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ABSTRACT

Long-horizon robotic manipulation poses significant challenges for autonomous
systems, requiring extended reasoning, precise execution, and robust error recovery
across complex sequential tasks. Current approaches, whether based on static
planning or end-to-end visuomotor policies, suffer from error accumulation and
lack effective verification mechanisms during execution, limiting their reliability
in real-world scenarios. We present Agentic Robot, a brain-inspired framework
that addresses these limitations through Standardized Action Procedure (SAP)-a
novel coordination protocol governing component interactions throughout ma-
nipulation tasks. Drawing inspiration from Standardized Operating Procedures
(SOPs) in human organizations, SAP establishes structured workflows for planning,
execution, and verification phases. Our architecture comprises three specialized
components: (1) a large reasoning model that decomposes high-level instructions
into semantically coherent subgoals, (2) a vision-language-action executor that
generates continuous control commands from real-time visual inputs, and (3) a
temporal verifier that enables autonomous progression and error recovery, ensuring
timely subtask termination to avoid redundant execution and enable smooth subgoal
transitions. This SAP-driven design supports dynamic self-verification without
external supervision. On the LIBERO benchmark, Agentic Robot achieves com-
petitive performance, with a clear advantage in the average success rate of 79.6%,
outperforming Spatial VLA by 6.1% and OpenVLA by 7.4% on long-horizon tasks.
These results demonstrate that SAP-driven coordination between specialized com-
ponents enhances both performance and interpretability in sequential manipulation,
suggesting significant potential for reliable autonomous systems.

1 INTRODUCTION

Recent advances in foundation models have demonstrated remarkable potential for creating embodied
agents capable of interpreting natural language instructions and executing complex manipulation
tasks (Brohan et al., [2023bj [Liang et al., 2023} Kim et al., |2024; Brohan et al., 2023a)). These systems
effectively bridge the gap between high-level reasoning and low-level physical control. However,
existing embodied manipulation systems struggle to achieve reliable performance on long-horizon
tasks that require extended sequences of coordinated actions (Huang et al., 2022} Jiang et al., [2022;
Feng et al., |20235)). Real-world scenarios such as table setting, grocery packing, or furniture assembly
demand not only sophisticated reasoning and precise motor control, but also robust error detection
and recovery mechanisms throughout extended task execution (Zhu et al.,|2021;|Chen et al., 2024).

Through extensive analysis of current approaches, we identify fundamental limitations that prevent
reliable long-horizon manipulation. Most existing methods fall into two categories with critical
weaknesses: static plan-following agents that generate fixed execution sequences without adaptive
feedback (Liang et al.|[2023; Brohan et al.| 2023b)), and end-to-end visuomotor policies that directly
map observations to actions without intermediate reasoning (Kim et al.,|2024). Static planners suffer
from compounding error propagation—small deviations early in execution cascade into catastrophic
failures (Xu et al., [2022)). End-to-end policies lack mechanisms for introspection and often fail
to recover from unexpected states, particularly when encountering scenarios outside their training
distribution (Zhu et al.| [2021)).
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Drawing insights from Standardized Operating Procedures (SOPs) in human organizations (Hong
et al., 2023} |Wu et al.;[2023)), we observe that reliable task execution requires structured coordination
protocols. In natural cognition, complex behaviors emerge from specialized neural circuits work-
ing through well-defined interaction patterns: prefrontal regions handle planning, motor cortices
execute actions, and sensory-motor loops provide continuous verification feedback (Sutton et al.,
1999; Nachum et al.,|2018)). Similarly, in human organizations, SOPs establish clear workflows that
minimize errors and enable effective collaboration across different roles. This biological and organi-
zational wisdom suggests that robotic systems can benefit from structured coordination protocols that
govern component interactions.

Inspired by these insights, we design Agentic Robot, a brain-inspired framework that introduces
Standardized Action Procedure (SAP)-a novel coordination protocol specifically designed for
embodied manipulation tasks. Unlike SOPs, which govern human workflows, SAP encodes the
natural cognitive cycle into structured agent interactions for robotic systems. SAP defines the
complete agentic loop that governs how our three specialized components—Planner, Executor, and
Verifier—coordinate throughout task execution through well-defined interfaces and standardized
protocols for information exchange, progress monitoring, and error recovery. Besides, Agentic Robot
requires agents to maintain structured interaction protocols throughout the manipulation process.
Unlike prior works such as Manipulate-Anything (Duan et al., [2025])) that focus on sequential task
execution without structured verification, SAP introduces a novel coordination protocol that integrates
subgoal-level verification and proactive recovery. More specifically, all components follow strict
SAP-defined workflows, ensuring that information handoffs comply with established protocols and
eliminating the communication breakdowns that plague existing systems.

Our main contributions are as follows:

* We introduce Agentic Robot, a brain-inspired agentic framework for embodied manipulation
that incorporates structured coordination protocols. The framework is highly modular and
interpretable, with well-defined component interfaces, making it a powerful platform for
developing reliable long-horizon manipulation systems.

* We propose Standardized Action Procedure (SAP), a novel coordination protocol that
governs the complete agentic loop in robotic manipulation tasks. SAP encodes structured in-
teractions between planning, execution, and verification phases, enhancing system reliability
and reducing error propagation through standardized workflow management.

* We achieve competitive performance on the LIBERO benchmark with an average success
rate of 79.6%. Extensive experimental results convincingly demonstrate that our SAP-
driven approach represents a promising framework for reliable embodied manipulation, with
particularly strong improvements on challenging long-horizon tasks.

2 AGENTIC ROBOT FRAMEWORK: A BRAIN-INSPIRED CONTROL LOOP

2.1 OVERVIEW

We introduce Agentic Robot, an agentic framework that reformulates long-horizon manipulation
as a closed perception-reasoning-execution-verification loop, inspired by biological cognition and
multi-agent LLM systems (Hong et al.} 2023; Wu et al., 2023). Drawing insights from SOPs that
govern effective human workflows, we propose SAP—a novel coordination protocol that structures
component interactions throughout the manipulation process. SAP establishes explicit protocols for
information exchange, progress monitoring, and error recovery, enabling robust execution of complex
manipulation tasks. Our design is grounded in recent advances across large reasoning models (LRMs),
vision-language models (VLMs), and vision-language-action (VLA) systems. We provide a detailed
review of these foundations in the Related Works section (see Appendix [B.

Our architecture integrates three specialized components: (1) a planner based on LRM that decom-
poses high-level instructions into structured subgoals, (2) an executor based on VLA that generates
continuous control actions from subgoals and visual input, and (3) a verifier based on VLM that
conducts self-assessment for autonomous progression or recovery. Each component operates within
the SAP framework, following standardized interfaces and communication protocols that ensure
seamless coordination throughout task execution.
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Agentic Robot: A Brain-Inspired Framework for Vision-Language-Action Models
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Figure 1: Overview of the Agentic Robot framework governed by Standardized Action Procedure
(SAP). (1) A high-level task is decomposed into structured subgoals by an LRM-based planner,
guided by a skill library. (2) A VLA policy as Executor executes each subgoal using natural language
instructions and real-time visual input. (3) A VLM-based verifier periodically inspects a sliding
window of third-person and wrist-mounted views to determine whether to continue, retry, or recover.
This SAP-driven agentic loop enables robust, interpretable, and feedback-driven manipulation.

As shown in Fig. [I] our agent processes task descriptions and RGB observations from third-person
and egocentric cameras. The planner generates subgoals following SAP specifications, which the
VLA model translates into 7-DoF actions based on visual input. Simultaneously, the verifier monitors
a temporal frame buffer to determine subgoal completion according to SAP verification protocols,
moving to the next subgoal upon success, thus not only preventing redundant re-execution but
also acting as the switch that governs subgoal-to-subgoal transitions within the SAP cycle. This
architecture implements a sequence of agentic steps, each combining intention grounding, visuomotor
execution, and perception-based validation within the SAP framework, enabling execution correction
without external supervision.

2.2 PLANNER: LRM FOR SUBGOAL GENERATION

The planner module, denoted as P, functions as the high-level reasoning component within our
SAP framework. It converts task instructions 7" into a structured sequence of executable subgoals
following standardized decomposition protocols:

{t17t27"'atN}:P(T7IO)a (1)

where [ represents the initial visual observation. Each subgoal ¢; forms a complete and constrained
instruction derived from an Atomic Skill Library (Li et al.,[2025)), which defines standardized action
templates such as:

pick up [object] — place [object] in/on [location] — turn on/off
[device]

This constrained approach ensures compatibility with the executor while maintaining interpretability
of the execution pipeline, adhering to SAP principles of structured component interaction.

We implement the planner using a state-of-the-art large multimodal reasoning model (e.g., GPT-
40), which processes both the instruction 7" and optionally an image I for visual grounding. The
SAP-compliant prompt architecture includes three structured components: (1) a task preamble
explaining the planner’s role within the framework, (2) the complete Atomic Skill Library specifying
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allowed action types, and (3) carefully selected few-shot examples demonstrating proper subgoal
decomposition. These examples guide the model to establish appropriate task boundaries, resolve
ambiguities, and break down complex instructions into 2-5 atomic steps. Through extensive validation,
we determined that subgoals with 1-2 semantic units (e.g., verb + object or verb + object + location)
achieve optimal balance between clarity and executability within the SAP framework.

2.3 VLA EXECUTOR: REACTIVE VISUOMOTOR POLICY

The executor module E serves as the core visuomotor interface that transforms each subgoal ¢; and
associated visual observations I into continuous low-level control signals a; according to SAP
execution protocols:

ap = 7T'exec(tia Itr)a 2)
where a; € R represents the robot’s Cartesian displacement and gripper configuration. The first six
dimensions encode translation and rotation vectors, while the last component g; € {0, 1} indicates
the binary gripper state.

We utilize OpenVLA (Kim et al., 2024), an open-source pretrained VLA model that establishes direct
connections between natural language subgoals and visual observations. Each subgoal adheres to the
structured format outlined in our Atomic Skill Library, enabling the VLA model to systematically
generate actions by understanding both language instructions and visual scene content. This structured
approach enhances compatibility and interpretability across manipulation scenarios while constraining
the action space to physically feasible trajectories.

Despite its stateless design, the executor integrates robust error-handling capabilities through the SAP
verification loop. When execution failures occur, the standardized verification mechanism detects
issues through visual assessment and triggers specific recovery actions following SAP protocols.
If multiple recovery attempts fail, the framework marks the task as failed and halts execution to
prevent unsafe behaviors. This closed-loop error detection significantly improves system robustness—
particularly in long-horizon tasks—by reducing cascading errors. As shown in Section[H] our method
achieves up to 24% improvement over OpenVLA on the Bowl-Drawer task and 21% on Soup-Sauce,
confirming the effectiveness of subgoal-level verification and recovery.

2.4 VERIFIER: PERCEPTION-BASED SUBGOAL ASSESSMENT AND RECOVERY

The verifier module V' provides critical feedback within the SAP framework by assessing the success
of each subgoal ¢; through visual analysis. For every verification step ¢,,, it produces a binary response
following a two-stage assessment protocol:

Gt, = Tyer(Bt,,ti) = Yes or No, 3)

where By, = {(I] _,, 1} o) 1! is a sliding buffer of recent image pairs from third-person and
wrist-mounted views. This temporal buffer captures visual dynamics such as object displacement or
contact transitions, typically with K = 2 and frame intervals of 5. This explicit success detection
serves two critical purposes: (i) it prevents repetitive execution of already accomplished subtasks,
and (ii) it provides a reliable gating signal for transitioning to the next subgoal in the task sequence.

We employ Qwen2.5-VL-3B-Instruct (Bai et al., |2025) as the verifier model to evaluate whether
subgoal t; is complete. The verification prompt follows SAP’s structured format: “Based on the
image sequence, has the robot successfully completed [subgoal]?” The model is fine-tuned with
LoRA (Hu et al., 2022) on a dataset of annotated triplets (B;,t;,y) withy € {Yes, No}. To adapt
the verifier to subgoal-level introspection, we fine-tune Qwen2.5-VL-3B-Instruct using LoRA on a
compact dataset of approximately 500 annotated triplets. Despite its small scale, the dataset covers
diverse subgoal types and visual scenes, and leverages strongly structured prompts to guide learning.
This setting demonstrates that even with limited supervision, targeted adaptation can yield effective
visual verification in closed-loop execution (see Section[3.3)).

When the initial response is §;, = No, the verifier performs a secondary check to determine whether
the robot is stuck:

ft = Tdiag(B¢,) — Stuck or StillTrying, “)
where i, is a diagnosis module that detects conditions such as stationary arms, failed grasp, or
oscillating behaviors. If f; = Stuck, a recovery action is triggered:

A1 = Tree(ft, Ory1)s (5)
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such as lifting the gripper or reorienting the wrist. The system then re-executes ¢; and resumes the
same two-stage verification process at the next interval. After R, unsuccessful recovery attempts,
the task is marked as failed.

To optimize responsiveness and efficiency, verification is performed every 20 frames (i.e., fier =
0.5 Hz), achieving near-optimal accuracy (only 1.2% drop from 10-frame intervals) while reducing
computational load by 48%. Compared to single-pass goal-checking methods, our two-level verifier
allows for mid-execution correction and fine-grained failure localization.

2.5 SAP: STANDARDIZED ACTION PROCEDURE FOR COORDINATED AGENTIC CONTROL

In robotic manipulation, the absence of structured coordination protocols often leads to execution fail-
ures, particularly in long-horizon tasks where accumulated errors and lack of systematic verification
result in task breakdown. Drawing inspiration from Standardized Operating Procedures (SOPs) that
have proven effective in complex collaborative environments, we introduce Standardized Action
Procedure (SAP) as a systematic framework that encodes proven coordination patterns into robotic
agentic systems.

SAP represents a principled approach to orchestrating closed-loop execution within our agentic robot
framework by establishing standardized coordination protocols across perception, planning, execu-
tion, and verification components. The core design philosophy rests on three fundamental principles:
(1) Modular Decomposition - complex manipulation tasks are systematically decomposed into
manageable, verifiable subgoals as illustrated in Fig. [2} (2) Structured Coordination - component
interactions follow predefined workflows rather than opportunistic communication; and (3) Adaptive
Verification - systematic checkpoints enable early error detection and recovery.

2.5.1 SAP OPERATIONAL FRAMEWORK

Each SAP cycle at time ¢ constitutes an agentic
step that encapsulates the complete perception-

Task Description + User Instruction

planning-execution-verification workflow: y i”i .
Y
St = (Ot, tia ag, Z)t) s (6) _r’| High-level Planner (LRM) |
_ T Jw . 'm 1. Pick up [object]
where O; = {I], I;} denotes egocentric and =~ "» " g Formulated Plan [)
third-person views, t; represents the current sub- T Place [: JI“‘] in [location]
T o igh

goal within the structured task decomposition, 2§ Frequency

. . ~ o Low-level Executor (VLA) Actions
ay is the executed action, and §; € {Yes,No} v ‘_,i
indicates the verification result. Low Frequency

l r} Per ion-based Verifier (VLM) |

P

SAP defines four specialized components with
standardized interfaces and coordination proto-

cols:
Figure 2: SAP flow. The LRM planner converts

(1) Multimodal Perception. At each time step, instructions into structured subgoals using a skill
the agent collects dual-perspective observations: library, which are then executed by a VLA executor
O, = {I],I"} € T, x T,, 7) and verified by a VLM verifier.

which provides comprehensive workspace understanding following standardized observation proto-

cols.

(2) Formulated Plan. The planner P converts task instructions 7 into a structured sequence of
executable subgoals following standardized decomposition protocols:

{tlathH;tN}:P(TaIO)a (8)

where [ represents the initial visual observation and each subgoal ¢; is derived from the Atomic
Skill Library.

(3) Reactive Execution. The executor translates subgoal ¢; into low-level control signals:
a¢ = Texec (tiy Ot)7 )

where e . maps semantic goals and current vision into 7-DoF actions following standardized
execution protocols.
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(4) Temporal Verification. Every At, frames (typically 20), the verifier performs systematic
evaluation:

gtv = err(Btmti)v .ft = 7"'diag(Bi‘,u>7 (10)

where B;, = {(I],I}") ngol represents the sliding buffer of recent image pairs. If §j;, = Yes, the
agent proceeds to the next subgoal. If not, and f; = Stuck, a recovery action is triggered:

ai41 = Wrec(ft70t+1)~ (1D

SAP execution is managed by an asynchronous finite-state machine Mgap with component-specific
frequencies: the executor operates at 10 Hz (Ateye. = 0.1s), and the verifier at 0.5 Hz (Atye, = 25).
By enforcing structured control cycles with modular boundaries and layered feedback, SAP enhances
agent reliability and interpretability. It supports in-situ correction, isolates errors, and ensures safe
recovery, addressing core limitations of open-loop or end-to-end systems in dynamic and uncertain
manipulation environments.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We evaluate our Agentic Robot framework on long-horizon manipulation tasks in simulated embodied
environments. The agent employs a dual-camera perception system: a static agent-view camera for
global scene context and a wrist-mounted eye-in-hand camera for local detail. Both cameras provide
synchronized RGB observations at each timestep. The action space consists of a 7-dimensional
continuous control vector representing 6-DoF end-effector control plus a binary gripper state.

Benchmarks. We carry out evaluations using the LIBERO benchmark suite (Liu et al.} 2023)), which
provides a standardized way to assess instruction-following manipulation across various environments.
Our experiments concentrate on four specific challenge subsets: LIBERO-Spatial, which focuses
on understanding spatial relationships; LIBERO-Object, which tests generalization to new objects;
LIBERO-Goal, which assesses abstract goal execution; and LIBERO-Long, which involves extended
sequential manipulations. Each subset consists of 10 distinct tasks, and for each task, there are 50
human-teleoperated demonstrations.

Baselines. We benchmark our approach against the following generalist policies, including previous
state-of-the-art open-sourced models: Diffusion Policy (Chi et al., 2023)), Octo-Base (Team et al.}
2024), OpenVLA (Kim et al.| [2024), TraceVLA Zheng et al.[(2024), and Spatial VLA (Qu et al.,
2025). These methods represent a variety of model paradigms, including diffusion-based control,
transformer-based visuomotor policies, and large-scale vision-language-action models. For fair
comparison, we follow the original hyperparameters and evaluation settings as reported in their
respective works without additional tuning. Detailed information are provided in Appendix[A.2]

Implementation. Agentic Robot integrates the three modules described in Section 2: a GPT-4o-
based planner for subgoal decomposition, an OpenVLA-based executor for visuomotor control, and a
fine-tuned Qwen2.5-VL-3B-Instruct verifier for subgoal completion assessment. For error recovery,
we raise the gripper to a safe position upon failure detection before re-evaluation. Unless otherwise
specified, verification is performed every 20 frames.

3.2 MAIN RESULTS

Table |1 presents success rates across four LIBERO benchmark suites. Agentic Robot achieves
competitive performance with 79.6% average success rate, surpassing all baselines across diverse
manipulation scenarios.

Cross-domain generalization. Agentic Robot consistently ranks among the top-3 performers
across all task categories, demonstrating exceptional versatility in diverse manipulation scenarios.
Unlike specialized approaches that exhibit domain-specific excellence but inconsistent cross-domain
performance, our framework maintains balanced efficacy throughout the benchmark suite. This strong
generalization indicates that our architecture effectively captures essential manipulation principles that
go beyond task-specific requirements, which is a critical capability for deployment in unconstrained
real-world environments.
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Figure 3: Comparison between OpenVLA and Agentic Robot on the task “Put the cream cheese
in the bowl.” Top: OpenVLA fails to grasp the object, causing the gripper to collide with the table
and the task to fail. Bottom: Agentic Robot decomposes the task into subgoals and detects failure
via visual verification. It issues a recovery action (Lift the gripper) and completes the task
through retry.

Table 1: LIBERO benchmark results comparing success rates (SR, %) with rank (in parentheses)
across four task suites, averaged over three random seeds with 500 evaluation trials. FT indicates
fine-tuning on task-specific demonstrations. Bold values highlight the best performance.

LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average

Method SR (Rank) SR (Rank) SR (Rank) SR (Rank) SR (Rank)

Diffusion Policy | 783+ 1.1 (6) 925£07(1)  683+12(6) 505+13(6) 724+0.7(6)
Octo-Base (FT) n|@ 78.9 £ 1.0 (5) 857+09(5)  84.6+09(1) SLI+13(5 751+0.6()
OpenVLA (FT) (Kim et al. |M 84.7+0.9 (3) 88.4+08(4)  792+1.0(3) 537134  765+07(3)
TraceVLA (FT) (Zheng et al 84.6+0.2 (4) 852+04(6)  751+03(5) S41+1.0(3) 748%0.5(5)
Spatial VLA (FT) 88.2+ 0.5 (1) 89.9+07(2)  786+0.6(@) 555+1.0(2) 78.1+07(2)
Agentic Robot (Ours) 85.8+0.6 (2) 80.0+08(3)  81.8+08(2) 6L6+12(1) 79.6+0.8 (1)

Long-horizon planning. In the particularly challenging LIBERO-Long tasks, Agentic Robot
significantly outperforms all baseline methods, achieving a 6.1% improvement over Spatial VLA,
the previous state-of-the-art. This substantial enhancement is a direct result of our core architectural
innovation: the breakdown of complex instructions into individually verifiable subgoals with clearly
defined intermediate checkpoints. By implementing closed-loop verification at the subgoal level, our
system effectively reduces error accumulation, which is a major limitation of existing approaches,
especially as task complexity increases. The relationship between task horizon length and performance
advantage is further examined in Section[H] where we demonstrate that Agentic Robot’s performance
advantage grows in proportion to task complexity.

Verification and recovery. A key innovation in Agentic Robot is its explicit subgoal-level verification
and recovery mechanism. Unlike end-to-end baselines relying on implicit success estimation, our
system provides transparent execution monitoring with interpretable assessments, enabling targeted
recovery strategies. This retry mechanism enhances performance across all benchmarks and proves
particularly effective in complex multi-step tasks, which is illustrated in Fig.[3] Without recovery,
baselines such as OpenVLA continue executing the current subgoal indefinitely, even when the
gripper is clearly stuck, for instance, when it presses against the table after a failed grasp. In contrast,
Agentic Robot uses visual verification to detect such failure states and triggers a simple recovery
behavior: lifting the gripper vertically before retrying the action. As shown in the figure, this enables
the robot to reattempt grasping and proceed to the next subgoal successfully. Although our current
recovery policy is deliberately minimal and does not resolve all failure cases, it demonstrates the
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potential of incorporating visual feedback loops for execution robustness. Future extensions may
incorporate more sophisticated recovery strategies, such as policy rollback, re-grasping, or online
subgoal regeneration, to further enhance success rates under real-world uncertainties.

3.3 ABLATION STUDY

To analyze each component’s contribution, we conduct a systematic ablation study on LIBERO-Long,
where extended manipulation sequences are particularly sensitive to architectural modifications.
Table 2] summarizes our findings.

Multimodal Planning. When the planner is restricted to text-only inputs, the task success rate drops
to 57.4%, representing a 4.2% decline relative to the full multimodal setting. This performance gap
highlights the importance of visual context for grounding instructions and resolving object ambiguity,
particularly in cluttered scenes.

Recovery Mechanism. Removing the recovery routine after failed subgoal verification leads to a
reduced success rate of 59.7%, reflecting a 1.9% degradation. This result confirms the value of even
minimal corrective behaviors in mitigating error accumulation across long-horizon task sequences.

Verification Quality. Substituting the fine-tuned ver-
ifier with a zero-shot VLM yields a substantial drop Table 2: Ablation study on LIBERO-Long.
in success rate to 35.3%, indicating a degradation of Each row represents the success rate (SR) af-
26.3%. This sharp decline suggests that generic mod-  ter removing a key component.

els are insufficiently sensitive to subtle changes in

scene state, and that domain adaptation is essential for Setting SR (%)
accurate subgoal-level introspection. As illustrated -

in Fig.[6] the zero-shot verifier fails to detect subgoal No Visual Input 57.4
completion, causing repetitive execution and even- No Recovery Mechanism 59.7
tual failure. In contrast, our model enables sequential No Fine-tuned VLM 353

verification and completion of each subtask. Quanti-
tatively, it improves the LIBERO-Long success rate
by 26.3% over the zero-shot baseline, confirming the
value of even small-scale domain adaptation.

No Subgoal Decomposition 53.7
Full System 61.6

Hierarchical structure. Without subgoal decomposition (i.e., vanilla OpenVLA), requiring the
system to perform instructions as single, monolithic goals results in a performance drop to 53.7%, a
decrease of 7.9%. This supports our main hypothesis that breaking complex tasks into smaller, atomic
skills significantly enhances execution reliability and verification accuracy. As illustrated in Fig. 4]
the lack of subgoal decomposition causes the executor to attempt the full task without the ability to
recover from intermediate failures, ultimately skipping necessary steps and leading to task failure. In
contrast, our hierarchical agent sequentially verifies and completes each subtask, ensuring successful
full-task completion. Each component offers measurable benefits, with fine-tuned verification and
hierarchical planning contributing the most substantial improvements. These findings confirm the
effectiveness of our Agentic Robot for handling long-horizon manipulation tasks.

4  DISCUSSION AND LIMITATIONS

We now reflect on the design of Agentic Robot, highlighting its strengths and pointing out remaining
challenges.

Verification as a robustness mechanism. A central contribution of our framework is the intro-
duction of visual verification as a control signal for subgoal progression. The verifier functions as
a semantic gatekeeper that determines whether to proceed, retry, or terminate, enabling subgoal-
level error detection and correction without access to ground-truth state information. Our empirical
results demonstrate this approach’s effectiveness in mitigating compounding errors, particularly
in long-horizon settings where early mistakes could cascade through subsequent action sequences.
The incorporation of recovery behaviors further enhances system resilience under environmental
uncertainty and partial observability. Beyond robustness, verification also functions as a termination
criterion, ensuring the agent exits completed subtasks promptly and transitions to the next goal
without unnecessary repetition.
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Put both the soup and box in the basket.

@ w/o Planner Failure!

[ Pick up the soup. l [

'i' Ours Success!

[ Subtask 1: Pick up the soup. I [ Subtask 2: Place it in the basket. ] [ Subtask 3: Pick up the box. ][ Subtask 4: Place it in the basket. ]

Figure 4: Comparison between w/o Subgoal Decomposition and Ours (w/ Subgoal Decomposition)
on the task: “Put both the soup and the box in the basket.” Top: Without subgoal decomposition, the
entire instruction is passed directly to the executor, which attempts to complete the full task in one
shot. However, failure in an intermediate subtask (e.g., placing the soup in the basket) is not detected
or recovered, leading to skipped actions and overall task failure. Bottom: With explicit subgoal
decomposition, the planner breaks down the instruction into sequential subtasks, each verified by the
VLM before proceeding. This enables step-by-step execution and recovery, resulting in the successful
completion of the full task.

Real-World deployment challenges. While our results are validated in high-fidelity simulated
environments, transferring Agentic Robot to physical platforms introduces several challenges. These
include handling sensor noise in RGB inputs, adapting to real-world lighting variations and occlusions,
and compensating for actuation delays. Furthermore, the verifier’s robustness to visual domain shift
requires extensive evaluation. Future work will incorporate domain adaptation and sim-to-real
transfer techniques, particularly focusing on real-image fine-tuning for both the verifier and executor
components to mitigate these challenges.

5 CONCLUSION

This work introduces Agentic Robot, a brain-inspired framework that uses Standardized Action Proce-
dure (SAP) to improve reliability and interpretability in robotic manipulation systems. The framework
decomposes complex tasks into coordinated interactions between three specialized components—
planner, executor, and verifier—operating through well-defined SAP protocols that mirror biological
cognition. By establishing explicit protocols for component communication, progress monitoring,
and failure recovery, SAP addresses fundamental limitations in existing manipulation systems while
allowing independent component optimization through standardized interfaces. Extensive validation
on the LIBERO benchmark demonstrates competitive performance with 79.6% average success
rate, including substantial improvements of 24% on Bowl-Drawer tasks and 21% on Soup-Sauce
tasks. This successful integration of brain-inspired architectures with standardized coordination
protocols shows how biologically motivated design principles can enhance both performance and
interpretability in embodied Al systems.
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Appendix of paper “Agentic Robot: A Brain-Inspired Framework for Vision-Language-Action
Models in Embodied Agents”

DECLARATION OF LLLM USAGE

We used large language models (LLMs) as assistive tools in the preparation of this paper. Specifically,
LLMs were employed for language editing and improving clarity. All research ideas, methodologies,
theoretical results, and experiments were conceived and conducted by the authors. The authors take
full responsibility for the content of this paper.

A DETAILED EXPERIMENT SETUP

A.1 BENCHMARK

Our primary evaluation is conducted on the LIBERO suite, a benchmark collection for instruction-
following manipulation in diverse simulated environments. We select the four suitesLIBERO-Long,
LIBERO-Spatial, LIBERO-Object, and LIBERO-Goaleach comprising 10 tasks and 50 human-
teleoperated demonstrations per task. The multitask performance of the pretrained VLA policy is
evaluated on these suites. Specifically:

* LIBERO-Spatial: Contains the same set of objects but in varying layouts, testing the
model’s ability to understand spatial relationships. Example language instruction: pick up
the black bowl in the top drawer of the wooden cabinet and place it on the plate.

* LIBERO-Object: Features consistent scene layouts but introduces different objects, evalu-
ating the model’s understanding of object types. Example language instruction: pick up the
chocolate pudding and place it in the basket.

* LIBERO-Goal: Maintains the same objects and layouts while varying task goals, assessing
the model’s knowledge of diverse task-oriented behaviors. Example language instruction:
turn on the stove.

* LIBERO-Long (also referred to as LIBERO-10): Comprises long-horizon tasks involving
diverse objects, layouts, and task goals, challenging the model’s ability to handle extended
planning and execution. Example language instruction: pick up the book and place it in the
back compartment of the caddy.

A.2 BASELINES

Baselines. We benchmark our approach against the following generalist policies, including previous
state-of-the-art open-sourced models:

« Diffusion Policy (Chi et al.,[2023): A way of generating robot behavior by representing a
robot’s visuomotor policy as a conditional denoising diffusion process.

* Octo-Base (Team et al., 2024): A 93M parameter transformer-based policy trained on 800k
trajectories from the Open-X-Embodiment (O’ Neill et al., [2024) Dataset.

* OpenVLA (Kim et al., 2024): A 7B parameter VLA trained on the Open-X-
Embodiment (O’Neill et al., 2024) Dataset, representing large-scale generalist policies.

* TraceVLA (Zheng et al., 2024): Finetuned from OpenVLA with visual trace prompting.

» Spatial VLA (Qu et al., |2025): A 4B parameter VLA trained on 1.1 million real-world
robot episodes.

B RELATED WORKS

B.1 LARGE REASONING MODELS

Recent progress in large reasoning models (LRMs) has dramatically improved general-purpose
cognitive capabilities, providing a foundation for downstream embodied agents (Tie et al., [2025]).
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Models such as DeepSeek—R1 (Guo et al.} 2025) adapt rule-based reinforcement learning pipelines
into massive 671B-parameter text models, enabling distilled checkpoints for multimodal adaptation.
Gemini-2.5 Team et al.|(2023) unifies vision, audio, and long-text inputs into a state-of-the-art
retrieval system over 10M-token contexts. MM-Eureka (Meng et al.|[2025) introduces visual-math
chain-of-thought training with reinforcement learning, achieving new benchmarks on multimodal
math reasoning. Similarly, VLM-R1 (Shen et al., 2025) transfers the R1 architecture into the vision-
language domain, yielding strong zero-shot visual reasoning capabilities. Although these models
offer unprecedented perceptual and reasoning skills, they are not explicitly trained for robotics tasks,
leaving open the challenge of grounding abstract reasoning into actionable physical plans, particularly
in long-horizon settings.

B.2 VISION-LANGUAGE MODELS IN ROBOTICS

Vision-language models (VLMs) have increasingly been adapted into robotic systems to bridge
perception and semantic understanding (Zhang et al.l 2025b). PaLM-E (Driess et al.l 2023) in-
tegrates vision tokens into a 562B parameter LLM, enabling long-horizon real-world manipula-
tion while retaining general VQA abilities. VoxPoser (Huang et al., [2023)) leverages CLIP and
LLM prompting to synthesize volumetric value maps for zero-shot pick-and-place. In navigation,
VLM-Social-Nav (Song et al.,|2024) grades candidate trajectories through captioning models to
enhance social compliance, while Navid (Zhang et al., [2024)) predicts step-wise actions from videos
and language for map-free instruction following. GSON (Luo et al., 2024) further extends visual
reasoning to group-aware navigation by detecting social formations. While these systems demonstrate
the semantic reasoning power of VLMs, they primarily focus on static goal conditions or trajectory
scoring, rather than dynamically verifying subgoal progress within a continuous manipulation task as
required by long-horizon execution.

B.3 VISION-LANGUAGE-ACTION MODELS

Vision-Language-Action (VLA) models directly map visual observations and language instructions
to robotic control actions (Yue et al.,|[2024; [Liu et al., 2024} [Wang et al., 2024). Notable examples
include RT-2 (Zitkovich et al., 2023), which co-trains a VLM with robot episodes using action
tokenization, and OpenVLA (Kim et al.| [2024), which scales this approach with 970k demon-
strations, outperforming RT-2~-XL while maintaining efficiency. Advances like Chat VLA (Zhou
et al., 2025) incorporate phased alignment and policy routing to preserve reasoning capabilities
during execution, while ECoT (Zawalski et al.|2024) introduces chain-of-thought reasoning for im-
proved performance on long-horizon tasks. RoboMM (Yan et al., 2024)) achieves cross-domain
generalization through modality-isolation masking, SpatialVLA (Qu et al| 2025) enhances
3D spatial understanding, and TraceVLA (Zheng et al.| [2024)) improves spatio-temporal aware-
ness by visualizing robot trajectory traces. Recent extensions further broaden the design space.
CoPa (Huang et al,2024) grounds object parts into spatial constraints for fine-grained manipulation,
Manipulate—-Anything (Duan et al| 2025 automates large-scale demonstration generation
with VLM-based reasoning, RoBridge (Zhang et al., [2025a) introduces a hierarchical cogni-
tion—execution bridge, and ReKep (Huang et al.| 2025) formulates relational keypoint constraints
for multi-stage and bimanual tasks. Despite their diverse strategies, these systems lack a formalized
coordination protocol, omit explicit verifiers for systematic subgoal monitoring, and do not adopt
modular SAP-style loops. Thus, although VLA models represent a step toward end-to-end instruction
following, they generally overlook mechanisms for modular coordination, explicit verification, and
recovery protocols, which are crucial for robust execution in complex long-horizon environments.

C ATOM SKILL LIBRARY

An atomic skill library is a dynamically expanding repository of fine-grained manipulation skills that a
robot can invoke to perform complex end-to-end tasks without retraining a monolithic policy (Li et al.
2025)). In our framework, the atomic skill library is a curated collection of low-level manipulation
primitives, such as “pick up [object],” that have been manually defined by domain experts to guarantee
predictable performance and semantic clarity. Each atomic skill encapsulates a self-contained control
policy or trajectory generator, allowing complex tasks to be decomposed into a sequence of reusable,
verifiable subroutines. Although hand-crafting these primitives ensures reliability and interpretability,
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the same library structure can be populated or even expanded automatically by large language
models: an LLM can translate high-level task descriptions into candidate skill definitions or suggest
refinements to existing primitives. By combining expert-driven design with LLM-powered generation,
this hybrid approach accelerates skill coverage, simplifies adaptation to novel tasks, and preserves the
modularity and transparency crucial for robust robotic operation. The atom skill library is detailed as
follows:

pick up [object] (from [location]/[object])
place [object] in/on [location]/[object]
push [object] to [location]
place [object] to the [direction] of [object]
open/close [object/container/drawer/etc.]
turn on/off [device]

D EXPERIMENTS ON TASK DIVISION

D.1 DESCRIPTION OF LIBERO-LONG
Now, we give the detailed task description of LIBERO-Long as used in Section[H]

* Soup-Sauce: The robot must locate and pick up both the alphabet soup can and the tomato
sauce can. It then needs to place both items inside a basket. This task tests multi-object
handling and proper placement.

* Cheese-Butter: In this task, the agent must pick up two items: a box of cream cheese and
a piece of butter. Both need to be placed into the same basket. The challenge involves
identifying similar-looking food items and executing sequential pick-and-place actions.

* Stove-Moka: The robot is required to first turn on a stove, then place a moka pot on top
of it. This involves both environment interaction (activating the stove) and precise object
placement. It tests sequential decision-making and tool use.

* Bowl-Drawer: The task requires the agent to open a bottom drawer of a kitchen cabinet,
place a black bowl inside, and then close the drawer. This combines manipulation of
articulated components (the drawer) with careful object handling.

* Mug-Mug: The agent needs to distinguish two mugs by color and place them on specific
plates: the white mug on the left plate, and the yellow-and-white mug on the right. The task
emphasizes color-based object recognition and spatial arrangement.

* Book-Caddy: The robot must pick up a book and place it into the rear compartment of a
caddy organizer. This task involves handling flat objects and placing them into confined
spaces, testing precision and spatial reasoning.

* Mug-Pudding: The robot places a white mug onto a plate and then positions a chocolate
pudding to the right of that plate. It requires understanding relative spatial positioning
between objects and accurate placement.

* Soup-Cheese: This task is similar to task 1 but with a different object combination: alphabet
soup and cream cheese box. The agent must place both items into a basket, reinforcing
generalization across similar multi-object tasks.

* Moka-Moka: The robot needs to find two moka pots and place both on the stove. The
challenge lies in handling duplicate objects and placing them correctly on the same surface.

* Mug-Wave: In this task, the agent must place a yellow-and-white mug inside a microwave
and then close the microwave door. It tests interaction with articulated appliances and
precise object insertion.
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D.2 ILLUSTRATION OF TASK DIVISION
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Figure 5: Task domains used in our evaluation. Across four domains, we evaluate our Agentic
Robot on the LIBERO benchmark, including LIBERO-Object, LIBERO-Spatial, LIBERO-Goal, and
LIBERO-Long.
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E PSEUDO CODE OF AGENTIC ROBOT

Algorithm 1 Agentic Robot Control Loop for Long-Horizon Tasks

1: Input: Task instruction 7, initial observation Iy
2: Output: Task Success orFailure

3 {t1,...,tn} < P(T, 1) > Planner: decompose high-level task 7" into /N subgoals
41+ 1;5<0;r <0

5: while: < N do
6.
7
8

Oy« {I}, I}"} > Multimodal Perception
a;  Texec(ti, Ot) > Reactive Execution for current subgoal
: s+—s+1 > Increment step counter
9: if s > S, then
10: return Failure > Exceeded step limit
11: end if
12: if s mod F' = 0 then > Perform verification every F' frames
13: done <+ Tryer(By, t;) > Primary verification: subgoal completion
14: if done then
15: 1+—14+1;r+<0 > Success: move to next subgoal, reset recovery counter
16: else
17: stuck < Tgiag(Bt) > Secondary check: is the arm stuck?
18: if stuck then
19: apy1 ¢ Tree(stuck, Otyq) > Trigger recovery (e.g., lift gripper)
20: r<—nr+1
21: if r > R,..x then
22: return Failure > Recovery limit exceeded
23: end if
24: end if
25: end if
26: end if
27: end while
28: return Success > All subgoals completed

F PSEUDO CODE FOR PERCEPTION-BASED VERIFIER

Algorithm 2 VLM-Based Subgoal Verification

Require: Verifier model 7, processor, image buffer B, = {(I7_,, I}* ;) };—,', current subgoal ¢;
Ensure: Binary result y; € {YES, NO} indicating subgoal completion
: Parse ¢; to extract verb v, object o, and location [
Construct prompt for subgoal completion according to v, o, and [
Initialize message buffer M « []
for each image pair (17, I}¥) in B; do
Append labeled image pair to M
end for
Append constructed prompt to M
Format M using processor template
(text, images) ¢ process_vision_info(M)
Tokenize inputs and forward to 7y,
: Decode response 7
. if r; starts with “Yes” then
return YES > Subgoal completed
: else
return NO > Subgoal incomplete
: end if
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G PROMPT OF LRM FOR ZERO SHOT TASK DEVISION

Prompt of LRM for Zero Shot Task Devision

You are a planning assistant for a fixed robotic arm. Your goal is to break down a high-level
task into a sequence of **essential high-level commands**, suitable for a capable Vision-
Language-Action (VLA) model to execute directly.

Output Format:
Generate a numbered list of commands. Each command should represent a significant action

achieving a clear sub-goal. Stick to the allowed high-level actions.

Example Plan Format (Use **exactly** this level of granularity):
Plan for the robot arm:

Instructions.

- Generate **only** high-level commands.
- **Allowed commands are strictly limited to:**

- ‘pick up [object]’

- ‘place [object] in/on [location]’

- ‘open [object/container/drawer/etc.]’

- ‘close [object/container/drawer/etc.]’

- “turn on [device]'

- “turn off [device]'
- Use the commands above **only when necessary** to achieve the goal. Most tasks will primarily
use ‘pick up' and ‘place’.
- #*Explicitly DO NOT include separate steps for:**

- 'locate’ (Assume VLA finds the object as part of executing the command)

- ‘move to' or ‘move towards' (Assume the command includes necessary travel)

- 'lift’, “lower’, “grasp’, ‘release’, ‘push’, ‘pull’, ‘rotate’, ‘adjust’ (Assume high-level commands
handle these internally)
- **Assume the VLA model handles all implicit actions:**

- "pick up [object]" means: Find the object, navigate to it, grasp it securely, and lift it.

- "place [object] in [location]" means: Transport the object to the location, position it correctly,
and release the grasp.

- "open/close [container]" means: Find the handle/seam, interact with it appropriately (pull, slide,
lift) to change the container's state.

- "turn on/off [device]" means: Find the correct button/switch, interact with it to change the

device's power state.
- Use the descriptive names from the task description (e.g., "alphabet soup", "basket", "stove",
"microwave", "bottom drawer").
- Generate the minimal sequence of these high-level commands required to fulfill the Goal. Ensure
the sequence logically achieves the task (e.g., you might need to “open’ a drawer before ‘place’ing
something inside it, even if 'open' isn't explicitly stated in the goal).

Task: {task description}
Output:

H LONG-HORIZON MANIPULATION ANALYSIS

We analyze performance on LIBERO-Long, which features multi-step tasks with sequential subgoals.
Table 3] reports subgoal-level and overall success rates across 10 manipulation scenarios. Detailed
task descriptions are provided in Appendix [D}]
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Table 3: Performance comparison between OpenVLA and Agentic Robot on LIBERO-Long tasks,
showing success rates for individual subtasks and overall task success rate (SR).

Model Soup-Sauce Cheese-Butter Stove-Moka Bowl-Drawer Mug-Mug
Soup Sauce SR Cheese Butter SR  Stove Moka SR Bowl Drawer SR Mug Mug SR
OpenVLA 072 052 046 086 0.64 0.64 088 064 064 044 032 032 0.60 058 044

Agentic Robot  0.83  0.67 0.67 0.88 078 078 088 071 071 0.72 056 056 0.71 0.63 0.63

Model Book-Caddy Mug-Pudding Soup-Cheese Moka-Moka Mug-Wave
Book Caddy SR Mug Pudding SR Soup Cheese SR Moka Moka SR Mug Wave SR
OpenVLA 0.98 082 0.82 0.64 0.54 0.54 0.72 064 060 058 022 022 054 050 046

Agentic Robot 098  0.84 0.84 0.65 0.60 0.60 0.83 064 064 064 017 017 0.66 0.72 0.58

Put both the soup and sauce in the basket.

) (

Put both the soup and sauce in the basket.

fﬁ w/o Fine-tune VLM Failure!

Continue Subtask 1.

I Subtask 1: Pick up the soup. I [ Subtask 2: Place it in the basket. ] [ Subtask 3: Pick up the sauce. ][ Subtask 4: Place it in the basket. l

Figure 6: Comparison between w/o fine-tuned VLM and Ours (w/ fine-tuned VLM) on the task:
“Put both the soup and the sauce in the basket.” Top: Without fine-tuning, the VLM verifier fails to
detect subtask completion, causing the robot to repeatedly attempt Subtask 1 (picking up the soup)
until it ultimately fails. Bottom: With a fine-tuned VLM, each subtask is verified successfully before
transitioning to the next, enabling sequential and successful execution of all subtasks.

Performance gains. The Agentic Robot consistently outperforms OpenVLA, with an average
improvement of 12.1% across all tasks. The most significant gains are observed in challenging
scenarios that have lower baseline success rates, such as the following: in the Bowl-Drawer task,
there is a 24% improvement; in the Mug-Mug task, a 19% improvement; and in the Soup-Sauce task,
a 21% improvement. These results confirm the effectiveness of our approach in reducing cascading
failures.

Error prevention. OpenVLA frequently propagates errors through subtasks by continuing even when
execution is incomplete. In contrast, Agentic Robot employs VLM-based verification, which ensures
that progression cannot occur until each subgoal is confirmed as complete. This mechanism not
only halts premature progression but also avoids redundant attempts on already completed subtasks,
enabling efficient and orderly subgoal switching. This approach accounts for the improvements
observed in spatially complex tasks like Stove-Moka, which saw a 7% increase in performance,
highlighting the importance of robust checkpoint verification.
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Limitations. In the Moka-Moka task, the Agentic Robot demonstrates decreased performance in
one subgoal (17% vs. 22%), highlighting a limitation in managing scenes that require fine-grained
coordination for the placement of symmetric objects. A qualitative analysis shows that while the first
Moka Pot is placed correctly, the system often centers it on the stove surface. This positioning leaves
insufficient space for the second Moka Pot, resulting in a placement failure despite having a correct
high-level plan. This situation underscores the current weakness of the Agentic Robot in anticipating
spatial constraints and resolving conflicts between similar subgoals that involve identical object types.
Future work may address this issue by implementing temporal structure modeling, spatial intent
prediction, or memory-aware policies that explicitly consider previous placements during planning
and execution.

I VERIFICATION FREQUENCY ANALYSIS

We investigate how verification frequency affects both performance and computational efficiency by
evaluating Agentic Robot with verification every 10, 20, or 50 steps. Fig. /| presents the results.

Success rate sensitivity. All verification fre-
quencies yield similar success rates for the Spa-
tial, Object, and Goal suites, indicating that Success Rate and Execution Time by Task
these shorter tasks are resilient to verification
sparsity due to their limited subgoal durations
and lower risk of error propagation. In contrast,
LIBERO-Long shows considerable sensitivity
to verification frequency. When verification is
reduced to every 50 steps, the success rate de- 0

. 200
creases by 6 percentage points (from 61.8% to 175
55.8%). Providing verification every 10 steps 10
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does not offer any additional benefits beyond the éiéz
20-step interval. This suggests that long-horizon ~ ~ ;
tasks require frequent validation to prevent error »
accumulation, but the benefits diminish beyond Spatial Object Goal Long

an optimal verification frequency. e e e
Efficiency-Performance trade-off. Verifica-
tion frequency substantially impacts execution
time. High-frequency verification (every 10
steps) increases episode duration due to VLM in-
ference overhead, particularly in LIBERO-Long,
where the runtime difference between 10-step
and 50-step intervals exceeds 15 seconds per
episode.

Figure 7: Effect of verification frequency on per-
formance across LIBERO task suites. Bars com-
pare three settings where the VLM verifier is in-
voked every 10, 20, or 50 steps during execution.

Optimal configuration. Our analysis identifies the 20-step interval as optimal: it maintains peak
success rates while reducing computational overhead. We adopt this as our default configuration.
These findings suggest that while frequent verification is critical for long-horizon robustness, it
introduces unnecessary computational cost for simpler tasks. Future work could explore adaptive ver-
ification schemes that dynamically adjust frequency based on task complexity, execution uncertainty,
or environmental dynamics.

Adaptive verification scheduling. Currently, verification occurs at fixed intervals (every 20 frames),
regardless of task complexity, execution speed, or object dynamics. Although effective in our
evaluations, this heuristic approach is likely suboptimal for computational efficiency. We propose to
explore adaptive verification strategies that leverage confidence-aware scheduling based on motion
intensity, subgoal typology, or the LLM’s uncertainty quantification. Such approaches would optimize
computational resource allocation while maintaining task safety and correctness guarantees.
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Table 4: Additional LIBERO task performance results. Success rates (SR) across LIBERO benchmark
task suites and results include another three baselines (7, mo-FAST, and OpenVLA-OFT). Baseline
results are from the original papers. Bold and underlined values indicate best and second-best
performance.

Method Spatial | Object | Goal Long | Average
SR (%) | SR (%) | SR (%) | SR (%) | SR (%)
Diffusion Policy (Chi et al.|[2023) 78.3 92.5 68.3 50.5 72.4
Octo-Base (FT) (Team et al.[[2024) 78.9 85.7 84.6 51.1 75.1
OpenVLA (FT) (Kim et al.[[2024) 84.7 88.4 79.2 53.7 76.5
TraceVLA (FT) (Zheng et al.[[2024) 84.6 85.2 75.1 54.1 74.8
Spatial VLA (FT) (Qu et al.[[2025) 88.2 89.9 78.6 55.5 78.1
mo-FAST (FT) (Pertsch et al.|[2025) 96.4 96.8 88.6 60.2 85.5
7o (FT) (Black et al.[[2024) 96.8 98.8 95.8 85.2 94.2
OpenVLA-OFT (FT) (Kim et al.|[2025) 97.6 98.4 97.9 94.5 97.1
Agentic Robot Spatial (Spatial VLA (FT) + SAP) 88.8 90.1 80.2 62.3 80.4
Agentic Robot 2 (7 (FT) + SAP) (Ours) 96.7 98.9 96.0 90.1 954

J ADDITIONAL EXPERIMENTS ON LIBERO BENCHMARK

Table @] reports extended LIBERO task performance with additional baselines, including 7o, mo-FAST,
and OpenVLA-OFT, the latter representing the current state-of-the-art. As expected, OpenVLA-OFT
achieves the highest overall success rate (97.1%), establishing a strong upper bound. Nevertheless, our
framework demonstrates consistent advantages on long-horizon tasks. Specifically, when augmenting
Spatial VLA with the SAP protocol (Agentic Robot Spatial), performance improves from 55.5%
to 62.3% on LIBERO-Long, a gain of +6.8 absolute points. This validates that verifier-based
termination and recovery mechanisms are especially beneficial for extended manipulation sequences,
where compounding errors are most detrimental.

When integrated with the stronger 7y backbone (Agentic Robot 2), our approach achieves 90.1%
on LIBERO-Long, a notable improvement over 7y (85.2%) and my-FAST (60.2%). Importantly,
this setting reaches an overall average of 95.4%, placing it second only to OpenVLA-OFT while
retaining clear advantages on challenging long-horizon categories. These results highlight the
complementary role of SAP: while the backbone determines single-pass proficiency, the closed-loop
verification-feedback design improves robustness and efficiency in multi-stage manipulation.

Throughout these experiments, SAP is instantiated with GPT-40 as the planner and a LoRA-fine-tuned
Qwen2.5-VL verifier, consistent with our core framework description. Crucially, the design remains
modular: alternative LRMs or VLMs can be substituted without changing the coordination protocol.
This modularity paves the way for further performance gains by pairing SAP with more advanced
reasoning or verification models as they become available.

Together, these findings reinforce our central claim: SAP primarily strengthens reliability in long-
horizon tasks, without compromising the performance of competitive backbone executors. Although
OpenVLA-OFT remains the strongest one-pass model, our approach delivers modular improvements
that generalize across different baselines and provide systematic error mitigation in extended task
horizons.
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