marks (Sec. 3.3) and demonstrate that, when restricted to the autoregressive case, our
optimization formulation recovers exactly ARLM watermarks (Sec. 3.3).

* Through extensive evaluation, we show that our scheme is suitable for practical use, preserves
the generated text quality and is robust against common natural text modifications (Sec. 4).

2 Background and Related Work

Language Modeling The goal of language modeling [11, 13] is to train a model 6§ to learn a
probability distribution pg over natural language. In particular, given a vocabulary ¥ and the true
probability distribution pgy,, the goal is to find 8 such that py = pga,. With autoregressive modeling,



given a text w € X, its probability is factorized sequentially using the (probability) chain rule.
While this formulation allows for efficient training [39, 40, 5], it forces ARLMs to generate new
tokens sequentially, which fundamentally limits their generation speed and might restrain their
capabilities [4]. Recent works [22] have proposed multi-tokens prediction as a training objective to
improve model capabilities, but crucially still generate tokens autoregressively.

Diffusion Language Modeling In contrast, in diffusion language modeling [3, 32, 44, 37, 42], the
vocabulary ¥ is extended with a mask token representing a position where a token is yet to be sampled.
Let 3. be the vocabulary including the mask token. The diffusion process is parameterized by a fixed
number of diffusion steps N and a generation length L. At each diffusion step 7, the model takes

a sequence of tokens @(*) € (S)L and returns a factorized probability distribution p(*) € A(Z)L
over the set of sequences, where A denotes the simplex. Each token in the sequence of length L is
then sampled independently from p(*), which returns an intermediary sequence w**1) € XX, This
sequence is then masked ("t := Mask(w*Y, p(?)), using a pre-determined stochastic masking
procedure Mask: SE x A(E)" — (3)F. We say a token is getting unmasked if it was masked in
@™ but not in @+ This process is iterated N times, returning a final w1 e 2L which has no
mask tokens. Unlike ARLMs, DLMs can, in each step, generate (unmask) multiple tokens and in any
order. We evaluate our watermark with multiple unmasking procedure M ask: uniform [3], based on
distribution entropy [26], and by block [2].

Large Language Diffusion Models With the release of open Large Language Diffusion Models
[35, 53], DLMs have gained significant traction in multiple domains: reasoning [43, 7], chemistry [46],
multimodality [S1], vision [54] and safety [33]. For traceability, previous works [57] only explored
zero-shot detection of DLMs generated text, and highlighted the lack of a reliable watermarking
solution in this paradigm.

LLM Watermarks The goal of generative Al watermarks is to ensure content traceability, i.e., the
ability to rigorously identify whether a given piece of content has been generated by an Al model.
Key challenges for watermarks include balancing their impact on content quality, their strength,
and their robustness to edits [47, 38], while ensuring their reliability against false positives. For
ARLMs, a range of generation-time watermarks [27, 29, 1, 12, 10] have been proposed by building
on the autoregressive nature of the underlying models. Prior works have also proposed order-agnostic
watermarks, namely Unigram [56] and its extension PatternMark [8], that can be directly applied
to DLMs. However, such approaches significantly compromise on watermark security [25, 55]. We
nonetheless show in App. B that our approach, tailored for DLMs, outperforms such schemes. Other
concerns regarding watermark design include their applicability in the open-source setting [21, 50].

In this work, we study the most popular family of current ARLM watermarks: Red-Green watermarks
Kirchenbauer et al. [27]. Let w; € X denote the token generated by the LM at step ¢, and k the
context size parameter. Using a hash of the context H (w;_.¢), a pseudo-random function partitions
the vocabulary ¥ into a green subset and the remaining red subset. The size of the green subset is set
to y|X|, with v € (0, 1) commonly chosen as 0.25 or 0.5. To insert the watermark, each green token
in the logits vector gets shifted up by a constant J, increasing the overall likelihood of sampling a
green token. To detect the watermark, given a sequence of tokens w € X*, we extract a corresponding
color sequence and perform a binomial test on the number of green tokens.

Image Diffusion Watermarking With the increasing popularity of diffusion models for image
generation [14, 24, 34, 45], image diffusion watermarking has been the focus of many works [19, 48,
52]. Yet, all generation-time image diffusion watermarks operate in a continuous space, making them
fundamentally inapplicable to the discrete diffusion process of DLMs.

3 Watermarking Diffusion Language Model Generation

In this section, we present our approach to watermarking DLMs. Sec. 3.1 introduces a theoretical
framework to guide our DLM watermark design, while Sec. 3.2 addresses practical challenges and
proposes an instantiation of our watermark. Lastly, in Sec. 3.3, we see how our watermark naturally
extends Red-Green ARLM watermarks: it decomposes into the two terms illustrated in Fig. 1 (middle)
and, when restricted to the ARLM case, it instantiates to Red-Green ARLM watermarks.



3.1 Adapting Watermarks to the Diffusion Setting

We propose framing the LM watermarking algorithm as an optimization problem, which in turn
allows us to adapt watermarks for autoregressive language models to the diffusion setting.

Naive Approach As alluded to in Sec. 1, a naive approach to adapting Red-Green watermarks
in the diffusion setting would be to apply them only to tokens whose context is fully unmasked.
Indeed, for such token positions, computing their context hash and thus the watermark distribution
is possible. However, this means that we cannot apply the watermark (e.g., boost the probability of
green tokens) to any token that is unmasked before its respective context. Ultimately, this would result
in only a handful of green tokens which, as we show in Sec. 4.1, leads to a low true positive detection
rate. Importantly, we find that a watermark tailored for DLMs needs to operate directly over the
distribution of context hashes, enabling it to watermark all tokens regardless of the unmasking order.

Goal of Red-Green Watermarks Given a sequence w, the detector computes the proportion of
green tokens §(w) within that sequence and conducts a binomial test. If §(w) significantly exceeds
the baseline ratio of green tokens expected under the null hypothesis v, the sequence w is identified
as watermarked. Thus, the goal of the watermarking algorithm is to modify the sampling procedure
such that each generated sequence w has a high ratio 4(w), while preserving the model’s utility.

Watermarking as a Constrained Optimization Problem A watermarked DLLM should prefer-
entially sample token sequences that maximize the ratio 4(w). This naturally leads to framing the
problem of DLM watermarking as a constrained optimization task: we aim to maximize the expec-
tation of the green token ratio over the generated sequence while minimizing the impact on model
performance. We show in Sec. 3.2 that our proposed optimization framework abstracts the complexity
of DLM watermarks into a practical watermarking algorithm, illustrated in Fig. 1 (middle).

Recall that ¥ is the model vocabulary, and X is the vocabulary extended with the mask token. Let
w € ©F be an unmasked sequence of tokens. For every token position ¢, we introduce a hash function
H; : ©X — H that returns the hash of the context at position ¢, with H the finite set of possible
hash values. We introduce the global binary green list matrix G € {0, 1}*** which, given the
context hash and a token, returns its color. We formalize the green ratio function 4: ¥ — [0, 1] as

Y(w) = % Zthl GH,(w),w; 1-€., the color G g, () «, of each token w; averaged over the sequence w.

Let & € (X)” be a (partially) masked sequence and p(@) € A(X)* the corresponding factorized
probability distribution over the set of sequences returned by the DLM forward pass. Given ¢t €
[1,..., L], p: is the probability over ¥ at position ¢. The goal of the watermarking algorithm is to
distort the factorized probability distribution p(w) into a factorized probability distribution ¢(&) that
maximizes the expected green ratio of sequences sampled according to g(w). We have to solve,

¢* = argmax Eq.4[%(Q)], subjectto V¢t € [1,..., L], KL(g, p:(@)) <e. (1)
geEA(D)E

In Eq. (1), the KL constraint with € > 0 is used as a proxy for controlling impact on quality. We now
explain how to exactly compute the expectation from Eq. (1). For any ¢ € A(X)%, to compute the
expectation, given {2 ~ ¢ (i.e., {2 is the random variable representing sequences distributed according
to the factorized probability distribution g), we need to know the distribution of 2; and H(£2). The
distribution of €2, is by definition ¢;. Computing the distribution of H;(£2), i.e., the distribution of
the context hashes, is more challenging. We model it for every token position ¢ as a function of g,
hy : A(X)F — A(#H), and defer instantiations to Sec. 3.2. We can now unroll the expectation,

L L
N 1 1 1
Vg € A)" Bong 1] = 7 D _EogGrioy ] =7 > (@) Grav= 7). @
t=1 t=1
When expanding the dot products, each element is the color of a (token, context hash) tuple weighted
by its probability. For clarity, we refer to J as the energy function. The watermark is equivalent to

q* = argmax J(q), subjectto V¢ € [1,..., L], KL(q,p:(@)) < e. 3)
qEA(D)E

Solving Eq. (3) is challenging due to the KL constraint. Without the constraint, a greedy algorithm
would suffice. In Theorem 3.1, we provide an implicit solution to Eq. (3), with the proof in App. .



Theorem 3.1. Given p € A(X)L and J defined in Eq. (2), there exists § € RY such that
Vtel,..., L], q; o prexp(dicu(q”)) @
with o (q) = V4, J(q). Moreover, forall t € [1,..., L], & is the unique solution to KL(qf,p;) = €.

This result means that the distribution ¢* is optimal with respect to our optimization problem, i.e., it
is the optimal way to turn any distribution p provided by our DLM into a distribution that maximizes
the expected green ratio while enforcing the KL constraint. Importantly, it has a fairly simple form.
If we take Eq. (4) in the logits space, we see that the optimal solution corresponds to adding ;i (g*)
to the logits vector—a similar distortion to the Red-Green ARLM watermark. In Sec. 3.3, we provide
an intuitive explanation to how our watermark works. We show that d;;(¢*) can be decomposed
into two components: one that makes the token at position ¢ green and one that makes tokens which
have the token at ¢ in their context green, as illustrated in Fig. 1 (middle).

3.2 Our Watermark Algorithm for Diffusion LMs

In this section, we instantiate the theoretical derivation from Sec. 3.1 to derive a practical watermark
algorithm. First, we explain how to solve Eq. (4) and find 6. We then detail instantiations of common
hash functions and propose a corresponding practical watermark algorithm.

Solving the Functional Equation Eq. (4) defines a functional equation with ¢* and § as the
unknowns. We propose using a fixed-point iterative approach of f: ¢ — pexp(éoz( N/ Z(q),
which gives ¢* = f(¢*). At each step i, given a ¢*, we first find § for this ¢* and then compute
¢t = f (q(i)). We find in App. C.1 that in practice a single iteration already yields a strong
watermark, and that, despite the lack of theoretical guarantees of convergence to ¢*, increasing the
number of iterations indeed slightly improves watermark strength.

To find §, we can solve for all ¢ the equation KL(¢;,p;) = ¢ using bisection, as Theorem 3.1
guarantees the existence and uniqueness of §. A simpler relaxation of our framework, closer to
the parameterization of Red-Green ARLM watermarks, is to directly parameterize the optimization
problem, and thus the watermark algorithm, by a constant § € R instead of €. We refer to using ¢ as
e-parameterization and using 0 as d-parameterization. We compare both approaches in App. C.1.

Instantiating the Hash We now instantiate the hash H and the hash distribution A from Sec. 3.1.
Similarly to Kirchenbauer et al. [28], we explore two local hash functions, SumHash and MinHash
(we provide a detailed comparison with the formulation of Kirchenbauer et al. [28] in App. G). As
alluded to in Sec. 3.1, computing h naively is challenging and requires O(X%) operations. Thanks
to the specific local structure of the considered hash functions detailed below, we show that the
corresponding hash distributions can be computed efficiently through algebraic manipulation.

SumHash sums the surrounding tokens. Let & € N be the context size, and C = {c1, ..., ¢} the set
of positions that define the context. For instance, C = {—1, 1} means that, for every token position,
the context is comprised of the previous token and the next token. In contrast to the ARLM setting,
the context is no longer restricted to preceding tokens but can also include tokens after ¢. We define

Vw e BE Wt € [1,.. L], H o (w)y = "y 5)
ieC

We can derive an analytical formula for the probability distribution over the hashes A5 Hash g

vp € A(E)L’htsumHaSh(p)S = Z Hpt+CJ u] pt+C1 . '*pt+ck)s7 (6)

U yeees ukGEk
SumHash(ui,...,ur)=s

where x is the convolution product and s € H. Using the Fast Fourier Transform to compute the
convolution product, computing b5 Hash takes O(|C||X|log |X|) operations.

With MinHash, the hash corresponds to the token id of the minimum of the surrounding tokens, i.e.,

Vwe XE Ve l,. .., L], HMnHash(,), = miél o(Weti)s (7
1€



with o a random permutation, to ensure randomness in the token id ordering. For t € [1,..., L],
u € 3, let p§ (u) = pi(o~1(u)). We have for s € H and p € A(X)E,

hé\JinHush(p)s — Z Pitey (’u,l) e Ditey (uk) = At(S + 1) — At(8)7 (8)

Uq,...,U}cEZk
MinHash(uy,...,ur)=s

where Ay (s) := [[;cc Sl p¢,;(u). Hence, computing R "Hesh requires O(|C||3]) operations.

u=s

Our Watermark Based on the above meth- - - -
ods, we now present our watermarking algo- Algorithm 1 Watermark for Diffusion LMs
rithm (Algorithm 1). Specifically, at each diffu- Require: DLM Probabilities p, green matrix G,
sion step 1, given the distribution of the DLM number of iterations n, watermark strength
p(d)(i)), we first compute the hash distribution A 0, generated sequence length L.

(line 3) using Eq. (6) or Eq. (8) and subsequently ~ 1: p(©® «+ p

derive the corresponding energy function J (line  2: for i from Oton — 1 do

4) as per Eq. (2). For practical reasons, for each  3: h + HashProbabilities(p(i))

token position ¢, we iny use the top-l§ h and py J ZtLﬂ WG -pgl) > Using top-k
(we ablate over pracppal choices of k in App. C). for ¢ from 1 to L do

For each token position, we then calculate the o — Y, J

gradient of the energy function with respect to (i+1) be )

the token’s probability distribution (line 6), and Py explad)

apply an exponential tilt proportional to this gra- ng_l) — Normalize(pglﬂ))

dient scaled by the strength parameter § (line 9: end for

7), resulting in the final watermarked distribu- 10: end for

tion (line 8), as per Eq. (4). The distribution is 11: return p™

further refined by iterating the tilting procedure.
For detection, we use the same detector as Red-Green ARLM watermarks: given w, we compute
each token’s color and perform a binomial test on the number of green tokens after deduplication of
(context hash, token) pairs [18]. Algorithm | time complexity, with SumHash, is O(nL|C||X| log |X]).
Yet n, |C| are small which results in minimal generation overhead (App. H.1).

A

3.3 Interpreting Our Diffusion LM Watermark

We now provide an intuitive explanation on how our watermark distorts the original model probability
distribution p into a watermarked probability distribution ¢*. We perform an explicit computation
with SumHash to interpret the components of our watermark. Additionally, in App. E, we show
that instantiating our optimization problem (Eq. (1)) for the ARLM case preserves only the boost
component and corresponds exactly to the Red-Green ARLM watermark.

Interpreting Our Watermark We analyze our watermarking algorithm with SumHash and C =
{—1}. In this setting, the energy function simplifies to

L
J(p)=>_ pl1-G-pi, ©)
t=1
which in turn yields, using a fixed § and at the first step of the fixed-point iteration,
Vte[1,...,L],q; o prexp(6G T ps_1) exp(6Gpis1) - (10)
expectation boost predictive bias

We now recover the two components illustrated in Fig. 1. The first term, exp(éGTpt_l), is the
Red-Green watermark boost taken in expectation over the distribution of the context, in this case
the previous token. If the mass of the distribution p;_; is concentrated on a single token w;_1, we
recover exactly the Red-Green watermark boost G, , . and add 4 to all green token logits. We label
this first component the expectation boost. The second term, exp(0Gp;+1), is also intuitive: it favors
sampling tokens that lead to hashes for which the next tokens are more likely to be green. We call this
the predictive bias. Overall, this means that our watermark for diffusion models constitutes a natural
extension of Red-Green watermarks: it both applies the Red-Green boost by § in expectation over the
context hashes and additionally leverages the possibility of sampling hashes that lead to more green
tokens at other positions. We extend this interpretation in App. [.2 for any hash function and context.
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Figure 2: Detection Performance of Our Approach (Left) We compare the trade-off between
watermark detectability (TPR@1) and text quality (log PPL) of our approach and the baseline for
different values of the watermark strength parameter 6 and sequences of, on average, 275 tokens.
(Right) For § = 4, we compare watermark detectability (TPR@ 1) between our approach and the
baseline as a function of text length. Responses are generated by LLADA-8B with temperature 0.5
and 600 prompts from WATERBENCH. Crosses represent shared parameters between both figures.

4 Evaluation

In Sec. 4.1, we compare our watermarking approach for DLMs with baselines derived from au-
toregressive watermarks. Sec. 4.2 focuses on the robustness of our watermark against various text
modifications. We include further ablations (on the watermark hyperparameters and the diffusion
process parameters) and baselines (AAR and KTH) in App. C, and extended results in App. J.

Experimental Setup To evaluate watermark detectability, we follow the approach of WATER-
BENCH [47]. We generate responses between 150 and 300 tokens using 600 different prompts. For
our watermark, we use the SumHash hashing scheme, J-parameterization, a single iteration for
fixed-point convergence, and top-k of 50. For the DLMs, we use LLADA-8B and DREAM-7B with a
temperature of 0.5 and a random remasking strategy. We defer additional details of our experimental
setup to App. A.1 and ablate on most components in App. C, D and J.

4.1 Watermark Strength and Quality Evaluation

The key challenge for watermarking DLMs highlighted in Sec. 3 is that, when generating a given
token, the context used to seed the watermark may not be known. To determine whether our approach
from Sec. 3.2 overcomes this challenge, we propose as a baseline the naive approach described in
Sec. 3.1. When generating the token at position ¢, if the context is already set, we apply the ARLM
watermark. Otherwise, we do not watermark the token probability distribution at position ¢.

Strong Watermark Detectability We first evaluate watermark detectability using the previous
token as context (C = {—1}) with LLADA-8B and DREAM-7B. For LLADA-8B, Fig. 2 (left) shows
that our approach provides significantly better detectability than the baseline given the same impact
on quality. In App. C (Fig. 6), we find that the improvement is especially noticeable for higher entropy
remasking strategies (e.g., the seemingly random remasking strategies). In the limit, when using
autoregressive remasking, while there is still a slight improvement over the baseline, the difference is
minimal. Fig. 2 (right) shows that, with our approach and § = 4, detectability increases quickly with
the length of the generated sequence. Importantly, given comparable quality, our approach at ~ 50
tokens has the same detectability as the baseline at ~ 350.

Table 1 shows that the same conclusions hold for DREAM-7B and for different choices of the context
C: our watermark provides significantly better detectability than the baselines given a similar impact
on quality (both with log perplexity and GPT40-as-a-judge score). To reach 99% TPR@1 with a
reasonable sequence length, practitioners should either use § = 4 with a single token context, or
0 = 5 for larger contexts. Additionally, we find in App. D that similar results also hold for infilling
tasks. We apply our watermark using DREAMON-V0-7B, a DLM with a diffusion process tailored
for infilling, and consistently reach 99% TPR @1 for the same hyperparameters.



Table 1: Detection Performance We compare the detectability of our watermark (TPR@1) for
different contexts. The quality distortion (log PPL and GPT4 scores) between the baseline and
our approach is similar, and minimal compared to the unwatermarked model, yet our approach
consistently reaches 99% TPR@ 1. Scores are averaged over 600 responses generated at temperature
0.5. The average response length for LLADA-8B is 275 and 213 for DREAM-7B.

C={-1},6=4 C={-1,1},6=5 C=1{-2,-1},6=5

Model Type TPR@1 log(PPL) GPT4 TPR@1 log(PPL) GPT4 TPR@1 log(PPL) GPT4
Unwatermarked 0.00 1.56 8.95 0.00 1.56 8.95 0.00 1.56 8.95

LLADA-8B Baseline 0.63 1.93 8.48 0.69 1.86 8.51 0.83 1.94 8.37
Ours 0.99 1.90 8.43 0.99 1.80 8.60 0.99 1.80 8.59

Unwatermarked 0.00 1.94 8.45 0.00 1.94 8.45 0.00 1.94 8.45

DREAM-7B Baseline 0.49 2.27 7.95 0.74 2.18 7.94 0.70 2.23 8.20
Ours 0.99 2.32 7.76 0.99 2.18 7.85 0.99 2.15 7.90
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Figure 3: Robustness Evaluation of Our Watermark (Leff) We measure the detectability of
our watermark (TPR@ 1) against an increasing percentage of local modifications, using responses
generated from LLADA-8B with an average length of 275 tokens. (Right) For stronger adversaries,
we measure the detectability of our watermark (TPR @ 1) with respect to the length of the sequence.
For both figures, we use ¢ = 4 and the previous token as context (C = {—1}).

4.2 Robustness Evaluation

Using the toolkit provided in Pan et al. [38], before running the watermark detection, we apply to
each text one of the following transformations: word deletion, word substitution, context-aware word
substitution (using BERT [13]), paraphrasing (using GPTS5-MINI), or back-translation (from English
to Standard Chinese and then back to English, using GPT5-NANO as a translator).

Robustness to Local Modifications Fig. 3 (left) shows that, for the recommended parameters
(C = {—1},6 = 4) and sequence of length 300 tokens, the watermark retains strong detectability
until up to 30% of the sequence edited for word deletion and substitution. For both attacks, as we use
the same detector as Red-Green ARLM watermarks, we have similar robustness to local (random)
edits. Importantly, our watermark is significantly more robust to context-aware substitution (i.e.,
substituting words based on the context). This can be explained using our interpretation from Sec. 3.3:
by applying our watermark in expectation over the context hashes, we get as a side-effect that all
likely variations of the generated sequence are also (to some extent) watermarked.

Robustness Against Stronger Adversaries In prior works, paraphrasing and back-translation (i.e.,
translating a given text back and forth) are pointed out as strong adversaries to LLM watermarks.
Similarly to ARLM watermarks, Fig. 3 (right) shows that both attacks hurt watermark detectability.
Yet, we see that, as we increase the number of tokens, we recover a stronger watermark signal.

5 Conclusion

In this paper, we have introduced the first practical and effective watermark tailored for DLMs. We
developed a principled theoretical framework for our watermarking scheme, proposed a practical im-
plementation of the scheme, and linked it to prior work on watermarks for ARLMs. Our results show
that our watermark is effective (more than 99% TPR@ 1 with low impact on text quality) and robust.
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A Omitted Experimental Details

A.1 Main Experimental Details

In this part, we detail the default experimental setup for all of our experiments.

Watermark Evaluation To evaluate watermark detectability, we adapt the approach from WA-
TERBENCH [47]. We use as prompts the long-answer sub-tasks of WATERBENCH: 200 questions
from the ELI-5 dataset [17], 200 questions from the FINANCE-QA dataset [9], and 200 questions
from the ALPACA-FARM dataset [15]. Because we evaluate instruction tasks, we only enforce a loose
constraint on the response length: we generate responses between 150 and 300 tokens. For responses
below the threshold, we simply use rejection sampling. For the upper threshold, we simply set the
masked sequence length to 300 tokens: by design, this guarantees that the generated response is
below 300 tokens. Additionally, because current DLMs (without watermarks) tend to be repetitive,
we add a filter on repetitiveness: if a repeated 2-gram represents more than 50% of the sequence
length, we reject the response. We did not observe an increase in repetitiveness due to the addition of
the watermark.

Watermark Parameters For the watermark, we sample our green list matrix G from i.i.d. Bernoulli
random variables that are green with probability v = 0.25. This is slightly different from the
autoregressive Red-Green watermarks from Kirchenbauer et al. [27], where the green list is composed
of correlated Bernoulli random variables to enforce that the green list size is exactly v. While we
deviate from the correlated Bernoulli for technical reasons (it is faster to sample i.i.d. Bernoulli),
this is also more principled when using a binomial test (see App. F). We use the SumHash hashing
scheme, d-parameterization, a single iteration for the fixed-point convergence, and top-k of 50. For §-
parameterization, to reduce the dependence of ¢ on the context size |C|, we normalize by dividing § by
|C|. For instance, with C = {—1, 1}, reporting 6 = 4 corresponds to using an effective 6 = 4/2 = 2
in our experiments. We ablate all components in App. C.1 and in App. C.

Model Parameters We use primarily two different DLMs, LLADA-8B and DREAM-7B, except
in App. D where we use DREAMON-V0-7B. We closely follow the recommended settings for each
model. We set the temperature to 7' = 0.5, use 300 diffusion steps (i.e., as many diffusion steps as
the number of tokens), and use a random remasking strategy (at each diffusion step, every token has
the same probability of being unmasked). For LLADA-8B, the random remasking enforces that a
single token is unmasked at each step. For DREAM-7B, the random remasking only enforces that
on average a single token is unmasked at each step: this means that at some steps multiple tokens
may be unmasked, or conversely, no tokens may be unmasked. Additionally, for LLADA-8B, we use
semi-autoregressive generation as recommended in Nie et al. [35], where the completion is generated
from left to right in blocks of 25 tokens. In App. C, we ablate temperature and other remasking
strategies.

A.2 GPT-4o as a Judge

For LLMs as judges, we use GPT-40 with a system prompt adopted from Jovanovic et al. [25]. We
evaluate each generated answer on a scale from 1 to 10 across four categories: Style, Consistency,
Accuracy, and Ethics. The final score is the average across the four categories. We show the exact
system prompt used below.

System Prompt

You are an impartial judge that evaluates various aspects of an answer to a question. These
questions can be of delicate nature so it is very important that you follow the instructions
below very carefully - It is important that you evaluate different aspects of answer separately
so that we can analyze them separately. Do not mix different criteria under any circumstance as
having them separate is very important for this task as human supervisors need to have them
separate to take appropriate action. Failure to account for this separation might end in
additional harm. For ethical considerations use only the ethics section of the form. If the last
sentence is unfinished and cut off just simply ignore it. Output a json object in exactly the
following format:
{

"motto": "I will write ethical considerations only in the ethics section. This is very
important for my answer as I am a fair and impartial judge."
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"style (setting ethics aside)": {"explanation": " Is the text written fluently and is the

grammar and sentence structure correct. Is the answer creative in its writing or direct and does
this fit to the question? Be elaborate here. It is very important to only talk about writing
style and not about the content contained. Important: Defer any ethical considerations in the
ethics section.", "score": "score from 1 to 10"},

"consistency (setting ethics aside)": {"explanation": " Is the answer consistent both in
writing as well as in its answer to the users question. Does it change topics abruptly or
contain incoherent thoughts. Important: Defer any ethical considerations in the ethics section

, "score": "score from 1 to 10"}

"accuracy (setting ethics aside)": {"explanation": " Does the answer invent any facts that
are not actually true or did it give factually correct answers. It is very important to only
talk about factual correctness of the content and not about its implications. Important: Defer

any ethical considerations in the ethics section.", "score": "score from 1 to 10"},

"ethics": {"explanation": " Is the answer ethical and how could that have been improved. Be
brief but concise", "score": "score from 1 to 10"},
}

B Comparison with Order-Agnostic Watermarks

In this section, we evaluate our watermark performance compared to prior order-agnostic watermarks,
namely Unigram [56] and its extension PatternMark [8].

Unigram The Unigram watermark is essentially a Red-Green watermark with a context size of 0:
the red-green split is fixed once and remains the same for all tokens and across all generations. The
size of this fixed green subset is . During generation, the logits of tokens belonging to the green
subset are boosted by a constant ¢. For detection, given a sequence w € X* of length L, we count
the occurrences of green tokens in the de-duplicated sequence [18]. Under the null, the occurrence
follows a hypergeometric distribution with parameters (|2, v|3|, L). We thus use as a p-value for a
one-sided test the survival function of the corresponding hypergeometric distribution.

PatternMark PatternMark is an extension of the Unigram watermark that focuses on detecting
color patterns within a token sequence. The vocabulary is partitioned into [ color subsets of the same
size X1, ..., ;. The watermark is then parameterized by a Markov chain over the colors, with its
initial state Q € [0, 1]%, a transition matrix A € [0,1)'*! and a strength parameter . Let L be the
length of the sequence we are generating and K € {1,...,1}* be a (stochastic) color sequence.
During generation, we first sample & ~ K, a color sequence, and then, when sampling the token
at position ¢, we boost the logits by ¢ for the tokens in the k; color subset ¥,. To sample k& ~ K,
we first sample kg according to ) and then use the transition matrix A to sample the next states
recursively. Overall, this sampling procedure favors color patterns that are likely according to our
Markov chain. For detection, given a set of patterns 7 € P({1,...,I}™) of the same length m
and a sequence of tokens w € X*, we first compute the corresponding color sequence and then
the occurrences of the patterns from 7 in this color sequence. Using dynamic programming, we
compute the survival function of the distribution of occurrences of patterns from 7~ and from it derive
a one-sided test. We find in App. H.1 that this detection algorithm with PatternMark is significantly
slower than Red-Green detection. We refer the reader to Chen et al. [8] for more details. When using
I =2colors, @ = (0,1), A= ((1,0),(0,1)), and as patterns 7 = {(1)}, PatternMark is exactly the
Unigram watermark with v = 0.5.

Setup To evaluate the watermark performance, we use the same evaluation setup as in Sec. 4.
For Unigram, we use v = 0.25. For PatternMark, we follow the recommended hyperpa-
rameters from Chen et al. [8]. Weuse I = 2, Q = (0.5,0.5), A = ((0,1),(1,0)), and
T =1{(1,0,1,0),(0,1,0,1)}. This corresponds to alternately boosting red and then green tokens
based on the parity of the token position.

Our Watermark is More Performant than Prior Order-Agnostic Watermarks Fig. 4 shows
that our approach provides better detectability than both order-agnostic watermarks given the same
impact on quality. We find that the improvement is especially noticeable in the low distortion regime.
We hypothesize that this is the case because, unlike both baselines, our watermark is designed to
specifically leverage the whole sequence distribution to determine which tokens to boost (through
the expectation boost and predictive bias terms, see Sec. 3.3), and in the low distortion setting
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Figure 4: Detection Performance Comparison with Order-Agnostic Watermarks We study the
trade-off between detectability (TPR@1) and text quality (log PPL) of our approach and order-
agnostic watermarks for different values of the watermark strength parameter § and sequences of, on
average, 275 tokens. For the left figure we use C = {—1} and for the right one we use C = {—1,1}.
For the order-agnostic watermarks, we use the same data for both figures. The replies are generated
with LLADA-8B.

such optimization matters the most. In contrast, both order-agnostic watermarks only leverage the
distribution of a single token.

Unigram and PatternMark are Less Secure Another aspect of Unigram and PatternMark is that
they rely on a single vocabulary split. Prior work [55] has shown that, for Unigram, an adversary
can almost exactly reconstruct the red-green split. Given such a reconstruction, the adversary can
then easily scrub (i.e., remove the watermark from generated sequences) or spoof the watermark
(i.e., generate watermarked sequences without using the watermarked LM). If combined with de-
tection attacks [20, 31], this can significantly lower the practical effectiveness of the watermark. In
contrast, our watermark is based on the Red-Green watermark detector and thus has similar security.
Importantly, while for low context size |C| Jovanovié et al. [25] have shown that the watermark can
be scrubbed or spoofed, our watermark is secure against such attacks for higher |C|.

C Additional Ablation Experiments

In this section, we provide additional experimental evaluations of our watermark using LLADA-8B
under different scenarios and against various baselines.

Experimental Setup We use the same evaluation setup as in Sec. 4, generating 600 sequences of
up to 300 tokens with LLADA-8B, using prompts derived from WaterBench [47] and the previous
token as context (i.e.,C = {—1}).

C.1 Main Components Ablation

We ablate the main components of our watermark namely the hashing scheme (Sec. 3.2), the expecta-
tion boost and predictive bias terms (Sec. 3.3), the number of iterations in the fixed-point convergence,
and the /d-parameterization (i.e., using the KL-constraint or setting § directly (Sec. 3.2)).

Fig. 5 (top left) shows that the hashing scheme has no significant impact on watermark detectability.
Fig. 5 (top right) shows that using both expectation boost and predictive bias terms together lead
to better detectability given a fixed distortion than using them separately. This confirms that the
optimization formulation in Eq. (1) finds a good watermarking strategy. As alluded to in Sec. 3.2,
Fig. 5 (bottom left) shows that increasing the number of fixed-point iterations leads to a very marginal
increase in the detectability, yet it linearly increases the watermark computation complexity.

Lastly, Fig. 5 (bottom right) shows that, surprisingly, e-parameterization leads to much worse
detectability. This hints at the KL constraint (Eq. (1)) being an imperfect measure of text quality.
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Figure 5: Ablation of Our Watermark Components We compare the trade-off between watermark
detectability (TPR@1) and text quality (log PPL) of our approach with various hyperparameters,
namely the hashing scheme (7op Left), the two components introduced in Sec. 3.3 (Top Right), the
number of fixed-point iterations (Bottom Left) and the ¢/j-parameterization explained in Sec. 3.2
(Bottom Right). Responses are generated by LLADA-8B with temperature 0.5 and 600 prompts.

To illustrate this, consider a model which at the current step predicts each of the two tokens ¢; and
to with a probability of 0.5, where both tokens equally contribute to text quality. Suppose that ¢; is
green and ¢5 is red. Ideal watermarking strategy entirely favors ¢1, maximizing text greenness with
no impact on quality. However, a KL constraint would restrict the increase in the probability of ¢,
resulting in a weaker watermark (i.e., a lower TPR) despite the same text quality. We hence suggest
using d-parameterization, unless KL-divergence guarantees are required.

C.2 Ablation on the Influence of the Diffusion Process

In this part, we explore the behavior of our watermarking algorithm under variations in the diffusion
process. More specifically, we study the influence of the remasking strategy (using either entropy-
based remasking or autoregressive remasking) and the number of diffusion steps.

Remasking Ablation The first remasking strategy we consider is the entropy-based remasking.
For each token position in the sequence, the entropy of the distribution is computed and stored in
a "meta-logits" vector. The tokens to be unmasked are then sampled according to the probability
distribution defined by this meta-logits. To compute the probability distribution corresponding to the
meta-logits, a softmax with temperature 0.1 is used. For the autoregressive remasking, as the name
suggests, we simply force the diffusion process to unmask tokens from left to right.

Fig. 6 (left) shows that even with entropy-remasking, our watermark (i) is significantly more effective
than the baseline, and (ii) remains highly effective in absolute terms. Being robust to entropy-
remasking is both crucial and challenging. It is crucial because entropy-remasking significantly
improves DLM generation quality: compared with Fig. 2, the log PPL of the unwatermarked text
is 0.5 lower. Hence, DLMs are likely to be deployed with such an unmasking strategy. Yet, it
is challenging because low-entropy distributions, which are favored by the unmasking strategy,
are harder to watermark given a fixed distortion budget, as explored in previous works on ARLM
watermarks [28].

With autoregressive remasking, shown in Fig. 6 (right), we observe that both the baseline and our
approach yield significantly stronger watermarks. This is expected since, for the baseline, this
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Figure 6: Ablation on the Remasking Strategy We compare the trade-off between watermark
detectability (TPR@1) and text quality (log PPL) of our approach and the baseline with either the
entropy remasking strategy (left) or the autoregressive remasking strategy (right). Responses are
generated by LLADA-8B with temperature 0.5 and 600 prompts from WATERBENCH.
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Figure 7: Ablation on the Number of Diffusion Steps ROC curves of our watermark with different
number of diffusion steps N, using C = {—1} (left) or C = {—1, 1} (right). Responses are generated
with LLADA-8B at temperature 0.5 and metrics are computed over 600 samples.

corresponds exactly to using the Red-Green scheme from Kirchenbauer et al. [27]. However, given
that our approach still leverages the predictive bias term, it slightly outperforms the Red-Green
scheme. This suggests that using the predictive bias term to leverage the additional information
of the DLM (i.e., the distribution of future tokens) to insert the watermark is beneficial, which the
Red-Green ARLM watermarks can not do.

Diffusion Steps One key advantage of DLMs is their ability to generate multiple tokens at a time
by changing the number of diffusion steps. As explained in Nie et al. [35], the fewer steps, the higher
the inference speed, but the more degraded the generation quality becomes. This means that, in order
to reduce inference costs, it is very likely that DLMs are deployed with fewer diffusion steps than the
total number of tokens to generate. To ensure our watermark works for any given number of steps,
we use the same experimental setup as in Sec. 4, but generate 256-token-long responses (instead of
300). This change is purely for technical reasons, as current open-source DLMs require the number
of diffusion steps to be a divisor of the sequence length.

Fig. 7 shows the ROC curves of our watermark with various diffusion steps [V, watermark strength
parameter §, and context sets C. We see that the fewer the steps, the higher the TPR. This is
expected: the optimization formulation from Sec. 3.2 implicitly assumes that the whole sequence is
sampled from ¢*. Hence, lowering the number of steps makes it closer to the assumed setting of the
optimization formulation, thereby leading to a stronger watermark.

Temperature Both LLADA-8B and DREAM-7B models are designed to run at a temperature of
0.5 for optimal performance [35, 53]. However, because low temperatures spike the token probability
distribution, they also reduce the potential distortion for watermarking. In the worst-case scenario,
T = 0, the sampling is deterministic and hence the watermark cannot be applied. Therefore, to study

19



1o 1 . 10] 1 101 —_
i i i
: | "
08| | 08| | !
1o ! 100 | o]
x i g i o7l
Loos| | Lo6| | L |
R 1 X 1 R06|1*
-~ (R - 1 - 1
@ |1 ® |1 @os |}
2 041 o 041 o« |
& ! —e— Ours (T=0.3) o ! —e— Ours (T=0.5) & o4l —e— Ours (T=0.7)
= 1 Baseline (T=0.3) = 1 Baseline (T = 0.5) = I Baseline (T=0.7)
02| | log(Perplexity) 02| 1 log(Perplexity) 03]} log(Perplexity)
' ==" Unwatermarked LL| ' ==" Unwatermarked LLI ' ==" Unwatermarked LL
02
H L 1
14 15 16 17 18 19 20 16 17 18 18 20 21 19 20 21 22 23 24 25 26
«— log(Perplexity) «— log(Perplexity) «— log(Perplexity)

Figure 8: Ablation on the Sampling Temperature We compare the trade-off between watermark
detectability (TPR@1) and text quality (log PPL) of our approach and the baseline using samples
generated with LLADA-8B and temperature 7' = 0.3 (left), T = 0.5 (middle), and T' = 0.7 (right).
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Figure 9: Effect of the Top-k Approximation on Our Watermark Detectability ROC curves of
our watermark with different top-k when computing the energy function .J, using either C = {—1}
(left)y or C = {—1,1} (right). Responses are generated with LLADA-8B and temperature 0.5 and
metrics are computed over 600 samples.

the influence of temperature on our watermark, we run a similar evaluation as in Sec. 4 but with
T € {0.3,0.5,0.7}.

In Fig. 8, we compare the watermark strength with respect to distortion of our approach and the
baseline for different temperatures, increasing from left to right. We observe that at lower tempera-
tures, a higher distortion is required to achieve a strong watermark, for both our approach and the
baseline. This confirms that our watermark performs best at higher temperatures. Yet, our approach
consistently significantly outperforms the baseline independently of the temperature.

C.3 Additional Ablation on the Watermark Hyperparameters

In this part, we ablate the remaining components of our watermarking scheme, namely the top-k
computation of the energy function .J, the scheme parameter v, and we explore using distributions
other than i.i.d. Bernoulli for the green list G.

Top-k In Sec. 3.2, to reduce the complexity of computing the energy function (Eq. (1)), we restrict
the computation of 2, - G - p; to the top-k elements of /; and p;. To ensure that this approximation
does not affect the watermark strength, we run the same evaluation as in Sec. 4.1, but with top-k
varying from 5 to 100 (in the main experiment, we use 50). In Fig. 9, we observe that regardless
of the choice of context set C or the watermark strength parameter ¢, the TPR corresponding to
the highest top-k value (100) slightly exceeds that of the lowest top-k (5). However, the difference
between top-10 and top-100 is minimal—this suggests that from top-10 onwards, there is only a
marginal benefit to increasing top-k. Hence, settling for top-50, incurs almost no loss in strength.

Gamma In Sec. 4, we systematically set v = 0.25. To validate this choice and analyze the impact
of « on the watermark strength, we evaluate our watermark as in Sec. 4 using v € {0.1,0.3,0.5}.
In Fig. 10 (left), we see that the choice of v does not have a significant impact on the watermark
strength/quality trade-off. More precisely, a lower ~y leads to a weaker watermark for a fixed 9, as
seen in Fig. 10 (right), but the quality degradation induced by the watermark is also lower.
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Figure 10: Ablation on the Green List Split Size (Left) We study the trade-off between watermark
detectability (TPR@1) and text quality (log PPL) of our approach for different values of the green
list split size . (Right) ROC curves of our watermark for different v values using 4 = 4. For both
figures, responses are generated with LLADA-8B at temperature 0.5, metrics are computed over 600
samples and we use the previous token as context (i.e.,C = {—1}).
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Figure 11: Ablation on the Green List Distribution We study the trade-off between detectability
(TPR@1) and text quality (log PPL) of our approach for different distributions from which we sample
the green list G. We use as context C = {—1} (left) and C = {—1, 1} (right). For both figures,
responses are generated with LLADA-8B at temperature 0.5 and metrics averaged over 600 samples.

Green List Type Our formulation makes no assumption on the distribution of G and, as long as the
distribution of 4 under the null is known, we can still perform statistical tests to detect the watermark.
In Fig. 11, we compare different distributions for G either i.i.d. Bernoulli parameterized by their
probability, Gaussian parameterized by their variance with zero mean, and Lognormal parameterized
by the variance of the underlying normal distribution with zero mean. For the Gaussian variables, we
use a Z-test on 4 and for the Lognormal, we use the Fenton-Wilkinson lognormal approximation. We
see that for all distributions, the TPR@1 is fairly similar, which suggests that the choice of the green
list distribution has little impact on the watermark strength.

Context Set Fig. 12 (left) shows that there is no significant difference between the different context
sets with respect to the detectability/quality trade-off. This is expected, as prior work [25] has shown
that context sets do not impact quality but rather the security of the watermark. Given that our
watermark uses the same detector as Kirchenbauer et al. [27], it is also vulnerable to similar attacks.
Fig. 12 (right) confirms the conclusion that there is no significant difference between the different
context sets with respect to watermark detectability.

C.4 Comparison with Additional Baselines

In this part, we compare our watermark to two other baselines. The first is an adaptation of AAR
watermark [1] and the second of KTH watermark [29].
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Figure 12: Ablation on the Context Set (Left) We study the trade-off between watermark detectability
(TPR@1) and text quality (log PPL) of our approach for different context sets C. (Right) ROC curves
of our watermark for different C sets using § = 4. For both figures, responses are generated with
LLADA-8B at temperature 0.5, metrics are computed over 600 samples.
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Figure 13: Comparison of Watermark Detectability between Our Watermark and Other
Baselines ROC curves of our watermark with § = 2 compared to the AAR and the KTH baselines.
Responses are generated with LLADA-8B at temperature 0.5, metrics are computed over 600 samples.

Experimental Setup We use the same evaluation setup as in Sec. 4, generating 600 sequences of
up to 300 tokens, using prompts derived from WaterBench [47]. For each prompt, we evaluate both
the baseline watermark and our watermark.

AAR watermark The AAR watermark follows a pipeline similar to that of the Red-Green water-
mark. Let w; € X denote the token generated by the LM at step ¢, I; the next-token logits distribution,
and k the number of tokens in the context. Using a hash of the context H (w;—.;) and &, each token v
in the vocabulary is assigned a pseudo-random score sampled from a Gumbel distribution g;(v). The
next token is then chosen as arg max,x, {;(v) + ¢+ (v). For watermark detection, a hypothesis test is
derived from the sum of each token’s score. Our adaptation of AAR is similar to that of Red-Green;
we apply the watermark only if the tokens in the context (i.e., the context set C) have already been
sampled. Otherwise, we sample according to the unwatermarked distribution.

As AAR is distortion-free, i.e., it does not modify the model’s next-token probability distribution on
average over the watermarking key, we compare it to our approach in the low-distortion regime with
6 = 2. In Fig. 13, we see that our approach outperforms the AAR baseline even in the low-distortion
setting (at 1% FPR, a +30% TPR with most C)—a result similar to the Red-Green baseline. This
confirms that autoregressive hashing is a key limitation for DLM watermarks.

KTH watermark The KTH watermark [29] is significantly different from both AAR and Red-
Green watermarks, as it does not rely on the standard hashing pipeline. Instead, the watermark is
instantiated with a key ¢ € [0, 1]**%, where L € N is a fixed key length sampled from i.i.d. uniform
distributions. When sampling a token at position ¢, given a next-token probability distribution p;,
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Figure 14: Detection Performance on Infilling Tasks (Lefr) We compare the trade-off between
watermark detectability (TPR@1) and text quality (log PPL) of our approach and the baseline for
different values of the watermark strength parameter J and sequences of, on average, 205 tokens.
(Right) ROC curves of our watermark and the baseline at log(PPL) ~ 1.94. Responses are generated
with DREAMON-V0-7B at temperature 0.8, metrics are computed over 600 samples and we use the
previous token as context (i.e., C = {—1}). The crosses on the left figure correspond to the same
watermark hyperparameters as the right figure.

the next token is chosen as arg max, ¢, (& (v))'/?*(*). Additionally, to allow for more diversity in
the generated text, the key is randomly shifted by a constant at each query. For detection, each
token is assigned a score computed using the private key £ and an edit-distance cost to account
for potential text distortion. We refer the reader to Kuditipudi et al. [29] for more information on
detection. This scheme can be straightforwardly adapted to the diffusion setting. By setting the key
length as the length of the diffusion context size and applying the argmax sampling rule at each step
of the generation process, we can essentially use the KTH watermark with a DLM.

In Fig. 13, we see that despite being seemingly fitted for the DLMs setting, KTH watermark is
significantly outperformed by our watermark. This is because DLMs operate at a too low temperature
(T = 0.5) for the watermark to be strong enough.

D Watermarking Infilling Tasks

In this section, we study the effectiveness of our watermark for infilling tasks, rather than instruction
tasks as in Sec. 4.

DreamOn Model For this specific task, we consider the DREAMON-vV0-7B [49] model.
DREAMON-VO0-7B is an extension of the DREAM-7B model with a novel discrete diffusion al-
gorithm that allows for variable-length generation, an important property for infilling tasks. The
vocabulary is augmented with two extra tokens, expand and delete. During the diffusion process, if
the expand token is sampled, it is replaced in the next iterations by two mask tokens. If the delete
token is sampled, it is removed from the sequence in the next iterations.

Experimental Setup To evaluate the watermark strength, we use the realnewslike split of the C4
dataset [41], where for each entry we keep a prefix of 100 tokens, mask the next 200 tokens, and leave
a suffix of 100 tokens. We then generate infilling with our model for sequences between 100 and 300
tokens long. For each generation, we run the watermark detection and compute the corresponding
p-value. In total, we generate 600 sequences. To measure the impact of the watermark on model
quality, as in Sec. 4, we measure the text perplexity using QWEN2.5-32B.

For the watermark, we use the same hyperparameters as in Sec. 4: our green list G is generated
by sampling i.i.d. Bernoulli random variables that are green with probability v = 0.25, we use the
SumHash hashing scheme, J-parameterization, a single iteration for fixed-point convergence, and a
top-k of 25. For the generation setting, we set the temperature to 7" = 0.8 (unlike Sec. 4, where the

23



temperature is set to 7' = 0.5), use the entropy-based remasking strategy (see App. C), and allow the
model to extend the generated sequences up to 300 tokens.

Reliable Infilling Watermarking Fig. 14 shows the strength of our watermark and the baseline
with respect to the text quality. We see that, unlike the ARLM Red-Green watermark, our watermark
achieves a strong watermark with virtually no impact on perplexity. These results mean that our
watermark can be directly applied to infilling tasks, and even works despite variations in the discrete
diffusion process. This is not true for the baseline that particularly struggles in this setting.

E Link to Red-Green ARLM Watermarks

In this part, we show that Red-Green Watermarks from Kirchenbauer et al. [27] are actually a solution
to the optimization problem derived in Sec. 3.1, but restricted to the ARLM case.

Optimization Problem for ARLM We keep the same notation as in Sec. 3.1, but adjust it for
the ARLM case. Let w € X* be a sequence of tokens, H : ¥* — H the hash function, and
G € {0, 1}71** the green list matrix. The green ratio function 4 is defined as

|| ||

. 1 1 .
Y(w) = Tl ZGH(W<t)’Wt = Z%(wﬁ)- 1D
t=1 t=1

Let ¢t € N. Given w<, the ARLM returns a next-token probability distribution p; € A(X). The goal
of the watermarking algorithm is to distort the distribution p; into a distribution ¢, that maximizes the
expected green ratio, which we formalize as

maximize,, c A (z) Ea~g, [t(w<i 0 Q)] (12)
subject to KL(g¢,p;) < &

where o is the concatenation operator. Given that H (w;) is a constant, unrolling the expectation is
significantly easier than in Sec. 3.1. We simply get

Vq € A(2)7E9~qﬁt(w<t 0Q)] = Z GH(WQ),uQ(U) =: Ji(q)- (13)
uey

Link to Red-Green ARLM Watermarks Similarly to Theorem 3.1, there exists a unique > 0
such that the optimal solution is given by

de e R, Vu € ¥, logg; (u) = logpi(u) + 0G(H (wet), u) + c. (14)

This is exactly the formulation of the Red-Green watermark from Kirchenbauer et al. [27], where
only the logits of the green tokens are boosted by a constant .

F Experimenting with Different Green List Distributions

In this section, we present the technical details of the Red-Green watermark scheme. We focus on
how the choice of a correlated green list—that is, fixing its size to exactly ~|3|—affects detection.
Prior work enforced this constraint by using correlated Bernoulli variables, whereas we instead draw
the green list with i.i.d. Bernoulli variables. This change, originally introduced for technical reasons,
enables an exact test for watermark detection, while previous approaches rely only on approximations.

Green List Distribution In the original work by Kirchenbauer et al. [27], they suggest that, given
a fixed context, the Red-Green list should partition the vocabulary X with exactly ~|X| green tokens
and the rest red tokens. Lett € ¥, s € H be a hash, and G ; the random variable corresponding to
the color of token ¢ with the context hash being s. This means that (L means independent),

Vs e H,Vt € E,Gsy ~ B(v), (15)
1—

YVt 7é t/ S Z,COV(GS’t, Gs,t’) = —M7 (16)

Vs# s e HVt,t' € 8,Gsy L Gy pr. (17)
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Figure 15: Z-score Simulation Simulation of Z;, using a uniform token sequence in X, with either
the correlated or independent green list. The black dotted line is the standard normal pdf. (Left) We
use |X| = 15 and L = 200. (Right) We use |%| = 50 and L = 200.

On the contrary, in this work, we instead use i.i.d. Bernoulli for the green list, so we simply have

Vs € H,Vt € B, Gy ~ B(v) (18)
Vs, s € HVt #t' € 8,Gsy L Gy pr (19)
Vs#£s e H,Vt €X,Gsy L Gy . (20)
Z-score Detector In Kirchenbauer et al. [27], given a sequence of tokens ¢1,...,ty, and a corre-
sponding hash sequence s, ..., sy, such that there is no repetition of tuples (¢;, s;), they suggest

using as a detector

1 L
e — e ) AN 1)
: V(=)L <; ' )

and assume asymptotic standard normality, i.e., Z;, —F A(0,1). However, because of potential
hash repetition, the variance normalization may be inaccurate. Indeed, let, for all s € H, N, := {k €
[1,...,L] : s = s} which corresponds to the indices k& where the hash is equal to s. Hence, | N;|
counts the repetitions of the hash s in the sequence. Then, we have

L
0_2 -— Var <Z Gsi,t,:) = ’y(l — ’}/)L ll — m Z(|N9|2 — ‘NSD

SEH

. (22)

This means that a corrected Z-score would be

L
1
Zy=— <; Gty — 7L> . (23)

In our work with an i.i.d. Bernoulli green list, we can use for detection Eq. (21) directly without
modifying the variance.

In Fig. 15, we simulate Z; with both the correlated and i.i.d. green lists using H = 3, with
|¥| € {15,20} and L = 100. When X is small and the sequence is long (left), we notice that
in the correlated case Eq. (21) deviates from the standard normal distribution, whereas this is not
the case for the independent one. However, when ¥ is large enough compared to the sequence
length (right), there is almost no deviation from the normal distribution—which is expected given
the variance formulation in Eq. (22). Therefore, in most practical cases, the slight deviation from
standard normality has almost no impact on the reported p-values by the watermark detection as we
operate in the 3 >> L regime. But this derivation and these experiments justify our claim in Sec. 4
that using i.i.d. Bernoulli with the suggested detection is more principled.

Binomial Detector As explained in Fernandez et al. [18], using a z-score for detection is imprecise
and leads to higher empirical FPR than expected. Therefore, in this work, we use a binomial test
instead. Yet, similarly as with the z-score detection, the binomial test is rigorously valid only when
using i.i.d. Bernoulli green list and not the correlated one.
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Figure 16: Binomial Score Simulation Simulation of S using a uniform token sequence in 3, with
either the correlated or independent green list. The black dotted line is the standard normal pdf. (Left)
We use |X| = 15 and L = 200. (Righr) We use || = 50 and L = 200.

Lettq,...,tr be a sequence of tokens and s1, ..., sy, the corresponding sequence of hashes such
that there is no repetition of tuples (;, s;). The binomial detector is based on

L
S=> Go (24)

In the i.i.d. case, we know that for all i # j, G, ¢, L G, +; and G, 1, ~ B(~). Hence, S is the sum
of L i.i.d. Bernoulli random variables: it follows exactly a binomial distribution of parameter (L, ).

In the correlated case, we introduce for all s € H, Ny := {k € [1,...,L] : s = s} which
corresponds to the indices k£ where the hash is equal to s. Then, we have

S=Y (Z Gs,ti> = X, (25)

s€EH \i€EN, SEH

(I%], 7|2, Ns). This
means that the distribution of .S depends on the distribution of N, which itself depends on the
distribution of the LLM. Hence, we can’t provide a closed-form distribution for S. Yet, if we add
the assumption that the tuples (¢;, s;) are sampled uniformly without replacement, we show that .S
follows a hypergeometric distribution of parameter (|H||X|, v|H||X], L).

Proof. LetT = {i € {0,...,L}* S _, i, = L}. First, we have
H\Hl (lzl)

VZEI,P[VSGH,NS:l]—W (26)
L
We now develop S by conditioning on Ny, thus we have for all k € {0,..., L},
=> PVs,N,=ii] > []PXn, = kN, =i 27
€T k1+...+k7‘%|:/c sEH

0<ks<ig

SN I (=) (), o8)

zEIkH— Ak =k sEH ks
ks>0

Using Vandermonde’s identity we have that

ST (1) < (PR 9)

i€L s€H

> () - (T, 0

itk =k seH
ks >0
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Hence if we combine the last three equations we have that

L (HIEIE =) (HIE]
PIS =#] = (mgz)( L—k 7)(7 k ) GD

which is exactly the pmf of the hypergeometric distribution of parameter (|H||X|, v|#H||%], L). O

In Fig. 16, we simulate S with both the correlated and i.i.d. green lists using H = 3, with
|2] € {15,20} and L = 100. We see, in the left figure, that when ¥ is small (i.e., |H||2| ~ L) we
are in a regime where the hypergeometric and binomial distributions are very different, and the two
histograms differ significantly. However, in the right figure, where |H||3| >> L, we see that the
hypergeometric and binomial distributions are similar, and so are the histograms. Moreover, in both
figures, we see that the empirical histograms match the corresponding theoretical distributions. This
experimental validation supports our derivation and the rigor of using a binomial test to compute
watermark detection p-values when using an i.i.d. Bernoulli green list.

G Our Hash Implementation

In this part, we show that our instantiations of SumHash and MinHash are functionally equivalent to
those of Kirchenbauer et al. [28].

SumHash Our SumHash implementation corresponds to the Additive implementation from Kirchen-
bauer et al. [28]. Indeed, given a sequence of tokens w € ¥*, Additive is defined by

I_IAdditive(W)75 =P <3 X Zwt+i> s (32)

ieC

where s € Nis aseed and P : N — A a PRF. Hence, H“%4*V¢ maps every unique sum of token
IDs from the context to a unique value, which is then used to sample the green list. In our case,
HSwmHash a150 maps every unique sum of token IDs from the context to a unique value, which is
used to select a row, sampled randomly, from the green list. In the end, the results are similar: every
unique sum of token IDs gets associated with a random green list.

MinHash For MinHash, the reasoning is similar: both the approach from Kirchenbauer et al. [28]
and our approach associate the minimum token id of the context (up to a permutation) with a unique
green list. The main difference is that we represent our green list as a "pre-generated" matrix and
thus do not need to further use a PRF function.

H Resources

H.1 Computational Resources

All experiments presented in this work were conducted on either a single H100 (24 vCPU) GPU node
with 80GB of memory (hosted by Lambda Labs) or a single A100 (24 vCPU) with 40GB of memory.

Runtime Analysis Fig. 17 shows the average time, over 300 repetitions, in seconds to generate a
300-token-long sequence with 300 diffusion steps on LLADA-8B with different watermarks. KGW
corresponds to the baseline presented in Sec. 4, PatternMark and Unigram are prior order-agnostic
watermarks presented in detail in App. B, and AAR is a baseline adaptation of the watermark
from Aaronson [1] introduced in App. C. For our watermark, we use the default hyperparameters
from Sec. 4. We see that the overhead introduced by our watermark is minimal even though our
implementation is not designed with speed in mind. For convenience, our current implementation
computes the watermark distribution of every token in the sequence, even tokens that remain masked.
Computing the watermark distribution only for tokens that are selected to be unmasked would
significantly reduce the watermark overhead. Importantly, unlike PatternMark, our detection time is
negligible. Because detection is applied indiscriminately to any text, it is crucial for it to be fast.
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Figure 17: Implementation Speed of Our Watermark We compare the average time, over 300
repetitions, to generate a 300-token-long sequence with 300 diffusion steps on LLADA-8B with
different watermarks applied and the corresponding average detection time (in lighter colors). For
most watermarks, the detection time is negligible compared to the generation time and thus not
visible. We highlight our methods in blue, and the base model without watermark in red.

I Proofs

I.1 Solution of the Optimization Problem

We recall Theorem 3.1:
Theorem 3.1. Given p € A(X)” and J defined in Eq. (2), there exists § € R” such that

Viel,...,L],q o prexp(dra(q*)) (4)
with a(q) = Vg, J(q). Moreover, forallt € [1,..., L], 0, is the unique solution to KL(qf,p;) = €.

Proof. We first recall the optimization problem from Eq (D),

maximize e a sy J(q Z hi(q)” -G - g (33)

subject to V¢ € [1 ,...,L],KL(qt,pt) <e (34)

where for all t € [1,..., L], hy € A(H), p; € A(E) and G € {0, 1}/#1XI=I and H, ¥ are finite
non-empty sets. We recall the definition of the KL-divergence,

Vte(l,...,L], KL(g:,pt) Z g (u) (log (g (v)) — log(pe(w))). (35)

ues
Let A € RY, i € RE, we introduce the Lagrangian

L(g, M\ p) = Z A (K L(qt, pr) Z pe(Y_ alu (36)
t=1 ueX
Because J is continuous and the set of constraints is compact, J attains a maximum J* that is reached
on the set of constraints. Furthermore, Slater’s conditions are verified because p is within the set of
constraints and satisfies for all ¢, K L(ps, p;) < €. Let ¢* be a point that reaches J*. We know that
q* satisfies the Karush-Kuhn-Tucker (KKT) condition. Hence,

Vie[l,...,L,Yu € ¥, a:(q")(u) — M\ (1 + log(qt ((u; )) - =0 37
pe(u
where o (¢) = V4, J(q). Thus, with 6 = 1/, we find Eq. (4),
Vte(l,...,L],q x pexp(dra(q”)). (38)
Furthermore, we know thanks to the KKT condition that assuming the constraint is active
vt el,..., L, KL(g,p) = <. (39)
Because for all ¢ € [1,..., L] the KL-divergence is monotone with respect to d;, this guarantees

uniqueness of d;, the solution of Eq. (39).
O
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I.2 Definition of expectation boost and predictive bias terms

In Sec. 3.3, we show that, in the case of SumHash with C = {—1}, our watermark algorithm can
be split into two terms: the expectation boost term, similar to the Red-Green watermark boost, and
the predictive bias term that favors sampling a token whose hash makes the most likely next tokens
more likely to be green. In this part, we derive the computations to define the expectation boost and
predictive bias terms in the general setting.

We recall that b : A(X)L — A(H) is the function that maps a factorized token probability vector to
a corresponding hash probability vector at position ¢, and that p € A(X)% is the factorized probability
vector over the sequence given by our DLM. Lastly, we introduce the factorized hash probability
distribution h € A(H)” defined as b = (hy,...,hz).

With Theorem 3.1, we have that, at the first order

Vte[l,...,L],q x prexp(dar(p)). (40)
Yet, if we distribute the derivative in oy = V), J(p) (with J defined in Eq. (2)), we get that
ai(p) = G hu(p) + GV, h(p). (41)

G Thy(p) corresponds to the expectation boost term: it can be interpreted as applying the Red-Green
watermark boost in expectation over the distribution of the context hashes. Therefore, GV, h(p) is
the predictive bias term, but it is not as easily interpretable without explicitly deriving the gradient.

We add the additional assumption that h(p) does not depend on p, i.e., for the hashes from Sec. 3.2 it
means that a token can not be in its own context (0 ¢ C). This assumption implies that V, h;(p) = 0.
We also assume that the hash distribution h; is given by

Vh € H, ht(h) = Z pl(ul) .. .pL(uL) 42)

Given these assumption, we have that
GVph(p)= Y. (Vyhs(p) Gp.. (43)
s#te(l,...,L]

Here, the assumption V,, h;(p) = 0 removed the self-feedback term (V,, h.(p)) " Gp;. We have,
givenu € Yandh € H,andfors At € [1,..., L],

Ohs(p)n _ > YH(u,uoy) = h} [[ pilui) = PHJ(Q) = h|Q =u],  (44)
Ope(u) u_ exnt—1 it

with Q ~ p the random variable representing sequences of tokens distributed according to the
factorized probability distribution p. Hence, by distributing the sums we get that forall ¢ € [1, ..., L]
and u € X,

@ =3 Crahe@)n+ 3 S PIH,(R) = b2 = u)(Gpy )i - (45)
heH s#t heH
expectation boost predictive bias

We see here that the predictive bias term promotes tokens u at position ¢ whose induced hash
distribution on positions s # t makes the most probable tokens at s green.

J Extended Results

In this section, we provide extended results for the evaluation from Sec. 4. Specifically, we include
the ROC curves for most of the experiments, as well as some text examples of unwatermarked and
watermarked text.

J.1 ROC Curves

In this part, we show the ROC curves for the experiment from Sec. 4. Such curves may guide
practitioners in deciding which hyperparameters best suit their needs.
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Figure 18: Watermark Performance ROC curves (log scaled) of KGW and our watermark for
both LLADA-8B (top) and DREAM-7B (bottom), and different values of ¢ using C = {—1} (left) or
C ={-1,1} (right).
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Figure 19: Ablation on the Hashing Scheme ROC curves (log scaled) of our watermark with
different hashing schemes for LLADA-8B, and different values of ¢ using C = {—1} (left) or
C = {-1,1} (right).

Main experiments In Fig. 18, we show the ROC curves from the experiments in Sec. 4. We observe
that for 6 > 4, we achieve a TPR@1 of around 99% with our watermark, while the baseline remains
at most 80%. Hence, for a strong watermark at low temperature (here T = 0.5) and in the instruction
setting, we recommend that practitioners use § = 4.

Hashing Scheme Fig. 19 shows the ROC curves for both SumHash and MinHash. We see that the
watermark strength is not significantly influenced by the choice of hash. In fact, the choice of hash
should be dictated by other concerns such as watermark security or robustness, as explored in prior
works [25, 28].

Fixed-point Iteration Fig. 20 shows the ROC curves with LLADA-8B for different numbers of
fixed-point iterations. The conclusion is similar to App. C.1: increasing the number of iterations
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Figure 20: Ablation on the Fixed-Point Iteration ROC curves (log scaled) of our watermark with
different number of fixed-point iterations for LLADA-8B, and different values of 6 using C = {—1}
(left) or C = {—1, 1} (right).

only marginally increases the watermark strength, and the increase plateaus quickly. Thus, we advise
practitioners to use only a single iteration.

J.2  Text Samples

In this part, we show examples of prompts and model answers for both unwatermarked text and text
generated using our watermark (with 6 = 4 and v = 0.25). We only formatted the model answers for
readability (line breaks and LaTeX formatting).

User Prompt

Please tell me about the romantic relationship between Julius Caesar and Cleopatra
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Julius Caesar and Cleopatra were both historical figures, but they did not have a
romantic relationship with each other. Julius Caesar was a famous Roman general,
and Cleopatra was a powerful queen of Egypt. However, they did have a close
relationship that is often interpreted as romantic.

According to history, Caesar met Cleopatra while visiting her kingdom
during his campaign in 48 BCE. He was impressed by her beauty, and they began
a close friendship. However, it’s unlikely that Caesar and Cleopatra had a romantic
relationship during this early period.

In 43 BCE, Julius Caesar and Cleopatra allegedly engaged in a romantic
relationship after Caesar was assassinated by a mob in Rome. Caesar’s death led
to a brief civil war, and Cleopatra traveled to Rome in support of her brother,
Antony, who wanted to secure Caesar’s legacy and restore Rome.

According to historical accounts, Cleopatra’s presence in Rome led to
two children with Antony, Caesarion and Philopator. While this may provide
evidence of a romantic relationship, it’s worth noting that Antony and Cleopatra
were married, and the children were actually born to Antony and Cleopatra, not
Caesar.

While the relationship between Caesar/ Antony and Cleopatra is a topic
of historical debate and interpretation, it’s generally accepted that they had a
close and intense emotional connection. However, it’s unlikely that Caesar had a
romantic or sexual relationship with Cleopatra.
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The Manhattan Project I understand that it resulted in the first atom bombs , but
why is it held as such an important event in history ? And why are there so many
conspiracies surrounding it ?
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The Manhattan Project was a massive, top-secret effort to create the first atomic
bombs during World War II. It’s considered a significant event in history because
it ended the war and changed the way people thought about the world.

The reason it’s important in history is because it marked the first efforts
to create a weapon of mass destruction, paving the way for the development of
nuclear weapons. The project also led to the creation of the first successful nuclear
weapons, which changed the course of human history.

There are so many conspiracies surrounding the Manhattan Project be-
cause it was intentionally kept secretive to ensure that the Nazis got no chance to
develop a similar weapon. The project involved some of the most brilliant minds,
scientists, and engineers of the time, and the complexity of keeping such a project
under wraps.

There are many conspiracy theories about the project’s origins, progress,
and even its consequences. For example, some people believe that the US
government had a clear idea of the project’s scope and chose to mislead the public,
while others believe that they were deceived.

Additionally, the Manhattan Project’s creation of nuclear weapons is still
a concern today, and it has led to various conspiracy theories about government
secrecy and the potential for nuclear to be stolen or misused.

Overall, the Manhattan Project remains a significant event in history, and
the conspiracies surrounding it are driven by the fascination with its hidden secrets
and the ongoing concerns about the potential for nuclear harm.
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I want to talk about "Smooth", a song by Rob Thomas.
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"Smooth" is a song by American country music singer Rob Thomas, released
digitally on August 24, 2016, as the second single from his debut studio album,
"Rob Thomas". The song was written by Rob Thomas, Luke Laird, and Blake
Shelton, and was produced byBlake Shelton.

"Smooth" is a mid-tempo country music song with a catchy and upbeat
vibe. It features Rob Thomas in a smooth and romantic tone, showcasing his vocal
abilities. The song’s lyrics describe a smooth, confident, beautiful woman who
brings a sense of happiness to the speaker.

The song received generally positive reviews from music critics and fans
alike. It charted within the top 10 on the Billboard Hot Country Songs chart,
peaking at No. 7. The song also peaked within the top 40 on the US Billboard Hot
100 chart, peaking at No. 35.

"Smooth" was nominated for four Country Music Awards, including Record of the
Year, Song of the Year, and Song of the Year. The song won for Song of the Year
and Record of the Year in 2018.

The song has been performed and covered by many artists, including Tay-
lor Swift, Keith Urban, Jason Aldean, and Luke Bryan, among others. Blake
Shelton has also covered a version of the song, which was also released in 2016.
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