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Abstract

Traditional tabular augmentation methods, such as SMOTE and Gaussian sampling,
treat features as generic vectors, disregarding the domain-specific constraints
often present in scientific tabular data. This work introduces a domain-aware
augmentation approach that leverages Large Language Models (LLMs) to encode
scientific knowledge through policy generation. The effectiveness of this approach
is demonstrated using a case study on geochemical compositions, where data
must satisfy closure constraints and exhibit intrinsic correlations that geometric
interpolation methods fail to preserve. Evaluated on an imbalanced geochemical
rock classification dataset, the LLM-based augmentation achieves 95.74% accuracy
and a 0.9544 macro-F1 score, outperforming SMOTE, Gaussian sampling, and
no-augmentation baselines while requiring fewer synthetic samples.

1 Introduction

Severe class imbalance challenges machine learning (ML) on real-world tabular datasets across
domains: predictive maintenance (rare fault classes), medical diagnosis (uncommon diseases),
fraud detection (sparse anomalies), and compositional data analysis (rare classes reflecting natural
distributions)(1). Traditional augmentation methods like Synthetic Minority Over-sampling Tech-
nique (SMOTE) (3) and Gaussian sampling address imbalance through geometric interpolation
or sampling in feature space, treating attributes as generic vectors. These approaches can hinder
the performance of ML models on tabular data with domain-specific physical constraints, such as
compositional data common in geochemistry, metabolomics, and microbiome analysis.

1.1 Related Work and Limitations

SMOTE (3) generates synthetic samples via linear interpolation between minority class neighbors
in feature space. SMOTE and its variants (4; 5) treat features as unconstrained vectors with fixed
augmentation ratios (k-nearest neighbors), failing to preserve domain-specific relationships or adapt
to natural abundance patterns. Aitchison’s centered log-ratio (CLR) transformation (2) maps compo-
sitional data from the simplex to Euclidean space, enabling standard statistical methods. Applying
CLR preprocessing before training ML models remains geometry-based, while these approaches
respect closure via inverse transforms but lack domain awareness, ignoring correlations driven by
underlying physical processes.

Deep generative models for tabular data such as Variational Autoencoders (TVAE) (7) and Generative
Adversarial Networks (CTGAN, CTAB-GAN) (8; 9) learn complex data distributions for synthetic
data generation. Graph-based approaches like the Causal-Graph Lithology Classifier (15) apply spatial
relationship modeling for lithology classification but require sequential data that can be unavailable in
areas like compositional geochemistry. However, these methods require large training sets (thousands
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of samples), struggle with extreme imbalance, and cannot encode known domain constraints beyond
patterns present in limited training data. They also require large synthetic sample counts to improve
minority class performance, risking overfitting to unrealistic data. Recent tabular foundation models
(10) show promise but remain data-hungry and domain-agnostic, lacking mechanisms to concentrate
augmentation where most beneficial while minimizing majority class noise.

Large Language Models (LLMs), when combined with carefully chosen inputs, have shown improve-
ments in LLM performance on a variety of tabular tasks (11). TabLLM (13) and GReaT (14) serialize
tabular rows as text and fine-tune language models for generation, achieving strong performance
on benchmarks. However, these approaches require task-specific fine-tuning and do not explicitly
leverage domain knowledge available in LLM pre-training. Most critically, existing methods are not
policy-driven frameworks, where LLMs design augmentation strategies rather than directly generating
samples.

This work proposes tabular data augmentation using LLMs to encode domain specific constraints
through policy generation. The approach generalizes to standard and compositional tabular settings
with domain specific constraints. Rock classification using geochemical tabular data is presented
as an illustrative application to demonstrate this approach.The remainder of the paper describes the
dataset and methodology (Section 2), presents experimental results comparing four augmentation
strategies on two classification models (Section 3), and finally the conclusion.

2 Dataset and Methodology

2.1 Dataset

The dataset comprises 752 training and 188 test samples from the Aleutian Arc geochemical database
(16), containing volcanic rock compositions from convergent margin settings. Each sample is
characterized by 9 major element oxide compositions (SiO2, TiO2, Al2O3, FeOt, MgO, CaO, MnO,
Na2O, K2O) measured by X-ray fluorescence in weight percent. More deatils on the dataset can be
found in Appendix A.

2.2 LLM-Based Augmentation

Policy Generation by prompting a LLM. Claude Sonnet 3.5 was given a comprehensive prompt
containing petrological descriptions of the 5 rock types and their positions in the calc-alkaline series,
dataset statistics including per-oxide distributions and the strong Al2O3-MgO anticorrelation (r=-
0.906), domain constraints such as compositional closure, and a task specification requesting a JSON
policy for class-adaptive augmentation addressing severe imbalance while respecting geological
constraints.

The prompt explicitly encodes domain knowledge by requesting heavy augmentation for rare evolved
compositions (rhyolite), minimal augmentation for abundant intermediate compositions (andesite),
and preservation of diagnostic element correlations from fractional crystallization. The complete
prompt appears in Appendix B.

The LLM generates a JSON policy that defines the augmentation strategy. With class-adaptive
ratios (minority: 3.5x, mid: 0.65x, major: 0.12x), the policy uses a logistic-normal family in
CLR space to handle compositional geometry and employs Ledoit-Wolf covariance estimation
with ridge regularization for numerical stability. Element-specific analytical uncertainties reflect
XRF measurement precision. Mean shift augmentation (60% probability) introduces within-class
heterogeneity, while sample bounds (per-class max 3,500, global max 18,000) prevent excessive
generation. The complete prompt text is shown in Appendix C.

Synthetic Sample Generation. Algorithm 1 implements policy-driven generation of synthetic
samples. For each class, real samples are transformed to CLR space, class mean and covariance
are estimated via Ledoit-Wolf with ridge regularization, synthetic samples are drawn from the
fitted Gaussian with clipping to prevent extreme outliers, and inverse CLR transform with closure
normalization returns valid oxide compositions.
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Algorithm 1 LLM Policy-Driven Synthetic Data Generation
Require: Training data D = {(xi, yi)}, policy P (JSON)
Ensure: Synthetic dataset Dsyn
1: Parse P: ratios {rc}, ridge λ, clip threshold τ
2: for each class c do
3: Dc ← {(xi, yi) : yi = c}, nc ← |Dc|
4: Transform to CLR: zi ← log(xi)− 1

d

∑
j log(xij)

5: Estimate: µc ← 1
nc

∑
i zi, Σc ← LedoitWolf({zi}) + λI

6: for j = 1 to ⌊rc · nc⌋ do
7: Sample: znew ∼ N (µc,Σc)
8: Clip: znew ← max(−τ,min(τ, znew))
9: Inverse CLR: xnew ← exp(znew)/∥ exp(znew)∥1 × 100

10: Add to Dsyn
11: end for
12: end for
13: return Dsyn

2.3 Baseline Methods

SMOTE-CLR augments compositional tabular data in CLR space with class-adaptive for fair
comparison and generates 863 synthetic samples. Gaussian-CLR samples per-class Gaussians in
CLR space using Ledoit-Wolf covariance with ridge generates 376 synthetic samples. NoAug trains
on 752 real samples only with tempered class reweighting to address imbalance. All methods apply
CLR transformation before augmentation, inverse transform to compositional space, and validate
oxide closure (sum ≈ 100 wt%).

2.4 Experimental Protocol

Two classifiers are used in this work: Random Forest (RF) (600 trees, max_features=’sqrt’,
min_samples_leaf=1) and XGBoost (XGB)(500 trees, lr=0.08, depth=6, subsample=0.9, colsam-
ple=0.9, L2=1.0). Metrics include macro-F1 (equal class weight, emphasizes minorities) and accuracy.
Experiments were repeated over 5 seeds. Implementation uses imbalanced-learn v0.11 (SMOTE),
XGBoost v2.0 with GPU acceleration, and Anthropic’s Claude LLM.

3 Results and Discussion

Table 1: Classification performance on Aleutian Arc test set (5 seeds)

Method Random Forest XGBoost

Macro-F1 Accuracy Macro-F1 Accuracy

NoAug 0.9289 ± 0.0066 0.9394 ± 0.0048 0.9377 ± 0.0021 0.9468 ± 0.0013
SMOTE-CLR 0.9474 ± 0.0064 0.9532 ± 0.0045 0.9563 ± 0.0050 0.9596 ± 0.0029
Gauss-CLR 0.9450 ± 0.0026 0.9511 ± 0.0024 0.9671 ± 0.0030 0.9670 ± 0.0024
LLM-CLR 0.9544 ± 0.0012 0.9574 ± 0.0011 0.9675 ± 0.0025 0.9678 ± 0.0024

Table 1 presents classification performance across four augmentation strategies and two classification
models. LLM-based augmentation achieves the highest macro-F1 scores for both RF (0.9544)
and XGB (0.9675) classifiers, outperforming SMOTE-CLR by +0.70 and +1.12 percentage points
respectively. Gaussian-CLR shows strong performance with XGBoost (0.9671) but underperforms
LLM by +0.94 percentage points (RF) and +0.04 percentage points (XGB) but slightly underperforms
SMOTE-CLR on RF (0.9450 vs. 0.9474) but substantially outperforms SMOTE on XGB (+1.08
percentage points, 0.9671 vs. 0.9563). The no-augmentation baseline achieves 0.9289 macro-F1 (RF)
and 0.9377 (XGBoost), the lowest of all the methods.

Figure 1 presents confusion matrices for RF classifier across three augmentation approaches. Rhyolite
(minority class) shows progressive improvement: NoAug correctly classifies 15 of 17 samples (88%),
Gaussian-CLR improves to 16 of 17 (94%), and LLM-CLR achieves a perfect 17 of 17. This pattern
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(a) No Aug (b) Gaussian-CLR

(c) LLM-CLR
Figure 1: RF confusion matrices (row-normalized). Both augmentations improve the minority class;
LLM-CLR removes basaltic–andesite/andesite confusion while preserving majority-class accuracy
and achieves perfect minority classification.

suggests that while CLR-space sampling helps minority classes, domain-aware policy generation fully
resolves errors by encoding petrological constraints that distinguish highly evolved from intermediate
compositions.

Basaltic andesite improves from 22 of 27 (81%) with NoAug to 23 of 27 (85%) for both Gaussian
and LLM. Both eliminate andesite confusion, but 4 samples are still misclassified as basalt, which is
geologically reasonable given class overlap at 52-53 wt% SiO2 (17) where discrimination requires
trace elements absent from this dataset. Identical performance suggests CLR handles compositional
geometry effectively for moderate imbalance, while LLM’s advantage emerges for extreme minorities
(rhyolite). Majority classes maintain 97-98% recall across methods, confirming that augmentation
improves underrepresented classes without degrading the well-represented classes. LLM-CLR
achieves perfect minority recall using only 181 synthetic samples, compared to 372 for Gaussian-
CLR.

4 Conclusion

This work proposes domain-aware augmentation of compositional tabular data using LLMs to
encode scientific constraints through policy generation. Evaluated on imbalanced classification
of rocks using geochemical data, the approach outperforms SMOTE and Gaussian augmentation
methods while using fewer synthetic samples. The framework preserves some domain specific
correlations (SiO2-MgO: r=-0.847 vs. real -0.850) and achieves very high minority class recall
(rhyolite F1=1.00). Future work involves validating the framework across diverse compositional
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domains beyond geochemistry and exploring automated policy optimization through reinforcement
learning on downstream performance.
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Appendix

A Dataset Statistics

The dataset was cleaned first by filtering the original 1,305 samples to ensure geological validity.
Then it was further filtered to retain only samples with complete oxide measurements, then normalizes
compositions to 100 wt% closure. Unlabeled entries, xenoliths, and non-igneous lithologies are
removed. Rock-type-specific compositional bounds enforce petrological constraints, removing
samples that violate known chemical ranges like basalts must have SiO2 between 44-53 wt% with
total alkalies below 5.5 wt%, while rhyolite requires SiO2 between 70-78 wt% and alkalies below 9.5
wt%. Classes with insufficient support (<40 training or <20 test samples) were dropped. The final
dataset contains 5 volcanic rock types reflecting calc-alkaline differentiation: andesite (n=274, 36%),
basalt (n=257, 34%), basaltic andesite (n=133, 18%), dacite (n=57, 8%), and rhyolite (n=31, 4%).

This geological compositional data impose three constraints on augmentation methods. First, oxides
must satisfy closure, i.e. their sum equal to 100, inducing spurious negative correlations (2). Second,
element ratios must respect thermodynamic equilibria (e.g., Mg# = Mg/(Mg+Fe) should be between
[30,80] for natural arc magmas (12)). Third, diagnostic correlations like SiO2-MgO anti-correlation (r
= -0.85) arise from fractional crystallization and must be preserved. Traditional geometry-based aug-
mentation often violates these constraints. All methods apply centered log-ratio (CLR) transformation
CLR(x) = log(x)− 1

d

∑d
j=1 log(xj) before augmentation to handle compositional geometry.

B LLM Prompt for Policy Generation

The complete prompt provided to Claude Sonnet 3.5 for generating the class-adaptive augmentation
policy. The prompt demonstrates how geochemical domain knowledge is encoded through natural
language to guide policy design.

B.1 Complete Prompt Text

You are an expert in geochemical data augmentation and imbalanced
learning. Generate a JSON policy for creating synthetic rock
composition samples using centered log-ratio (CLR) space.

DATASET SUMMARY:
Dataset: Aleutian Arc volcanic rocks
Total: 752 samples, 5 classes
Features: 9 major element oxides (SiO2, TiO2, Al2O3, FeOt, MgO,

CaO, MnO, Na2O, K2O)

CLASS DISTRIBUTION:
andesite : 274 (36.4%) - MAJOR
basalt : 257 (34.2%) - MAJOR
basaltic andesite : 133 (17.7%) - MID
dacite : 57 ( 7.6%) - MINORITY
rhyolite : 31 ( 4.1%) - MINORITY

Imbalance ratio: 8.84:1

GEOCHEMICAL CONTEXT:
Calc-alkaline differentiation series (basalt → andesite → dacite
→ rhyolite):
- Progressive SiO2 increase (50% → 72%), MgO decrease (7% → 0.8%)
- Key correlations: SiO2-MgO (-0.850), Al2O3-MgO (-0.906),
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SiO2-CaO (-0.723)
- Natural pattern: Intermediate compositions dominate, evolved

rhyolites rare
- Compositional constraint: All oxides must sum to 100 wt%

TASK:
Generate class-adaptive policy to reduce imbalance from 8.84:1 to
~3-4:1 while preserving fractional crystallization trends and
diagnostic correlations.

REQUIREMENTS:
1. **Strategy**: "class_adaptive_legacy"

2. **Bucket Ratios**:
- minority (rhyolite, dacite): 3.0-4.0× augmentation
- mid (basaltic andesite): 0.5-0.8× augmentation
- major (andesite, basalt): 0.1-0.2× augmentation

3. **Quantile Breaks**: [0.15-0.25, 0.85-0.95]

4. **Covariance**:
- "ledoit_wolf" estimator
- ridge: 0.0005-0.001

5. **Quality Controls**:
- clip_z: 7.5-8.5
- max_resample: 1500-2000
- per_class_max: 3500-4000
- per_class_min: 4-8
- global_max: 18000-20000

6. **Mean Shift**:
- enable: true
- frac: 0.55-0.65
- apply_prob: 0.9-1.0

7. **Instrument Noise** (relative std by oxide):
- Major (SiO2, Al2O3): 0.025-0.035
- Intermediate (FeOt, MgO, CaO): 0.10-0.15
- Minor (TiO2, Na2O, K2O): 0.15-0.25
- Trace (MnO): 0.20-0.30

8. **Seed**: 42

EXPECTED OUTCOMES:
- Total synthetic: ~300-450 samples
- Final imbalance: ~3-4:1 (from 8.84:1)
- Preserve key correlations (SiO2-MgO within ±0.01)
- Target metrics: >95% accuracy, >0.93 macro-F1

OUTPUT:
Return valid JSON with "logistic_normal_clr" family and
"class_adaptive_legacy" strategy. Include all required parameter
fields.

B.2 Domain Knowledge Encoding

The prompt encodes geochemical expertise through three mechanisms:

Statistical Context. Complete class distribution (752 samples across 5 classes with 8.84:1 im-
balance), compositional ranges for the calc-alkaline differentiation series, and diagnostic element
correlations (SiO2-MgO: r=-0.850) provide quantitative grounding. These statistics reflect 50+ years
of igneous petrology research on arc volcanism.
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Petrological Constraints. The prompt describes fractional crystallization trends (progressive SiO2

increase, MgO depletion) and natural abundance patterns (intermediate compositions dominate,
evolved rhyolites rare due to thermodynamic barriers). Compositional closure (oxides sum to 100
wt%) and correlation preservation requirements ensure synthetic samples respect physical laws.

Task-Specific Guidance. Explicit augmentation ratio ranges for each class tier (minority 3-4×,
mid 0.5-0.8×, major 0.1-0.2×) and quality control parameters (ridge regularization, CLR clipping
thresholds) translate domain knowledge into actionable policy specifications. Element-specific
analytical uncertainties reflect X-ray fluorescence measurement precision.

C Generated JSON Policy

Claude Sonnet 3.5 generated the following policy, which was used in the experiments reported in this
paper. Note that prompt engineering and parameter tuning can yield alternative policies; the policy
below represents one effective configuration among several explored during method development.

{
"family": "logistic_normal_clr",
"strategy": "class_adaptive_legacy",
"bucket_ratio": {

"minority": 3.50,
"mid": 0.65,
"major": 0.12

},
"quantile_breaks": [0.18, 0.88],
"ridge": 0.0008,
"estimator": "ledoit_wolf",
"clip_z": 8.5,
"max_resample": 1500,
"per_class_max": 3500,
"per_class_min": 4,
"global_max": 18000,
"mean_shift": {

"enable": true,
"frac": 0.60,
"apply_prob": 1.0

},
"instrument_sigma_rel": {

"sio2": 0.028,
"tio2": 0.165,
"al2o3": 0.032,
"feot": 0.125,
"mgo": 0.155,
"cao": 0.135,
"mno": 0.245,
"na2o": 0.145,
"k2o": 0.220

},
"seed": 42

}

Policy Interpretation. The generated policy reflects domain-informed decisions: minority classes
(rhyolite n=31, dacite n=57) receive 3.50× augmentation, mid-frequency class (basaltic andesite
n=133) receives 0.65× augmentation, and majority classes (andesite n=274, basalt n=257) receive
minimal 0.12× augmentation. Quantile breaks [0.18, 0.88] partition classes into three tiers based on
natural abundance.

Ledoit-Wolf covariance estimation with ridge regularization (λ = 8 × 10−4) stabilizes synthetic
generation for small minority classes. CLR clipping threshold (8.5) balances diversity and realism,
preventing extreme outliers while allowing sufficient within-class variance. Element-specific ana-
lytical uncertainties mirror X-ray fluorescence precision: major oxides (SiO2 2.8%, Al2O3 3.2%)
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exhibit low relative error, while minor oxides (MnO 24.5%, K2O 22%) show higher measurement
uncertainty typical of low concentrations.

Mean shift augmentation (60% fraction, 100% application probability) adds controlled diversity
beyond covariance-based sampling, particularly beneficial for minority classes with limited real
samples. This policy generated 181 synthetic samples distributed as: rhyolite (6), dacite (60), basaltic
andesite (50), basalt (38), andesite (27), achieving the target class balance while preserving diagnostic
geochemical correlations (SiO2-MgO: r=-0.847 in synthetic vs. r=-0.850 in real data).

The policy shown above represents one successful configuration among several explored during
development. We emphasize that the core contribution is not this specific JSON, but rather the
paradigm: LLMs can translate domain expertise expressed in natural language into executable
augmentation policies. This approach achieved superior classification performance (0.9675 macro-
F1) using only 181 synthetic samples—50% fewer than Gaussian-CLR—by encoding petrological
constraints that purely statistical methods cannot capture.
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