
Under review as submission to TMLR

Inference from Real-World Sparse Measurements

Anonymous authors
Paper under double-blind review

Abstract

Real-world problems often involve complex and unstructured sets of measurements, which
occurs when sensors are sparsely placed in either space or time. Being able to model this
irregular spatiotemporal data and extract meaningful forecasts is crucial. Deep learning
architectures capable of processing sets of measurements with positions varying from set to
set, and extracting readouts anywhere are methodologically difficult. Current state-of-the-art
models are graph neural networks and require domain-specific knowledge for proper setup.
We propose an attention-based model focused on robustness and practical applicability, with
two key design contributions. First, we adopt a ViT-like transformer that takes both context
points and read-out positions as inputs, eliminating the need for an encoder-decoder structure.
Second, we use a unified method for encoding both context and read-out positions. This
approach is intentionally straightforward and integrates well with other systems. Compared
to existing approaches, our model is simpler, requires less specialized knowledge, and does not
suffer from a problematic bottleneck effect, all of which contribute to superior performance.
We conduct in-depth ablation studies that characterize this problematic bottleneck in
the latent representations of alternative models that inhibit information utilization and
impede training efficiency. We also perform experiments across various problem domains,
including high-altitude wind nowcasting, two-day weather forecasting, fluid dynamics, and
heat diffusion. Our attention-based model consistently outperforms state-of-the-art models
in handling irregularly sampled data. Notably, our model reduces the root mean square error
(RMSE) for wind nowcasting from 9.24 to 7.98 and for heat diffusion tasks from 0.126 to
0.084.

1 Introduction

cx cy

ϕ ν

+

cx cy

ϕ ν

+

cx cy

ϕ ν

+

cx cy

ϕ ν

+

self-attention

feed-forward

×N

tx

ϕ

γ

t̂y

tx

ϕ

γ

t̂y

tx

ϕ

γ

t̂y

Figure 1: Multi-layer Self-Attention

Deep learning (DL) has emerged as a powerful tool for modeling
dynamical systems by leveraging vast amounts of data available
in ways that traditional solvers cannot. This has led to a
growing reliance on DL models in weather forecasting, with
state-of-the-art results in precipitation nowcasting Suman et al.
(2021); Shi et al. (2017) and performance on par with traditional
partial differential equation (PDE) solvers in medium-term
forecasting Lam et al. (2022). However, these applications are
currently limited to data represented as images or on regular
grids, where models such as convolutional networks or graph
neural networks are used. In contrast, various real-world data
often comes from irregularly placed or moving sensors, which
means custom architectures are needed to handle it effectively.

An example which can benefit significantly from such an ar-
chitecture is Air Traffic Control (ATC). ATC needs reliable
weather forecasts to manage airspace efficiently. This is partic-
ularly true for wind conditions, as planes are highly sensitive
to wind and deviations from the initial flight plan can be costly

1

Under review as submission to TMLR

Architecture Performance Simplicity Domain Knowledge
Agnostic

CNP ✗ ✔✔ ✔✔
GEN ✔ ✗ ✗
TFS ✔ ✔ ✔✔
MSA (Ours) ✔✔ ✔✔ ✔✔

Table 1: Comparison between our approach and the different baselines. Multi-Layer Self-Attention (MSA)
achieves good performance while being simple to implement and does not require practitioner knowledge for
proper setup.

and pose safety hazards. DL models are a promising candidate for producing reliable wind forecasts as a
large amount of data is collected from airplanes that broadcast wind speed measurements with a four seconds
frequency. A model that can effectively model wind speeds using data collected from airplanes,should be
able to decode anywhere in space, as we aim to predict wind conditions at future locations of the airplane,
conditioned on past measurements taken by that specific airplane or neighboring ones in a permutation
invariant manner.

To meet these requirements, we introduce a Multi-layer Self-Attention model (MSA) and compare it to
different baselines [Table 1]: Conditional Neural Processes (CNP) Garnelo et al. (2018), Graph Element
Networks (GEN) Alet et al. (2019) and a transformer encoder-decoder baseline (TFS) that we developed.
While all of these models possess the aforementioned characteristics, they each adopt distinct strategies
for representing measurements within the latent space. CNP models use a single vector as a summary of
encoded measures, while GEN models map the context to a graph, based on their distance to its nodes. MSA
keeps one latent vector per encoded measurement and can access them directly for forecasting. This latent
representation is better, as it does not create a bottleneck. We show that due to that architectural choice,
both baselines can fail, in certain cases, to retrieve information present in the context they condition on.

Our approach offers better performance than its competitors and is conceptually simpler as it does not require
an encoder-decoder structure. To evaluate the effectiveness of our approach, we conducted experiments on
high-altitude wind nowcasting, heat diffusion and fluid dynamics and two-day weather forecasting. Several
additional ablation studies show the impact of different architectural choices.

The main contributions of this work are summarized below:

• We develop an attention-based model that can generate prediction anywhere in the space conditioned
on a set of measurements.

• We propose a novel encoding scheme using a shared MLP encoder to map context and target positions,
improving forecasting performance and enhancing the model’s understanding of spatial patterns.

• We evaluate our method on a set of challenging tasks with data irregularly sampled in space:
high-altitude wind nowcasting, two-day weather forecasting, heat diffusion and fluid dynamics.

• We examine the differences between models, and explain the impact of design choices such as latent
representation bottlenecks on the final performance of the trained models.

2 Related works

DL performance for weather forecasting has improved in recent years, with DL models increasingly matching
or surpassing the performance of traditional PDE-based systems. Initially applied to precipitation nowcasting
based on 2D radar images Suman et al. (2021); Shi et al. (2017), DL-based models have recently surpassed
traditional methods for longer forecast periods Lam et al. (2022). In the case of radar precipitation, data is
organized as images and convolutional neural networks are utilized. For 3D regular spherical grid data, graph
neural networks or spherical CNNs are employed Lam et al. (2022); Esteves et al. (2023). However, in our

2

Under review as submission to TMLR

study, the data set is distributed sparsely in space, which hinders the use of these traditional architectures.
The use of DL for modelling dynamical systems, in general, has also seen recent advancements Li et al.
(2021); Gupta & Brandstetter (2022); Pfaff et al. (2020) but most approaches in this field typically operate
on regularly-spaced data or on irregular but fixed mesh.

Neural Processes Garnelo et al. (2018); Kim et al. (2019), Graph Element Networks Alet et al. (2019) and
attention-based models Vaswani et al. (2017) are three DL-based approaches that are capable of modeling
sets of data changing from set to set. In this study, we conduct a comparison of these models by selecting a
representative architecture from each category. Additionally, attention-based models have been previously
adapted for set classification tasks Lee et al. (2019), and here we adapt them to generate forecasts.

Pannatier et al. (2021) use a kernel-based method for wind nowcasting based on flight data. This method
incorporates a distance metric with learned parameters to combine contexts for prediction at any spatial
location. However, a notable limitation of this technique is that its forecasts are constrained to the convex
hull of the input measurements, preventing accurate extrapolation. We evaluate the efficacy of our method
compared to this approach, along with the distinct outcomes obtained, in Appendix E of the supplementary
material.

While previous studies have utilized transformers for modeling physical systems Geneva & Zabaras (2022),
time series Li et al. (2019) or trajectory prediction Girgis et al. (2022); Nayakanti et al. (2023); Yuan
et al. (2021) these applications do not fully capture the specific structure of our particular domain, which
involves relating two spatial processes at arbitrary points on a shared domain. Although we model temporal
relationships, our approach lacks specialized treatment of time. Therefore, it does not support inherently
time-based concepts like heteroskedasticity, time-series imputation, recurrence, or seasonality. Further details
distinguishing our approach from other transformer-based applications are elaborated in Appendix C of the
supplementary material.

3 Methodology

3.1 Context and Targets

The problem addressed in this paper is the prediction of target values given a context and a prediction target
position. Data is in the form of pairs of vectors (cx, cy) and (tx, ty) where cx and tx are the position and
cy and ty are the measurements (or values), where we use c for context, t for target, x for spatial position
and y for the corresponding vector value. The positions lie in the same underlying space cx, tx ∈ X ⊆ RX ,
but the context and target values not necessarly. We define the corresponding spaces as cy ∈ I ⊆ RI and
ty ∈ O ⊆ RO, respectively, where X, I,O are integers that need not be equal. The data set consists of
multiple pair of context and target sets that can be of different lengths, we denote the length of the j-st
context, target set respectively N j

c and N j
t . All models take as input a set of context pairs {(cx, cy)j

i }Nj
c

i=1, as
well as target positions, denoted {(tx)j

i }Nj
t

i=1.

As an example, to transform a data set of wind speed measurements into context and target pair, we
partitioned the data set into one-minute time segments and generated context and target sets with an
intervening delay, as depicted in Figure 2. The underlying space, denoted by X, corresponds to 3D Euclidean
space, with both I and O representing wind speed measurements in the x, y plane. The models are given a set
of context points at positions cx of value cy, and should be able when given target positions tx to output a
corresponding value ty conditioned on the context. Detailed descriptions of the data set, including illustration
of the different problems, and the respective spaces for other scenarios and the ablation study can be found
in Table 5 within the supplementary material.

3.2 Encoding Scheme

We propose in this section a novel encoding scheme for irregularly sampled data. Our approach leverages the
fact that both the context measurements and target positions reside within a shared underlying space. To
exploit this shared structure, we adopt a unified two-layers MLP encoder ϕ for mapping both the context

3

Under review as submission to TMLR

and target position to a latent space representation. Then, we use a second MLP ν to encode the context
values and add them to the encoded positions when available. This differs from the approach proposed in
Garnelo et al. (2018); Alet et al. (2019) where both the context position and value are concatenated and
given to a encoder, and the target position is encoded by another. The schemes are contrasted as:

ce = φ(cx, cy) (1)
te = ψ(tx) (2)

Traditional methods

ce = ϕ(cx) + ν(cy) (3)
te = ϕ(tx) (4)

Proposed scheme

Where ϕ, ν, φ, ψ are two hidden-layers MLPs, and ce, te ∈ RE are the encoded measurements positions and
values and encoded target position respectively.

3.3 Multi-layer Self-Attention (MSA, Ours)

Our proposed model, Multi-layer Self-Attention (MSA) harnesses the advantages of attention-based models.
MSA maintains a single latent representation per input measurement and target position, which conveys the
ability to propagate gradients easily and correct errors in training quickly. MSA can access and combine
target position and context measurements at the same time, which forms a flexible and powerful method
for approaching the latent space. Our model is similar to a transformer-encoder, as the backbone of a
ViT Dosovitskiy et al. (2020), it can be written as:

cl, tl = Transformer-Encoder(ce, te) ce ∈ RNC×E , te ∈ RNt×E (5)
t̂y = γ(tl) t̂y ∈ RNt×O (6)

MSA does not use positional encoding for encoding the order of the inputs. This model is permutation
equivariant due to the self-attention mechanism and it uses full attention, allowing each target feature
to attend to all other targets and context measurements. MSA generate all the output in one pass in a
non-autoregressive way and the outputs of the model are only the units that correspond to the target positions,
which are then used to compute the loss.

3.4 Baselines

Transformer(s) (TFS) We also adapt an encoder-decoder transformer (TFS) model Vaswani et al. (2017).
The motivation behind this was the intuitive appeal of the encoder-decoder stack for this specific problem.
TFS in our approach deviates from the standard transformer in a few ways: Firstly, it does not employ
causal masking in the decoder and secondly, the model forgoes the use of positional encoding for the sequence
positions. It can be written as:

cl = Transformer-Encoder(ce) ce ∈ RNt×E (7)
tl = Transformer-Decoder(cl, te) cl, te ∈ RNt×E (8)
t̂y = γ(tl) t̂y ∈ RNt×O (9)

In comparison with MSA, TFS uses an encoder-decoder architecture, which adds a layer of complexity.
Moreover, it necessitates the propagation of error through two pathways, specifically through a cross-attention
mechanism that lacks a residual connection to the encoder inputs.

Graph Element Network(s) (GEN) Graph Element Networks (GEN) Alet et al. (2019) is an architecture
that utilizes a graph G as a latent representation. The encoder maps measurements to the nodes of the
graph based on their distance to the nodes, and the nodes’ features are processed by L iteration of message
passing. The nodes positions and edges of the graphs are additional parameters that must be carefully chosen.

4

Under review as submission to TMLR

Additionally the nodes position can be optimized during training. The whole model can be described as:

ne =
∑

e

r(cx,nx)ce ce ∈ RNt×E (10)

nl = Message-Passing(ne,G, L) ne ∈ RNn×E (11)

cl =
∑

l

r(nx, tx)nl nl ∈ RNn×E (12)

t̂y = γ(cl, tl) t̂y ∈ RNt×O (13)

GEN has for inductive bias that a single latent vector summarize a small part of the space. As it includes
a distance-based encoding and decoding scheme, the only way for the model to learn non-local patterns is
through message passing. This model was originally designed with a simple message-passing scheme. But
it can easily be extended to a broad family of graph networks by using different message-passing schemes,
including ones with attention. We present some related experiments in Appendix I of the supplementary
material.

Conditional Neural Process(es) (CNP) CNP Garnelo et al. (2018) encodes the whole context as a
single latent vector. They can be seen as a subset of GEN. Specifically, a CNP is a GEN with a graph with a
single node and no message passing. While CNP possess the desirable property of being able to model any
permutation-invariant function Zaheer et al. (2017), their expressive capability is constrained by the single
node architecture Kim et al. (2019). Despite this, CNP serve as a valuable baseline and are considerably less
computationally intensive.

cl = mean(ce) ce ∈ RNC×E (14)
t̂y = γ(tl, cl) t̂y ∈ RNt×O (15)

4 Experiments

Our experiments aim to benchmark the performance of our models on various data sets with irregularly
sampled data. The first task focuses on high-altitude wind nowcasting. The second task is on heat diffusion.
Additionally, we evaluate our models on fluid flows, considering both a steady-state case governed by the
Darcy Flow equation and a dynamic case modeling the Navier-Stokes equation in an irregularly spaced setting.
Finally, we compare the models on a weather forecasting task, utilizing irregularly sampled measurements
from the ERA5 data set Hersbach et al. (2023) to predict wind conditions two days ahead.

For the Wind Nowcasting Experiment, the data set, described in Section 3.1, consists of wind speed
measurements collected by airplanes with a sampling frequency of four seconds. We evaluate our models on
this data set [Table 4] and we assess the models’ performance as a function of forecast duration, as depicted
in Figure 3. We select model configurations with approximately 100,000 parameters and run each model using
three different random seeds. Our results indicate that attention-based models consistently outperform other
models for most forecast durations, except for in the 6-hour range. Notably, we found that the Gaussian Kernel
Averaging (GKA) model used in previous work Pannatier et al. (2021) achieves satisfactory performance,
despite its theoretical limitations, which we analyse in Appendix E of the supplementary material. Moreover,
our findings suggest that attention-based models, particularly MSA and TFS, exhibit superior performance
in this setup. Furthermore, we observe that the GKA model performed well for short time horizons when
most of the information in the context was still up-to-date. However, as the time horizon increased, the GKA
model’s lack of flexibility become more apparent, and GEN become more competitive.

For the Heat Diffusion Experiment, we utilize the data set introduced in Alet et al. (2019), derived from a
Poisson Equation solver. The data set consists of context measurements in the unit square corresponding to
sink or source points, as well as points on the boundaries. The targets correspond to irregularly sampled heat
measurements in the unit cube. Our approach offers significant performance improvements, reducing the
root mean square error (RMSE) from 0.12 to 0.08, (MSE reduction of 0.016 to 0.007, in terms of the original
metric) as measured against the ground truth [Table 4].

5

Under review as submission to TMLR

Time

Sp
ac
e

TargetsContext Delay

Figure 2: Description of the context and target sets
in the wind nowcasting case. The context set and
the target set are time slices separated by a delay,
which corresponds to the forecasting window. The
underlying space is in that case X ⊆ R3 and the
context values and target values both represent wind
speed and belong to the same space I = O ⊆ R2.

10' 20' 1h 2h 4h 6h

8

9

10

11

12

13 MSA
TFS
CNP
GKA
GEN

Figure 3: RMSE of the different models depending
on the forecast duration (lower is better). We ran
three experiments varying the pseudorandom num-
ber generator seeds for each time window and each
model to measure the standard deviation. The error
does not increase drastically over the first two hours
because the wind has some persistence and the con-
text values are good predictors of the targets in that
regime.

Table 2: Validation RMSE of the High-Altitude Wind Nowcasting, Poisson, Navier Stokes and Darcy Flow
equation and the weather forecasting task. Each model ran for 10, 2000, 1000, 100 and 100 epochs respectively
on an NVIDIA GeForce GTX 1080 Ti. The low number of epochs for wind nowcasting is due to the amount
of data which is considerably larger than in the other experiments. The standard deviation is computed over
3 runs. We present here the original implementation of CNP and GEN compared with TFS and MSA with
sharing weights for the position. More details can be found in Table 4 of the supplementary material. We
choose the configuration of the models so that every model has a comparable number of parameters. We
underline the best models for each size and indicate in bold the best model overall.

Architecture Size Wind
Nowcasting

Poisson
Equation

Navier Stokes
Equation

Darcy Flow
Equation ERA5

CNP
5k 11.94± 0.78 0.33± 0.004 0.701± 0.0023 0.0311± 0.0008 2.129± 0.0039

20k 10.19± 1.83 0.32± 0.003 0.672± 0.0011 0.0295± 0.0002 2.117± 0.0018

100k 10.17± 1.24 0.33± 0.003 0.656± 0.0007 0.0286± 0.0001 2.110± 0.0002

GEN
5k 11.02± 3.19 0.12± 0.006 0.604± 0.0010 0.0304± 0.0003 2.132± 0.0035

20k 9.98± 0.76 0.13± 0.014 0.599± 0.0006 0.0296± 0.0002 2.124± 0.0031

100k 9.56± 0.21 0.16± 0.049 0.596± 0.0005 0.0294± 0.0001 2.121± 0.0005

TFS (Ours, baseline)
5k 8.30± 0.03 0.15± 0.036 0.604± 0.0022 0.0275± 0.0014 2.129± 0.0032

20k 8.20± 0.04 0.09± 0.006 0.596± 0.0008 0.0258± 0.0003 2.109± 0.0012

100k 8.38± 0.13 0.18± 0.014 0.591± 0.0012 0.0269± 0.0004 2.100± 0.0011

MSA (Ours)
5k 8.07± 0.11 0.11± 0.006 0.597± 0.0011 0.0274± 0.0011 2.125± 0.0070

20k 7.98± 0.03 0.08± 0.003 0.589± 0.0013 0.0259± 0.0007 2.107± 0.0020

100k 8.18± 0.14 0.10± 0.009 0.589± 0.0006 0.0264± 0.0004 2.098± 0.0029

6

Under review as submission to TMLR

Table 3: Evaluation of the wind nowcasting task according to standard weather metrics, which are described
in Appendix F of the supplementary material. The optimal value of the metric is indicated in the parenthesis.
MSA is the best model overall, with the lowest absolute error, a near-zero systematical bias and output values
that have a similar dispersion to GEN.

Model RMSE (↓) θ MAE (↓) r MAE (↓) Relative
BIASx (0.0)

Relative
BIASy (0.0) rSTD (1.0) NSE (↑)

CNP 10.99± 0.75 25.55± 1.22 9.22± 0.33 0.00± 0.09 -1.09± 0.03 1.25± 0.07 -0.23± 0.01
GEN 8.97± 0.06 22.56± 0.77 6.97± 0.05 -0.02± 0.03 -0.97± 0.21 1.09± 0.07 0.25± 0.02
GKA 8.44± 0.01 21.89± 0.02 6.65± 0.02 -0.02± 0.00 -1.78± 0.02 1.13± 0.00 0.31± 0.01
TFS (Ours, baseline) 7.99± 0.15 22.17± 1.20 6.48± 0.50 0.08± 0.10 -2.21± 2.67 1.17± 0.04 0.43± 0.08
MSA (Ours) 7.36± 0.06 20.48± 0.48 5.67± 0.11 0.00± 0.02 -0.04± 0.64 1.09± 0.02 0.55± 0.05

For the Fluid Flow Experiment, both data sets are derived from Li et al. (2021), subsampled irregularly in
space. In both cases, our models outperforms the alternative [Table 4]. In the Darcy Flow equation, the TFS
model with 20k parameters exhibits the best performance, but this task proved to be relatively easier, and we
hypothesize that the MSA model could not fully exploit this specific setup. However, it is worth mentioning
that the performance of the MSA model was within a standard deviation of the TFS model.

We conducted a Two-Day Weather Forecasting Experiment utilizing ERA5 data set measurements. The
data set consists of irregularly sampled measurements of seven quantities, including wind speed at different
altitudes, heat, and cloud cover. Our goal is to predict wind conditions at 100 meters two days ahead based
on these measurements. MSA demonstrates its effectiveness in capturing the temporal and spatial patterns
of weather conditions, enabling accurate predictions [Table 4].

To summarize, our experiments encompass a range of tasks including high-altitude wind nowcasting, heat
diffusion, fluid modeling, and two-day weather forecasting. Across these diverse tasks and data sets, our
proposed model consistently outperforms baseline models, showcasing their efficacy in capturing complex
temporal and spatial patterns.

5 Understanding failure modes

f=
0.1

f=
1.0

f=
10

f=
10

0

f=
10

00

Ra
nd

om

MSA

TFS

GNG

PER

GEN

NP

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0.01 0.01 0.01 0.05

0 0 0.05 0.07 0.07 0.22

0 0 0.18 0.22 0.22 0.80

Bo
ttl

en
ec

k

Figure 4: Results of the information retrieval experi-
ment. The three first rows correspond to models with
no bottlenecks. The x-axis corresponds to data sets
created by increasing frequency. Random is the ex-
treme case were the context value is independent from
the position. When the learned function does not vary
too much spatially, models with bottlenecks can suffice.
The models in italics represent hybrid architectures:
GNG = GEN without a graph, which maintains a la-
tent per context measure and PER = transformer with
a perceiver layer Jaegle et al. (2021) which creates a
bottleneck.

We examine the limitations of CNP and GEN latent
representation for encoding a context. Specifically,
we focus on the bottleneck effect that arises in CNP
from using a single vector to encode the entire con-
text, resulting in an underfitting problem Garnelo
et al. (2018); Kim et al. (2019), and that applies
similarly to GEN. To highlight this issue, we propose
three simple experiments. (1) We show in which
case baselines are not able to retrieve information in
the context that they use for conditioning, and why
MSA and TFS are not suffering from this problem.
(2) We show that maintaining disentangled latent
representation helped to the correct attribution of
perturbations. (3) We show that this improved latent
representation leads to better error correction.

5.1 Context information retrieval

Every model considered in this work encodes con-
text information differently. Ideally, each should be
capable of using or retrieving every measure in their
context. We will see that excessive bottlenecking in
the latent space can make this difficult or impossible.

7

Under review as submission to TMLR

To demonstrate this result, we design a simple ex-
periment in which each model encodes a set of 64
measures (cx, cy), and is then tasked with retrieving
the corresponding ty = cy given the tx = cx. The
training and validation set have respectively 10 000
and 1 000 pairs of sets of 64 examples. It is worth
noting that the models have access to all the information they need to solve the task with near-zero MSE.
We conducted several experiments, starting by randomly sampling 2D context positions cx = (x, y) from a
Gaussian distribution and computing the associated deterministic smooth function:

cy = sin(πfx) cos(πfy) ∈ R (16)

where f is a frequency parameter that governs problem difficulty. The higher f is, the more difficult the
function becomes, as local information becomes less informative about the output. We also consider as a
harder problem to sample cy randomly and independently from the position.

The results of this experiment, as shown in Figure 4, indicate that the CNP and GEN models are less effective
in learning this task at higher frequencies. This inefficiency is primarily due to a phenomenon we define as a
’bottleneck’: a situation where a single latent variable is responsible for representing two distinct context
measurements. This bottleneck impedes the models’ ability to distinguish and retrieve the correct target value.
In contrast, models with disentangled latent representations, like MSA, are not subject to this limitation and
thus demonstrate superior performance in learning the task.

To further demonstrate this bottleneck effect, we created two hybrid models. The first one denoted GNG (for
GEN No Graph), is adapted from GEN but instead of relying on a common graph, creates one based on the
measure position with one node per measure. Edges are artificially added between neighboring measures
which serve as the base structure for L steps of message-passing. This latent representation is computationally
expensive as it requires the creation of a graph per set of measurements, but it does not create a bottleneck in
the latent representation. We found that GNG is indeed able to learn the task at hand. We then followed the
reverse approach and artificially added a bottleneck in the latent representation of attention-based models by
using Perceiver Layer Jaegle et al. (2021) with P learned latent vectors instead of the standard self-attention
in the transformer encoder (and call the resultant model PER). When P is smaller than the number of context
measurements, it creates a bottleneck and PER does not succeed in learning the task. If the underlying space
is smooth enough, GEN, CNP and PER are capable of reaching perfect accuracy on this task as they can
rely on neighboring values to retrieve the correct information. This experiment demonstrates that MSA and
TFS can use their disentangled latent representations to efficiently retrieve context information regardless of
the level of discontinuity in the underlying space, while models with bottlenecks, such as CNP and GEN, are
limited in this regard and perform better when the underlying space is smooth.

5.2 Correct pertubation attribution
0 64

Error

0 64
MSA ctx

0 64
MSA tgt

0 64
TFS

0 64
GEN 8x8

0 49
GEN 7x7

0 36
GEN 6x6

0 25
GEN 5x5

0 16
GEN 4x4

0 9
GEN 3x3

0 4
GEN 2x2

1
GEN 1x1

Figure 5: Gradients on the last layer of the encoder cor-
responding to an artificial error of γ = 10.0 added to the
second output. MSA maintains a disentangled repre-
sentation and the gradient at that layer is non-zero only
on the corresponding latent. We compare it to different
GEN models each initialized with a graph correspond-
ing to a regular grid of size i × i with i ∈ {1, . . . , 8}.
Due to the bottleneck effect, the gradients correspond-
ing to one error are propagated across different latent
vectors for GEN. Even when there are enough latents
(GEN 8 × 8), GEN still disperse attribution because
their distance-based conditioning that does not allow
for a one-to-one mapping between targets and latents.

In the following analysis, we explore how disentan-
gled latent representations can enhance error correc-
tion during training. Specifically, we ask whether
models can correctly attribute the effects of a per-
turbation in the output to backpropagation.

We use MSA, TFS and GEN models applied to the
information retrieval task discussed in the previous
section. We pre-train each model to zero error on
the validation data in a smooth case (f = 1.0), then
apply a perturbation γ on one of the output values,
compute the loss between the perturbated output
and the one without perturbation and backpropagate
it through each model. The norm of gradients cor-
responding to the latent at the last encoder layer is

8

Under review as submission to TMLR

shown in Figure 5. We see that MSA and TFS only
receive a signal on the corresponding latent while
the other models receive signals on different latents.
Here MSA has 128 latent vectors as it maintains
one latent per context measurement and per target
position, and we see that the model has a signal only
on the latent corresponding to the position where
there is an error.

We hypothesize that this interference of gradients
to other non-related latents impedes training, as the
models struggle to correct the artificial error while
maintaining the same value for the other output
values. Models with a disentangled representation
can update the corresponding latent independently
and follow a smoother optimization trajectory.

To demonstrate this property, for the models described above, we tabulate the number of backpropagation
passes needed to fully correct the artificial error on one output (to reach a zero error on the validation set
again).

The results are shown in Figure 6. We used MSA as a reference and observed that all models with an
entangled representation required more time to reach a zero error on the validation set. We found that the
more entangled the representation, the more time was needed to reach the desired performance. Note that,
in this setup, GEN 1 × 1 is equivalent to CNP.

MSA TFS

GEN
 8x

8

GEN
 7x

7

GEN
 6x

6

GEN
 5x

5

GEN
 4x

4

GEN
 3x

3

GEN
 2x

2

GEN
 1x

1
0%

50%

100%

150%

In
cr

ea
se

 in

 #
 o

f G
ra

di
en

t U
pd

at
es

Figure 6: Comparison of the number of gradient up-
dates required to correct an artificial error, with respect
to MSA (lower is better). The y-axis represents the
increase in percentage in the number of steps required
to reach a perfect accuracy with respect to MSA. We
compared MSA to different GEN each initialized with
a graph corresponding to a regular grid of size i × i
with i ∈ {1, . . . , 8}. It can be observed that all GEN
take more steps to correct the same mistake, and the
more entangled the latent representation is, the more
time it requires to correct the problem.

These experiments demonstrate that models with dis-
entangled latent representations can more efficiently
correct errors during training, while models with en-
tangled representations struggle to do so and require
more time to reach the desired performance.

5.3 Encoding scheme

In this section, we evaluate the novel encoding
scheme presented in Section 3.2, we present the
results in Table 4 of the supplementary material.
We found that, it reduces the RMSE from 8.47 to
7.98 in the wind nowcasting task and enables the
MSA model to achieve the best performance with
an RMSE of 0.08 for the Poisson Equation. Sharing
the same mapping for positions is the appropriate
inductive bias for encoding positions, as it eliminates
the need to learn the same transformation twice.
Since our data is irregularly sampled in space, the
positioning of measurements and target positions sig-
nificantly influences the prediction, as demonstrated
in additional experiments, Appendices G and H in
the supplementary material. We think that sharing
the position mapping can link information from the
context and target positions, which helps the model to understand better how the space is shaped.

6 Conclusion

In this work, we introduced an attention-based model to handle the challenges of wind nowcasting data.
We demonstrated that the proposed attention-based model was able to reach the best performance for

9

Under review as submission to TMLR

high-altitude wind prediction and other dynamical systems, such as weather forecasting, heat diffusion and
fluid dynamics when working with data irregularly sampled in space. We then explained why attention-based
models were capable of outperforming other models on that task and provided an in-depth examination
of the differences between models, providing explanations for the impact of design choices such as latent
representation bottlenecks on the final performance of the trained models.

Our work builds upon well-established attention models, which have demonstrated their versatility and
efficacy in various domains. Although the core model is essentially a vanilla transformer, our architecture
required careful adaptation to suit our specific requirements. We designed our model to be set-to-set rather
than sequence-to-sequence, handling data in a non-causal and non-autoregressive manner, and generating
continuous values for regression. The success of influential models like BERT Devlin et al. (2019), GPT Radford
et al. (2018), ViT Dosovitskiy et al. (2020), and Whisper Radford et al. (2022), also closely resemble the
original implementation by Vaswani et al. (2017), which further supports the effectiveness of the transformer
framework across different tasks and domains.

Finally, our model’s scalability is currently limited by its quadratic complexity in the context size. Although
this limitation does not pose a problem in our particular use cases, it can impede the scaling of applications.
This is a significant challenge that affects all transformer-based models and has garnered considerable attention.
Recent developments to tackle this challenge include flash-attention Dao et al. (2022), efficient transformers
Katharopoulos et al. (2020), and quantization techniques Dettmers et al. (2022), which can address this
problem, enhancing the feasibility of our approach for large-scale applications.

References
Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauza Villalonga, Alberto Rodriguez, Tomas Lozano-Perez, and

Leslie Kaelbling. Graph element networks: adaptive, structured computation and memory. In International
Conference on Machine Learning, pp. 212–222. PMLR, 2019.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Re. Flashattention: Fast and memory-
efficient exact attention with IO-awareness. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=H4DqfPSibmx.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit matrix multiplication
for transformers at scale. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
dXiGWqBoxaD.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.),
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, 2019. doi:
10.18653/v1/n19-1423. URL https://doi.org/10.18653/v1/n19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Carlos Esteves, Jean-Jacques E. Slotine, and Ameesh Makadia. Scaling spherical cnns. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA,
volume 202 of Proceedings of Machine Learning Research, pp. 9396–9411. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/esteves23a.html.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

10

https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://doi.org/10.18653/v1/n19-1423
https://proceedings.mlr.press/v202/esteves23a.html
https://proceedings.mlr.press/v202/esteves23a.html

Under review as submission to TMLR

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo Rezende, and S. M. Ali Eslami. Conditional neural processes. In Jennifer Dy
and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1704–1713. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/garnelo18a.html.

Nicholas Geneva and Nicholas Zabaras. Transformers for modeling physical systems. Neural Networks, 146:
272–289, 2022.

G. Ghiggi, V. Humphrey, S. I. Seneviratne, and L. Gudmundsson. Grun: an observation-based global
gridded runoff dataset from 1902 to 2014. Earth System Science Data, 11(4):1655–1674, 2019. doi:
10.5194/essd-11-1655-2019. URL https://essd.copernicus.org/articles/11/1655/2019/.

Roger Girgis, Florian Golemo, Felipe Codevilla, Martin Weiss, Jim Aldon D’Souza, Samira Ebrahimi
Kahou, Felix Heide, and Christopher Pal. Latent variable sequential set transformers for joint multi-
agent motion prediction. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=Dup_dDqkZC5.

Jayesh K. Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde modeling,
2022. URL https://arxiv.org/abs/2209.15616.

Hans Hersbach, Barbara Bell, Paul Berrisford, Giovanni Biavati, András Horányi, Joaquín Muñoz Sabater,
Julien Nicolas, Carole Peubey, Razvan Radu, Ivan Rozum, Dries Schepers, Adrian Simmons, Cornel Soci,
Dick Dee, and Jean-Noël Thépaut. ERA5 hourly data on single levels from 1940 to present. Copernicus
Climate Change Service (C3S) Climate Data Store (CDS), 2023. Accessed on 17-05-2023.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding,
Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A general architecture
for structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021.

Steeven Janny, Aurélien Bénéteau, Madiha Nadri, Julie Digne, Nicolas THOME, and Christian Wolf. EAGLE:
Large-scale learning of turbulent fluid dynamics with mesh transformers. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=mfIX4QpsARJ.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are RNNs:
Fast autoregressive transformers with linear attention. In Hal Daumé III and Aarti Singh (eds.), Proceed-
ings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5156–5165. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
katharopoulos20a.html.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals,
and Yee Whye Teh. Attentive neural processes. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=SkE6PjC9KX.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexander
Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Jacklynn Stott, Oriol Vinyals, Shakir Mohamed, and Peter Battaglia.
Graphcast: Learning skillful medium-range global weather forecasting, 2022. URL https://arxiv.org/
abs/2212.12794.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer.
In International Conference on Machine Learning, 2019.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing
the locality and breaking the memory bottleneck of transformer on time series forecasting. Advances in
neural information processing systems, 32, 2019.

11

https://proceedings.mlr.press/v80/garnelo18a.html
https://essd.copernicus.org/articles/11/1655/2019/
https://openreview.net/forum?id=Dup_dDqkZC5
https://openreview.net/forum?id=Dup_dDqkZC5
https://arxiv.org/abs/2209.15616
https://openreview.net/forum?id=mfIX4QpsARJ
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://openreview.net/forum?id=SkE6PjC9KX
https://arxiv.org/abs/2212.12794
https://arxiv.org/abs/2212.12794

Under review as submission to TMLR

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=c8P9NQVtmnO.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with
learned deformations for pdes on general geometries, 2022.

Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth Goel, Khaled S. Refaat, and Benjamin Sapp.
Wayformer: Motion forecasting via simple & efficient attention networks. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2980–2987, 2023. doi: 10.1109/ICRA48891.2023.
10160609.

Arnaud Pannatier, Ricardo Picatoste, and François Fleuret. Efficient wind speed nowcasting with gpu-
accelerated nearest neighbors algorithm, 2021. URL https://arxiv.org/abs/2112.10408.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based simulation
with graph networks. In International Conference on Learning Representations, 2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust
speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356, 2022.

Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-chun
Woo. Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model. Advances in Neural
Information Processing Systems, 2017.

R. Suman, L. Karel, W. Matthew, K. Dmitry, L. Remi, M. Piotr, F. Megan, A. Maria, K Sheleem, M. Sam,
P. Rachel, M. Amol, C. Aidan, B. Andrew, S. Karen, H. Raia, R. Niall, C. Ellen, A. Alberto, and
M. Shakir. Skilful precipitation nowcasting using deep generative models of radar. Nature, 597(7878):
672–677, 09 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03854-z. URL https://doi.org/10.1038/
s41586-021-03854-z.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019. URL
https://github.com/facebookresearch/hydra.

Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M. Kitani. Agentformer: Agent-aware transformers for
socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 9813–9823, October 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, and Alexan-
der J. Smola. Deep sets. CoRR, abs/1703.06114, 2017. URL http://arxiv.org/abs/1703.06114.

A Detailed results

Here, we present a breakdown of the detailed results for the various models, presented in terms of the specific
metrics reported in their original study. This is in contrast to the result table found in the main paper, where
all models are reported in terms of RMSE. In ?? of the main paper, we provide the results for GEN and CNP
based on their original implementations, which do not involve sharing the position encoding. However, for
TFS and MSA, we include the results obtained with shared position encoding. To ensure comprehensiveness

12

https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO
https://arxiv.org/abs/2112.10408
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.1038/s41586-021-03854-z
https://github.com/facebookresearch/hydra
http://arxiv.org/abs/1703.06114

Under review as submission to TMLR

and to differentiate the enhanced performance attributed to the latent representation from that resulting
from the improved data encoding approach, we also apply the shared encoding technique to GEN and CNP.

In most cases, we observe that employing a shared encoding for position tends to improve the performance of
all models, except for CNP where it seems to decrease the overall performance in some cases. Additionally,
it seems that MSA surpasses its competitors in the majority of instances, consistently exhibiting superior
performance across various data sizes. Moreover, when the shared encoding for positions fails to achieve the
optimal performance, the model’s performance is generally comparable to that without shared encoding,
often falling within a standard deviation range.

B Dataset descriptions

B.1 Wind nowcasting

The wind nowcasting experiment uses the same dataset as Pannatier et al. (2021). It is available at:
https://zenodo.org/record/5074237. It is an important task for ATC as it involves the crucial prediction
of high-altitude winds using real-time data transmitted by airplanes. This prediction is essential for ensuring
efficient airspace management the airspace. It is important to note that in the vertical direction (z), the
majority of wind measurements are typically taken at elevated altitudes, specifically between 4,000 and 12,000
meters. Regarding the horizontal dimensions, the airspace extends over 600 km from north to south and
approximately 500 km from east to west. As ground-based measurements are not accessible at these heights,
our dependence lies on the measurements gathered directly from airplanes. As planes do not record the wind in
the z direction, the input space corresponds to wind speed in the x, y plane I ⊆ R2, and the output space is the
wind speed measured later, O ⊆ R2. Here the underlying space is European airspace represented as X ⊆ R3

In this particular setup, the models need to extrapolate in time, based on a set of the last measurements.

Context
Targets

Figure 7: A sample of the Poisson
equation dataset Alet et al. (2019).
• represents the targets, The con-
text values are comprised of points
on the boundaries and points on the
sources and sink are represented by
♦ which corresponds to their ther-
mal coefficient.

Airplanes measure wind speed with a sampling frequency of four seconds.
We split the dataset into time slices, where each slice contains one
minute of data, such that each time slice contains between 50 and 1500
data points. We tried different time intervals but noticed that having
a longer time slice did not improve the quality of the forecasts. The
objective for the different models is to output a prediction of the wind
at different query points 30 minutes later. We evaluate performance
using the Root Mean Square Error (RMSE) metric, as in previous
work.

B.2 Poisson Equation

This experiment uses the same dataset as Alet et al. (2019). It
is available at https://github.com/FerranAlet/graph_element_
networks/tree/master/data. The Poisson equation models the heat
diffusions over the unit square with sources represented by ϕ(x, y) ∈ R
and fixed boundary conditions ω ∈ R. The equation is given by:

{
∆ϕ(x, y) = ψ(x, y) if (x, y) ∈ (0, 1)2

ϕ(x, y) = ω if (x, y) ∈ ∂[0, 1]2
(17)

It should be noted that the boundary constant and sources function ϕ(x, y) conditions can change for each
sample.

The dataset used in Alet et al. (2019) uses three dimensions for the context values cy ∈ I ⊆ R3: either sources
values ϕ(x, y) = µ inside the domain encoded as cx, cy = (x, y), (µ, 0, 0) or boundary conditions ϕ(x, y) = ω
on the boundaries, encoded as cx, cy = (x, y), (0, ω, 1). The target space is one-dimensional ty ∈ O ⊆ R and
corresponds to the solution of the Poisson equation at that point. A sample is depicted in figure 7.

13

https://zenodo.org/record/5074237
https://github.com/FerranAlet/graph_element_networks/tree/master/data
https://github.com/FerranAlet/graph_element_networks/tree/master/data

Under review as submission to TMLR

Table 4: Results of the High-Altitude Wind Nowcasting, Poisson, Navier Stokes and Darcy Flow equation
and the weather forecasting task. Each model ran for respectively 10, 2000, 1000, 100, and 100 epochs on an
NVIDIA GeForce GTX 1080 Ti. The low number of epochs for wind nowcasting is due to the amount of
data which is considerably larger than in the other experiments. The standard deviation is computed over 3
runs. We choose the configuration of the models so that every model has a comparable number of parameters.
We underlying the best models for each size and we put in bold the best model overall. In this table, we
kept the results in the same metric as originally reported. The first half of the table corresponds to the case
without the novel encoding scheme, as opposed to the second one. In ?? of the main paper, we recomputed
all metrics in terms of Root Mean Square Error (RMSE).

Wind Nowcasting Poisson Equation Navier Stokes Equation Darcy Flow Equation ERA 5

Model Size Train
RMSE (↓)

Val
RMSE (↓)

Train
MSE (↓)

Val
MSE (↓)

Train
MSE (↓)

Val
MSE (↓)

Train
RMSE (↓) E-4

Val
RMSE (↓)

Train
MSE (↓)

Val
MSE (↓)

Default encoding for positions

CNP
5k 11.94± 0.78 10.19± 0.21 .127± .0179 .130± .0134 .485± .0033 .492± .0033 9.02± 0.54 9.65± 0.47 4.33± 0.01 4.48± 0.01

20k 10.19± 1.83 10.11± 0.20 .084± .0057 .105± .0012 .438± .0015 .452± .0015 7.88± 0.16 8.71± 0.11 4.25± 0.01 4.44± 0.00
100k 10.17± 1.24 10.20± 0.26 .021± .0040 .105± .0024 .398± .0010 .430± .0010 6.93± 0.08 8.17± 0.06 4.17± 0.01 4.43± 0.01

GEN
5k 11.02± 3.19 9.84± 2.92 .011± .0006 .017± .0011 .362± .0012 .365± .0012 8.49± 0.17 9.25± 0.18 4.32± 0.02 4.47± 0.02

20k 9.98± 0.76 9.24± 0.35 .006± .0006 .020± .0054 .354± .0007 .359± .0007 7.76± 0.11 8.74± 0.09 4.24± 0.01 4.44± 0.00
100k 9.56± 0.21 9.23± 0.44 .011± .0122 .048± .0389 .339± .0006 .355± .0006 7.01± 0.26 8.66± 0.09 4.10± 0.01 4.46± 0.00

TFS (Ours)
5k 9.86± 0.21 8.75± 0.14 .022± .0021 .055± .0248 .365± .0033 .367± .0033 6.50± 0.60 7.46± 0.55 4.29± 0.02 4.46± 0.00

20k 9.69± 0.38 8.70± 0.06 .005± .0008 .017± .0014 .353± .0019 .357± .0019 5.48± 0.10 6.69± 0.14 4.08± 0.03 4.38± 0.01
100k 9.55± 0.19 8.67± 0.07 .001± .0001 .016± .0045 .314± .0011 .350± .0011 4.45± 0.17 7.47± 0.24 3.78± 0.01 4.42± 0.01

MSA (Ours)
5k 8.86± 0.01 8.40± 0.10 .022± .0062 .048± .0186 .359± .0057 .361± .0054 6.91± 0.50 7.74± 0.48 4.28± 0.02 4.44± 0.02

20k 7.94± 0.03 8.47± 0.12 .005± .0012 .047± .0107 .341± .0042 .346± .0042 5.72± 0.11 6.76± 0.10 4.13± 0.01 4.39± 0.01
100k 6.67± 0.02 8.98± 0.22 .000± .0001 .030± .0081 .310± .0015 .350± .0015 4.91± 0.17 7.33± 0.22 4.19± 0.01 4.41± 0.01

Sharing encoding for positions

CNP
5k 10.41± 0.03 10.33± 0.19 .154± .0010 .165± .0023 .703± .0001 .706± 0.0003 16.94± 0.06 17.26± 0.04 4.38± 0.00 4.53± 0.01

20k 9.48± 0.02 10.12± 0.21 .133± .0004 .160± .0011 .700± .0001 .706± 0.0001 16.68± 0.10 17.06± 0.06 4.30± 0.01 4.47± 0.00
100k 8.60± 0.05 10.26± 0.24 .107± .0008 .158± .0006 .696± .0001 .705± 0.0001 16.36± 0.02 16.87± 0.02 4.23± 0.01 4.43± 0.01

GEN
5k 10.04± 0.13 8.79± 0.23 .005± .0004 .017± .0023 .369± .0007 .372± 0.0008 5.93± 0.15 6.83± 0.17 4.42± 0.01 4.54± 0.01

20k 9.75± 0.09 9.08± 0.47 .003± .0007 .018± .0036 .362± .0002 .366± 0.0000 5.65± 0.06 6.75± 0.05 4.36± 0.01 4.50± 0.01
100k 9.84± 0.02 9.07± 0.00 .001± .0000 .019± .0008 .345± .0005 .361± 0.0000 4.97± 0.22 7.19± 0.12 4.34± 0.02 4.50± 0.01

TFS (Ours)
5k 8.78± 0.02 8.30± 0.03 .009± .0015 .025± .0121 .364± .0024 .365± 0.0026 6.74± 0.93 7.58± 0.84 4.41± 0.01 4.53± 0.01

20k 7.94± 0.03 8.20± 0.04 .002± .0002 .010± .0013 .352± .0012 .355± 0.0009 5.56± 0.10 6.64± 0.14 4.26± 0.01 4.45± 0.01
100k 6.57± 0.02 8.38± 0.13 .000± .0000 .035± .0054 .312± .0006 .349± 0.0015 4.51± 0.24 7.25± 0.19 4.09± 0.01 4.41± 0.00

MSA (Ours)
5k 8.54± 0.03 8.07± 0.11 .008± .0024 .014± .0014 .355± .0013 .357± 0.0013 6.74± 0.61 7.51± 0.61 4.38± 0.03 4.52± 0.03

20k 7.73± 0.02 7.98± 0.03 .002± .0003 .007± .0004 .342± .0014 .347± 0.0016 5.79± 0.34 6.74± 0.38 4.25± 0.01 4.44± 0.01
100k 6.58± 0.05 8.18± 0.14 .000± .0000 .010± .0017 .310± .0008 .347± 0.0008 4.76± 0.12 6.97± 0.24 4.14± 0.02 4.40± 0.01

14

Under review as submission to TMLR

We ran all models for three different sizes on this particular setup and found that MSA with the novel
encoding scheme outperform other models by a significant margin as can be seen in table 4. We initialized
GEN with a 7 × 7 regularly initialized grid on the [0, 1]2 as in the original work Alet et al. (2019).

B.3 Navier-Stokes Equation

Similarly to the darcy flow task, we adapted the Navier-Stokes equation as described in Li et al. (2021) to an
irregular setup.

The Navier-Stokes equation describes a real fluid and is described with the following PDE :


∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2 if t ∈ (0, T]
∇ · u(x, t) = 0, x ∈ (0, 1)2 if t ∈ [0, T]
w(x, 0) = w0(x) if x ∈ (0, 1)2

(18)

For more detailed information regarding the notation, please refer to the original work by Li et al. Li et al.
(2021), specifically section 5.3.

In this study, our objective is to forecast the future state of the vorticity quantity, specifically 50 time steps
ahead, based on measurements of vorticity at different spatial locations. This approach differs from the
original work, where the model was provided with ten initial vorticity grids and required to predict the
complete system evolution.

To create our dataset, we subsampled the complete dataset, which consisted of the evolution of the Navier-
Stokes equation solved by a numerical solver. The full dataset had dimensions of 1000 × 1024 × 1024.

For our purposes, we selected pairs of slices that were separated by 50 timesteps and performed spatial sub-
sampling. We took 64 context measurements and 256 targets as our subsampled data points. This experiment
adapts the dataset available in Li et al. (2021). It is available at https://github.com/neural-operator/
fourier_neural_operator and can be processed with the code given to rearrange it in the irregular setup.

B.4 Darcy Flow

We evaluated the performance of various models in solving the Darcy Flow equation on the unit grid with
null boundary conditions, as described in Li et al. (2021). Specifically, we aimed to predict the value of the
function u, given the diffusion function a, with the two related implicitly through the PDE given by:

{
−∇ · (a(x)∇u(x)) = 1 if x ∈ (0, 1)2

u(x) = 0 if x ∈ ∂[0, 1]2.
(19)

The dataset used in our study is adapted from that used in Li et al. (2021), and originally generated by a
traditional high-resolution PDE solver. The dataset consists of a 1024 × 1024 grid, which was subsampled
uniformly at random and arranged into context-target pairs. The context is comprised of the evaluations of
the diffusion coefficient: (cx, cy) = ((x, y), a(x, y)), and the target is the solution of the Darcy Flow equation
at a position, (tx, ty) = ((x, y), u(x, y)).

The results are presented in table 4, they are coherent with the rest of the experiment and show that the
MSA and TFS models are able to outperform all competing models. We used the same initialization for GEN
as for the Poisson Equation.

This experiment adapts the dataset available in Li et al. (2021). It is available at https://github.com/
neural-operator/fourier_neural_operator and can be processed with the code provided to rearrange it
in the irregular setup.

15

https://github.com/neural-operator/fourier_neural_operator
https://github.com/neural-operator/fourier_neural_operator
https://github.com/neural-operator/fourier_neural_operator
https://github.com/neural-operator/fourier_neural_operator

Under review as submission to TMLR

0 50 100 150 200

0

50

100

150

200

0 50 100 150 200

0

50

100

150

200

(a) A sample of the Darcy Flow dataset Li et al. (2021).
Blue dots correspond to the context set and orange
dots to the targets.

0 100 200 300 400 500

0

100

200

300

400

500

0 100 200 300 400 500

0

100

200

300

400

500

(b) A sample of the Navier-Stokes dataset Li et al.
(2021). Blue dots correspond to the context set and
orange dots to the targets.

B.5 Two-Days Weather Forecasting

In this task, we want to evaluate our models on the task of two-days weather forecasting based on irregularly
sampled data in space. The requested data collection description focuses on climate reanalysis from the
ERA5 dataset, which is available through the Copernicus Climate Data Store (CDS). The dataset contains
various parameters related to wind, surface pressure, temperature, and cloud cover.

To access the data, please visit the following URL: https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels?tab=form.

We selected the following variables:

• 10m u-component of wind: This refers to the eastward wind component at a height of 10 meters
above the surface.

• 10m v-component of wind: This represents the northward wind component at a height of 10 meters
above the surface.

• 100m u-component of wind: This denotes the eastward wind component at a height of 100 meters
above the surface.

• 100m v-component of wind: This signifies the northward wind component at a height of 100 meters
above the surface.

• Surface pressure: This represents the atmospheric pressure at the Earth’s surface.

• 2m temperature: This indicates the air temperature at a height of 2 meters above the surface.

• Total cloud cover: This refers to the fraction of the sky covered by clouds. The data collection
includes measurements for all times of the day and all days available in the dataset. However, for

16

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form

Under review as submission to TMLR

Dataset dim(X) dim(I) dim(O) # Train. points # Val. points URL

Wind Nowcasting 3 2 2 26.956.857 927.906 Pannatier et al. (2021) Dataset page
Poisson Equation 2 3 1 409.600 102.400 Alet et al. (2019) Github Repository
Navier Stokes Equation 2 1 1 48.883.20 11.673.600 Li et al. (2021) Github Repository
Darcy Flow Equation 2 1 1 409.600 102.400 Li et al. (2021) Github Repository
ERA5 2 7 2 8.648.704 2.107.392 Hersbach et al. (2023) Copernicus Climate Dataset Store
Random 2 1 1 640.000 64.000 Randomly generated
Sine 2 1 1 640.000 64.000 Randomly generated

Table 5: Description of the different datasets used in this study.

training purposes, we selected the data from the year 2000. For validation, we use the data from the
year 2010, specifically the months of January and September.

Next, we proceeded to extract the corresponding grib files. To create our dataset, we paired time slices that
had a time difference of two days, equivalent to 48 time steps since ERA5 data has a one-hour resolution over
the whole world.

For the context slice, we performed subsampling at 1024 different positions and retained all seven variables
mentioned earlier. As for the target slice, we subsampled it at 1024 different positions and kept only the two
components of the wind at 100m.

C Specific Aspects of Our Approach in Relation to Existing Works

In our research, we address a distinct challenge that sets our work apart from conventional mesh-based
simulators Pfaff et al. (2020); Janny et al. (2023); Li et al. (2022). Our focus is on extrapolating sets of sparse
and variably-positioned measurements, a context markedly different from the consistent mesh structures
employed in traditional approaches. Unlike mesh-based models where values are accessible at fixed points
on an irregular mesh, our method tackles scenarios where the quantity and locations of measurements can
change dynamically from one data set to another. This unique aspect of our work necessitates a departure
from the conventional mesh framework. Mesh-based simulators, while effective in their domains, are not
equipped to handle the sporadic and non-uniform nature of our data. For instance, in applications such as
airspace monitoring, data points represent measurements taken only where planes are present, leaving vast
areas without data. Our methodology, therefore, diverges fundamentally from mesh-based techniques, as it
requires innovative handling of sparse and irregular data inputs, rather than relying on a fixed, uniform mesh
structure.

Furthermore, our approach markedly differs from trajectory prediction models Yuan et al. (2021); Nayakanti
et al. (2023); Girgis et al. (2022). While these models excel in forecasting future points along established
trajectories, our work diverges in both intent and application. Our primary concern is not the sequential pre-
diction of trajectories but rather the interpretation and forecasting of phenomena in a spatially and temporally
sparse environment. In the context of wind nowcasting, for example, our model excels at processing limited
and scattered data points from multiple trajectories to generate a comprehensive forecast. This capability to
assimilate sparse measurements from varied locations and synthesize them into a coherent prediction sets our
work apart from traditional trajectory-focused models. These models, such as Wayformer Nayakanti et al.
(2023) and Agentformer Yuan et al. (2021), are primarily designed for time series forecasting and trajectory
completion.

D Attention matrix for Wind Nowcasting

For all models, we can plot the norm of the input gradients to see how changing a given value would impact
the prediction [figure 9]. We see that Transformers seem to find a trade-off between taking into account the
neighboring nodes and the global context.

17

https://www.idiap.ch/en/dataset/skysoft
https://github.com/FerranAlet/graph_element_networks/tree/master/data
https://github.com/neural-operator/fourier_neural_operator
https://github.com/neural-operator/fourier_neural_operator
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form

Under review as submission to TMLR

2
1

0
1

2
2

1
0

1
2

2.5
2.0
1.5
1.0
0.5

0.0
0.5
1.0

(a) Context, Targets

1.5
1.0

0.5
0.0

0.5
1.0

1.5
2.0

2

1

0

1

2

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(b) MSA (Ours)

2
1

0
1

2
2

1
0

1
2

2.5
2.0
1.5
1.0
0.5

0.0
0.5
1.0

(c) GKA Pannatier et al. (2021)

2
1

0
1

2
2

1
0

1
2

2.5
2.0
1.5
1.0
0.5

0.0
0.5
1.0

(d) GEN Alet et al. (2019)

2
1

0
1

2
2

1
0

1
2

2.5
2.0
1.5
1.0
0.5

0.0
0.5
1.0

(e) CNP Garnelo et al. (2018)

2
1

0
1

2
2

1
0

1
2

2.5
2.0
1.5
1.0
0.5

0.0
0.5
1.0

(f) TFS (Ours)

Figure 9: Displaying the importance given to points in the context to do the prediction for the different
models for a given query point (orange). We used the norm of the input gradients for that purpose and
highlight the context values that have the largest gradient with respect to the output. The opacity of the
dots corresponds to the relative magnitude of the input gradients compared to other points in the context.

18

Under review as submission to TMLR

4 6 8 10 12 14 16 18 20
vx

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

v y

Context
Targets
GKA
MSA

(a) Context, targets, and forecast in
wind speed space.

LAT [°]

45.35
45.40

45.45
45.50

45.55
45.60

LO
N [°

]

5.5

6.0

6.5

7.0

7.5

AL
T

[fl
]

200

250

300

350

400

Context
Targets

(b) Context and targets in the 3D
space.

Tar
ge

ts
MSA TFS GKA GEN CNP

0%
25%
50%
75%

100%

(c) Percentage of the prediction values
that are contained in the convex hull
of the measurement in the context in
percent.

Figure 10: Context and targets represented in wind speed and 3D space. Both the context and targets
correspond to 1-minute slices of data. The targets capture wind measurements recorded 30 minutes following
the context data. Additionally, the forecasts generated by the MSA and GKA models are depicted. Notably,
the GKA model is confined to predicting within the convex hull of the context values, which is visually
highlighted in grey. Conversely, the MSA model is unrestricted by this limitation and can make predictions
beyond the convex hull of the context values.

E Comparison with Graph Kernel Averaging

Smart averaging strategies such as GKA are limited by design to the range of the values in their context.
However, these baselines are useful as they are not prone to overfitting and in the case of time series forecasting
(if the underlying variable has some persistence), the last values would in general be the best predictor of the
next value. We hypothesize that over sufficiently short horizons, these methods would achieve performance
similar to that from more complicated models, but when the prediction horizon rises, this design limitation
would become more pronounced.

Since, for extrinsic forecasting, target points need not lie in the convex hull of context points, the greater
flexibility of MSA and TFS can make correct forecasts that are impossible with GKA. figure 10a demonstrates
this fact, with a plot of the target variable, the context points and the context convex hull in wind speed
space.

But greater capacity means also more failure modes. As we saw in the metrics table of ?? of the main paper,
MSA and TFS are the only models to outperform GKA whereas other models, even if they are more flexible,
fail to beat this baseline. On average 27% of the predictions were outside the convex hull of the context.
In figure 10c we analyze the percentage of measurements outside the convex hull produced by the different
models. We can see that GKA is limited as 100% of the measurements lies within the convex hull whereas
the other models can compensate and predict values outside it.

E.1 Decoder and conditioning function

In the main paper, we presented a comparison of the key distinctions between our attention-based architectures.
However, it could be that the performance differences observed could be attributed to minor variations in
the architecture design. For the sake of completeness, in this section, we provide experimental results to
address this aspect by comparing the remaining differences between GEN and TFS. Specifically, we focus on
analyzing the impact of the number of decoder layers and the conditioning function. It is important to note
that this analysis does not apply to MSA, as it does not possess an encoder-decoder structure.

19

Under review as submission to TMLR

Table 6: Results of the ablation of the conditioning function used to combine the latents with the target
position. We adapted the architecture so that they used both a distance-based conditioning function, which
combines the query position with a weighted average of the nearest latents and standard cross-attention.
We show in italics hybrid architecture where we had to switch the default conditioning method. For GEN
and CNP replacing the conditioning method does not impact the performance, but for TFS switching to a
distance-based conditioning function impacts the performance drastically.

Model Distance-
based

Cross-
attention

CNP .115 ± .015 .119 ± .014
GEN .024 ± .004 .022 ± .006
TFS .042 ± .023 .020 ± .011

Table 7: Results of the decoder-layer ablation. One difference between TFS and GEN is that by default TFS
use multiple layers in its decoder whereas GEN uses one, and delegates all processing to the encoder. We see
that having multiple decoder layers helps the transformer whereas it impacts the performance of the GEN.

Decoder layers
Model 1 2 4
GEN .021 ± .002 .040 ± .012 .106 ± .004
TFS .020 ± .011 .019 ± .005 .013 ± .001

GEN and TFS differ not only in their latent representation but also on two other points: (1) the way that
they access the encoded information in the decoder and (2) how much computing power is used in the decoder
stack.

In all three models, we tried using either a distance-based function or cross-attention to combine the target
position with the encoded latents. CNP concatenate the same context vector to all target queries, which we
model as equivalent to averaging the latents based on the distance in the case that there is only one latent.

Specifically, each latent is associated with a position lx in the underlying space with corresponding value ly.
Conditioning is made by averaging the latent features based on their distance with the query tx. Its formula
is given by:

z =
∑

l∈latents

r(dist(lx, tx))ly (20)

Where r : R → [0, 1] is a function that maps distances to weights, and lx represents the position associated
with the latent nodes with value ly. This vector z is then concatenated to the target position tx and fed to
the decoder which is a MLP in this case.

GEN use this distance-based aggregation function by default whereas TFS uses cross-attention. We tried
using cross-attention for CNP and GEN and using the same distance-based aggregating function for TFS
using the distance between context position and target position as a reference for this scheme. For GEN and
CNP using cross-attention give approximately the same results, but using distance-based conditioning for
TFS hurts the performance significantly.

We also ran ablations that created hybrid cases for both transformers and GEN and concluded that adding
decoding layers helped TFS to reach better performance. Adding layers to the GEN decoder drastically
reduces model performance, which seems to be coherent with the fact that GEN were shown to be more
prone to overfitting in the results section.

Finally, we want to highlight that MSA outperforms all the models presented in this section by a large
margin table 4.

20

Under review as submission to TMLR

F Wind nowcasting metrics

This section defines the metrics used for wind nowcasting.

Root Mean Square Error (RMSE) It takes the square root of the square distance between the prediction
and the output. It has the advantage of having the same units as the forecasted values.

RMSE(t̂, t) =

√∑N
k (t̂k − tk)2

N
(21)

Mean Absolute Error for angle (angle MAE) It is interesting and sometimes more insightful to
decompose the error made by the models in their angular and norm components. This is the role of this
metric and the following.

angle MAE(t̂, t) = ||(α(t̂) − α(t))||L1 (22)

where α
(
x⃗ =

(
x
y

))
= arctan(y, x) ∗ 360

2π

Mean Absolute Error for norm (norm MAE) Following the explanation of the last paragraph:

norm MAE(t̂, t) =
∑

k

| || t̂k ||2 − || tk ||2 | (23)

Relative Bias (rel BIAS) x,y Additionally, we used weather metrics as in Ghiggi et al. (2019). The
relative bias measure if the considered model under or overestimate one quantity. It is defined as:

rel BIAS(t̂, t) = mean(t̂k − tk)
mean(t̂k)

(24)

Ratio of standard deviation (rSTD) The ratios of standard deviation indicate whether the dispersion
of the output of the model matches the target distribution. It has an optimal value of 1.

rSTD(t̂, t) = std(t̂)
std(t) (25)

NSE The last domain metric used is the Nash-Sutcliffe efficiency (NSE), which compares the error of the
model with the average of the target data. A score of 1 is ideal and a negative score indicates that the model
was worse than the average prediction on average.

NSE(t̂, t) = 1 − MSE(t̂, t)
MSE(t,mean(t)) (26)

G Influence of the tightness of the measurements on the performances

To evaluate the influence of the tightness of the measurements on the results we designed the following
experiment: We start with a pair of context (cx, cy) and target points (tx, ty). We pick one point from the
context and restrict the context to a small number of measurements close to this point. Then, we calculate
the error made by the model when it is given only this restricted context and rank them by their distance to
the context’s center. As the dimensions (longitude, latitude, altitude) differ, we first normalized the data
along each axis. We repeat this process and average the results.

21

Under review as submission to TMLR

Table 8: Influence of the tightness of the measurements on the performance. We restrict the context to
measurements that are close to the query point and then measure the error as a function of the distance from
this query point averaged over the whole dataset. We estimate the standard deviation using three random
seeds.

Normalized Dist MSA TFS
0.5–1.0 5.56 ± 0.49 7.73 ± 0.37
1.0–1.5 6.62 ± 0.35 7.35 ± 0.53
1.5–2.0 7.57 ± 0.43 7.87 ± 0.36
2.0–2.5 9.52 ± 0.47 9.48 ± 0.66
2.5–end 10.35 ± 0.49 10.53 ± 0.61

We see that the error increases with the distance to the context. Now in practice, the context is not restricted
and contains points all over the space (so the mean minimum normalized distance to the target points is
usually often below 1.0)

We assessed general uncertainty by training the model using various random seeds, resulting in an ensemble of
models from which we can determine the standard deviation and added it to the results table of the previous
experiment.

H Influence of the target positions

In this section, we assess the impact of the target position on the training of the MSA model.

The context data for the Poisson equation is heavily prescribed (where context points belonged to the source
or sink or boundary conditions), while for the Darcy Flow equation, we constructed a similarly-shaped data
set by subsampling the data set from Alet et al. (2019) to create the context and targets. Thus, the Darcy
flow test problem gives an ideal testbed for examining the influence of target positions on the training. To
examine the impact of the context position, we designed an additional experiment where we sampled the
context from the bottom left quadrant of the unit cube and the targets from the upper right quadrants of
the unit cube. We conduct our analysis for small (5k parameters) and large (100k parameters) models. We
report the test loss as a function of the percentage of the context from the upper-right quadrants (where all
targets are located, the remaining from the bottom-left quadrant).

Table 9: Influence of the target position on the training. We report the test error for the MSA model at two
different sizes. We devised an experiment in which we extracted the context from the bottom left quadrant of
the unit cube, while the targets were sampled from the upper right quadrants of the same unit cube.

0% 2% 25% 50% 100%
MSA 5k 0.14 0.15 0.14 0.09 0.03
MSA 100k 0.14 0.14 0.13 0.09 0.03

In the first column (0% of the data from the first quadrant), we see that the MSA model struggled to learn
when the context and targets are disjoint. The error improves with greater overlaps between context and
target, with p = 100% corresponding to the case in the paper (albeit on one-quarter of the data). Similar
dynamics hold for both model sizes. We believe that this is due to the Darcy Flow simulation being highly
location-dependent, as can be seen in some examples from the dataset figure 8a.

Regarding the training performance, we noticed no substantial difference in the total time to a solution, they
all took approximately 1000 epochs in all cases. Larger models were always able to overfit the data.

22

Under review as submission to TMLR

Table 10: Influence of the target position on the training. We report the train error for the MSA model at
two different sizes. Both models were able to overfit the data.

0% 2% 25% 50% 100%
MSA 5k 0.07 0.07 0.07 0.05 0.02
MSA 100k 0.00 0.00 0.00 0.00 0.00

I Different Message Passing Scheme

We try here different message-passing schemes even one using attention, to help us demonstrate the fact that
the whole family of models that encodes the space as a single graph suffers from the same bottlenecking
effect. Here are the results of the wind nowcasting task:

Table 11: Performance of GEN with different message passing schemes for the wind nowcasting task. Various
message-passing schemes, including those with attention, were explored using PyTorch Geometric Fey &
Lenssen (2019). The best-performing GEN model with the default message-passing scheme is indicated with a
reference line. While certain schemes showed improvements over GEN’s performance, the overall performance
remained relatively consistent and was still outperformed by MSA. For additional information on the different
message-passing schemes and related references, please refer to the PyTorch Geometric documentation.

Model Score
TransformerConv 9.2830
GATv2Conv 9.3353
GeneralConv 9.3699
GATConv 9.7744
SAGEConv 9.7837
ARMAConv 9.8391
TAGConv 9.8653
SGConv 9.9465
SuperGATConv 10.0961
GCNConv 10.1344
LEConv 10.6062
GENConv 23.9847

Although certain message-passing schemes enhance the performance of the GEN model, it still falls short of
the performance achieved by MSA. We attribute this difference to the bottlenecking effect caused by the latent
graph. For additional information on the various message-passing schemes and relevant references, please
consult the PyTorch Geometric documentation available at https://pytorch-geometric.readthedocs.io/
en/latest/modules/nn.html#convolutional-layers.

J Broader Impacts

We do not anticipate any significant adverse effects on society due to this work. Generally, having an
additional method for weather nowcasting may lead to an increase in computational resources required, but
this is a common consequence of many deep learning systems.

We believe that enhancing the reliability of weather forecasts and dynamical systems has a more positive
impact on society. By improving the accuracy and precision of these predictions, we can provide valuable
information for various sectors, such as agriculture, transportation, disaster management, and overall planning
and decision-making processes.

23

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

Under review as submission to TMLR

K Limitations

Our method, like other attention-based models, suffers from quadratic scaling. In the case of MSA, it is
slightly more computationally intensive compared to TFS due to the combination of target and context
in the same sequence. This results in an attention mechanism that scales with O((Nc + Nt)2), which is
asymptotically equivalent to the scaling of transformers, which is O(N2

c + N2
t + NcNt), but in practice

introduces an additional NcNt term. However, in all our experiments, this computational overhead did not
pose a problem. We acknowledge the issue in the scaling of the model and refer to possible solutions outlined
in the related work to address this challenge.

Another drawback of this study is the absence of a comparison between the models and other established
models used for modeling dynamical systems on a grid, as discussed in the work by Li et al. (2021). We
anticipate that our approach may not perform as effectively as competing models on grids due to two reasons.
Firstly, the previously mentioned scaling issue becomes significant when dealing with larger grid sizes, such as
1024 × 1024 grids. Additionally, our approach lacks certain inductive biases that aid in grid-based modeling.
Nonetheless, we believe that attention-based models still hold promise for grid-based systems, as demonstrated
by the success of Vision Transformers (ViT) in other domainsDosovitskiy et al. (2020). However, tokenization
may be necessary for their effective implementation.

L Experiment and training details

In this supplementary material, we provide the code required to process the dataset and reproduce the
experiments. We utilized Hydra as a configuration manager Yadan (2019) and include the precise configuration
for each case. The experiments were executed multiple times on a GPU cluster, but each experiment can be
conducted on a single GPU in a relatively short timeframe, ranging from a few hours to a maximum of a few
days.

M Error Bars

We ran multiple runs of our experiments and report the standard deviation in all concerned tables.

N Amount of Compute needed to replicate the experiments

Training smaller models (5k, 20k) usually takes a few hours. Training larger models (except for CNP which
is considerably faster) runs in at most two GPU days. We estimate the number of GPU days to replicate all
experiments for all models to be on the order of 100 GPU days.

O Reproductibility

We provide the link to the dataset and the whole code base for processing it and running the experiments.

P Licenses

All concerned databases are openly accessible on the web and have permissive licenses, we give a link to each
dataset in table 5

24

	Introduction
	Related works
	Methodology
	Context and Targets
	Encoding Scheme
	Multi-layer Self-Attention (MSA, Ours)
	Baselines

	Experiments
	Understanding failure modes
	Context information retrieval
	Correct pertubation attribution
	Encoding scheme

	Conclusion
	Detailed results
	Dataset descriptions
	Wind nowcasting
	Poisson Equation
	Navier-Stokes Equation
	Darcy Flow
	Two-Days Weather Forecasting

	Specific Aspects of Our Approach in Relation to Existing Works
	Attention matrix for Wind Nowcasting
	Comparison with Graph Kernel Averaging
	Decoder and conditioning function

	Wind nowcasting metrics
	Influence of the tightness of the measurements on the performances
	Influence of the target positions
	Different Message Passing Scheme
	Broader Impacts
	Limitations
	Experiment and training details
	Error Bars
	Amount of Compute needed to replicate the experiments
	Reproductibility
	Licenses

