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Semi-Supervised Anomaly Detection through Denoising-Aware
Contrastive Distance Learning

Anonymous Author(s)

Abstract
Semi-supervised anomaly detection (AD) has garnered growing
attention due to its ability to effectively combine limited labeled
data with abundant unlabeled data. However, current methods of-
ten impose artificial constraints on the proportion of unlabeled
anomalies in the training set or overlook potential noise from these
anomalies, thereby impeding the effective training of models for
anomaly detection in real-world scenarios where several anom-
alies may be present in the unlabeled dataset. Additionally, exist-
ing methods often struggle to effectively exploit and model the
complex relationships between data instances, which is critical
for learning more discriminative features and accurate distance
measures. Distance-based methods, in particular, typically rely on
Euclidean distance metric, which lacks the flexibility to capture
complex correlations across different data dimensions. To address
above challenges, we propose CAD, a denoising-aware Contrastive
distance learning framework for semi-supervised AD. It introduces
a contrastive training objective to facilitate the learning of distinc-
tive representations by contrasting the average distance between
anomalies and unlabeled samples. To fully exploit the information
from the unlabeled data meanwhile mitigate the effects of noise,
we incorporate a two-stage anomaly denoising and expansion strat-
egy to refine the dataset by identifying high-confidence samples
from the unlabeled set. Furthermore, we employ a parameterized
bilinear tensor distance layer to learn a customized distance metric,
enabling the model to capture intricate relationships among data
points. Extensive experiments on 10 real-world datasets demon-
strate that CAD significantly outperforms existing semi-supervised
AD models. Code available at https://github.com/CADrepo/CAD.

ACM Reference Format:
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Denoising-Aware Contrastive Distance Learning. In Proceedings of The Web
Conference 2025 (WWW’25). ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Anomaly detection refers to identifying data points that deviate
markedly from other samples [11]. This critical area of research in
data mining and information retrieval has wide-ranging applica-
tions across various domains, including disease diagnosis [9, 15],
fraud detection [7, 22], network intrusion detection [10], data
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preprocessing for machine learning [32]. While obtaining labels
for anomalies can be challenging, real-world scenarios often pro-
vide access to a limited amount of labeled data (e.g., clinically con-
firmed cases, authenticated security breaches). Consequently, semi-
supervised anomaly detection has garnered growing interest in
recent years. This approach leverages the limited labeled data, com-
bining the strengths of supervised and unsupervised methods to
improve detection accuracy and generalization.

With the rapid advancement of deep learning, recent AD models
have increasingly adopted neural networks to enhance their ability
to capture complex data patterns. These models are designed with
different approaches and objectives, shaped by varying perspec-
tives on the nature of anomalies. For instance, regression-based
methods learn an end-to-end scoring function to distinguish be-
tween normal and anomalous instances [27, 41], which consider
individual data points without accounting for relationships be-
tween points. Reconstruction-based methods employ models such
as autoencoders [24, 42] or GANs [2, 37] to identify anomalies by
comparing data points with their reconstructed versions. Distance-
based methods compute distances between data points, consider-
ing those far from others as anomalies [25, 28, 35]. Among these
approaches, distance-based methods inherently incorporate the re-
lationships between data points for anomaly identification. Recent
advancements in neural representation learning have significantly
propelled the development of distance-based methods. This paper
primarily focuses on distance-based anomaly detection techniques.

Despite the progress made by current distance-based AD ap-
proaches, several significant challenges still remain unsolved. Firstly,
while existing methods consider relationships between normal and
anomalous instances, they often underutilize the rich information
and the complex interrelations among data instances. For example,
these methods typically focus on comparing pairs of data points
with rigid loss functions like hinge loss, which can result in subopti-
mal representations1. Secondly, current approaches typically train
AD models on basically clean datasets, which means almost all of
the unlabeled data are normal instance. In practice, researchers
often artificially control the proportion of unlabeled anomalies in
the training set to be very low (e.g., less than 2% [26, 27, 42]). This
approach, however, may not reflect real-world scenarios where the
unlabeled data can contain many anomalies. Existing approaches
often overlook the noise in unlabeled data, which may prevent them
from learning robust data representations for anomaly detection.
Moreover, existing distance-based AD models often employ con-
ventional distance measures like Euclidean distance, which lacks
the flexibility needed to effectively capture complex correlations
across different data dimensions in real-world datasets.

To tackle those issues, we propose CAD, a denoising-aware
Contrastive distance learning framework for semi-supervised AD

1The optimization process will cease once the margin is satisfied, leading to insufficient
separation of hard-to-detect anomalies.

1
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which effectively leverages the inherent relationships within data
to identify subtle anomalies. The framework employs a contrastive
distance learning objective to learn discriminative representations,
fully exploiting the abundance of relational information in the data.
To further enhance the utility of unlabeled data and mitigate noise,
CAD incorporates a two-stage anomaly denoising and expansion
strategy, which introduces additional high-confidence samples into
the training process. Furthermore, instead of relying on Euclidean
distance, CAD utilizes a parameterized bilinear tensor distance to
capture the complex feature correlations. The anomaly scores are
computed based on deviations from the global context. We con-
duct experiments on 10 commonly used real-world AD datasets
that are commonly used by existing approaches to evaluate CAD.
Experimental results show that CAD significantly outperforms
existing semi-supervised AD models. Additional ablation studies
also demonstrate the effectiveness of individual components of our
model. In summary, our contributions are as follows:

• We propose a denoising-aware contrastive distance learning
framework that contrasts the average distances between anom-
alies and unlabeled samples, enabling the model to learn discrim-
inative features for semi-supervised AD.

• Wedesign a two-stage anomaly denoising and expansion strategy
in contrastive training to maximize the utilization of unlabeled
data while mitigate the impact of contamination in data.

• We introduce a parameterized bilinear tensor distance layer to
learn a customizedmetric, enabling themodel to capture intricate
relationships and measure divergence among data instances.

• We conduct experiments on 10 commonly used real-world AD
datasets, which show that CAD greatly outperform existing semi-
supervised AD models.

2 Related Works
2.1 Unsupervised Anomaly Detection
The earlier works often focus on anomaly detection in an unsuper-
vised manner due to the difficulty of accessing labeled data. Differ-
ent methods define anomalies from various perspectives, leading
to a diverse range of unsupervised anomaly detection techniques.
One of the widely used methods is the Local Outlier Factor (LOF)
[4], which compares the local density of a point to that of its neigh-
bors. Another classical approach is Isolation Forest [20, 21], which
isolates anomalies by randomly partitioning the feature space and
identifying points that are easily separated from the rest. One-
class classification methods, such as One-Class SVM [31] and Deep
SVDD [28], aim to learn a boundary that encloses normal data
points, treating outliers as anomalies. Distribution-based methods
estimate the distribution of the data and consider the data points
at the tail of the distribution as anomalies, such as ECOD [19]
and COPOD [18]. Recent unsupervised techniques leverage the
power of deep learning. Autoencoders [5, 17, 40] learns compact
representations of normal data, with anomalies identified as points
with high reconstruction error. Similarly, generative adversarial
networks [23, 30, 36] learns to generate normal samples and using
the discriminator to identify anomalies. To address the limitations
of relying on a single method, ensemble-based approaches such as
LSCP [38] and MetaOD [39] have been developed, which aim to

automatically select or combine multiple detectors to improve ro-
bustness and accuracy. Despite these advancements, unsupervised
models still suffer from low model performance due to the lack of
prior knowledge about the intrinsic characteristics of anomalies.
This limitation highlights the need for more adaptive and context-
aware approaches that can better capture the complex and varied
nature of anomalies in real-world datasets.

2.2 Semi-supervised Anomaly Detection
In recent years, semi-supervised anomaly detection has emerged
to address real-world scenarios where limited labeled samples are
available. Effective semi-supervised anomaly detection models typ-
ically need to combine elements of both supervised and unsuper-
vised learning paradigms to improve detection accuracy and gen-
eralization. Several semi-supervised approaches incorporate su-
pervised signals into unsupervised models to guide the training
process. For example, REPEN [25] enlarges the distance between
the representation of normal and anomalous samples to learn dis-
criminative representations for anomaly detection. GANormaly
[2] uses the labeled data to guide the generator to produce more
realistic normal samples in GAN, enhancing the model’s ability to
distinguish anomalies. DeepSAD [29] extends the unsupervised
Deep SVDD approach by incorporating labeled data to guide the
learning process, aiming to map normal instances close to a hyper-
sphere’s center and anomalies far from it. FEAWAD [40] utilizes
label information to guide the training of autoencoders, improving
their capacity to extract features relevant to anomaly detection.
The other approaches directly learn the anomaly scores to obtain
data representations associated with anomaly detection. For exam-
ple, DevNet [27] learns a neural network to map data instances
into scalar anomaly scores, guided by a reference distribution of
anomaly scores. PReNet [26] employs a relation network to predict
pairwise relationships for anomaly detection, which can also be
interpreted as a special distance metric.

However, current semi-supervised approaches often overlook
the potential noise in the training data, which limits themodel’s abil-
ity to learn distinctive data representations necessary for effective
anomaly detection. In addition, existing distance-based methods
typically employ conventional distance functions without learnable
parameters, which can be insufficiently flexible to capture com-
plex correlations across dimensions. To address this limitation, we
propose a two-stage denoising-aware contrastive training frame-
work with a parameterized bilinear distance metric to fully leverage
and model the abundant relationships between data, enabling the
learning of distinctive representations.

3 Methodology
3.1 Problem Statement
Given a dataset X = {𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2, ..., 𝑥𝑛+𝑚}, where 𝑥𝑖 ∈
R𝑑𝑖 is a 𝑑𝑖 -dimension data point. In semi-supervised AD, we have a
limited number𝑚 of labeled anomaliesX𝐴 = {𝑥𝑛+1, 𝑥𝑛+2, ..., 𝑥𝑛+𝑚},
and a large pool of unlabeled data X𝑈 = {𝑥1, 𝑥2, ..., 𝑥𝑛}, where
𝑚 << 𝑛. An anomaly detection model aims to learn a scoring func-
tion 𝜙 : X → R that assigns an anomaly score to data instances
such that for any anomalous sample 𝑥𝑖 and normal sample 𝑥 𝑗 , the in-
equality holds: 𝜙 (𝑥𝑖 ) > 𝜙 (𝑥 𝑗 ). Considering that the unlabeled data
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compromise the majority of the data and may contain anomalies,
how to effectively leverage the rich information from unlabeled
data is an important problem in anomaly detection.

3.2 Model Overview
The overall architecture of CAD is shown in Figure 1. CAD learns
the scoring function by contrasting the distance between data sam-
ples. To enable the learning of distinctive data representations
along with network parameters, we propose a novel contrastive
learning-based objective that fully exploits the relationships among
data samples. This objective encourages larger distances between
anomalies and unlabeled instances, while promoting closer dis-
tances among similar unlabeled instances. To effectively leverage
unlabeled data and mitigate the influence of noise, CAD employs
a two-stage anomaly denoising and expansion strategy. This ap-
proach provides high-confidence training samples by excluding
noise from training data and dynamically identifying anomalies for
training. Additionally, to address the limitations of conventional
distance metrics in capturing complex inter-dimensional correla-
tions, we introduce a parameterized distance model that learns
a context-specific distance metric tailored for anomaly detection.
Finally, the anomaly score of a data instance is determined by its
deviation in distance from the global context.

3.3 Denoising-aware Contrastive Learning
While existing methods consider relationships between normal and
anomalous instances, they typically focus on comparing limited
pairs of data points, often using rigid loss functions like hinge loss.
These methods enforce a fixed margin between anomalies and nor-
mal instances, which can result in suboptimal representations. Re-
cently, contrastive learning has proved to be an effective technique
in representation learning [6, 13]. By leveraging the relationships be-
tween positive and a pool of negatives, contrastive learning utilizes
a soft exponential loss to learn discriminative representations. In
this paper, we consider leveraging contrastive learning for anomaly
detection, aiming to enhance the discriminative power of learned
representations through this flexible and effective framework. In
the presence of supervised signals, this objective can be extended
to enlarge the similarity between samples from the same classes
while pushing instances from different classes farther apart [16],
which is implemented using the following InfoNCE loss:

𝓁(𝑥, 𝑥+,X−) = −𝑙𝑜𝑔 𝑒 (S (𝑓 (𝑥 ),𝑓 (𝑥+ ) ) )

𝑒 (S (𝑓 (𝑥 ),𝑓 (𝑥+ ) ) ) +∑
𝑥−∈X− 𝑒

(S (𝑓 (𝑥 ),𝑓 (𝑥− ) ) )

where 𝑥 , 𝑥+ and X− are often denoted as anchor, positive sample
and the negative sample set. The function S denotes the similar-
ity/distance metric (e.g., cosine similarity), 𝑓 : R𝑑𝑖 → R𝑑ℎ (𝑑ℎ < 𝑑𝑖 )
is the underlying representation learning function that maps the
sample into a lower-dimensional representation space with more
distinguishable features.

However, in the context of multi-dimensional data anomaly de-
tection, relying on the similarity of normal-anomalous pairs as
negative samples can be limiting. This is because the number of
available anomalies is often insufficient to effectively drive con-
trastive learning in semi-supervised AD. Additionally, the presence
of noise in unlabeled datasets can lead to incorrect associations

between samples, further degrading the quality of the representa-
tions learned. To tackle these challenges, we propose a two-stage
denoising-aware contrastive learning approach. This approach in-
corporates an anomaly denoising and expansion strategy to reduce
the impact of noise and enrich the training data with valuable anom-
aly samples. Ourmethod enhances contrastive learning by adjusting
the training objective to maximize the distance between anomalies
and the normal set, while utilizing the abundant normal-normal
pairs as informative negative samples. This strategy leverages the
numerous relationships within the data, allowing the model to learn
more distinctive and robust representations. Consequently, our ap-
proach improves anomaly detection performance by effectively
addressing noise and scarcity of anomalies in the training data.

3.3.1 Stage 1 - Normal Sample Denoising. In the first stage, the
goal is to refine the unlabeled dataset by excluding instances that
are likely anomalous, thereby retaining predominantly normal sam-
ples for model training. This is achieved through an unsupervised
anomaly detection method, which assigns a rough anomaly score
𝜙𝑟 (𝑥𝑖 ) to each instance in the unlabeled set. In our implementa-
tion, we employ a distance-based method CBLOF [14] for initial
anomaly scoring2. After scoring, we exclude instances likely to be
anomalous by using the mean value 𝜇 and the standard deviation 𝜎
of the anomaly scores:

X
𝑈

= {𝑥𝑖 |𝜙𝑟 (𝑥𝑖 ) < 𝜇 + 𝛼𝜎} (1)

where 𝛼 is a hyperparameter that controls the strictness of the
threshold. Consistent with REPEN [25], an anomaly threshold 𝜇+𝛼𝜎
results in a false positive upper bound of 1

1+𝛼2 . A larger 𝛼 selects
fewer pseudo anomalies, which is suitable for cleaner datasets,
whereas a smaller 𝛼 results in a smaller X

𝑈
, appropriate for more

contaminated datasets. We will thoroughly investigate the impact
of varying 𝛼 in Section 4.5.

Since the predictions of unsupervised method may not be accu-
rate, the anomaly set predicted by unsupervised method X𝑈 /X

𝑈
will not be used directly. Given that the refined unlabeled set X

𝑈
predominantly consists of normal samples, they should exhibit
higher similarity to each other compared to anomalies. To enforce
this, our proposed loss function maximizes the distance between
anomalies and the refined unlabeled set while minimizing the dis-
tance between normal samples. To train themodel, we first calculate
the distance between a data sample and a set. Specifically, given a
distance function S that measures the distance between two data
points, the distance between a sample 𝑥 and the refined unlabeled
set B

𝑈
is defined as the average distance:

D(𝑥,B
𝑈
) = 1

|B
𝑈
|

∑︁
𝑥𝑢 ∈B𝑈

,𝑥𝑢≠𝑥

S(𝑥, 𝑥𝑢 ) (2)

We then train the model by contrasting the distance between
data points. Specially, let B𝐴 ∈ X𝐴,B𝑈

∈ X
𝑈

be anomalous set
and refined unlabeled set in a batch, the loss function is defined as:

L1 =
1

|B𝐴 |
(
∑︁

𝑥𝑎∈B𝐴

− log
𝑒D(𝑥𝑎,B𝑈

)

𝑒D(𝑥𝑎,B𝑈
) +∑

𝑥𝑢 ∈B𝑈
𝑒D(𝑥𝑢 ,B𝑈

) ) (3)

2A variety of established unsupervised models can be employed here (e.g., Sp [34],
IForest [20]), yielding comparable performance for CAD in our prelimary experiments.
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Figure 1: Overall architecture of proposed CAD.

In this formulation, the entire set B
𝑈

serves as the anchor, with
𝑥𝑎 and 𝑥𝑢 acting as positive and negative samples, respectively.
This formulation presents two key benefits. First, unlike regression-
based losses that focus on individual data points, this contrastive
loss exploits the relative distances between numerous data pairs,
capturing richer and more informative relationships. As demon-
strated by [16], contrastive loss not only leads to improved classifi-
cation accuracy but also enhances model robustness compared to
traditional classification losses. Second, rather than using a single
normal sample as the anchor and calculating the loss for each in-
stance in B

𝑈
, using the entire set B

𝑈
as the anchor and computing

the average distance reduces the computational complexity while
maintaining comparable model performance.

3.3.2 Stage 2 - Anomalous Sample Expansion. In the second stage,
we aim to expand the set of labeled anomalies by dynamically
identify anomalies from X𝑈 . Labeled anomalies provide valuable
insights into the nature of anomalous instances during training, but
their scarcity limits the effectiveness of the model. To tackle this,
after Stage 1 training is complete, we select the samples with the 𝑘𝐴
highest anomaly scores as expanded anomalies at the end of each
training epoch, where 𝑘𝐴 = |X𝑈 /X

�̂�
| is the number of instances

excluded in the first stage. This forms a pseudo anomaly set X𝐴′ :

X𝐴′ =
{
𝑥𝑖 ∈ X | 𝑖 ∈ argmax𝑗𝜙 (𝑥 𝑗 ), 𝑗 ∈ {1, . . . , 𝑘𝐴}

}
(4)

Next, we incorporate the pseudo-labeled anomalies into the train-
ing process. Specifically, let B𝐴′ ∈ X𝐴′ be the set of pseudo anom-
alies in a batch. The training objective is then revised as follows:

L2 =
1
𝑛𝐴

(
∑︁

𝑥𝑎∈B𝐴

− log
𝑒D(𝑥𝑎,B𝑈

)

𝑒D(𝑥𝑎,B𝑈
) +∑

𝑥𝑢 ∈B𝑈
𝑒D(𝑥𝑢 ,B𝑈

)

− 𝜆
∑︁

𝑥 ′
𝑎∈B𝐴′

log
𝑒D(𝑥 ′

𝑎,B𝑈
)

𝑒D(𝑥 ′
𝑎,B𝑈

) +∑
𝑥𝑢 ∈B𝑈

𝑒D(𝑥𝑢 ,B𝑈
) ) (5)

where 𝑛𝐴 = |B𝐴 | + |B𝐴′ | is the total number of anomalies in the
batch. We introduce a loss weight 𝜆 to control the impact of ex-
panded anomalies. Intuitively, a larger 𝜆 assigns higher weights,
which is appropriate for high-quality expanded anomalies. The
exploration of 𝜆 will be discussed in Section 4.5.

3.4 Bilinear Tensor Distance
To address the limitations of traditional distance measure in cap-
turing complex correlations across dimensions, we introduce the
parameterized distance function to capture complex correlations
between features. After obtaining the representations, we define a
parameterized distance function in a bilinear tensor productmanner.
This approach allows us to model complex relationships between
data points by introducing a learnable distance metric. Specifically,
given the encoder 𝑓 parameterized by 𝜃 , a distance metric tensor
𝑊 ∈ R𝑑ℎ×𝑑ℎ×𝑐 and a pair of data instances 𝑥1, 𝑥2, the distance
function S in Eq (2) can be redefined as:

S(𝑥1,𝑊 , 𝑥2) =
1
𝑐

𝑐∑︁
𝑖=1

tanh(𝑓 (𝑥1, 𝜃 )𝑊 𝑖 𝑓 (𝑥2, 𝜃 )𝑇 ) (6)

where𝑊 𝑖 refers to the 𝑖𝑡ℎ slice in the third dimension of𝑊 . 𝑐 refers
the number of channels in the distance function, which is associated
with the representation size 𝑐 = 𝛽𝑑ℎ . The tanh non-linearity is
applied to introduce flexibility and allow for more complex patterns
to be captured in the distance computation. This distance function
is inspired by the neural tensor network [33], which also models
interactions between data points using tensor products. In our case,
we average the 𝑐 dimensions to compute a single distance score.
This can be interpreted as aggregating the distances computed from
𝑐 different perspectives, akin to a multi-channel approach, where
each slice of the tensor captures a different aspect of the relationship
between 𝑥1 and 𝑥2. Consequently, this operation is analogous to an
average pooling mechanism and provides a more comprehensive
assessment of the relationship between two data points.

Overall Training. Algorithm 1 present training procedure of CAD.
An unsupervised AD model is first applied to perform normal sam-
ple denoising in line 1. And then, the model parameters are ran-
domly initialized in line 2. After that, lines 3-16 describe the training
process. In particular, line 5-8 randomly samples a batch of instances
to train the model. Considering that the labeled instances are rare,
the sampling process of labeled anomalies are independent from
that of unlabeled data to ensure there are labeled anomalies in each
batch. That means the labeled instances may be repeatedly used in
different batches. Since the model may not be fully trained at the
beginning, the anomaly sample expansion process will begin after
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Algorithm 1 CAD Training

Input: training set X = {X𝑈 ,X𝐴} ∈ R𝑑

Output: network parameters Θ = {𝜃,𝑊 }
1: normal label denoising to generate X

𝑈
2: randomly initialize Θ
3: for 𝑖 = 1 to 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 do
4: for 𝑗 = 1 to 𝑛_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 do
5: sample training batch B𝐴,B𝑈

from X𝐴,X𝑈
6: if 𝑖 > 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠/2 do
7: sample training batch B𝐴′ from X𝐴′

8: end if
9: calculate 𝑑 (𝑥,𝑊 ,B

𝑈
) for each 𝑥 ∈ B

10: calculate loss value using Eq (3), (5)
11: gradient descent to optimize network parameters Θ
12: end for
13: if 𝑖 ≥ 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠/2 do
14: anomalous label expansion to generate X𝐴′

15: end if
16: end for
17: return Θ

𝑛_𝑒𝑝𝑜𝑐ℎ𝑠/2 epochs of training. After calculating the loss value, we
use an Adam optimizer to update model parameters.

3.5 Inference
After 𝑓 and 𝐷 are trained, we leverage the distance between data
points to detect anomalies. Rather than calculating the anomaly
score as the average distance between a target instance and all
points inX𝑈 , we simplify the process by utilizing the global context
𝑧. Specially, with the learned parameters Θ = {𝜃,𝑊 }, the anomaly
score for an instance 𝑥 is calculated as follows:

𝜙 (𝑥,Θ) = 1
𝑐

𝑐∑︁
𝑖=1

(𝑓 (𝑥, 𝜃 )𝑊 𝑖𝑧𝑇 ) (7)

This approach significantly reduces the computational complex-
ity, as it requires only a single bilinear distance computation, rather
than |X𝑈 | computations. We use the average representation of X𝑈
to approximate 𝑧, since the majority of X𝑈 are normal samples 3:

𝑧 =
1

|X𝑈 |
∑︁

𝑥𝑖 ∈X𝑈

𝑓 (𝑥𝑖 , 𝜃 ) (8)

In practical applications, 𝑧 can be precomputed and stored after
the training phase. Based on our preliminary experiments, this
approach demonstrates performance comparable to the more com-
putationally intensive method.

4 Experiments
4.1 Experimental Setup

Datasets. We use 10 real-world datasets from various domains
that are commonly used by related works [12, 19, 20, 26, 27, 42]
to evaluate the effectiveness of different anomaly detection mod-
els. The datasets can be accessed from the ODDS library4 and the
3We also evaluate the average embedding of X or X

�̂�
in our experiment, yielding

comparable performance results.
4https://odds.cs.stonybrook.edu/

Table 1: Statistics of datasets. N is the number of instances,
𝑑𝑖 is the dimension, 𝑁𝐴 is the number of anomalies, 𝑓𝐴 refers
to the number of labeled anomalies and the ratio w.r.t. the
number of all anomalies in the training set.

Datasets N 𝑑𝑖 𝑁𝐴 𝑓𝐴 Category
Cardiotocography 2114 21 466 18(5%) Healthcare
Mammography 11183 6 260 10(5%) Healthcare

Musk 3062 166 97 3(5%) Chemistry
Waveform 3443 21 100 4(5%) Physics
SpamBase 4207 57 1679 13(1%) Document
Satellite 6435 36 2036 16(1%) Image
Mnist 7603 100 700 28(5%) Image

Campaign 41118 62 4640 37(1%) Finance
Fraud 284807 29 492 19(5%) Finance
Census 299285 500 18568 148(1%) Sociology

Adbench benchmark [12]. We follow existing works [1, 3, 12, 20]
to define anomalies for each dataset according to domain-specific
knowledge or using the minority classes. In detail, Cardiotocogra-
phy and Mammography are about disease diagnosis, and the data
points with specific disease will be treated as anomalies. The Musk
dataset is to predict new molecules to be musks or non-musks, and
the musk classes with fewer samples are treated as anomalies. The
Waveform dataset contains three classes of waves, and the first
class is used as normal class and the rest two classes are sampled
as anomalies. Spambase is a spam email detection task, and the
anomalies are spam emails. Satellite and Mnist are image classifica-
tion datasets from astronautics and hand-written letter recognition
domains, and the classes with fewer samples will be treated as
anomalies. Campaign is a bank telephone promotion dataset, where
rarely successful records are treated as anomalies. Fraud is a credit
card fraud detection task, and the anomalies are fraudulent records.
Census dataset is from US census bureau dataset, and the goal is to
find the rare persons with high income.

We randomly sample 80% data points for training and leave the
rest 20% as testing data. Note that when partitioning the dataset
into training and test sets, unlike some existing works that only
sample a small fraction of unlabeled anomalies in the training
data (commonly 2% of all anomalies [26, 27, 42]), the labels for
normal and anomalous instances were stratified to maintain their
original proportions, which means there may be more unlabeled
anomalies in the training set. We randomly select a small set of
anomalous instances in the training set as labeled data. The ratio of
labeled data depends on the scale of datasets. Generally, for datasets
with anomalies less than 1000, we randomly sample 5% of labeled
anomalous instances, for datasets with anomalies more than 1000,
the ratio is 1%. The details of the datasets are listed in Table 1. A
z-score normalization is performed for all the datasets, and the
dimensions with a standard deviation equal to 0 will be dropped in
this stage, since all of the instances have the same value in those
dimensions, which brings no additional information for identifying
anomalies. The models with the lowest loss value in the training
set will be used to evaluate on the test set.

Evaluation Metrics. Two widely adopted metrics are used to
evaluate the effectiveness of anomaly detection models, i.e., the
Area Under Receiver Operating Characteristic Curve (AUC-ROC)
and the Area Under Precision-Recall Curve (AUC-PR), where ROC
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Table 2: Overall comparison on 10 real-world datasets. Methods with the best performance are marked in bold.

Datasets
AUC-ROC AUC-PR

GAN REPEN DevNet DeepSAD FEAWAD PReNet CAD GAN REPEN DevNet DeepSAD FEAWAD PReNet CAD
Cardiotocography 0.7018 0.8234 0.8692 0.7832 0.7852 0.8441 0.9264 0.4315 0.6017 0.7361 0.5453 0.6672 0.7068 0.7929
Mammography 0.8568 0.8984 0.9025 0.8925 0.8799 0.9078 0.9092 0.1937 0.4563 0.5604 0.4698 0.5343 0.5511 0.5618

Musk 1.0000 1.0000 0.8027 0.9639 0.8580 0.9076 1.0000 1.0000 1.0000 0.7548 0.7925 0.7926 0.8932 1.0000
Waveform 0.6068 0.8046 0.7900 0.7042 0.7088 0.7853 0.8834 0.0637 0.0945 0.1947 0.1787 0.1761 0.1876 0.3420
SpamBase 0.5193 0.7159 0.6179 0.5566 0.6299 0.6141 0.7823 0.4096 0.5780 0.5948 0.4393 0.5914 0.6014 0.7297
Mnist 0.6877 0.9671 0.8801 0.9016 0.9042 0.8672 0.9676 0.2607 0.7848 0.7231 0.5980 0.6486 0.7036 0.8247
Satellite 0.7231 0.7571 0.8077 0.7963 0.7404 0.7707 0.8543 0.5507 0.7445 0.7298 0.6798 0.6854 0.7030 0.8069
Campaign 0.6607 0.7996 0.7432 0.7301 0.7682 0.7244 0.8718 0.2198 0.3977 0.3466 0.2751 0.3450 0.3300 0.4707
Fraud 0.7526 0.9683 0.9432 0.9430 0.9479 0.9435 0.9734 0.1333 0.6562 0.6116 0.5868 0.5727 0.5697 0.7423
Census 0.6904 0.8945 0.7991 0.7266 0.8020 0.7876 0.8949 0.1006 0.3701 0.3586 0.1860 0.2000 0.3548 0.4543
Average 0.7199 0.8629 0.8156 0.7988 0.8025 0.8152 0.9063 0.3364 0.5684 0.5611 0.4751 0.5213 0.5601 0.6725
P-value 0.0002 0.0118 0.0010 0.0013 0.0001 0.0002 - 0.0001 0.0015 0.0004 4.04e-6 2.34e-5 2.24e-5 -

curve plots the true positive rate against the false positive rate, while
the PR curve plots precision against recall. Both of the metrics has
the bound of [0,1], and a higher value means a better model per-
formance. While both metrics provide valuable insights into model
performance, they offer distinct perspectives on the classification
task. AUC-ROC is insensitive to class imbalance and provides an
overall measure of model accuracy across all possible thresholds. In
contrast, AUC-PR is particularly sensitive to the performance on the
minority class, making it especially relevant in highly imbalanced
datasets typical of anomaly detection scenarios [8].

Baselines. We consider six state-of-the-art semi-supervised anom-
aly detection models GAN [2], REPEN [25], DevNet [27], Deep-
SAD [29], FEAWAD [42] and PReNet [26] as our competing meth-
ods. To test the data efficiency of the semi-supervised AD models,
a popular unsupervised AD model IForest [21] is also added for
comparison. Among these methods, REPEN and DeepSAD apply a
Euclidean distance function to identify anomalies. PReNet learns
pairwise relationships among normal and anomalous instances,
which can also be interpreted as a special distance metric.

Parameter Settings. In our implementation, a multilayer per-
ceptron (MLP) with a single hidden layer is used to learn representa-
tions from data. Given a dataset with the dimension of 𝑑𝑖 , the repre-
sentation size of the output layer 𝑑ℎ is set to min

(
32,max

(
4, 𝑑𝑖4

))
.

Based on the experimental results in Section 4.5, the number of
channels of bilinear tensor distance model 𝑐 is set to 3 times of the
embedding size. The weight of the loss derived from pseudo-labels,
𝜆, is set to 0.3, while the hyperparameter 𝛼 controlling the anomaly
threshold in the first training stage is set to 3. Model parameters
are optimized using the Adam optimizer, with a weight decay of 0.2.
Consisting with previous works [12], the models with the lowest
loss value in the training set will be used to evaluate on the test
set. For the baseline methods, we follow the existing works and use
their released code with the default parameter settings.

4.2 Main Results
We conducted a comparative analysis of the proposed method
against baseline approaches using 10 real-world datasets. Given
the limited labeled data, different data divisions can lead to varying
model performances. Therefore, we report the average results from

ten independent experiments for all models. The results are pre-
sented in Table 2. As shown in the table, the proposed method out-
performs other methods, achieving the highest AUC-ROC and AUC-
PR scores across all 10 datasets. In terms of AUC-ROC, the proposed
method, CAD, shows notable average improvements over REPEN
(5.0%), DevNet (11.1%), PReNet (11.2%), FEAWAD (12.9%), DeepSAD
(13.5%), and GAN (25.9%). For AUC-PR, CAD achieves even more
substantial improvements compared to REPEN (18.3%), DevNet
(19.9%), PReNet (20.0%), FEAWAD (29.0%), DeepSAD (41.5%), and
GAN (99.9%). These results demonstrate the effectiveness of our
proposed approach across various settings.

We also observe that CAD achieves significant improvements in
some datasets (e.g., SpamBase, Campaign), while the improvements
are relatively smaller in other datasets (e.g., Mammography). One
reason for this disparity lies on the ratio of unlabeled anomalies
in the training data. As mentioned earlier, several previous works
controlled the ratio of unlabeled anomalies to be under 2%, mean-
ing that 2% of the training data are anomalous while the rest are
normal. However, in our experimental settings, this ratio matches
the natural ratio of anomalies in each dataset. A common approach
in existing semi-supervised AD models is to treat all unlabeled data
as normal instances(e.g., DevNet, FEAWAD, PReNet), and a training
set with more unlabeled anomalies will certainly bring negative
impact on semi-supervised AD models. So, for datasets with low
contamination rate (e.g., Mammography, which has 2.32% anom-
alies), those models tend to perform well, while for the datasets
with much more anomalies (e.g., SpamBase, which has 39.91% anom-
alies), their performance will decrease. However, we argue that it
is challenging to ensure the quality of unlabeled training data in
real-world scenarios. As shown in the experimental results, our
proposed two-stage anomaly denoising and expansion strategy,
combined with a denoising-aware training objective, effectively
mitigates the adverse effects of anomalies within the unlabeled set,
leading to better model performance.

4.3 Ablation Study
We conducted an ablation study to further investigate the impact
of anomaly denoising and anomalous expansion in contrastive
learning, as well as the parameterized bilinear distance. First, we re-
moved each of the first two components independently to evaluate
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Figure 2: AUC-PR w.r.t. ratio of labeled anomalies.

their performance. The variant w/o ND denotes the model without
normal sample denoising, and the variant w/o ND+AE denotes
the model without the entire anomaly denoising and expansion
strategy. Next, we replaced the parameterized bilinear distance with
a Euclidean distance function, keeping the rest of the CAD model
unchanged. This variant is denoted as w/o PBD. Table 3 reports
the results of ablation studies.

Based on the average performance in terms of AUC-ROC and
AUC-PR scores, our CAD model demonstrates the highest perfor-
mance compared to three ablation variants. This underscores the
effectiveness and necessity of each component. Among the three
main components, we observed that removing the parameterized
distance metric results in the worst performance compared to the
other models. This phenomenon highlights the crucial role of the
learnable distance metric in capturing complex correlations from
different dimensions, which aids in identifying anomalies. Addition-
ally, despite the absence of the parameterized distance metric, our
denoising-aware contrastive distance learning framework remains
competitive among baselines in Table 2., further demonstrating the
effectiveness of the proposed denoising-aware training objective.

Additionally, although the anomaly denoising and expansion
strategy generally enhances anomaly detection performance across
most datasets, there are still a few datasets (e.g., Mammography)
where this strategy slightly degrades the overall model performance.
This issue may stem from the number of expanded anomalies and
the accuracy of unsupervised anomaly detection (AD) models used
for normal sample denoising. For datasets with a low ratio of un-
labeled anomalies, an anomaly threshold of 𝜇 + 3𝜎 may still mis-
classify some normal samples as anomalies, excluding them from
training. This exclusion can hinder the model’s ability to learn
the relationships between normal and anomalous samples. Even
so, our anomaly denoising and expansion strategy brings perfor-
mance gains in the average performance across 10 datasets. We will
investigate the impact of 𝜎 in our experiments.

4.4 Data Efficiency
The goal of semi-supervised AD methods is to make full use of the
limited labeled data. Given the difficulty of obtaining labeled data,

Table 3: Ablation study on model components. Best model
are marked in bold. Cardio. refers to the Cardiotocography
dataset, Mammo. refers to the Mammography dataset.

Datasets
AUC-ROC AUC-PR

w/o
PBD

w/o
ND

w/o
ND+AE CAD

w/o
PBD

w/o
ND

w/o
ND+AE CAD

Cardio. 0.8691 0.9167 0.9151 0.9264 0.7368 0.7861 0.7856 0.7929
Mammo. 0.8942 0.9061 0.9069 0.9092 0.5533 0.5794 0.5879 0.5618
Musk 1.0000 1.0000 0.9800 1.0000 1.0000 1.0000 0.9035 1.0000

Waveform 0.7614 0.8564 0.8329 0.8834 0.1493 0.3417 0.3300 0.3420
SpamBase 0.6993 0.7478 0.7349 0.7823 0.6291 0.7010 0.6850 0.7297
Mnist 0.8671 0.9308 0.9188 0.9676 0.6763 0.7502 0.7311 0.8247
Satellite 0.7800 0.8577 0.8508 0.8543 0.7277 0.7906 0.7741 0.8069
Campaign 0.6988 0.8588 0.8126 0.8718 0.2933 0.4515 0.3831 0.4707
Fraud 0.9561 0.9606 0.9567 0.9734 0.6087 0.6743 0.7225 0.7423
Census 0.7955 0.8955 0.8740 0.8949 0.3430 0.4554 0.3688 0.4543
Average 0.8322 0.8930 0.8783 0.9063 0.5718 0.6530 0.6272 0.6725
P-value 0.0018 0.0191 0.0024 - 0.0009 0.0711 0.0090 -

a superior model should achieve higher performance with fewer
labeled samples. In this section, we examine the models’ ability
of utilizing labeled data by training the models with different la-
beled ratios. In particular, we vary the ratio of labeled anomalies to
[0.01, 0.02, 0.05, 0.1] relative to the number of anomalies in training
data to assess each model’s performance. Additionally, to under-
stand the effect of using additional information of labeled data, we
include a popular unsupervised method IForest [21] for comparison.

As seen in Figure 2, semi-supervised methods generally out-
perform the unsupervised approach with as little as 2% labeled
anomalies on most datasets. This observation aligns with the core
objective of semi-supervised models: leveraging limited label in-
formation to enhance performance significantly. Notably, the per-
formance gain when increasing the labeled data from 1% to 5% is
typically more substantial than the improvement observed when
moving from 5% to 10%. This trend indicates the importance of
even a small amount of labeled data in semi-supervised AD. Fur-
thermore, CAD demonstrates superior data efficiency compared to
other semi-supervised approaches. Across the majority of datasets,
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Figure 3: Effects of 𝜆 and 𝛽 .

CAD achieves better performance with fewer labeled samples. In
particular, CAD utilizes only half labeled data to outperform the
other models in Cardiotocography, SpamBase,Waveform, Campaign
and Fraud. These results indicate that our framework effectively
exploits the underlying data relationships even with limited labeled
data, making it particularly suitable for real-world scenarios where
labeled anomalies are scarce and costly to obtain.

4.5 Parameter Analysis
We conduct additional experiments to explore the impact of three
key hyperparameters on our CAD model: the number of channels
𝑐 in bilinear tensor distance (Eq 6), the loss weight for expanded
anomalies 𝜆 (Eq 5), and anomaly threshold factor 𝛼 (Eq 1). We
systematically vary each hyperparameter while keeping the others
at their default values and using a fixed random seed. The model’s
performance is recorded in terms of AUC-PR scores.

Loss weight for expanded anomalies (𝜆). The hyperparame-
ter 𝜆 controls the impact of expanded anomalies to model training.
A larger value of 𝜆 increases the influence of augmented anomalies
on the training of model. As shown in Figure 3, the model’s perfor-
mance is generally stable with respect to 𝜆 across the majority of
datasets. However, a notable drop in performance is observed in the
fraud dataset when 𝜆 exceeds 0.3. This can be attributed to the low
anomaly ratio in this dataset (0.17%), where the anomaly threshold
set at 𝜇 + 3𝜎 during the normal sample denoising stage still results
in an overly large 𝑘𝐴 . Consequently, a significant number of nor-
mal samples are mislabeled as pseudo anomalies. As 𝜆 increases,
the influence of these misclassified samples grows, leading to a
decline in model performance. This observation also underscores
the importance of selecting an appropriate 𝛼 .

Number of channels in bilinear tensor distance (𝑐). The pa-
rameter 𝑐 control the number of channels to capture the underlying
structure of the data. Given the representation size of 𝑑ℎ , we define
the number of channels as 𝑐 = 𝛽𝑑ℎ . The right subfigure of Figure 3
illustrate the impact of varying 𝛽 . As shown, the model’s perfor-
mance improves across several datasets when 𝑐 is relatively small.
This suggests that a distance function with fewer channels may
lack the capacity to adequately capture correlations between dimen-
sions. However, as 𝑐 continues to increase, performance plateaus
or even deteriorates, as seen in the SpamBase dataset. This decline
in performance likely indicates the onset of overfitting due to the
increased number of parameters. Considering the balance between
model expressiveness and computational efficiency, the experimen-
tal results suggest that a 𝛽 value in the range of [2, 4] provides
stable and better model performance.
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Figure 4: Effects of 𝛼 . 𝑘𝐴 is indicated on 𝐴𝑐𝑐 curve.

Anomaly threshold factor (𝛼). The hyperparameter 𝛼 con-
trols the size of X

�̂�
and X𝐴′ . To assess the impact of 𝛼 , we evaluate

the AUC-PR, the accuracy of expanded anomalies (𝐴𝑐𝑐), and 𝑘𝐴 in
differnt datasets, where 𝐴𝑐𝑐 = 1

𝑘𝐴

∑
𝑥 ′
𝑎∈X𝐴′ 1[𝑥 ′

𝑎 is an anomaly] . Fig-
ure 4 illustrates the results for four representative datasets, which
exhibites distinct responses to variations in 𝛼 . In datasets with low
anomaly rates (e.g., Mammography), increasing 𝛼 improves model
performance. Conversely, in datasets with higher anomaly rates
(e.g., SpamBase), a lower 𝛼 value, resulting in a larger 𝑘𝐴 , tends to
enhance performance due to the inclusion of more true anomalies
in the training set. In datasets like Cardiotocography and Cam-
paign, the performance first improves with increasing 𝛼 , but then
declines as 𝛼 continues to rise. This pattern suggests an optimal
trade-off point between pseudo-label accuracy and the number of
pseudo-anomalies used in training. These findings highlight the
dataset-specific sensitivity to 𝛼 , which is linked to the anomaly rate
and the model’s performance on each dataset. This variability also
underscores the benefit of incorporating prior knowledge about
the expected anomaly rate in the dataset to determine 𝑘𝐴 .

5 Conclusion
In this paper, we presented CAD, a novel denoising-aware con-
trastive distance learning framework for semi-supervised anomaly
detection. CAD leverages a contrastive learning objective to fully
utilize the relationships between data points, enhancing the model’s
ability to learn discriminative features. The framework incorpo-
rates with a two-stage anomaly denoising and expansion strategy
that allows for robust learning in the presence of noisy data. Fur-
thermore, by introducing a parameterized bilinear tensor distance,
CAD is able to capture complex feature correlations, overcoming
the limitations of conventional distance measures like Euclidean
distance. Experiments demonstrate that CAD not only handle noisy
data more robustly but also achieve better anomaly detection with
fewer labeled samples compared with existing models. Ablation
study also confirms the effectiveness of key components in CAD.
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