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Abstract

Due to the success of large-scale visual-001
language pretraining (VLP) models and the002
widespread use of image-text retrieval in indus-003
try areas, it is now critically necessary to reduce004
the model size and streamline their mobile-005
device deployment. Single- and dual-stream006
model structures are commonly used in image-007
text retrieval with the goal of closing the seman-008
tic gap between textual and visual modalities.009
While single-stream models use deep feature010
fusion to achieve more accurate cross-model011
alignment, dual-stream models are better at of-012
fline indexing and fast inference. We propose a013
Multi-teacher Cross-modality Alignment Dis-014
tillation (MCAD) technique to integrate the015
advantages of single- and dual-stream models.016
By incorporating the fused single-stream fea-017
tures into the image and text features of the018
dual-stream model, we formulate new modi-019
fied teacher similarity distributions and features.020
Then, we conduct both distribution and feature021
distillation to boost the capability of the student022
dual-stream model, achieving high retrieval per-023
formance without increasing inference com-024
plexity. Extensive experiments demonstrate the025
remarkable performance and high efficiency026
of MCAD on image-text retrieval tasks. Fur-027
thermore, we implement a lightweight CLIP028
model on Snapdragon/Dimensity chips with029
only ∼100M running memory and ∼8.0ms030
search latency, achieving the mobile-device ap-031
plication of VLP models.032

1 Introduction033

Image-text mutual retrieval is a fundamental prob-034

lem of multimodal learning, whose primary objec-035

tive is to bridge the semantic gap between visual036

and textual modalities, enabling accurate match037

of image (text) based on the given text (image).038

However, aligning and matching visual and textual039

information is non-trivial due to the differences040

in their representations and structures. In recent041

years, the rapid growth of large-scale paired vision- 042

language datasets (Schuhmann et al., 2021, 2022) 043

has paved the way for the development of power- 044

ful models that can bridge the gap between visual 045

and textual information. These models, known as 046

vision-language pretraining (VLP) models, have 047

shown remarkable capabilities in understanding 048

both vision and language (Radford et al., 2021; Jia 049

et al., 2021; Li et al., 2021). 050

Typically, the dual-stream architecture, e.g., 051

CLIP (Radford et al., 2021), ALIGN (Jia et al., 052

2021), facilitates autonomous processing of individ- 053

ual modalities through segregated streams, exhibit- 054

ing inferior retrieval performance due to the lack 055

of effective cross-modal feature fusion. Neverthe- 056

less, the disentanglement of image and text encoder 057

enable fast retrieval speed. On the contrary, single- 058

stream models integrate information from multiple 059

modalities during encoding through a deep interac- 060

tion module, e.g., transformer block (Vaswani et al., 061

2017), commonly leading to superior retrieval per- 062

formance but sacrificing flexibility and resulting 063

in extremely low retrieval speed. Therefore, in in- 064

dustrial applications, dual-stream models are still 065

the first choice. However, their significant size hin- 066

ders practical deployment in lightweight scenarios, 067

especially for mobile devices. 068

In recent years, several works endeavor to trans- 069

fer knowledge of large models into small models 070

through distillation technology (Fang et al., 2021a; 071

Wang et al., 2022a; Rao et al., 2023; Ren and Zhu, 072

2022; Wang et al., 2022b; Miech et al., 2021; Lei 073

et al., 2022; Wu et al., 2023; Vasu et al., 2023). 074

But they just consider soft-label, feature, or atten- 075

tion map distillation from one teacher or homo- 076

geneous teachers. The strategy of homogeneous, 077

multi-teacher distillation has not yet been explored. 078

Among these works, a critical question is how to 079

distill the knowledge of the single-stream mod- 080

els into efficient dual-stream models. Although 081

DIDE (Wang et al., 2022b) proposes to employ 082
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cross-modal attention distillation to transfer the083

knowledge of the ViLT (Kim et al., 2021) teacher to084

a CLIP student, this is not a universal method since085

other single-stream structures, e.g., ALBEF (Li086

et al., 2021) cannot discriminate explicit image and087

text features after cross-attention fusion so that the088

image-text attention maps are unavailable. Another089

work LoopITR (Lei et al., 2022) considers only090

employ the single-stream output scores of top k091

hard examples chosen by the dual-stream model to092

enhance the dual-stream model itself, which cannot093

excite the whole ability of the single-stream model.094

So the integration of single-stream and dual-stream095

teachers is a non-trivial challenge. In this paper,096

we are motivated to propose a Multi-teacher Cross-097

modal Alignment Distillation (MCAD) method to098

make full use of the information fusion ability of099

the single-stream model and the large-scale par-100

allel training advantage of the dual-stream model.101

Specifically, after extracting features through the102

frozen single- and dual-stream teacher models, we103

apply different learnable projection layers to align104

image or text features from different latent spaces,105

as shown in Fig. 2. Finally, we employ similar-106

ity distribution and feature distillation based on the107

newly-formulated fused features to boost the perfor-108

mance of the dual-stream student model, as shown109

in Fig. 1. In summary, our main contributions are110

as follows:111

• We propose a single- and dual-stream multi-112

teacher distillation algorithm to enhance the113

cross-modal retrieval ability of a light-weight114

CLIP-like dual-stream model.115

• Comprehensive experiments on different116

datasets and networks demonstrate that our117

method is a model-agnostic general frame-118

work that can achieve superior performance119

both in zero-shot and fine-tuning settings.120

• By using MobileViTv2 (Mehta and Rastegari,121

2022) and TinyBERT (Jiao et al., 2020) as the122

image and text encoder, respectively, we com-123

press a 400M large CLIP model onto Snap-124

dragon/Dimensity chips, achieving merely125

25.9M model size, ∼100M running memory,126

and ∼8.0ms retrieval latency.127

2 Related Work128

2.1 Image-Text Retrieval with VLP129

Image-text retrieval (ITR) has attracted increasing130

attention in recent years. In recent years, cross-131

modal pre-training has been extensively studied132

and applied to ITR (Liu et al., 2019; Lu et al., 2019; 133

Chen et al., 2020; Wang et al., 2022c). The model 134

structure can be roughly classified into two cat- 135

egories: single-stream and dual-stream. Single- 136

stream models jointly encode images and text 137

through a deep interaction module and output a 138

fused feature. Early algorithms (Lu et al., 2019) 139

employ object detectors (Girshick, 2015; Ren et al., 140

2015) to extract image features, which usually ig- 141

nore important background information. Then, 142

ViLT (Kim et al., 2021; Diao et al., 2021) unifies 143

image and text extractor as Transformer (Vaswani 144

et al., 2017) to make full use of all information. The 145

models, however, depend on a cross-modal Trans- 146

former encoder to fuse visual and textual signals 147

at the same time across layers, which necessitates 148

a large compute budget and slows down inference 149

speed. Even though some trade-off approaches, 150

e.g., ALBEF (Li et al., 2021), employ separate im- 151

age and text encoders prior to hard example fusion, 152

their top k re-ranking strategy is still far from being 153

implemented in real time. 154

On the contrary, the dual-stream model mainly 155

focuses on learning how to align visual and tex- 156

tual features obtained from independent encoders. 157

Since only a light-weight interaction module (usu- 158

ally a MLP or dot product) is applied to image and 159

text features, dual-stream structure allows for con- 160

trastive learning on billions of examples, including 161

CLIP (Radford et al., 2021) and ALIGN (Jia et al., 162

2021). Thanks to the shadow interaction module, 163

all visual or textual features can be pre-calculated 164

and stored offline, leading to a fast retrieval speed. 165

Nevertheless, due to a lack of deep cross-model 166

fusion, the visual-language understanding ability 167

of dual-stream models is inferior to that of single- 168

stream models, resulting in lower retrieval accuracy. 169

Hence, we are inspired to transfer the advantages of 170

single- and dual-stream models into a compressed, 171

lightweight model through our proposed innovative 172

distillation technique. 173

2.2 Knowledge Distillation for VLP 174

Knowledge Distillation (Hinton et al., 2015) is a 175

method of transferring knowledge from a teacher 176

model to a student model, which can effectively im- 177

prove the performance of the student model (Lan 178

et al., 2020; Yalniz et al., 2019; Touvron et al., 179

2021; Fang et al., 2021b). In the multimodal distil- 180

lation area, a group of approaches considers trans- 181

ferring knowledge from large models into small 182

models with the same architecture, either both 183
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single-stream models (Fang et al., 2021a; Wang184

et al., 2022a; Rao et al., 2023) or dual-stream mod-185

els (Ren and Zhu, 2022; Wu et al., 2023) by using186

logit, feature, or attention map distillation. Distil-187

lVLM and EfficientVLM (Wang et al., 2022a) pro-188

pose attention map distillation and hidden feature189

distillation for object-detection-based and ALBEF-190

like (Li et al., 2021) single-stream VLP model com-191

pression, respectively. TinyCLIP (Wu et al., 2023)192

trains lightweight CLIP models via cross-modal193

affinity mimicking (similarity distribution distilla-194

tion) and weight inheritance.195

Another group of methods employ single-stream196

models to improve performance of dual-stream197

models (Wang et al., 2022b; Miech et al., 2021;198

Lei et al., 2022). DIDE (Wang et al., 2022b) ap-199

plies cross-model attention distillation to transfer200

knowledge of a single-stream ViLT (Kim et al.,201

2021) teacher model into a CLIP-like dual-stream202

student model. LoopITR (Lei et al., 2022) pro-203

poses a mutual-loop enhancement strategy to distill204

dual-stream models by top hard samples of single-205

stream models. Thinking fast and slow (Miech206

et al., 2021) improves dual-stream model perfor-207

mance by single-stream model via logit distillation.208

As multi-teacher distillation (Yang et al., 2020;209

Gou et al., 2021; Zhao et al., 2022; Zhang et al.,210

2023) has been generally regarded as an effective211

approach to improving student models, Mobile-212

CLIP (Vasu et al., 2023) proposes to employ ensem-213

ble of K CLIP models as a strong teacher. To the214

best of our knowledge, our MCAD is the first work215

that uses heterogeneous multi-teachers to distill the216

advantages of single- and dual-stream models into217

a lightweight student VLP model.218

3 Method219

3.1 Preliminary220

We first define the general form for calculating221

the similarity distribution matrix and the KL diver-222

gence loss, then we will introduce the distribution223

matrices shown in Fig. 1.224

The general form to calculate the image-text sim-225

ilarity distribution matrix can be denoted as:226

FD(I, T, τ) = softmax[(IT⊤)/τ ], (1)227

where softmax(·) represents the softmax function228

that operates in the last dimension, I, T denote229

the normalized image and text representations, re-230

spectively, with shape [n, d], where n is the batch231

Figure 1: An overview of our MCAD framework.
(IT , TT ) and (IS , TS) represent the (image, text) fea-
ture pair output by teachers and the student, respectively.
D∗

i2t represents the similarity distribution of image-to-
text, while D∗

t2i denotes that of text-to-image. DS
∗ in-

dicates the distribution matrix produced by the student,
while DT

∗ depicts that derived from the aggregated teach-
ers. Additionally, DFAI

∗ denotes the softmax output
after cross-feature alignment between the student’s im-
age feature and the teachers’ text feature, while DFAT

∗
represents the corresponding operation after aligning
the student’s text feature to the teachers’ image feature.

size and d is the output dimension, and τ is a tem- 232

perature parameter. Moreover, the row-wise KL 233

divergence between two distribution matrices D 234

and D̂ can be denoted as: 235

FKL(D, D̂) =
∑
l

KL(Dl||D̂l), (2) 236

where l indicates the row index. 237

Fig. 1 shows an overview of the MCAD frame- 238

work, which combines single- and dual-stream 239

models at the token level. Given n image-text pair 240

inputs in a batch, {(ij , tj)}n1 , we will get image rep- 241

resentations IT ∈ Rn×d and text representations 242

T T ∈ Rn×d after feeding the output of multiple 243

teachers to the integration module, which will be 244

detailedly discussed in Sec. 3.3. Moreover, the 245

student’s image encoder and text encoder output 246

the image representation IS ∈ Rn×d and text rep- 247

resentation TS ∈ Rn×d, respectively. After that, 248

several distribution matrices shown in Fig. 1 can 249
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be expressed as:250

DS
i2t = FD(I

S , TS , τS),

DT
i2t = FD(I

T , T T , τT ),

DFAI
i2t = FD(I

S , T T , (τT + τS)/2),

DFAT
i2t = FD(I

T , TS , (τT + τS)/2),

(3)251

where DS
i2t denotes the similarity distribution of252

image-to-text output by student, while that of text-253

to-image simply involves swapping the input posi-254

tions, i.e., DS
t2i = FD(T

S , IS , τS). The detailed255

description of D∗
∗ can be found in the caption of256

Fig. 1.257

3.2 Multi-teacher Cross-modal Alignment258

Distillation259

Dual-stream target. Assuming a collection of n260

image-text pairs {(ij , tj)}n1 in a batch, the text and261

image features of the dual-stream teacher model262

are denoted as IDS ∈ Rn×d and TDS ∈ Rn×d,263

respectively, and the target similarity distribution264

matrix can be expressed as:265

DDS
i2t = FD(I

DS , TDS , τDS),

DDS
t2i = FD(T

DS , IDS , τDS),
(4)266

where τDS denotes the temperature of the dual-267

stream model.268

Single-stream target. Besides the straightfor-269

ward format of dual-stream target distributions, we270

also need to calculate the single-stream target. Sub-271

sequently, the indices of the top k similarity scores272

are first computed based on Eq. (4), which can be273

represented as:274

Pi2t = topK_indices(DDS
i2t ),

Pt2i = topK_indices(DDS
t2i ),

(5)275

where Pi2t denotes the indices of each image and276

the top k texts that are similar to it, while Pt2i277

represents the indices of each text and its k most278

similar images. Then, we recalculate the scores279

of the top k image-text pairs by the single-stream280

model, e.g., ALBEF (Li et al., 2021). We assume281

that the score matrices output by the single-stream282

model are DSS
i2t ∈ Rn×n, DSS

t2i ∈ Rn×n, which are283

calculated as:284

(DSS
i2t )l,m = fSS(il, tm), (l,m) ∈ Pi2t,

(DSS
t2i )l,m = fSS(im, tl), (l,m) ∈ Pt2i.

(6)285

In general, a single-stream model will usually out-286

put a similarity score for the current image-text287

pair. It should be noted that in matrix DSS
i2t and 288

DSS
t2i , only DSS

i2t [Pi2t] ∈ Rn×k, DSS
t2i [Pt2i] ∈ Rn×k 289

are computed, and we only care about this part. 290

Loss function. The objective of this paper is 291

to introduce the MCAD technique for effectively 292

merging single- and dual-stream models. The ulti- 293

mate goal is to enable effective knowledge transfer 294

from multiple teachers to the student network. We 295

adopt a dual-stream architecture for the student net- 296

work, which results in improved retrieval speed for 297

image-text tasks. In doing so, the proposed method 298

can be more conveniently deployed on mobile de- 299

vices. In this study, the uniform loss function is 300

denoted as: 301

Ltotal = LT DD + LT FD, (7) 302

where LT DD denotes the loss function of target 303

distribution distillation (TDD), and LT FD denotes 304

the target feature distillation (TFD). 305

First, the LT DD of multi-teachers can be ex- 306

pressed as: 307

LT DD : LMT = fMT (D
S
i2t, D

S
t2i)

+ fMT (D
T
i2t, D

T
t2i),

(8) 308

where fMT is a loss function that measures the KL 309

divergence between the output and the target dis- 310

tribution, including dual-stream and single-stream 311

targets as mentioned before. Importantly, the sec- 312

ond term brings the output similarity distribution of 313

the integration module (discussed in Sec. 3.3) close 314

to the target distribution, which can be viewed as a 315

regularization of the integration module. Second, 316

the LT FD of multi-teachers is denoted as: 317

LT FD : LMT_FA = fMT (D
FAI
i2t , DFAI

t2i )

+ fMT (D
FAT
i2t , DFAT

t2i ),
(9) 318

where the two terms bring the representation of the 319

student output close to the fused feature. 320

Finally, the core loss function fMT is defined as: 321

fMT (D
∗
i2t, D

∗
t2i) = FKL(D

∗
i2t, D

DS
i2t )

+FKL((D
∗
t2i, D

DS
t2i )

+FKL(σ(D
∗
i2t[Pi2t]), σ(D

SS
i2t [Pi2t]))

+FKL(σ(D
∗
t2i[Pt2i]), σ(D

SS
t2i [Pt2i])),

(10) 322

where ∗∈{S, T, FAI, FAT} and σ(·) is a normal- 323

ization method. When given a matrix D∗ ∈ Rn×k, 324

the normalization method can be expressed as: 325

σ(D∗
l,m) =

D∗
l,m∑k

v=1D
∗
l,v

,

l ∈ [1, .., n],m ∈ [1, ..., k]

(11) 326
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Here, we don’t directly align the student output327

with the integrated-teacher output. Instead, we328

align the output of the student and the integrated329

teacher with the dual- and single-stream teacher330

simultaneously, as Eq. (8)–(10) show. Since the in-331

tegrated teacher also contains learnable parameters332

(will be introduced in Sec. 3.3), we regard the dual-333

and single-stream as pivots to align the student and334

the integrated teacher.335

3.3 Multi-teacher Integration336

To better utilize the features of multi-models, we337

propose a framework to integrate the output of dif-338

ferent models, which is shown in Fig. 2. When339

giving an image-text pair (il, tm), l,m ∈ [1, ..., n],340

suppose that IDS
l , TDS

m represent the “CLS” to-341

ken output by dual-stream’s image encoder and342

text encoder, respectively, and HSS
m−l represents the343

“CLS” token output by the single-stream model.344

The “CLS” token outputs by multiple teachers are345

first projected into other vectors by a different func-346

tion, g∗. Especially, although the single-stream347

model has only one “CLS” token, it still has to be348

projected to different spaces using two different349

functions, i.e., g1, g2. And in this study, the g1, g2350

function can be denoted as follows:351

g1/2(·)=


fP (H

SS
m−l), if (l,m)∈Pi2t

or (m, l)∈Pt2i

0, if (l,m) /∈Pi2t

and (m, l) /∈Pt2i,

(12)352

where fP represents a projection layer. Moreover,353

g1 and g2 play the role of a gate. Because we354

fuse single- and dual-stream models to adjust the355

distribution of the top k, all we need to do is to fuse356

two teachers’ features only on the top k.357

Finally, the output of the text representation T T
m358

and image representation ITl can be expressed as:359

T T
m = norm(g3(T

DS−T
m ) + α · g1(HSS

m−l))

ITl = norm(g4(I
DS−I
l ) + α · g2(HSS

m−l)),
(13)360

where α is a learnable parameter, and norm repre-361

sents the ℓ2 normalization operator.362

4 Experiments363

4.1 Datasets364

We utilize existing image-text pair datasets to ver-365

ify our method, including MSCOCO (Lin et al.,366

2014), Conceptual Captions (CC) (Sharma et al.,367

Figure 2: Details of the integration module

2018), SBU captions (Ordonez et al., 2011), and 368

Flickr30K (Plummer et al., 2015). To test the zero- 369

shot capability of our method, we only combine 370

CC and SUB as training datasets, while in fine- 371

tuning experiments, we use all four data datasets 372

during training. For validation and testing, we uti- 373

lize the standard split (Karpathy and Fei-Fei, 2015) 374

of COCO and Flickr. More details of the datasets 375

and training hyper-parameters are presented in Ap- 376

pendix A and B, respectively. 377

4.2 Baselines and Components 378

In this paper, as shown in Eq. (7), we propose a 379

general loss function by dividing it into two parts: 380

target distribution distillation (LT DD) and target 381

feature distillation (LT FD) losses. We consider the 382

first component to be the process of allowing the 383

student’s image-text similarity output to approxi- 384

mate a desired distribution. In terms of the sec- 385

ond component, we can align the student’s feature 386

with the teacher’s feature by following different 387

constraints. Several prior works can be viewed 388

as special cases of the general form proposed in 389

Eq. (7). For the target distribution distillation, the 390

categories can be summarized as follows: 391

Ground truth. Given n image-text pairs 392

{(il, tl)}n1 , the student model outputs two matrix 393

DS
i2t ∈ Rn×n, DS

t2i ∈ Rn×n, and the ground truth 394

can be denoted as DGT , which is an identity matrix. 395

Then, the loss function using the ground truth as 396

the target distribution can be expressed as: 397

LTDD : LGT = FKL(D
S
i2t, D

GT )

+ FKL(D
S
t2i, D

GT )
(14) 398

Moreover, LGT is also called a hard target in the 399

study (Hinton et al., 2015). This can be viewed as 400
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a baseline for training dual-stream models without401

teacher distillation.402

Dual-stream distribution distillation. In this403

form, CLIP is often used as the dual-stream teacher,404

and the distribution of CLIP output is denoted as405

DDS
i2t , D

DS
t2i . Then, a uniform loss function for dual-406

stream distillation is introduced as follows:407

LTDD : LCLIP = fDS(D
S
i2t, D

S
t2i)

= FKL(D
S
i2t, D

DS
i2t ) + FKL(D

S
t2i, D

DS
t2i ).

(15)408

This loss has been widely used in pioneering stud-409

ies, including Leaner and Faster (Ren and Zhu,410

2022) which combin LGT and LCLIP as LT DD411

and TinyCLIP (Wu et al., 2023) which solely uses412

LCLIP as the distillation loss. We reimplement413

these works based on our model structures and414

datasets for fair comparisons.415

Single-stream distribution distillation. Simi-416

larly, ALBEF (Li et al., 2021) is also widely em-417

ployed as the single-stream teacher. Then we con-418

struct the distribution of the ALBEF output by419

Eq. (6). Due to the limitation of computing re-420

sources, we only calculate the top k text similarities421

that are most similar to each image. Similarly, each422

text is treated in the same way. It should be noted423

that the information of top k is provided by a dual-424

stream model, i.e., CLIP. Then, the loss function425

using only the single-stream model, i.e., ALBEF,426

can be denoted as follows:427

LTDD : LALBEF =

FKL(σ(D
S
i2t[Pi2t]), σ(D

SS
i2t [Pi2t]))

+FKL(σ(D
S
t2i[Pt2i]), σ(D

SS
t2i [Pt2i])).

(16)428

In LoopITR (Lei et al., 2022) and Thinking Fast429

and Slow (Miech et al., 2021), the authors employ430

LALBEF + LGT as LT DD and we also implement431

them as comparison methods.432

Dual-stream feature distillation. In terms of433

target feature distillation, the dual-stream model434

outputs the image representation IDS and text pre-435

sentations TDS separately. Then, we can align436

the student’s feature with the teacher’s feature by437

constructing the following equation:438

DFAI′
i2t = FD(I

S , TDS , (τDS + τS)/2)

DFAI′
t2i = FD(T

DS , IS , (τDS + τS)/2)

DFAT ′
i2t = FD(I

DS , TS , (τDS + τS)/2)

DFAT ′
t2i = FD(T

S , IDS , (τDS + τS)/2)

LTFD :LCLIP_FA=fDS(D
FAI′
i2t , DFAI′

t2i )

+fDS(D
FAT ′
i2t , DFAT ′

t2i )

(17)439

where LCLIP_FA indicates that we align the stu- 440

dent features with the dual-stream teacher features, 441

i.e., CLIP, and fDS is defined in Eq. (15). 442

Multi-teacher distillation. Our motivation for 443

integrating the multi-teachers’ output distributions 444

is to gain a better distribution to distill the student 445

model. Since single-stream models tend to per- 446

form better than dual-stream models, we argue that 447

single-stream models can better distinguish diffi- 448

cult samples that cannot be discriminated against 449

by dual-stream models. So, the final loss for mea- 450

suring the distribution gap between student and 451

multi-teacher is expressed as Eq. (8). Furthermore, 452

to align the student output features with the multi- 453

teacher fused features, the loss function for feature 454

alignment is expressed as Eq. (9). 455

4.3 Zero-shot Experiments and Ablations 456

For the student’s image and text encoder, we uti- 457

lize MobileViTv2 (Mehta and Rastegari, 2022) and 458

TinyBERT (Jiao et al., 2020), with 11.19 M and 459

14.71 M parameters, respectively. We also em- 460

ploy CLIP (ViT-L/14) and ALBEF as the teacher 461

models, containing approximately 427.62M and 462

419.12M parameters, respectively. In order to eval- 463

uate the generalizability of the student model, we 464

train it on both the CC3M and SBU datasets and 465

subsequently assess its performance on the COCO 466

and Flickr30k testsets. Moreover, the default value 467

of k is 11. All zero-shot results for comparisons 468

with the aforementioned baselines and ablation 469

studies are obtained using the checkpoint associ- 470

ated with the highest validation performance and 471

presented in Table 1. 472

As mentioned in Sec. 4.2, we propose a uni- 473

form loss paradigm for image-text retrieval dis- 474

tillation approaches. For fair comparisons, we 475

reimplement several baseline methods based on 476

the same model structures and datasets. Specifi- 477

cally, for TinyCLIP (Wu et al., 2023), we adopt its 478

affinity mimicking loss (equivalent to LCLIP ) and 479

uniformly manual inheritance for the TinyBERT 480

text encoder. For Leaner and Faster (Ren and Zhu, 481

2022), we adopt its LCLIP+LGT loss while elimi- 482

nating the LHN item since it’s orthogonal to distil- 483

lation approaches. For LoopITR (Lei et al., 2022), 484

we employ its LALBEF +LGT as the loss func- 485

tion. In addition, we also conduct comprehensive 486

ablation studies based on our loss components, as 487

illustrated in Table 1. 488

Several observations can be drawn from the 489

statistics. 1) Compared to training without teach- 490
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Table 1: Zero-shot comparisons and ablations on MSCOCO and Flickr30K testsets of the student model that uses the
mobileViTv2 and TinyBERT as backbones. * indicates that we reimplement the comparable approaches based on our model
structures and datasets. # denotes the value of ALBEF are copied from the original paper.

methods
Loss Flickr30K MSCOCO

Ltotal = LT DD + LT FD Image Retrieval Text Retrieval Image Retrieval Text Retrieval
LT DD LT FD R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP LGT 85.2 97.5 99.1 64.9 87.2 92.1 56.3 79.4 86.7 36.7 61.4 71.5
ALBEF # loss of ALBEF 94.1 99.5 99.7 82.8 96.3 98.1 - - - - - -
no teachers LGT - 43.5 70.5 78.9 31.0 58.1 69.2 21.9 44.4 56.9 16.4 37.0 58.6
(Lei et al., 2022)* LALBEF + LGT - 54.3 81.1 88.2 40.5 70.2 79.3 30.5 56.5 67.2 21.5 45.6 57.5
(Ren and Zhu, 2022)* LCLIP + LGT - 56.2 80.2 87.9 40.5 67.8 77.2 29.7 55.9 67.5 20.7 43.4 55.0
(Wu et al., 2023)* LCLIP - 60.1 82.4 89.2 41.3 69.2 78.5 31.9 58.1 67.9 21.1 44.3 56.0

Ablations of ours

LCLIP - 61.3 84.6 90.9 43.6 71.0 80.5 33.8 59.8 70.8 21.8 45.2 57.1
LALBEF - 39.7 69.2 77.8 29.9 58.0 69.6 22.5 46.9 60.1 15.5 36.4 48.2
LMT - 63.5 85.9 91.7 47.9 76.7 84.3 37.6 63.3 74.6 25.7 51.2 62.8
- LCLIP_FA 60.5 83.8 89.5 41.9 69.9 79.3 32.6 57.7 68.7 21.1 43.6 55.2
- LMT_FA 61.3 85.0 90.9 46.0 74.7 83.6 37.1 63.4 73.6 25.4 50.3 62.1
LCLIP LCLIP_FA 64.3 87.0 92.2 46.2 74.3 82.7 35.7 62.4 72.6 23.5 46.9 58.7
LCLIP LMT_FA 65.2 87.3 92.5 50.3 77.6 85.1 37.2 64.0 73.9 26.0 51.9 62.9
LMT LCLIP_FA 66.0 88.1 92.7 51.1 78.3 85.7 37.7 64.4 74.6 26.6 52.1 63.3

Ours LMT LMT_FA 66.6 87.4 92.7 52.1 78.9 86.6 38.6 65.0 75.2 27.3 52.7 64.0

Table 2: Finetuing ablations on MSCOCO and Flickr30K testsets of the student model that uses the MobileViTv2 and TinyBERT
as backbones. # denotes the value of ALBEF are copied from the original paper.

methods
Loss Flickr30K MSCOCO

Ltotal = LT DD + LT FD Image Retrieval Text Retrieval Image Retrieval Text Retrieval
LT DD LT FD R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP LGT - 95.3 99.7 100.0 84.0 97.0 98.7 74.2 92.3 96.0 57.3 81.8 88.7
ALBEF # loss of ALBEF 95.9 99.8 100.0 85.6 97.5 98.9 77.6 94.3 97.2 60.7 84.3 90.5

Ablations of ours
- LCLIP_FA 75.5 92.7 96.9 59.1 85.3 91.4 48.8 75.4 84.3 36.5 65.8 76.8
LCLIP - 78.7 93.6 96.8 61.6 86.6 92.0 54.4 79.7 88.1 39.0 68.0 78.8
LCLIP LCLIP_FA 79.2 94.3 97.4 62.8 87.3 92.6 54.0 79.9 87.8 39.3 68.1 78.8

Ours LMT LMT_FA 80.2 95.9 97.8 64.1 88.4 93.4 55.0 80.4 88.2 40.2 69.2 79.5

ers (LGT ), the CLIP target distribution distillation491

(LCLIP ) can bring more effective information, but492

the result will not be further improved when com-493

bining them together (LCLIP +LGT ). This indi-494

cates that the ground truth (usually very noisy) is495

not a good distribution when distilling the student496

model. 2) When we solely use the distribution of497

top k output by ALBEF (LALBEF ), it does not498

work very well, revealing that we also need to take499

into account distributions of more negative sam-500

ples. When we use both the distribution of ALBEF501

output and the ground truth (LALBEF+LGT ), the502

results are much better than using the ground truth503

alone, which shows that it is necessary to readjust504

the distribution of top k. 3) When you combine the505

distribution of multi-teachers (LMA), it is more ef-506

fective than any single teacher. 4) Moreover, when507

distillation on both feature and output distribution508

of CLIP (LCLIP+LCLIP_FA), it works better than509

distillation using only the similarity distribution510

(LCLIP ), which demonstrates that aligning the stu-511

dent’s features to the teacher’s features improves512

student performance. 5) Furthermore, the best re-513

sults are achieved when using a multi-teacher distri-514

bution and aligning the student features to the fused515

multi-teacher features (LMA+LMA_FA). This is a 516

good proof of the effectiveness of our multi-teacher 517

cross-modal alignment distillation framework since 518

both target distribution distillation and target fea- 519

ture distillation are important. 520

4.4 Finetuning Experiments 521

To further verify the finetuning performance of 522

our approach, we first finetune the teacher mod- 523

els and then perform different distillation strate- 524

gies on the MSCOCO and Flickr30K training 525

datasets. All results are shown in Table 2, which 526

maintains the same conclusion as before. We 527

achieve the best results when combining multi- 528

teacher distribution distillation (LMT ) and fea- 529

ture distillation (LMT_FA), surpassing dual-stream 530

distribution distillation (LCLIP ), feature distilla- 531

tion (LCLIP_FA) and combining them together 532

(LCLIP + LCLIP_FA). 533

4.5 Backbone and Hyper-parameter Selection 534

Since our method is a network-agnostic framework, 535

we replace the image encoder and text encoder with 536

MobileViTv3 (Wadekar and Chaurasia, 2022) and 537

ALBERT (Lan et al., 2020), with 5.5M and 12.2M 538

7



Table 3: Zero-shot performance on MSCOCO and Flickr30K testsets by employing MobileViTv3 and ALBERT as image and
text encoder, respectively.

Ltotal = LT DD+LT FD
Flickr30K MSCOCO

Image Retrieval Text Retrieval Image Retrieval Text Retrieval
LT DD LT FD R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
LCLIP LCLIP_FA 62.0 86.2 91.8 45.7 73.9 82.4 35.7 62.0 72.7 23.4 48.1 59.9
LMT LMT_FA 64.8 88.0 93.9 49.6 77.5 85.8 35.9 63.3 74.5 26.0 51.6 63.4

Table 4: The student model’s performance is assessed with various hyper-parameters k through zero-shot evaluations on
MSCOCO and Flickr30K testsets by using mobileViTv2 and TinyBERT as image and text encoder, respectively.

LT DD: LMA

Flickr30K MSCOCO
Image Retrieval Text Retrieval Image Retrieval Text Retrieval

LT FD: LMA_FA R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
k = 5 64.3 87.5 92.6 50.8 78.1 85.9 38.8 65.0 74.8 26.6 52.0 63.5
k = 11 66.6 87.4 92.7 52.1 78.9 86.6 38.6 65.0 75.2 27.3 52.7 64.0
k = 17 63.3 86.9 93.0 50.6 78.6 86.0 37.5 64.6 75.1 26.6 52.1 63.5

Table 5: Scan speed, retrieval speed and running memory of different models based on 100,000 candidate images. * indicates
that ALBEF selects the top 128 candidates for the fusion module calculation.

Model image encoder text encoder fusion module param. # scan time retrie. time running mem. platform

CLIP VIT-L/14 12-layer transformer dot product 427.62M 11.0ms 32.5ms ∼2GB V100 GPU
ALBEF VIT-B/16 6-layer transformer 6-layer transformer 419.12M 7.6ms 1945ms* ∼3GB V100 GPU

ours mobileVitV2-1.5 TinyBERT dot product 25.9 M
3.8ms 14.1ms ∼150MB V100 GPU
24.5ms 8.5ms 93MB Snapdragon 8 Gen3
24.8ms 7.5ms 107MB Dimensity 9300

parameters, respectively, to validate its generality.539

All zero-shot results are shown in Table 3. The540

statistics show that our approach still outperforms541

LCLIP + LCLIP_FA, revealing that our proposed542

method is general to different dual-stream models.543

Further, we conduct several experiments on the544

selection of k, with results shown in Table 4, which545

illustrates the impact of the hyper-parameter k on546

the distillation effect. Specifically, a lower R@1547

score for the Flickr30k data is observed when k is548

set to 5 due to the diminished information received549

from ALBEF. Conversely, when k is increased to550

17, the distribution of information from ALBEF551

becomes smoother, impeding the student model’s552

ability to learn more accurate information. Notably,553

this aforesaid effect is most pronounced in the R@1554

scores. Therefore, it is essential to select an appro-555

priate value of k to enhance the performance of556

the student model. Finally, we choose an optimal557

k = 11 for all experiments.558

4.6 Mobile-device Application559

Table 5 tests the performance of the lightweight560

model deployed on Snapdragon 8 Gen3 and MTK561

Dimensity 9300 chips, which uses TinyBERT562

as the text encoder and mobileViTv2 as the im-563

age encoder that builds an offline index using564

100,000 candidate images. We successfully achieve565

∼24.6ms/image scan speed, ∼8.0ms/query real-566

time retrieval speed, and ∼100MB running mem- 567

ory. Thanks to the deep optimization on the chip 568

side, the retrieval speed even surpasses that on the 569

V100 GPU, greatly advancing the mobile-device 570

application of VLP models. 571

5 Conclusion and Liminations 572

In this study, we propose a multi-teacher cross- 573

modal alignment distillation (MCAD) framework 574

which helps better integrate heterogeneous teach- 575

ers. The proposed MCAD involves the integration 576

of the teachers’ output features and similarity dis- 577

tributions. Moreover, MCAD uses the integrated 578

distributions to distill the student model and align 579

the student’s features to the fused teachers’ fea- 580

tures. Our proposed MCAD is demonstrated to be 581

a model-agnostic general framework, capable of 582

achieving superior performance on both zero-shot 583

and fine-tuning settings and a lightweight model 584

has been successfully deployed on mobile devices, 585

achieving real-time retrieval speed. 586

In this research, due to computational resource 587

constraints, we only conduct a few experiments 588

and simply determine the hyper-parameter k = 11 589

for all experiments. But it may be dynamic for dif- 590

ferent datesets and networks. Another limitation is 591

that using MLP as the projection layers in Eq. (12) 592

my not be optimal and more intricate designs need 593

to be investigated in the future. 594
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Table 6: statistic of the dataset. ⊺ represents the datasets
only used in the fine-tuning stage.

Datasets CC SUB COCO Flickr

train 1.90M 0.85 M 0.56M⊺ 0.15M⊺

val - - 25k 5k
test - - 25k 5k

A Dataset Statistics 846

Some of the images are no longer accessible on the 847

internet, and the CC dataset we collect for training 848

is not quite complete. Table 6 shows the statistics 849

of the datasets. ⊺ in Table 6 denotes the data we 850

only used for the fine-tuning stage. 851

B Train Details 852

In this study, the AdamW (Loshchilov and Hut- 853

ter, 2019) optimization technique with lr = 1e− 854

3, β1 = 0.9, β2 = 0.999 is employed for all exper- 855

iments, except for the test on ALBERT+ Mobile- 856

Vitv3 backbone, where the default learning rate is 857

adjusted to 1e-4. To facilitate the training process 858

and enhance the performance, warm-up with co- 859

sine decay is applied, while the apex framework is 860

utilized to accelerate the training. Notably, no data 861

augmentation methods are utilized in the teacher 862

models, while the student model only employs 863

"RandomResizedCrop". Moreover, to ensure suffi- 864

cient training, each experiment is trained for 100 865

epochs. It is important to mention that the value of 866

the hyperparameter k is set to 11, unless otherwise 867

specified in this paper. 868

In terms of teacher models, we adopt CLIP ViT- 869

L/14 as the dual-stream teacher1 and ALBEF2 as 870

the single-stream teacher. For the projection lay- 871

ers {g1, g2, g3, g4}, we simply employ two-layer 872

MLPs. 873

C Loss Explanation 874

We choose a special form of normalization term in 875

Eq. (11). We can view it as an L1 normalization. 876

Here we want to explain why we choose such nor- 877

malization formulation instead of commonly used 878

softmax. Given that single-stream models similar 879

to ALBEF typically output a score for an image- 880

text pair, to ensure that the scores of different sam- 881

ple pairs maintain their relative magnitude after 882

1https://huggingface.co/openai/
clip-vit-large-patch14

2https://github.com/salesforce/ALBEF
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normalization, we employed this specific normal-883

ization approach. Take an example for clearer clar-884

ification. Assume that the top 3 output scores are885

0.8, 0.4, 0.2 (the probability of two-classification886

after ALBEF must be between 0 and 1), after the887

L1 normalization, the outputs are { 0.8
0.8+0.4+0.2} =888

{0.571, 0.286, 0.143}. The relative ratio is still889

4 : 2 : 1. But if we choose softmax normal-890

ization, the output becomes {0.451, 0.302, 0.247},891

which is much smoother and lacking in differentia-892

tion. Actually, we have indeed tried to apply soft-893

max normalization during our experiments, but we894

found that simply using a softmax would cause AL-895

BEF’s score distribution to become smoother and896

result in inferior performance, while incorporating897

a temperature-scaled softmax function would intro-898

duce additional hyper-parameters. So we finally899

chose the L1 normalization method.900
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