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ABSTRACT

The Minimum Description Length (MDL) principle offers a formal framework for
applying Occam’s razor in machine learning. However, its application to neural
networks such as Transformers is challenging due to the lack of a principled, uni-
versal measure for model complexity. This paper introduces the theoretical notion
of asymptotically optimal description length objectives, grounded in the theory
of Kolmogorov complexity. We establish that a minimizer of such an objective
achieves optimal compression, for any dataset, up to an additive constant, in the
limit as model resource bounds increase. We prove that asymptotically optimal
objectives exist for Transformers, building on a new demonstration of their com-
putational universality. We further show that such objectives can be tractable and
differentiable by constructing and analyzing a variational objective based on an
adaptive Gaussian mixture prior. Our empirical analysis shows that this varia-
tional objective selects for a low-complexity solution with strong generalization
on an algorithmic task, but standard optimizers fail to find such solutions from
a random initialization, highlighting key optimization challenges. More broadly,
by providing a theoretical framework for identifying description length objectives
with strong asymptotic guarantees, we outline a potential path towards training
neural networks that achieve greater compression and generalization.

1 INTRODUCTION

The principle of Occam’s razor—that simpler explanations are preferable—is a foundational concept
in machine learning. Algorithmic information theory provides an elegant formalization through the
Minimum Description Length (MDL; Rissanen, 1978) principle. The MDL principle frames learning
as data compression: the best model for a dataset is the one that minimizes the combined length of
the model’s description plus the description of the data encoded with that model. Intuitively, any
regularity in the data that is useful for prediction is also useful for compression, and vice versa.

The empirical success of large neural networks might seem to contradict the MDL principle if we
consider a naive, uniform encoding of their weights. Such networks often generalize surprisingly
well, even when highly over-parameterized and trained with simple maximum likelihood objec-
tives (Zhang et al., 2017). However, various methods have been proposed for training compressible
neural networks based on, e.g., quantization (Han et al., 2016), subspace training (Li et al., 2018),
low-rank approximation, variational inference (Louizos et al., 2017; Hinton & Van Camp, 1993), or
some combination (Lotfi et al., 2022; 2024; DeMoss et al., 2025). These methods have highlighted
that neural networks can often be highly compressed, i.e. their true complexity can be much smaller
than naive parameter counting would suggest (Blier & Ollivier, 2018). While such methods have
thus far not led directly to MDL-inspired regularizers that reliably improve generalization, these
methods have been successful for establishing tighter compression bounds (Lotfi et al., 2022; 2024)
and inspiring parameter-efficient fine-tuning methods such as LoRA (Hu et al., 2022).

However, key theoretical questions remain. These methods from prior work can be interpreted as
defining different description length measures over a network’s weights. Different measures may
capture different types of regularities, but fail to capture all potential regularities in the network.
MDL objectives based on such measures may therefore fail to incentivize capturing all of the regu-
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larities in the data, if certain patterns cannot be encoded efficiently in the network’s weights. This
can lead to sub-optimal compression and – per the MDL principle – sub-optimal generalization.
Ideally, we want a description length objective that encourages the model to capture any regularity
in the data. Assuming perfect optimization, such an objective would lead to optimal compression,
regardless of the dataset. To what extent can we implement such an idealized objective?

Algorithmic information theory offers a framework to address this question (Li & Vitányi, 2008;
Hutter, 2005; Schmidhuber, 1997). MDL was inspired by Solomonoff’s theory of inductive infer-
ence (Solomonoff, 1964), which proposed to favor hypotheses with low Kolmogorov complexity.
Put simply, the Kolmogorov complexity of an object is the shortest program that generates that
object (see Section 2). Kolmogorov complexity offers optimal compression relative to any other
computable description length measure, up to an additive constant. This universality is rooted in the
Church-Turing thesis that any sufficiently powerful model of computation can simulate any other.
Computable resource-bounded approximations maintain this universality in the limit as resource
bounds increase. The notion of Kolmogorov complexity can be directly applied to program induc-
tion – priors based on program length have been empirically successful for inducing programs (e.g.,
Romera-Paredes et al., 2024) and grammars (e.g., Shaw et al., 2021) with strong generalization.
However, applying this notion to neural networks is less straightforward. While we can easily com-
pute the length of a discrete program, it is less clear how to quantify the complexity of the function
a neural network computes in an analogous way. Therefore, a conceptual gap remains between
theoretical frameworks based on algorithmic information theory and practical description length
objectives for neural networks. We aim to narrow this gap.

Building on the theory of Kolmogorov complexity and the computational universality of Transform-
ers, we demonstrate the existence of asymptotically optimal description length objectives for Trans-
formers, with optimality guarantees analogous to those that hold for Kolmogorov complexity. Our
theoretical framework therefore highlights a potential path forward for identifying description length
objectives for neural networks that select for models offering greater compression – and potentially
greater generalization. Specifically, we develop the theory of asymptotically optimal description
length measures for neural networks through the following contributions:

• We define universal two-part codes for probabilistic models whose minimum description
length for any data sample is provably optimal, up to an additive constant, relative to any
other two-part code. This framework circumvents the need for arbitrary domain-specific
priors by leveraging the universal properties of Kolmogorov complexity. (Section 4)

• We prove the existence of asymptotically optimal families of codes for Transformers, which
are universal in the limit as resource bounds increase. This result is established via a new
demonstration that Transformer encoders are computationally universal in their ability to
represent any computable, rational-valued conditional probability distribution. (Section 4)

• We further prove that tractable and differentiable objectives for Transformers can be
asymptotically optimal, establishing this by constructing and analyzing a variational ob-
jective based on an adaptive Gaussian mixture prior. (Section 5)

• We provide empirical analysis of the derived variational objective. Using a manually con-
structed solution for an algorithmic task, we show that our objective function selects for
a highly compressible model with strong generalization. However, we find that standard
optimizers fail to discover such low-complexity solutions from a random initialization,
highlighting a key challenge for future work. (Section 6)

2 BACKGROUND: KOLMOGOROV COMPLEXITY

We give a brief introduction to Kolmogorov complexity, with an extended and more formal ver-
sion in Appendix A. Intuitively, we can think of the Kolmogorov complexity K(x) of an object x
as the shortest program, written in some standard programming language, that prints x. Similarly,
the Kolmogorov complexity K(f) of a discrete function f is the shortest program that computes f .
To formalize these notions, Kolmogorov complexity can be defined with respect to universal prefix
Turing machines, which are multi-tape Turing machines that represent programs as binary strings
encoded on a read-only program tape. The key invariance theorem states that K(x) is independent
of the particular choice of universal prefix Turing machine up to an additive constant. While Kol-
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mogorov complexity is not strictly computable due to the halting problem, we write KT,R(f) to
denote a computable approximation under a resource bound R = (Rt, Rs) ∈ N2, which considers
only programs that terminate within Rt steps and require at most Rs registers on any tape, with
respect to universal prefix Turing machine T . As resource bounds increase, KT,R(f) monotonically
decreases to K(f), up to an additive constant, per the invariance theorem. We introduce concise
notation to express such relations that hold up to additive constants next.

Inequalities with additive constants Let f : X → R and g : X → R be functions over the same
domain X . Then we can write ∀x, f(x)

+

≤ g(x) if and only if there exists some constant c ∈ R
such that ∀x, f(x) < g(x) + c, where the additive constant c must not depend on x. We write
∀x, f(x)

+
= g(x) to denote that both ∀x, f(x)

+

≤ g(x) and ∀x, g(x)
+

≤ f(x) hold.1

3 PROBLEM SETTING AND MODEL FUNCTIONS

Problem setting Let the input space X be a discrete and countable set, and the output space Y be
a discrete and finite set. We define the space of all possible datasets as D = (X ×Y)∗, the set of all
finite sequences of input-output pairs. For any datasetD = ((x1, y1), . . . , (xn, yn)) ∈ D, we denote
the corresponding sequence of inputs as X = (x1, . . . , xn) and outputs as Y = (y1, . . . , yn). Our
analysis focuses on properties of encoding schemes that hold for any such pair of sequences (X,Y ).

Model functions Neural networks modeling distributions over a discrete output space are typically
characterized by a model function, f , which defines a conditional distribution over a discrete space
Y by mapping an input x ∈ X to a vector of unnormalized logits, f(x) ∈ L. Motivated by the
finite-precision arithmetic used in neural networks, we assume these logits are rational numbers (i.e.
L = Q|Y|) which enables a straightforward definition for the Kolmogorov complexity of a model
function, K(f).2 We denote the set of all such computable model functions as F . The conditional
distribution for a function f ∈ F is given by applying the softmax function, σ, to its output logits:

p(Y | X; f) =
∏

x,y∈X,Y
p(y | x; f) p(y | x; f) = σ(f(x))y (1)

In the following sections, we apply the MDL principle to this setting, where we want to identify
codes that select for a probabilistic model of this form that optimally compresses a set of labels Y
given corresponding inputs X , yielding a description length objective.

4 TWO-PART CODES

One way to apply the MDL principle is with two-part codes. Consider the cost for a sender (e.g.,
Alice) to transmit labels Y to a receiver (e.g., Bob), if both are given the inputs X . With a two-
part code, Alice first transmits a model hypothesis, and then transmits the labels encoded given this
model hypothesis (Figure 1). Specifically, we consider two-part codes that are parameterized by a
probabilistic model function (Section 3), which we refer to simply as two-part codes in this paper.
Definition 1 (two-part code). A two-part code M is specified by a triplet 〈HM ,mM , αM 〉 with:

• A hypothesis space HM which we assume is countable, e.g., the parameter space of a
particular neural network assuming parameters with some finite-precision.

• A mapping mM : HM → F from hypotheses to model functions (Section 3), e.g., the
mapping defined by a particular neural network architecture.3

• A prior αM (h) defining a distribution over model hypotheses,HM .4

1Extending this notation to codelength functions over variables X and Y , ∀X,Y, L1(Y | X)
+

≤ L2(Y | X)
implies ∃c ∈ R, ∀X,Y, L1(Y | X) < L2(Y | X) + c, where c does not depend on X or Y . We omit explicit
quantifiers when they are clear from context.

2See Appendix B.1 for a discussion of the complexities involved with real-valued functions.
3This can be a partial function, e.g. a Turing machine with unbounded resources may never halt for some

inputs.
4Formally we allow the prior to be any lower semicomputable semimeasure (see Appendix A).
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Sender
 (Alice) Step 1: Transmit model hypothesis h in -log2αM(h) bits

Step 2: Transmit labels Y encoded given hypothesis h in
               -log2p(Y|X;mM(h)) bits

Receiver 
(Bob)

X,Y X

Figure 1: Two-part code. One way to formalize the MDL principle is with a two-part code. Assume
Alice and Bob agree on a two-part code M and each are given inputs X . Alice then finds the
hypothesis (e.g., model parameters) that enables sending Bob the labels Y in the fewest total bits,
balancing the complexity of the model with how well it fits the data. One key challenge we address
is that the minimum codelength is dependent on the potentially arbitrary choice of prior αM (h).

Given a two-part code M , the codelength for transmitting Y given X is defined as the sum of the
codelength of the hypothesis and the codelength of the data given the hypothesis:

Ltwo-part
M (Y | X;h) = − log2 α(h)− log2 p(Y | X;mM (h)). (2)

The− log2 terms represent the ideal codelength for transmitting the model and data under the distri-
butions specified by the prior and the selected hypothesis, respectively; the latter term is recognizable
as the standard negative log-likelihood (NLL) objective. From a Bayesian perspective, minimizing
equation 2 can be interpreted as finding the MAP estimate. The minimum achievable codelength for
transmitting the labels with the two-part code M is then denoted as:

L∗,two-part
M (Y | X) = min

h∈HM

Ltwo-part
M (Y | X;h). (3)

Universal two-part codes Notably, there is a considerable degree of freedom in specifying a
two-part code, e.g. for a particular neural network architecture specifying the hypothesis space
and mapping function, we can choose any prior over the model weights. The prior determines
the description length measure over the weights, which, in effect, determines the inductive bias of
the codelength objective. Building on the invariance theorem for Kolmogorov complexity, we will
show that there exists an equivalence class of two-part codes that are universal in the sense that a
minimizer of any universal two-part code offers at least as much compression as any other two-part
code, for any dataset, up to an additive constant that does not depend on the data. This guarantee
holds regardless of the specific prior, as long as it constructs a universal code, and is captured in the
following theorem and its corollary.

Definition 2 (universal two-part code). LetM1 be a two-part code. M1 is a universal two-part code
if and only if, for any other two-part code, M2, the following holds for any dataset X,Y :

L∗,two-part
M1 (Y | X)

+
≤ L∗,two-part

M2 (Y | X). (4)

Proposition 1. There exists a universal two-part code.

Corollary 1. The minimum of any universal two-part code M is equal to the following bound,
denoted C two-part(Y | X), up to an additive constant:

L∗,two-part
M (Y | X)

+
= C two-part(Y | X) = min

f∈F
K(f)− log2 p(Y | X; f). (5)

The core requirement for a two-part code to be universal is that its underlying model class must
be computationally universal. That is, for any computable model function f , there must be some
hypothesis h in the hypothesis space that computes it, i.e. where mM (h) = f . Furthermore, the
prior, α(h), must assign at least one such hypothesis a codelength, − log2 α(h), that is equivalent
to the Kolmogorov complexity of the function being computed, K(f), up to an additive constant
(see B.4.2 for the formal proofs). This ensures the code can, in principle, efficiently represent any
computable regularity in the data. Fully satisfying these conditions requires a model class with
unbounded computational resources, like a Turing machine, and strictly minimizing the code is not
computable, due to the halting problem. Since any real-world model, such as a Transformer, has
finite resources (e.g., a finite number of layers and context window), it cannot be strictly universal.
This motivates the notion of asymptotically optimal codes, introduced next.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Universal Prefix 
Turing Machine, T

Program Tape

Input Tape

p(y|x)

Output Tapes

Encode

Decode
Program, z

Transformer

x

-log2α(h
z) = |z|

Parameters
 hz = zmap(T,R,z) 

Work Tape

Prepend 
Prompt

…

Figure 2: Constructing asymptotically optimal codes for Transformers. We construct a function
zmap that establishes that a Transformer (right) can effectively simulate a prefix Turing machine
T with any prefix z encoded on a program tape (left), and therefore can represent any computable
model function (as defined in section 3) within some arbitrary time and space resource bound R.
With this mapping between model functions and Transformer parameters established, we can select
a prior that assigns probability to sets of parameters based on the algorithmic complexity of the
function they compute, thus forming an asymptotically optimal code (Section 4.1).

Asymptotically optimal two-part codes Neural network architectures, such as Transformers, de-
fine a family of models, with hyperparameters corresponding to finite time and space resource.
Certain families of two-part codes can then be shown to be asymptotically optimal in the sense that
as the resource bounds increase, the minimum code length monotonically decreases to the minimum
of a universal two-part code (see B.4.5 for the proof).
Definition 3 (asymptotically optimal families of two-part codes). A family of two-part codes {MR |
R ∈ N2} is asymptotically optimal with respect to a universal prefix Turing machine T if:

∀R ∈ N2, L∗,two-part
MR

(Y | X)
+
≤ C two-part

T,R (Y | X), (6)

where C two-part
T,R (Y | X) := minf∈F KT,R(f) − log2 p(Y | X; f) and KT,R denotes Kolmogorov

complexity under resource bound R.
Proposition 2. Given an asymptotically optimal family of two-part codes {MR | R ∈ N2}:

lim
Rt,Rs→∞

L∗,two-part
MR

(Y | X)
+
= C two-part(Y | X), (7)

with the bound C two-part
T,R (Y | X) monotonically non-increasing with increasing Rt or Rs.

We demonstrate the existence of such asymptotically-optimal codes for Transformers next.

4.1 TWO-PART CODES FOR TRANSFORMERS

The Transformer architecture (Vaswani et al., 2017) defines a family of models with various hy-
perparameters determining the time (e.g., number of layers) and space (e.g., context window size)
resources of the model. We focus our theoretical analysis on Transformer encoders applied to se-
quence classification, a commonly studied setting (e.g., Devlin et al., 2019).
Theorem 1. There exists an asymptotically optimal family of two-part codes for Transformer en-
coders.

Figure 2 captures the main idea. Given a universal prefix Turing machine T and resource bound
R, let ZT,R denote the set of programs such that T halts within Rt steps and requires only up
to Rs registers on any tape, for any input x ∈ X encoded on the input tape. Let fzT : X →
L be the model function computed by T with prefix z on the program tape. For a given R, we
construct a two-part code MR where the hypothesis space HMR

and mapping function mMR
are

defined by a Transformer encoder, with O(Rt) layers and a context window size of O(Rs). We
use ALTA (Shaw et al., 2024), a compiler from symbolic programs to Transformer weights, to
construct a function zmap such that ∀z ∈ ZT,R, mMR

(zmap(z)) = fzT . While future work
could consider alternative ways of constructing such a mapping, our particular construction relies
on prepending a sequence of Rs “prompt tokens” to the model input, with learnable embeddings.
These prompt tokens represent the program z, while the attention and MLP weights are configured

5
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K(Y |X) Cbayes(Y |X) C two-part(Y |X)

Computable prefix codes
Two-part codes
Universal two-part codes
Variational codes
Quasi-universal variational codes

Figure 3: Upper and lower bounds on minimum codelengths. The figure shows the minimum
number of bits required to transmit labels Y given inputs X , for different classes of codes. The
bounds hold for any dataset (X,Y ) up to an additive constant that does not depend on the dataset.

to act as an interpreter, emulating the Turing machine T . We can then trivially construct a prior
αMR

(h) that such that ∀z ∈ ZT,R, − log2 αMR
(zmap(z)) = |z| +

= K(fzT ), with αMR
(h) = 0 for

hypotheses outside the range of zmap. This construction can be shown to satisfy the conditions of
an asymptotically optimal family of codes with respect to T . (See B.6 for the formal proof.)

4.2 PRACTICAL CONSIDERATIONS

The two-part code for Transformers derived in 4.1 is potentially problematic in practice. The prior is
overly rigid, assigning zero probability to parameters that don’t correspond to emulating a specific
Turing machine. The prior also involves complex dependencies between parameters and is non-
differentiable with respect to the model parameters, making optimization challenging.

To address these limitations, let us first provide some perspective. The theoretical guarantees of
an asymptotically optimal code hold in the limit as dataset complexity and model resource bounds
increase, assuming the codelength objective can be perfectly optimized. While the community has
been training increasingly large models on increasingly large datasets, any real-world models and
datasets are, of course, finite. Strictly emulating a Turing machine can be inefficient, failing to
leverage a Transformer’s capacity for parallel and numerical computation, and overly restricting
the parameter values considered during training can hinder effective optimization. Therefore, in
practice, we should consider more flexible codes that enable the optimization process to consider
parameter values that make more efficient use of a Transformer’s finite computational resources.
For a sufficiently flexible code, our method used to prove asymptotic optimally – showing that a
Transformer can emulate a universal prefix Turing machine – serves primarily to establish a worst-
case upper bound on the minimum achievable codelength; it is likely that for any given dataset and
finite model, there exists a set of parameters offering a shorter total codelength than the upper bound
associated with a literal Turing machine emulation.

Therefore, we aim to identify asymptotically-optimal families of codes that satisfy two additional
informal but intuitive criteria, which can ultimately be assessed empirically:

1. Are based on a sufficiently general and flexible prior.
2. Can be optimized with standard gradient-based methods.

As one potential path toward meeting these practical considerations, we consider variational codes.

5 VARIATIONAL CODES

An alternative approach for Alice to transmit the data labels to Bob is to use a variational code,
which considers a distribution over hypotheses, rather than selecting a single best hypothesis. We
start with some definitions and formal results, and then work towards a practical implementation.

Definition 4 (variational code). A variational codeM consists of a hypothesis spaceHM , a mapping
mM : HM → F from hypotheses to model functions, and prior αM (h) over HM , as specified
in definition 1. Additionally, a variational code specifies a posterior hypothesis space, ΦM , and
distribution over hypotheses, βM (h;φ), parameterized by φ ∈ ΦM .

6
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The conditional distribution over Y given X is therefore specified by the posterior parameters φ ∈
ΦM , and defined by marginalizing over hypotheses:

pM (Y | X;φ) = Eh∼βM (·;φ) p(Y | X;mM (h)). (8)

The codelength for a variational code M is then defined as:

Lvar
M (Y | X,φ) = Eh∼βM (·;φ) [− log2 αM (h) + log2 βM (h;φ)− log2 p(Y | X;mM (h))] (9)

= KL [βM (·;φ) ‖ αM (·)]− log2 pM (Y | X;φ), (10)

which can be interpreted as the cost of transmitting the labels given the “bits back” argument of Hin-
ton & Van Camp (1993). The intuition is that parameters with higher uncertainty can be transmitted
with lower cost. Equation 10 mirrors equation 2, with the KL term capturing the model cost. We
denote the minimum of a variational code M as:

L∗,var
M (Y | X) = min

φ∈ΦM

Lvar
M (Y | X,φ). (11)

A variational code can be seen as approximating an idealized but intractable Bayesian code (B.7.5).
As with two-part codes, variational codes require choosing a seemingly arbitrary prior. We address
this by defining quasi-universal variational codes, which are analogous to universal two-part codes.
Definition 5 (quasi-universal variational code). A variational code M is a quasi-universal varia-
tional code if and only if:

L∗,var
M (Y | X)

+
≤ C two-part(Y | X). (12)

We use the term quasi-universal because such codes are not necessarily strictly universal among the
set of variational codes. However, their minima are tightly bound per the following theorem.
Proposition 3. For any quasi-universal variational code M ,

K(Y | X)
+
≤ Cbayes(Y | X)

+
≤ L∗,var

M (Y | X)
+
≤ C two-part(Y | X), (13)

where Cbayes(Y | X) := − log2

∑
f∈F 2−K(f)p(Y | X; f).

The result is visualized in Figure 3. The proof involves deriving Cbayes(Y | X) as the minimum of a
universal Bayesian code (B.7.6). Under reasonable conditions, the differences between each of these
quantities are expected to be small. See B.7 for formal analysis and discussion. The definition of
asymptotically optimal families of two-part codes directly extends to variational codes (B.8.2). Ad-
ditionally, variational codes can be seen as a generalization of two-part codes (B.8.1), and therefore
our previous result constructing asymptotically optimal two-part codes for Transformers directly
extends to prove the following proposition (B.8.3).
Proposition 4. There exists an asymptotically optimal family of variational codes for Transformer
encoders.

Finally, we note that we can also generalize variational codes by using an adaptive prior (Hinton &
Van Camp, 1993), where the prior is itself parameterized. We term such codes adaptive variational
codes, defined formally in B.8.4. Adaptive priors help generalize our previously constructed codes
to form a more flexible implementation, discussed next.

5.1 DIFFERENTIABLE CODES VIA GAUSSIAN MIXTURE MODELS

Recall that our goal is to identify and evaluate families of asymptotically optimal codes for Trans-
formers that are based on flexible and general priors – not explicitly constructed around a specific
Turing machine emulation – and are amenable to standard gradient-based optimization (per 4.2). As
one path towards this goal, we construct a family of adaptive variational codes where the adaptive
prior and posterior distributions are both parameterized by sets of independent Gaussian mixture
models (GMMs; see B.9.1). Intuitively, a GMM prior shared across a group of weights drives com-
pression by encouraging a low-entropy clustering of weight values around the component means,
akin to soft quantization (Ullrich et al., 2017; Achterhold et al., 2018; Han et al., 2016). Such a
GMM-based construction is appealing for its generality, and because we can estimate the variational
codelength objective using Monte-Carlo sampling and apply standard optimizers via the reparame-
terization trick (Kingma & Welling, 2014; Jang et al., 2017; Maddison et al., 2017). The proof of
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Theorem 2 below demonstrates that this construction is also asymptotically optimal, thus establish-
ing a worst-case asymptotic upper bound on the minimal codelength (i.e. compression) achievable
with such codes. The proof also serves to illustrate a potential path towards identifying other in-
stances of practical and asymptotically optimal codes.
Theorem 2. There exists an asymptotically optimal family of adaptive variational codes for Trans-
former encoders where the adaptive prior and posterior distributions are both specified by products
of independent GMMs.

The key challenge in satisfying this theorem, in contrast to our earlier existence proofs, lies in the
stronger constraints imposed on the prior distribution, particularly the independence assumptions.
We show that two relatively general conditions are sufficient to establish asymptotic optimality.
First, we use layerwise weight sharing, as in a Universal Transformer (Dehghani et al., 2019), ensur-
ing that the number of Transformer weights doesn’t scale with the time bound Rt. Second, we share
a GMM prior over groups of Transformer weights, ensuring that the number of prior parameters
doesn’t scale with the space bound Rs.

The formal proof is in B.10. Our proof sketch here builds on the function zmap and the related
notation introduced in Section 4.1. Given a universal prefix Turing machine T , for every resource
bound R ∈ N2 and program z ∈ ZT,R, we construct GMM posterior parameters φR,z and GMM
prior parameters ψR such that the KL divergence is equal to |z| plus an additive constant and the
model function is deterministic and equivalent to fzT . Specifically, we construct φR,z to approximate
a delta function at each weight in zmap(T,R, z), except for weights representing the program tape
past the |z|th register; these weights do not affect the model function being computed, and we
therefore set their posterior to be equal to their respective prior, such that they can be transmitted
“for free”. Importantly, by construction, the output of zmap consists of a constant number of weights
(depending on T but notR) outside of theRs prompt embeddings (which represent the program tape
contents). By sharing a GMM prior across each feature column of the prompt embeddings table, the
total KL for these embeddings is shown to be |z| bits. The fixed number of remaining weights can
be transmitted in a constant number of bits for any GMM prior assigning non-zero probability to the
associated weights in zmap(T,R, z). This establishes the necessary upper bound on the minimum
codelength, although there may be prior and posterior parameters offering even greater compression.

6 EXPERIMENTS

Here we empirically evaluate the GMM-based adaptive variational code discussed in Section 5.1 as
a tractable instance of an asymptotically optimal code for Transformers.

Computing parity We focus our initial investigation on the task of computing parity, i.e. given
a sequence of 0s and 1s, determining whether there is an odd or even number of 1s. Computing
parity is a common task for assessing Transformer expressivity and generalization (Hahn, 2020;
Bhattamishra et al., 2020; Chiang & Cholak, 2022; Ruoss et al., 2023; Delétang et al., 2022; Anil
et al., 2022; Zhou et al., 2022; 2023). Standard Transformers trained with maximum likelihood ob-
jectives struggle with consistent length generalization on this task, making it a useful benchmark for
assessing whether an alternative objective can encourage stronger out-of-distribution generalization.
A key objective of our experiments is distinguish between (1) failures of the proposed objective to
select for compressible models with strong generalization and (2) failures to effectively optimize the
proposed objective. To this end, for simple algorithmic tasks such as computing parity, we can again
use ALTA, this time to manually determine a set of parameters that fits the training data and also has
low complexity according to the proposed objective, establishing an upper bound on the minimum
of the variational objective. We can then determine whether our optimization process, starting from
a random initialization, can find a set of parameters with similar or lower loss. See C.1 for details.

The results for Transformers with different training objectives and initializations are shown in Ta-
ble 1. Only the manually initialized model exhibits strong length generalization (OOD accuracy).
All randomly initialized models fit the training set, but struggle with length generalization. The
model trained with the variational objective from a random initialization does not achieve a loss
comparable to the ALTA-compiler initialization. This suggests that while the objective may select
for models with stronger generalization, standard optimization techniques fail to effectively find a
strong minimizer, which we investigate further next.
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Table 1: Transformer performance on parity task for different training objectives and initializations.

Init. Objective KL (bits) Train NLL (bits) Codelength (bits) Train Acc. OOD Acc.
Random MLE Baseline – 17.2 – 100% 56.4%
Random Variational 6.5M 163.5 6.5M 100% 60.4%
Manual Variational 2.0K 0.0 2.0K 100% 100%

Optimization analysis To understand why our Transformer models underfit the proposed objec-
tive when randomly initialized, we study the simplified setting of a 2-layer MLP on a simple identity
task, with details in C.2. We use a shared GMM prior and Gaussian posteriors for each weight.
Again, we see that random initialization fails to find a loss comparable to that achieved via manual
initialization, indicating poor optimization of the proposed objective. By inspecting the learned prior
and posterior distributions compared to those from manual initialization, we identify that one po-
tential culprit is that the prior distribution collapses to a unimodal distribution (see Figure 9 in C.2).
This is in contrast to our manually identified solution which consists of a multimodal distribution
with low variance components, which leads to a significantly lower KL divergence.

Discussion These results suggests that future work should consider alternative optimization proce-
dures that discourage this form of collapse, or consider alternative families of asymptotically optimal
codes altogether. We discuss potential alternative approaches for constructing practical families of
codes, including a relaxed notion of asymptotically quasi-optimal families of codes, in B.11.

7 RELATED WORK

Our work is closely related to the notion of universal induction (Solomonoff, 1964) and related
theoretical frameworks (Levin, 1973; Hutter, 2000; Lattimore & Hutter, 2013; Achille et al., 2021;
Nakkiran, 2021). For neural networks, a notable early work is Schmidhuber (1997), which in-
troduced a probabilistic search algorithm for discovering neural networks with low Kolmogorov
complexity. However, none of these theoretically compelling approaches directly lead to practi-
cal and scalable training objectives for neural networks. On the other hand, various MDL-inspired
complexity measures have been proposed and evaluated for neural networks, based on variational
inference (Hinton & Van Camp, 1993; Blundell et al., 2015; Louizos et al., 2017; Blier & Ollivier,
2018) or other methods (Li et al., 2018; Lotfi et al., 2022; 2024; DeMoss et al., 2025; Abudy et al.,
2025), such as quantization and low-rank approximation. However, prior work has not demonstrated
asymptotic compression guarantees for such methods. Our main contribution is establishing asymp-
totic bounds by constructing a bridge between Transformer weights and prefix Turing machines.
Our results extend prior work establishing the Turing completeness of Transformers (Pérez et al.,
2021; Nowak et al., 2024). We provide an extended discussion of related work in Appendix D.

8 CONCLUSION

In this paper, we introduced a framework for analyzing asymptotic bounds for description length
objectives, grounded in the MDL principle and the universality of Kolmogorov complexity. We
established that there exist asymptotically optimal description length objectives for Transformers,
while also highlighting potential challenges related to effectively optimizing such objectives. The
asymptotic guarantees offered by such objectives are particularly compelling as the computational
resources available for training models continue to increase. This work opens up several avenues
for future research. Theoretically, our analysis could be extended to other architectures and settings,
such as Transformer decoders that leverage chain-of-thought, or models that interact with external
tools. Future work could also consider families of codes that scale the capacity of Transformers
along alternative dimensions, as opposed to increasing prompt length. Empirically, the most press-
ing challenge is to identify alternative (approximations of) asymptotically optimal codes, or novel
optimization techniques, such that the proposed objectives can be efficiently optimized. This would
be a significant step toward realizing the potential of the MDL principle, potentially leading to mod-
els offering greater compression and generalization.
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REPRODUCIBILITY STATEMENT

Detailed proofs and theoretical analysis are included in Appendix B. Details needed to reproduce
the experiments are included in Appendix C.

USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to help revise the paper, e.g., to draft suggestions for improving clarity and concision.
We also used LLMs to try to identify typos or other issues with our proofs and technical analysis.
LLMs did not play a significant role in research ideation.
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A ADDITIONAL BACKGROUND

We first give an overview of relevant concepts related to Kolmogorov complexity and the Minimum
Description Length (MDL) principle, and refer the reader to other resources for further reading,
such as Li & Vitányi (2008), a reference text for Kolmogorov complexity and related topics. Other
texts that cover these topics include Cover & Thomas (2006) and Hutter (2005). Some material is
also covered in tutorials Grunwald & Vitanyi (2008) and Grunwald (2004). Other notable resources
include Barron (1985) which discusses the Kolmogorov complexity of probability distributions,
Rathmanner & Hutter (2011) which offers a more philosophical and intuitive discussion, and the in-
troduction of Schmidhuber (1997) which offers a concise summary for a machine learning audience.
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A.1 BINARY STRINGS

Let {0, 1}∗ denote the set of finite binary strings or sequences, e.g.:
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}, (14)

with ε denoting the empty string. We denote the length of a string x ∈ {0, 1}∗ as |x|, e.g. |0101| = 4.

Note that there is a one-to-one correspondence between the set of binary strings and the natural
numbers N , e.g. equation 14 shows a standard enumeration. Therefore, there is also a one-to-one
mapping between the elements of any countable set and binary strings.

A.2 CODES AND DESCRIPTION LENGTHS

We consider settings where a sender (e.g., Alice) wants to transmit some information to a receiver
(e.g., Bob). Formally, consider the case where Alice wants to transmit an element from some count-
able set X to Bob by sending a message consisting of some binary string, such that Bob can re-
construct the element from the transmitted message. Thus, prior to communication, Alice and Bob
must agree on a code, or description method, which can be characterized by a decoding function
D : {0, 1}∗ → X . We refer to the binary strings in the domain of the decoding function as code-
words (or programs, for reasons which will become clear in the following sections). For each code
D, we can therefore associate a description length measure, or complexity measure, LD : X → N ,
where the complexity measure’s value for every x is equal to the length of the shortest program that
generates x:

LD(x) = length of the shortest program z such that D(z) = x

= min
z : D(z)=x

|z| (15)

Therefore, a code D establishes a compression scheme, where Alice can transmit an element x ∈ X
to Bob using LD(x) bits.

Prefix codes and Kraft’s inequality If Alice wants to send Bob a sequence of elements in X ,
not all codes guarantee that such a sequence is uniquely decodeable, i.e. that the sequence can be
unambiguously reconstructed when the messages for each of the elements are concatenated. This
ambiguity can be resolved by considering a prefix code. A set B ⊂ {0, 1}∗ is prefix-free if no
element in B is a prefix of any other element in B. A decoding function specifies a prefix code if its
domain is prefix-free. A common example of a prefix-free code is a Huffman code.

Kraft’s inequality captures an important relation between description length measures and prefix
codes. It states that there exists a prefix code D over X with description lengths LD if and only if:∑

X
2−LD(x) ≤ 1. (16)

Prefix codes and probability distributions Beyond the practical advantages of self-delimiting
codes, a primary theoretical motivation for considering prefix-free codes is their close connection
with probability distributions. Given a probability distribution p(x) over X , there exists a prefix-free
code D for X such that:

LD(x) = d− log2 p(x)e, (17)
where we round up to form integer-length codewords. One method for constructing such a code
is Shannon-Fano coding, where more likely elements are assigned shorter codewords. As we are
primarily interested in theoretical codelengths rather than practical codes, we will typically omit the
additive constant from this rounding and consider non-integer codelengths.

Universal prefix codes Let us consider the set of all computable prefix-free partial functions map-
ping from binary strings to elements of some set X , denoted as D. Each decoding function D ∈ D
has a corresponding description length measure, LD, given by equation 15. In general, LD may
be an unsatisfying complexity measure for elements of X due to its strong dependence on the po-
tentially arbitrary choice of D. However, in the following section, we will show that there exists a
subset of functions in D, that are universal in the sense of offering at least as much compression
as any other description length measure, up to an additive constant that does not depend on the
complexity of the element being encoded.
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A.3 KOLMOGOROV COMPLEXITY

The definition of Kolmogorov complexity (also called algorithmic complexity) and the proof of its
universality come from Kolmogorov (1965), with similar formulations appearing independently in
Solomonoff (1964) and Chaitin (1969).

Intuitively, we can think of the Kolmogorov complexityK(x) of an object x as the shortest program
written in some standard programming language (such as Python) that prints x. To make this notion
more precise, Kolmogorov complexity is typically defined with respect to a special class of Turing
machines, called prefix Turing machines. (With some effort, it could be defined with respect to any
universal model of computation.)

Prefix Turing machines Prefix Turing machines are multi-tape Turing machines. As with all
multi-tape Turing machines, the behavior of the machine is specified by a transition function. At
each step of computation, the transition function takes as input the current state and the register
values at current “head” position of any readable tape. The transition function can then optionally
update the register values of any writeable tapes at their current “head” positions and optionally
move each “head” to an adjacent register. The machine then updates the state for the next step or
halts the computation.

The defining characteristic of a prefix Turing machine is a binary, unidirectional, read-only program
tape with no blank symbols. The machine also consists of a bidirectional, read-write work tape. The
machine also has at least one read-only input tape, and at least one write-only output tape.5

For a prefix Turing machine T , we abuse notation and write T to denote the partial function that
the machine computes, i.e. where y = T (x, z) denotes that the Turing machine T , with the input
tape initialized with x and the program tape initialized with prefix z, runs for some number of steps
before halting with y written to the output tape. The function is undefined for (x, z) that do not halt.

Universal Turing machines Notably, there exists a subset of prefix Turing machines that are
universal in the sense of being able to simulate the computation of any other prefix Turing machine.
Such a machine can effectively take as input the description of any other Turing machine, and
emulate the computation of that machine.

Kolmogorov complexity The more commonly used notion of Kolmogorov complexity – used
throughout this paper – is called prefix Kolmogorov complexity, to distinguish from plain Kol-
mogorov complexity, which lacks some of the desirable formal properties.

The (prefix) Kolmogorov complexity of a string x ∈ {0, 1}∗ with respect to a universal prefix Turing
machine T is:

KT (x) = min
z : T (ε,z)=x

|z|, (18)

where ε denotes the empty string.

Similarly, the conditional Kolmogorov complexity of a string y given x is:

KT (y|x) = min
z : T (x,z)=y

|z|. (19)

Note that Kolmogorov complexity KT (x) satisfies Kraft’s inequality because the set of halting pro-
grams is prefix-free.

Invariance theorem The invariance theorem is the key result that gives Kolmogorov complexity
its universal property. Given any two universal prefix-free Turing machines T 1, T 2:

∀x, |KT 1(x)−KT 2(x)| < c, (20)

where c is a constant that depends on the choice of T 1 and T 2 but not on x, and therefore we write
∀x, KT 1(x)

+
= KT 2(x), recalling the notation from Section 2. The invariance theorem intuitively

5Note that in some constructions, programs and inputs are encoded on the same tape, although this detail
only affects the resulting definition of Kolmogorov complexity by an additive constant.
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follows from the result that a universal Turing machine can simulate the computation of any other
Turing machine. Informally, the constant c captures the cost of constructing an interpreter for pro-
grams written for T 2 in the language of T 1. The result also extends to conditional Kolmogorov
complexity.

Therefore, as we are primarily interested in inequalities that hold up to an additive constant, we
write Kolmogorov complexity as K(x) and drop the explicit dependence on a particular choice of
reference machine.

Computability Kolmogorov complexity is formally uncomputable due to the halting problem. If
we try to enumerate programs from shortest to longest, some may never halt. It is, however, upper
semicomputable. Any program that halts and generates the given object provides an upper bound.
This upper bound becomes increasingly tight as we run more programs for more steps.

Universality of Kolmogorov complexity As a corollary to the invariance theorem, Kolmogorov
complexity is a universal description length measure as described in Section A.2, i.e. for any com-
putable prefix-free decoding function D and corresponding description length measure LD,

∀x K(x)
+
≤ LD(x). (21)

In other words, Kolmogorov complexity can be interpreted as a compression scheme, where Alice
encodes a string x by the shortest program that generates x. This compression scheme offers at least
as much compression of x, for any x, as any other computable prefix code up to an additive constant
that does not depend on x. Thus, as the complexity of x increases, the additive constant becomes
negligible, and all such universal description length measures are asymptotically equivalent. Con-
versely, any description length measure provides an upper bound on Kolmogorov complexity, up to
an additive constant, however this bound may be arbitrarily loose for some objects.

Kolmogorov complexity of countable objects The definition of Kolmogorov complexity natu-
rally extends to countable sets other than the non-binary strings. For example, for x ∈ X and y ∈ Y
where X and Y are countable, we have:

K(y | x) = min
z : T (eX (x),z)=eY(y)

|z|, (22)

or ∞ if no such z exists, where eX (x) : X → {0, 1}∗ and eY(y) : Y → {0, 1}∗ are one-to-one
computable functions mapping from x and y to binary encodings, and T is a universal prefix Turing
machine. WhileK(y | x) therefore depends on a specific choice of eX and eY , we leave this implicit
in the notation. Since eX and eY are computable functions, the specific choice only affectsK(y | x)
up to an additive constant that does not depend on y or x, similar to the choice of T .

For structured objects such as tuples, we can consider prefix Turing machines with multiple output
tapes, in order to simplify the encoding of such objects. For such a universal prefix Turing machine
T , we use the same notation as above, assuming that both T (x, z) and eY output a tuple of strings
with a number of elements equal to the number of output tapes. Again, such a choice only affects
the resulting definition of Kolmogorov complex up to an additive constant, as the number of tapes
does not affect the machine’s expressive power (Papadimitriou, 1994).

Kolmogorov complexity of discrete functions We can extend the definition of Kolmogorov com-
plexity to functions. This is relatively straightforward for a function f : X → Y if the domain X
and range Y are countable such that the inputs and outputs of the function can be encoded as binary
strings. Again, we choose a reference universal prefix Turing machine T .

K(f) = min
z : ∀x, T (eX (x),z)=eY(f(x))

|z|, (23)

or∞ is no such z exists, which is the case if f is uncomputable, e.g. it solves the halting problem.
As a direct analogue to the invariance theorem for Kolmogorov complexity of strings, the same
property holds for the Kolmogorov complexity of functions. Extensions to real-valued functions are
discussed in Appendix B.1.
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Resource-bounded Kolmogorov complexity We can consider computable, resource-bounded ap-
proximations to Kolmogorov complexity (Li & Vitányi, 2008, section 7).

Consider a resource bound R = (Rt, Rs) ∈ N2, representing a bound on the time Rt ∈ N and
Rs ∈ N space resources available.

Given a universal prefix Turing machine T , let y = TR(x, z) denote the partial function computed
by T if the execution given x and z halts within Rt steps and uses at most Rs registers on each
tape; otherwise TR(x, z) is undefined. We can then define time and space bounded Kolmogorov
complexity with respect to T and R:

KT,R(y | x) = min
z : TR(x,z)=y

|z|, (24)

or∞ if no such z exists, with an analogous definition for functions.

The resource-bounded version lacks the universal properties of unbounded Kolmogorov complex-
ity. However, KT,R(y | x) is monotonically non-increasing with respect to increasing Rt and Rs,
decreasing to KT (y | x) as Rt and Rs go to∞.

Coding theorem The coding theorem is a central result in algorithmic information theory (Li &
Vitányi, 2008, Section 4), and relates to the universality of Kolmogorov complexity. A key result of
the coding theorem is that if m is a lower semicomputable semimeasure, then:

K(x)
+
≤ − log2m(x). (25)

where a semimeasure is a generalization of probability distribution, such that a semimeasure m over
a domain X satisfies: ∑

x∈X
m(x) ≤ 1. (26)

Note that because K(x) is upper semicomputable and satisfies Kraft’s inequality, 2−K(x) is a lower
semicomputable semimeasure.

This result also extends to conditional Kolmogorov complexity, and, as a direct analogue, to the
Kolmogorov complexity of discrete functions.

B ADDITIONAL THEORETICAL ANALYSIS AND PROOFS

B.1 RATIONALE FOR RATIONAL-VALUED MODEL FUNCTIONS

Defining Kolmogorov complexity for a function f : X → R with a countable domain but real-
valued range is slightly more complicated than for functions with countable (e.g. rational-valued)
outputs, but we can accomplish this by considering the shortest program z for a given universal
prefix Turing machine T that can approximate f to an arbitrary degree of precision a ∈ N specified
as an additional input:

K(f) = min{|z| : ∀x ∈ X , a ∈ N
∣∣T (e(X×N)(x, a), z)− f(x)

∣∣ ≤ 1/a}. (27)

Given this definition, we could define two-part and variational codes with respect to model func-
tions with real-valued logits, analogously to those defined with respect to model functions with
rational-valued logits. However, this leads to significantly greater theoretical complexity with lim-
ited practical benefit, given that real-world neural networks represent logits with finite precision, and
any real-valued function can be approximated to an arbitrary degree of precision by a rational-valued
function.

B.2 NOTE ON “UNIVERSAL” TERMINOLOGY

The term universal is overloaded in the context of codes and compression schemes, with different
usages varying with respect to the scope (the class of codes/models being compared against) and
the nature of the performance guarantee. Our usage of the term in this paper follows the use of
the term in the algorithmic information theory literature to describe the universality of Kolmogorov
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complexity with respect to any computable prefix code, up to an additive constant. We extend this
notion to slightly restricted sets of prefix codes, i.e. the specific classes of two-part, Bayesian, and
variational codes discussed in this paper.

In contrast, the term universal code also appears in the MDL literature (Grunwald, 2004) to describe
codes that are universal with respect to a specific set of candidate codes, in the sense of offering as
much compression as any candidate code, up to a factor that is typically logarithmic with respect to
the size of the candidate set or data sample. The term “universal code” is also used to describe prefix
codes for integers, such as Elias codes, which offer asymptotic guarantees relative to any other prefix
code assuming a monotonically decreasing probability distribution over the integers.

B.3 MODEL FUNCTIONS AND NOTATION

Here we introduce standard encodings, eX and eL, used to define the Kolmogorov complexity of
model functions, F : X → L, introduced in Section 3. Let us denote the class of universal prefix
Turing machines compatible with these encodings as T , with the specific assumptions specified in
the following paragraphs. Recall that the specific choice of universal prefix Turing machine, and
encoding functions eX and eL, only affect the resulting definition of Kolmogorov complexity by
an additive term (A.3), which does not affect the main inequalities we are interested in proving,
which hold up to an additive term. Therefore we choose encodings to simplify the construction of a
function zmap introduced later (B.5), which generates Transformer parameters to emulate a prefix
Turing machine.

Input encoding Let V be a vocabulary of input tokens. We assume some one-to-one encoding of
inputs eX : X → V∗ as a token sequence, which is represented on the input tape. For generality, we
do not necessarily assume the input vocabulary is binary, and assume the input tape of any T ∈ T
has a number of symbols greater than or equal to |V|.

Output encoding Recall that the output of a model function is a tuple of rational-valued logits,
with one logit for each element in the output space Y , i.e. L = Q|Y|. We assume that any T ∈ T
has |Y| write-once, unidirectional output tapes, with each logit ∈ Q encoded on a separate output
tape in the following format. Let s ∈ {0, 1} denote the sign of the logit, numerator ∈ N0 be the
numerator and denominator ∈ N be the denominator. The logit is then encoded on the output
tape as:

s,

numerator︷ ︸︸ ︷
1, 1, · · · , 1, 0,

denominator−1︷ ︸︸ ︷
1, 1, · · · , 1 , (28)

followed by blank symbols. Therefore, eL : Q|Y| → ({0, 1}∗)|Y|.

Shorthand notation We introduce the following shorthand notation related to prefix Turing ma-
chines and the encoding functions introduced above.

First, let us define a model function fzT ∈ F computed by T ∈ T with program z as follows:

fzT (x) = e−1
L (T (eX (x), z)) . (29)

Next, let us define the set of programs where T ∈ T halts with a valid output for any input:
ZT = {z : ∀x ∈ X , T (eX (x), z) ∈ dom(eL)}. (30)

Additionally, let us denote the set of programs where T ∈ T halts with a valid output for any input
under resource bound R as:

ZT,R = {z : ∀x ∈ X , TR(eX (x), z) ∈ dom(eL)}. (31)

Note that we can rewrite the definitions of Kolmogorov complexity with respect to these definitions.

KT (f) = min
z∈ZT : fz

T =f
|z|, (32)

or∞ is no such z exists, and similarly:
KT,R(f) = min

z∈ZT,R : fz
T =f
|z|, (33)

or∞ is no such z exists, where fzT = f denotes that ∀x ∈ X , fzT (x) = f(x).
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B.4 ANALYSIS OF TWO-PART CODES

Here we provide the proof of Proposition 1, along with supporting lemmas and related analysis of
two-part codes.

B.4.1 LEMMAS 1 AND 2

We introduce the following lemmas to support our later proofs.
Definition 6 (description length of a model function). The description length of a model function f
under code M , denoted LFM (f), is the codelength of the shortest hypothesis that maps to f :

LFM (f) := min
h∈HM : mM (h)=f

− log2 αM (h). (34)

Lemma 1. The minimum codelength of a two-part codeM can be expressed as a minimization over
the set of model functions realized by M :

L∗,two-part
M (Y |X) = min

f∈im(mM )

(
LFM (f)− log2 p(Y |X; f)

)
, (35)

where im(mM ) is the image of the mapping mM , i.e., the set of all model functions f such that
f = mM (h) for some h ∈ HM .

Proof. We start from the definition of the minimum achievable codelength, equation 3:

L∗,two-part
M (Y |X) = min

h∈HM

Ltwo-part
M (Y |X;h)

= min
h∈HM

(− log2 αM (h)− log2 p(Y | X;mM (h))) .

We can partition the hypothesis spaceHM into disjoint sets, where each set contains all hypotheses
that map to the same model function f ∈ im(mM ). The minimization over all h ∈ HM can then be
rewritten as a two-level minimization: first, for each function f , we minimize over all hypotheses
that produce it, and second, we minimize over all possible functions f :

L∗,two-part
M (Y |X) = min

f∈im(mM )

(
min

h∈HM : mM (h)=f
(− log2 αM (h)− log2 p(Y | X;mM (h)))

)
.

For the inner minimization, all hypotheses h map to the same function f . Therefore, the term
− log2 p(Y | X;mM (h)) is constant and equal to − log2 p(Y | X; f). We can pull this constant
term out of the inner minimization:

L∗,two-part
M (Y |X) = min

f∈im(mM )

((
min

h∈HM : mM (h)=f
− log2 αM (h)

)
− log2 p(Y | X; f)

)
.

By our definition in equation 34, the inner term is precisely the description length of the function f ,
LFM (f). Substituting this back gives the final result:

L∗,two-part
M (Y |X) = min

f∈im(mM )

(
LFM (f)− log2 p(Y | X; f)

)
.

Lemma 2. For any two-part code M and for all f ∈ F:

K(f)
+
≤ LFM (f). (36)

Proof. First, we show that 2−L
F
M (f) is a semimeasure over F .

Substituting and simplifying the definition of LFM (f), we have:

2−L
F
M (f) = max

h∈HM : mM (h)=f
αM (h) (37)

We now need to show: ∑
f∈immM

(
max

h∈HM : mM (h)=f
αM (h)

)
≤ 1. (38)
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The summation is effectively over some subset of hypotheses inHM , i.e. those that offer the shortest
description length for some function. As each element of the summation is non-negative, we have
the following inequality:

∑
f∈immM

(
max

h∈HM : mM (h)=f
αM (h)

)
≤

∑
f∈immM

 ∑
h∈HM : mM (h)=f

αM (h)

 =
∑
h∈HM

αM (h),

and because αM (h) is, by definition, a semimeasure overHM , we have:∑
h∈HM

αM (h) ≤ 1,

and therefore 2−L
F
M (f) is a semimeasure. Similarly, 2−L

F
M (f) is lower semicomputable, given that

αM (h) is by definition lower semicomputable.

Therefore, per the coding theorem, we have:

K(f)
+
≤ − log2 2−L

F
M (f)

K(f)
+
≤ LFM (f).

B.4.2 PROOF OF PROPOSITION 1

Proposition (Proposition 1 restated). There exists a universal two-part code.

Proof. We construct a two-part code U with respect to a universal prefix Turing machine T ∈ T .
The components of U are defined as follows:

• The hypothesis spaceHU = {0, 1}∗ is the set of binary strings, i.e. programs.

• The mapping function mU : HU → F takes a program h ∈ HU and maps it to a model
function. Specifically, mU (h) = fhT , i.e. the function computed by running the machine T
with program h.

• The prior αU (h) is defined as 2−|h| for h ∈ ZT , where |h| is the length of a halting program
h. Otherwise, αU (h) = 0 if h does not halt for all inputs. The prior is therefore a lower
semicomputable semimeasure.

By the definition of a universal Turing machine, the image of mU is the set of all computable model
functions, F .

Using Lemma 1, we can analyze the description length of a function f under our code U . Recall that
LFM (f) is the codelength of the shortest hypothesis that maps to f . For our code U , this becomes:

LFU (f) = min
h∈HU : mU (h)=f

(− log2 αU (h))

= min
h∈{0,1}∗ : mU (h)=f

(
− log2 2−|h|

)
= min
h∈{0,1}∗ : fh

T =f
|h|. (39)

The final expression is, by definition, the Kolmogorov complexity of the function f with respect to
machine T , denoted KT (f). By the invariance theorem, LFU (f)

+
= K(f). By Lemma 2, for any

other two-part code M , we have K(f)
+

≤ LFM (f). Therefore, combining these results, we have a
key inequality that holds for any two-part code M and any function f :

LFU (f)
+
= K(f)

+
≤ LFM (f). (40)

Finally, we show that U is a universal two-part code. We must prove that for any other code M ,
L∗,two-part
U (Y | X)

+

≤ L∗,two-part
M (Y | X).
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Let f∗M be any model function that minimizes the codelength for code M on a given dataset (X,Y ),
re-written as a minimum over model functions, per Lemma 1, such that:

L∗,two-part
M (Y | X) = LFM (f∗M )− log2 p(Y |X; f∗M ). (41)

The minimum codelength for our universal code U is, by definition, no greater than the codelength
achieved by using the specific function f∗M :

L∗,two-part
U (Y | X) ≤ LFU (f∗M )− log2 p(Y |X; f∗M ). (42)

Using our key inequality from equation 40, we know that LFU (f∗M )
+

≤ LFM (f∗M ). Substituting this
into the right-hand side of equation 42 yields:

L∗,two-part
U (Y | X)

+
≤ LFM (f∗M )− log2 p(Y |X; f∗M ).

Now, substituting equation 41 into the right-hand side of the expression above gives us our final
result:

L∗,two-part
U (Y | X)

+
≤ L∗,two-part

M (Y | X). (43)

Since this holds for any two-part code M , we have shown that U is a universal two-part code.

B.4.3 DISCUSSION OF UNIVERSAL TWO-PART CODES

Notably, satisfying the conditions of a universal two-part code does not require that LM (h)
+

≤ K(h)
for all hypotheses. This is particularly notable for neural networks, where hypothesis spaces are
typically highly redundant – many different parameter sets (hypotheses) compute the same model
function. Our definition allows for some of these parameter sets to be inefficiently described, with
a description length far exceeding their own Kolmogorov complexity. Universality is maintained as
long as for any given model function, at least one of its corresponding parameter sets is described
efficiently (with description length equal to the function’s Kolmogorov complexity, up to some ad-
ditive constant). Therefore, we can devise universal two-part codes without necessarily needing to
devise description length measures that optimally compress every possible hypothesis, a potentially
significant challenge for the vast and redundant parameter spaces of neural networks.

On the other hand, because some (or even most) hypotheses may be coded quite inefficiently, a
universal two-part code would not necessarily be useful for post-hoc model selection across models
that were not trained to optimize the given two-part description length objective.

B.4.4 PROOF OF COROLLARY 1

Corollary (Corollary 1 restated). The minimum of any universal two-part code M is equal to the
following bound, denoted C two-part(Y | X), up to an additive term:

C two-part(Y | X) := min
f∈F

K(f)− log2 p(Y | X; f)
+
= L∗,two-part

M (Y | X). (44)

Proof. Let U be the specific universal two-part code constructed in the proof of Proposition 1. Its
minimum codelength is given by:

L∗,two-part
U (Y | X) = min

f∈F

(
LFU (f)− log2 p(Y |X; f)

)
. (45)

In that proof, we established that, LFU (f)
+
= K(f). Substituting this into the equation above directly

shows that the minimum codelength of U is equivalent to the bound C two-part(Y | X):

L∗,two-part
U (Y | X)

+
= min

f∈F
(K(f)− log2 p(Y |X; f)) = C two-part(Y | X). (46)

Now, let M be any other universal two-part code. By the definition of a universal two-part code, its
minimum codelength must be equivalent to that of U , i.e., L∗,two-part

M (Y | X)
+
= L∗,two-part

U (Y | X).
It therefore follows that the minimum codelength for any universal code M is equivalent to the
bound.
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B.4.5 PROOF OF PROPOSITION 2

Proposition (Proposition 2 restated). Given an asymptotically optimal family of two-part codes
{MR | R ∈ N2}:

lim
Rt,Rs→∞

L∗,two-part
MR

(Y | X)
+
= C two-part(Y | X), (47)

with the bound C two-part
T,R (Y | X) monotonically non-increasing with increasing Rt or Rs.

Proof. The proof has two parts: establishing the limit and showing monotonicity.

First, for the upper bound, the definition of an asymptotically optimal family states that for any
resource bound R:

L∗,two-part
MR

(Y | X)
+
≤ C two-part

T,R (Y | X) = min
f∈F

(KT,R(f)− log2 p(Y | X; f)) . (48)

As the resource bounds Rt, Rs → ∞, the resource-bounded Kolmogorov complexity KT,R(f)

converges to the standard Kolmogorov complexity KT (f). By the invariance theorem, KT (f)
+
=

K(f), so the bound converges to the universal two-part codelength:

lim
Rt,Rs→∞

C two-part
T,R (Y | X)

+
= C two-part(Y | X). (49)

This establishes the upper bound for our limit:

lim
Rt,Rs→∞

L∗,two-part
MR

(Y | X)
+
≤ C two-part(Y | X). (50)

For the lower bound, we know from Corollary 1 that C two-part(Y | X) is the universal lower bound

for any two-part code. Thus, for any R, L∗,two-part
MR

(Y | X)
+
≥ C two-part(Y | X), which must also

hold in the limit.

Since the limit is both upper- and lower-bounded by C two-part(Y | X) up to an additive constant, the
equivalence holds.

Now we focus on showing monotonicity. Let R and R′ be two resource bounds such that R′
provides at least as many resources as R (i.e., R′t ≥ Rt, R′s ≥ Rs). Any program that is
computable within bounds R is also computable within bounds R′. This implies that for any
function f , KT,R′(f) ≤ KT,R(f). Consequently, the bound on the codelength is monotonic:
C two-part
T,R′ (Y | X) ≤ C two-part

T,R (Y | X).

B.5 DETAILS OF ZMAP

We use the ALTA compiler (Shaw et al., 2024) to construct (in Python) a function zmap(T,R, z)
that generates Transformer weights such that the Transformer emulates the model function computed
by a prefix Turing machine T with program tape contents z under a resource boundR. Formally, we
construct zmap to satisfy the following condition for all x ∈ X , R ∈ N2, z ∈ ZT,R, and T ∈ T :

mR (zmap(T,R, z) ) = fzT , (51)
where:

• The mapping function mR prepends Rs “prompt tokens” to the input and then runs the
forward pass of the Transformer with parameters h, outputting the unnormalized logits
prior to the final softmax. Recall that Rs ∈ N is a space resource bound.

• The output of zmap is a set of Transformer weights, with the particular model dimensions
depending on T and R.

• Recall fzT ∈ F is the model function from X to L computed by prefix Turing machine T ∈
T with program z, where T is a class of universal prefix Turing machines which assumes
specific encodings forX and L on the input and output tapes, eX and eL, respectively. Also
recall that ZT,R is the set of programs for T that halt with a valid output under resource
bounds R for all inputs. (See B.3)

In this section we detail the construction of zmap and these supporting constructions, which are
later used to prove the paper’s key theorems.
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B.5.1 TRANSFORMER INPUT PREPROCESSING

As described above, the mapping function mR involves prepending Rs prompt tokens, and then
running the forward pass of the Transformer. Given input tokens eX (x) = (x1, x2, · · · , x|x|) ∈ V∗,
we prepend a sequence of Rs prompt tokens (p1, p2, · · · , pRs) from a separate vocabulary of size
Rs. We then form the Transformer input sequence (prior to the embedding lookup) as follows:

START, p1, p2, · · · , pRs ,SEP, x1, x2, · · · , x|x|,END, (52)

where START, SEP, and END are special reserved tokens.

B.5.2 EMULATING SINGLE-TAPE TURING MACHINES

The function zmap generates Transformer weights that emulate a multi-tape prefix Turing machine,
including decoding of the output tapes to a set of logits. Before we describe zmap, we start with a
simpler explanation of how a Transformer can emulate a single-tape Turing machine, by giving code
for an ALTA program. We refer the reader to Shaw et al. (2024) for an explanation of the ALTA
language and compiler.

class TransitionIn:
state: int
head_symbol: int

class Move(enum.Enum):
LEFT = enum.auto()
RIGHT = enum.auto()

class TransitionOut:
state: int
symbol: int | None
move: Move | None
halt: bool = False

TransitionFn = Callable[[TransitionIn], TransitionOut]

class MachineSpec:
transition_fn: TransitionFn # Turing machine transition function.
num_states: int # Turing machine number of states.
num_symbols: int # Number of tape symbols.
num_steps: int # Time resource bound.
num_registers: int # Space resource bound.

Figure 4: Transition function definition for standard single-tape Turing machine.

To start, we define data structures to represent the transition function of a single-tape Turing machine
in Figure 4. Next, in Figure 5, we include a function that, given a transition function, defines an
ALTA program that can be compiled to a Transformer, which emulates the provided Turing machine.
The Transformer expects, as input, a sequence representing the initial state of the machine’s tape.

While there are potentially many ways to emulate a Turing machine in a Transformer, representing
each register at a different input position, and using relative position representations to facilitate
shifting the attention head to the right or left, is a relatively straightforward implementation that
efficiently leverages the Transformer’s element-wise weight sharing and self-attention mechanism.

B.5.3 DEFINING ZMAP

The sketch of the ALTA program for zmap roughly follows the program for a single-tape Turing
machine from B.5.2, extended to handle multiple tapes: the input, program, work, and output tapes.

To facilitate “decoding”, the output tape registers are represented differently in the Transformer than
the registers for other tapes. Recall the encoding of the logits on the output tapes as specified in B.3.
The first bit written to the Turing machine’s tape specifies the sign of the logit, and therefore for
this first bit we set the value of a binary “sign” variable. The number of subsequent 1s written to
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from alta import program_builder as pb

def build_turing_machine_program_spec(spec: MachineSpec) -> pb.ProgramSpec:
"""Returns ALTA program spec for a Turing machine emulator."""

variables = {
"halted": pb.var(2),
"state": pb.var(spec.num_states),
"symbol": pb.input_var(spec.num_symbols),
"head": pb.input_var(2, init_fn=lambda x: x == START),
"one": pb.var(2, default=1), # Constant for queries.

}
attention_heads = {

# Read the symbol at the current head position.
"head_symbol": pb.qkv("one", "head", "symbol"),
# Identify tape cells to the left and right of the head.
"head_left": pb.v_relative("head", -1),
"head_right": pb.v_relative("head", 1),

}

def ffn_fn(x):
"""FFN function for Turing machine emulator."""
if x["halted"]:
return

# Get the next action from the state transition function.
output = spec.transition_fn(

TransitionIn(state=x["state"], head_symbol=x["head_symbol"])
)
x["state"] = output.state
if output.halt:
x["halted"] = 1

# Write a new symbol at current head position if specified.
if x["head"] and output.symbol is not None:
x["symbol"] = output.symbol

# Move the tape head to left or right if specified.
if output.move is not None and x["head"]:
x["head"] = 0

if output.move == Move.RIGHT and x["symbol"] != START and x["head_left"]:
x["head"] = 1

elif output.move == Move.LEFT and x["symbol"] != END and x["head_right"]:
x["head"] = 1

return pb.program_spec(
ffn_fn=ffn_fn, variables=variables, heads=attention_heads,
output_name="symbol", input_range=spec.num_symbols + 2, position_range=None,

)

Figure 5: ALTA program specification for emulating a single-tape Turing machine.

the Turing machine’s tape specifies the numerator. For each 1 we increment a numerical variable
“sum” by +1 or −1 depending on the “sign” variable. This “sum” variable is only non-zero at the
START position. After a 0 is written to the Turing machine’s tape, we transition to incrementing
the denominator. This is represented by changing a binary “key” variable from 0 to 1 at subsequent
positions each time the transition function specifies that a 1 should be written (the “key” value is also
initialized to 1 at START). Finally, once the Turing machine has halted, an attention head attends to
each position where “key” is 1, and then averages over the “sum” variable, which is non-zero and
equal to the numerator at exactly one position. The output of the attention head is therefore the logit
value, equivalent to the value decoded from the Turing machine’s corresponding output tape given
the encoding function.

The pseudocode for both zmap and the corresponding mapping function are given in Figure 6. The
PrefixMachineSpec specifies the transition function for a prefix Turing machine T ∈ T as well
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InputSequence = list[int]
Logits = list[float]
ModelFunction = Callable[[InputSequence], Logits]

def zmap(machine_spec: PrefixMachineSpec,
program_prefix: list[int]) -> TransformerParameters:

alta_program_spec = build_prefix_turing_machine_program_spec(
machine_spec, program_prefix)

return alta_compiler(alta_program_spec)

def mapping_fn(
machine_spec: PrefixMachineSpec,
params: TransformerParameters,

) -> ModelFunction:
def model_fn(input_tokens: InputSequence) -> Logits:
# Prepend prompt and add special tokens.
transformer_input = preprocess_input(machine_spec, input_tokens)
return run_transformer(params, machine_spec, transformer_input)

return model_fn

Figure 6: Pseudocode for zmap and corresponding mapping function.

as resource bounds R. We omit the full implementation of the program specification for brevity. We
verified the correctness of zmap using unit tests.

B.5.4 ALTA COMPILER MODIFICATIONS

We make several modifications to the original ALTA compiler detailed in Shaw et al. (2024) to
reduce the number of compiled weights, which is necessary to support our later proofs. ALTA
programs represent the behavior of the MLP sub-layer as a set of MLP rules. Each MLP rule
compiles to a single dimension of the weight matrices in the MLP sub-layer.

• The original ALTA compiler represents all categorical variables as one-hot vectors. We
introduce binary variables, which function similarly to categorical variables with a range
of 2, but are represented in a single activation dimension, as either 0 or 1. This leads to
one necessary modification to constructing the first MLP weight matrix in the case where a
MLP rule needs to match against a binary variable being 0. In this case, we include a−1 at
the index corresponding to the binary variable. This is particularly useful to represent each
bit of the program tape as a single weight.

• We don’t require specifying fixed buckets for discretizing numerical variables. This means
that numerical variables cannot be used as constraints in MLP rules, but this is not required
for the zmap program. This also means that the number of weights in the MLP layer does
not need to scale with the number of values the numerical variable can take on, which is
useful given that the scale of the “sum” variables representing the logit numerators can
grow arbitrarily.

• We add support for a MLP rule to increment a numerical variable by a fixed scalar. This
is relatively straightforward to implement by including the fixed scalar at the index corre-
sponding to the numerical variable in the second MLP weight matrix. This enables us to
increment the “sum” variables by +1 or−1, with 2 MLP rules covering both cases, regard-
less of the input value of the variable, by leveraging the Transformer’s residual connection.

• We enable specifying multiple output variables for the Transformer. This way, the output
projection can select the |Y| variables corresponding to the outputs of the attention heads
that compute the final |Y| logit values.

B.5.5 COMPILED WEIGHTS

The weights compiled by zmap have the following properties:

• All layers share the same weights, as in a Universal Transformer (Dehghani et al., 2019) or
Looped Transformer (Giannou et al., 2023).
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• The minimum dimensionality of the activations in the Transformer scales linearly with the
number of input (|V|) and output (|Y|) symbols and the number of Turing machine states
(specified by T ∈ T ), and does not grow with increasing resource bounds. Therefore, the
number of weights in invariant to to the time resource bound Rt.

• The minimum number of attention heads similarly scales linearly with the number of output
symbols, as each output tape requires 3 attention heads, and there is one output tape per
output symbol. A total of 7 additional heads are needed for the program, input, and work
tapes. However, the minimum number of attention heads does not scale with any resource
bound.

• The minimum hidden dimension of the MLP layer is determined by the complexity of
Turing machine’s transition function, but similarly does not scale with any resource bound.

• The Transformer requires only relative position representations, and no absolute position
representations. It requires separate bias terms only for relative positions −1 and +1, i.e.
to attend to positions immediately to the left or right.

• The Transformer’s input embedding table has |V| + Rs + 3 rows, i.e. embeddings for
START, SEP, END, each token in the input vocabulary V , and Rs prompt tokens, where
Rs is the space resource bound. As the embeddings for the prompt tokens therefore are
the only weights that scale as a function of any resource bound, we discuss these weights
specifically in the following section.

Therefore, the number of necessary weights, i.e. the hypothesis space, is a function of T and R,
but not z. The weight dimensions are minimums because the compiled weights can always be
padded with 0s or−1s. Also note that Transformers compiled by ALTA exactly compute a symbolic
program in the limit as the configurable attention matrix scalar goes to ∞, such that the compiled
Transformers implement “hard attention” (Pérez et al., 2021). All weight values belong to a small
set of unique values, and therefore require only finite precision to represent.

B.5.6 PROMPT EMBEDDINGS

The prompt token embeddings for prompt tokens p1, p2, · · · , pRs
produced by zmap for a given

program z = z1, z2, · · · , z|z| are specified as follows:


p1 bz1 w1 · · · w|w|
p2 bz2 w1 · · · w|w|
...

...
...

. . .
...

pRs bzRs
w1 · · · w|w|

(53)

where (w1, · · · , w|w|) is a finite-length weight vector that does not depend on z or any resource
bound, and the weights (bz1, · · · , bzRs

) encode the |z| bits of z in Rs > |z| weights as follows:

bzi =


1.0, i <= |z| ∧ zi = 1

−1.0, i <= |z| ∧ zi = 0

r, i > |z|,
(54)

where r can be chosen arbitrarily, as these weights represent bits on the program tape that, by
construction, will never be read, because by definition the program halts after reading the final bit of
z and does not move the head for the unidirectional program tape any further. In the Transformer, this
results in the attention head that “reads” the program tape never attending to these values. Therefore,
we arbitrarily choose r = 0.0.

B.5.7 RESOURCE BOUNDS DISCUSSION

Since the compiled weights are the same across all layers, the resource bound Rt denoting the
maximum number of Turing machine steps – and therefore the maximum number of Transformer
layers – does not affect the compilation. The Transformer requires Rt + 2 layers at inference time,
as it executes the Turing machine’s transition function once per layer, and then requires 2 additional
layers to compute the final logit values as described above. The registers of the initially blank work
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and output tapes are also represented by the prompt tokens, and therefore the number of prompt
tokens determines both the maximum program length and maximum number of registers on the
work and output tapes.

Notably, because only the number of prompt tokens grows with increasing space resource bound
Rs, and not any of the other aspect of the Transformer, as this bound becomes larger an increasing
proportion of the Transformer’s overall weights are allocated to embeddings of prompt tokens, rather
than, e.g. the weights of the MLP layer. This is quite different from how Transformer parameter
counts are conventionally scaled. It’s possible there are alternative ways of emulating a prefix Turing
machine that would lead to different scaling behavior, e.g. by effectively representing the program
within the MLP layer, but we leave consideration of this to future work.

Future work could also consider separate resource bounds for the maximum number of program
tape registers (bounding the model’s capacity to represent increasingly complex functions) and the
number of work tape registers (bounding the model’s memory capacity during the forward pass).

B.6 PROOF OF THEOREM 1

Theorem (Theorem 1 restated). There exists an asymptotically optimal family of two-part codes
for Transformer encoders.

Proof. Our proof builds on the construction of the function zmap, detailed in B.5, which generates
Transformer parameters satisfying equation 51.

Let T ∈ T be a universal prefix Turing machine. We can define a family of two-part codes {UR |
R ∈ N2} that is asymptotically optimal with respect to T as follows.

• The hypothesis space HUR
is the Transformer parameter space specified by the codomain

of zmap given T and R.

• The mapping function mUR
is the mapping function described in B.5, where mUR

(h) con-
sists of prepending Rs prompt tokens and running a Transformer forward pass with param-
eters h.

• We can trivially define the prior as αUR
(h) = 2−|z| if there exists z ∈ ZT,R such that

h = zmap(T,R, z), or 0 otherwise. This prior therefore assigns non-zero probability
only to those specific Transformer parameters that correspond to a valid Turing machine
emulation.

Now, we must show that this family is asymptotically optimal with respect to T , meaning we must
prove that for any resource bound R ∈ N2 and dataset (X,Y ):

L∗,two-part
UR

(Y | X)
+
≤ C two-part

T,R (Y | X). (55)

Using Lemma 1, we can express the codelength on the left as a minimum over functions:

L∗,two-part
UR

(Y | X) = min
f∈Im(mUR

)

(
LFUR

(f)− log2 p(Y |X; f)
)
. (56)

The function description length, LFUR
(f), is the codelength of the shortest hypothesis that computes

f . Given our prior, a hypothesis h has a finite codelength only if it is the output of zmap for some
program z ∈ ZT,R. Therefore, the minimization is effectively over programs z:

LFUR
(f) = min

h∈HUR
: mUR

(h)=f
− log2 αUR

(h)

= min
z∈ZT,R : mUR

(zmap(T,R,z))=f
− log2 2−|z|

= min
z∈ZT,R : fz

T =f
|z|.

The final step follows from equation 51, and this final expression is precisely the definition of the
resource-bounded Kolmogorov complexity of f with respect to T , i.e.,KT,R(f). So, we have shown
that LFUR

(f) = KT,R(f).
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Substituting this equality back into the expression for the total codelength, we find:

L∗,two-part
UR

(Y | X) = min
f∈im(mUR

)
(KT,R(f)− log2 p(Y |X; f))

= C two-part
T,R (Y | X).

This step holds because the image of our constructed mapping function includes all functions com-
putable by T within bounds R.

Since we have shown that L∗,two-part
UR

(Y | X) is not just bounded by, but is equal to C two-part
T,R (Y | X),

the condition for being an asymptotically optimal family is satisfied.

B.7 RELATIONS BETWEEN CODELENGTHS

In this section we establish upper and lower bounds on the minimums of various classes of codes.
To this end, we review Bayesian codes, and establish a universal lower bound on the minimums of
Bayesian and variational codes. These results are used to prove Proposition 3.

B.7.1 BAYESIAN CODES

Under a Bayesian code, labels are encoded according to their likelihood under a Bayesian posterior
distribution, defined below. A Bayesian code M , just like a two-part code, is specified by a hypoth-
esis space HM , a mapping mM from hypothesis to model functions, and a lower semicomputable
semimeasure (i.e., prior) αM (h).

The Bayesian codelength is defined with respect to the Bayesian marginal likelihood of the data:

L∗,bayes
M (Y | X) = − log2 p

marginal
M (Y | X) (57)

= − log2

∑
h∈HM

p(Y | X;mM (h)) αM (h). (58)

While the summation over all hypotheses is typically intractable, the Bayesian codelength serves as
a theoretical lower bound and motivation for variational codes.

B.7.2 UNIVERSAL BAYESIAN CODES

Analogously to two-part codes, we can show that there exists an equivalence class of universal
Bayesian codes.

Definition 7 (universal Bayesian code). A Bayesian code M1 is a universal Bayesian code if and
only if, for any other Bayesian code M2 and for all X,Y :

L∗,bayes
M1 (Y | X)

+
≤ L∗,bayes

M2 (Y | X). (59)

Lemma 3. There exists a universal Bayesian code.

Proof. Consider a Bayesian code U defined identically to the two-part code in the proof of Propo-
sition 1, with respect to universal prefix Turing machine T . We will show that U is a universal
Bayesian code.

Similarly to Lemma 1, we can re-write the codelength for any Bayesian codeM as a sum over model
functions rather than hypotheses.

Lbayes
M (Y | X) = − log2

∑
h∈HM

p(Y | X;mM (h)) αM (h) (60)

= − log2

∑
f∈im(mM )

p(Y | X; f) αFM (f), (61)

where:
αFM (f) =

∑
h∈HM : mM (h)=f

αM (h) (62)
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or 0 if no such h exists. Similarly to Lemma 2, we haveK(f)
+

≤ − log2 α
F
M (f), because αFM (f) is a

lower semicomputable semimeasure, as by definition αM (h) is a lower semicomputable semimea-
sure. Additionally, for our proposed universal code, the quantity αFU (f) is recognizable as the
algorithmic probability of f (Li & Vitányi, 2008), and we have K(f)

+
= − log2 α

F
U (f). We have al-

ready shown one side of this inequality above. The other side, − log2 α
F
U (f)

+

≤ K(f) holds because
by definition αFU (f) includes 2−KT (f) as an element in the summation over non-negative elements.
Combining these results, we have:

− log2 α
F
U (f)

+
= K(f)

+
≤ − log2 α

F
M (f). (63)

Therefore, there exists some positive constant cM that does not depend on f such that for all f :

αFU (f) ≥ cM ∗ αFM (f). (64)

We need to show that the following holds for any other Bayesian code M :

L∗,bayes
U (Y | X)

+
≤ L∗,bayes

M (Y | X). (65)

We can re-write the left side as:

L∗,bayes
U (Y | X) = − log2

∑
f∈F

p(Y | X; f)αFU (f) (66)

+
≤ − log2

∑
f∈F

p(Y | X; f)cM ∗ αFM (f) (67)

= − log2 cM − log2

∑
f∈F

p(Y | X; f)αFM (f) (68)

+
≤ − log2

∑
f∈F

p(Y | X; f)αFM (f). (69)

This expression is the definition of L∗,bayes
M (Y | X), and therefore we have demonstrated that U is a

universal Bayesian code.

Corollary 2. For any universal Bayesian code M :

Cbayes(Y | X) := − log2

∑
f∈F

2−K(f)p(Y | X; f)
+
= L∗,bayes

M (Y | X) (70)

Proof. Let U be the universal Bayesian code constructed in the proof of Lemma 2. Its minimum
codelength is equivalent to Cbayes(Y |X), shown by rewriting the sum over hypotheses as a sum over
functions and applying our previous result that K(f)

+
= − log2 α

F
U (f).

L∗,bayes
U (Y | X) = − log2

∑
f∈F

p(Y | X; f)αFU (f)

+
= − log2

∑
f∈F

p(Y | X; f)2−K(f)

= Cbayes(Y | X).

Now, let M be any other universal Bayesian code. By definition, L∗,bayes
M (Y |X)

+
= L∗,bayes

U (Y |X).
It directly follows that L∗,bayes

M (Y |X)
+
= Cbayes(Y |X).

B.7.3 UNIVERSAL BAYESIAN CODES AND UNIVERSAL TWO-PART CODES

Lemma 4. The minimum of any universal Bayesian code is less than or equal to the minimum of
any universal two-part code up to an additive term, i.e.:

Cbayes(Y | X)
+
≤ C two-part(Y | X) (71)
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Proof. Recall the definitions of Cbayes and C two-part:

Cbayes(Y | X)
+
= − log2

∑
f∈F

2−K(f)p(Y | X; f) (72)

C two-part(Y | X)
+
= min

f∈F
K(f)− log2 p(Y | X; f) (73)

= − log2 max
f∈F

2−K(f)p(Y | X; f). (74)

We can substitute these definitions into the inequality above, and then apply λx 2−x to both sides,
which is monotonically decreasing, and therefore we also reverse the direction of the inequality:∑

f∈F

2−K(f)p(Y | X; f)
+
≥ max

f∈F
2−K(f)p(Y | X; f) (75)

The inequality holds because the left-hand side is a sum of nonnegative elements where one of the
elements is the element from the right-hand side.

Note that per the above inequality, it is also clear that C two-part(Y | X) will decrease towards
Cbayes(Y | X) as more probability converges towards any single hypothesis.

B.7.4 UNIVERSAL BAYESIAN CODES AND KOLMOGOROV COMPLEXITY

How does Cbayes(Y | X) relate to K(Y | X)? Per the coding theorem, we know that K(Y | X)
+

≤
Cbayes(Y | X). Establishing a bound in the other direction is more challenging. We have defined
the sets of two-part and Bayesian codes with respect a probabilistic model that makes independent
predictions for each individual (x, y) pair, while the definition of K(Y | X) makes no such proba-
bilistic independence assumptions. However, K(Y | X) and Cbayes(Y | X) may often be roughly
equal for large numbers of independent and identically distributed samples (Li & Vitányi, 2008,
Section 5).

B.7.5 BAYESIAN CODES AND VARIATIONAL CODES

The variational codelength defined in equation 9 has a direct relationship to the Bayesian codelength.
The difference between the variational codelength and the ideal Bayesian codelength is given by the
KL divergence between the variational posterior βM (·;φ) and the true Bayesian posterior:

Lvar
M (Y | X,φ) = KL

[
βM (·;φ) ‖ pposterior

M (· | Y,X)
]
− log2 p

marginal
M (Y | X) (76)

where the Bayesian posterior is defined as:

pposterior
M (h | X,Y ) =

P (Y | X;mM (h)) αM (h)

pmarginal
M (Y | X)

, (77)

and the Bayesian marginal likelihood is:

pmarginal
M (Y | X) =

∑
h∈HM

p(Y | X;mM (h)) αM (h). (78)

Minimizing the variational codelength Lvar
M (Y | X,φ) with respect to φ is equivalent to maximizing

the Evidence Lower Bound (ELBO) from variational inference. This process drives the variational
posterior βM (·;φ) closer to the true Bayesian posterior P posterior

M (· | X,Y ) (by minimizing their
KL divergence), and consequently brings the variational codelength closer to the corresponding
Bayesian codelength L∗,bayes

M (Y | X). The variational codelength can thus be seen as an efficiently
computable surrogate or approximation for the ideal Bayesian codelength.

B.7.6 PROOF OF PROPOSITION 3

Proposition (Proposition 3 restated). For any quasi-universal variational code M ,

K(Y | X)
+
≤ Cbayes(Y | X)

+
≤ L∗,var

M (Y | X)
+
≤ C two-part(Y | X), (79)

where Cbayes(Y | X) := − log2

∑
f∈F 2−K(f)p(Y | X; f).
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Proof. This theorem combines several of our previous results.

The relationship L∗,var
M (Y | X)

+

≤ C two-part(Y | X) follows directly from the definition of a quasi-
universal variational code.

The relationship Cbayes(Y | X)
+

≤ L∗,var
M (Y | X) follows from a two-step argument. First, as estab-

lished by the non-negativity of the KL divergence term in equation 76 (discussed in Section B.7.5),
any variational codelength is lower-bounded by its corresponding Bayesian codelength:

L∗,bayes
M (Y | X) ≤ L∗,var

M (Y | X).

Second, by the existence of a universal Bayesian code (Lemma 3), any specific Bayesian code is
lower-bounded by the universal bound:

Cbayes(Y | X)
+
≤ L∗,bayes

M (Y | X).

Combining these two inequalities yields the desired result, with discussion relating Cbayes(Y | X)
and C two-part(Y | X) in B.7.3.

Finally, the relationship K(Y | X)
+

≤ Cbayes(Y | X) follows from the discussion in B.7.4.

B.8 ANALYSIS OF VARIATIONAL CODES

This section provides additional definitions and analysis related to variational codes.

B.8.1 EQUIVALENCE BETWEEN TWO-PART AND VARIATIONAL CODES

Here we show that variational codes can be seen as a generalization of two-part codes, with equiva-
lence when we restrict the posterior hypothesis space to distributions that assign all probability to a
single hypothesis.

Recall that for a two-part code we optimize the codelength over the hypothesis space directly. In
a variational code, we optimize the codelength over a set of posterior parameters, which define
a distribution over the hypothesis space. The codes are equivalent if we can establish a bijective
mapping between the hypothesis space of a two-part code and the posterior parameter space of a
variational code, such that for these corresponding values the codelengths are the same and the
model functions are the same. We formalize this notion in the following definition.
Definition 8. (equivalency for two-part and variational codes) A variational code M var and two-
part code M two-part are equivalent if there exists a bijective mapping u : HM two-part → ΦMvar such
that if φ = u(h) then Lvar

M var(Y | X;φ) = Ltwo-part
M two-part(Y | X;h) and pM var(y | x;φ) = p(y |

x;mM two-part(h)).
Lemma 5. For every two-part code M two-part, there exists an equivalent variational code M var.

Proof. Given M two-part, we can define M var as:

ΦM var = HM var = HM two-part (80)
mM var = mM two-part (81)

αM var(h) = αM two-part(h) (82)
β(h;φ) = Jφ = hK, (83)

where JP K denotes the Iverson bracket, i.e. 1 if P is true and 0 otherwise.

In other words, the posterior hypothesis space is restricted to distributions that assign all probability
to a single hypothesis. The bijective mapping u is the identity function, as ΦM var = HM two-part .

The codelength of our variational code with φ = u(h) = h is defined as:

Lvar
M var(Y |X;u(h)) = Eh∼βMvar (·;h) [− log2 αM var(h) + log2 βM var(h;h)− log2 p(Y | X;mM var(h))]

= − log2 αM two-part(h) + log2Jh = hK− log2 p(Y | X;mM two-part(h))

= − log2 αM two-part(h)− log2 p(Y | X;mM two-part(h))

= Ltwo-part
M two-part(Y |X;h).
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The conditional distribution for our variational code with φ = u(h) = h is given as:

pM (Y | X;φ) = Eh∼βMvar (·;φ) p(Y | X;mM var(h))

= p(Y | X;mM two-part(h)).

Thus M two-part and M var are equivalent given the bijective mapping u.

B.8.2 ASYMPTOTICALLY OPTIMAL VARIATIONAL CODES

Asymptotically optimal variational codes are defined in the same way as asymptotically optimal
two-part codes.
Definition 9. (asymptotically optimal variational code) A family of variational codes
{MR | R ∈ N2} is asymptotically optimal with respect to a universal prefix Turing machine T if
for all R and for all X,Y :

L∗,var
MR

(Y | X)
+
≤ min

f∈F
KT,R(f)− log2 p(Y | X; f), (84)

where KT,R denotes resource-bounded Kolmogorov complexity.

The codelength L∗,var
MR

(Y | X) monotonically decreases to be
+

≤ C two-part(Y | X) as the resource
bounds R increase.

B.8.3 PROOF OF PROPOSITION 4

Proposition (Proposition 4 restated). There exists an asymptotically optimal family of variational
codes for Transformer encoders.

Proof. This trivially follows from Theorem 4, which establishes that there exists an asymptotically
optimal family of two-part codes for Transformer encoders, and Lemma 5, which establishes that
for every two-part code there exists an equivalent variational code.

B.8.4 VARIATIONAL CODES WITH ADAPTIVE PRIORS

We extend the definition of a variational code (Section 5) to include an adaptive prior, termed an
adaptive variational code.
Definition 10 (adaptive variational code). An adaptive variational code M consists of a hypothesis
space HM , a mapping mM : HM → F from hypotheses to model functions, and a prior αM (h)
overHM , specified as in Definition 1. Additionally, an adaptive variational code specifies:

1. A prior hypothesis space ΨM and prior distribution over hypotheses, αM (h;ψ), parame-
terized by ψ ∈ ΨM .

2. A posterior hypothesis space ΦM and posterior distribution over hypotheses, βM (h;φ),
parameterized by φ ∈ ΦM .

3. A description length measure LΨ
M for the prior parameters satisfying Kraft’s inequality,

which can be interpreted as implicitly specifying a hyperprior over the prior parameters.

Similar to a standard variational code, the conditional distribution over Y given X is therefore
specified by the posterior parameters φ ∈ ΦM , and defined by marginalizing over hypotheses:

pM (Y | X;φ) = Eh∼βM (·;φ) P (Y | X;mM (h)). (85)

Different from a standard variational code, the codelength for a variational code M is then defined
with respect to both φ and ψ as:

Ladaptive-var
M (Y | X;ψ, φ) = LΨ

M (ψ) + KL [βM (·;φ) ‖ αM (·;ψ)]− log2 pM (Y | X;φ). (86)

The codelength accounts for the cost of transmitting the prior parameters, LΨ
M (ψ). Alice can then

first send Bob these prior parameters at a cost of LΨ
M (ψ), and the remainder of the transmission then

follows that of a standard variational code, following the bits-back argument.
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We similarly denote the minimum of an adapative variational code M as:

L∗,adaptive-var
M (Y | X) = min

ψ∈ΨM ,φ∈ΦM

Ladaptive-var
M (Y | X;ψ, φ). (87)

The definition of an asymptotically optimal family of adaptive variational codes is directly analogous
to the definition for standard variational and two-part codes.

Note that a two-part code could also include an adaptive prior, although we don’t explicitly consider
such codes in this paper.

B.9 ANALYSIS OF GAUSSIAN MIXTURE MODELS

This section provides additional analysis of variational codes constructed via Gaussian Mixture
Models (GMMs).

B.9.1 PARAMETERIZATION OF GAUSSIAN MIXTURE MODELS

In formulating variational codes, we consider Gaussian Mixture Models (GMMs) with K compo-
nents. We parameterize such models with parameters ω = {(µk, νk, wk)}Kk=1, where for the k-th
component, µk is the mean, νk is a parameter controlling variance, and wk is a logit for the mixture
weight. The probability density function is given by:

GMM(x;w) =

K∑
k=1

πkN (x;µk, σ
2
k), (88)

where the mixing coefficients, πk, are computed via the softmax function applied to the logits wk to
ensure they form a valid probability distribution (i.e.,

∑
k πk = 1):

πk =
ewk∑K
j=1 e

wj

, (89)

and the variances, σ2
k, are parameterized using the softplus function of νk to ensure they are strictly

positive:
σ2
k = log(1 + eνk). (90)

A key property of this parameterization is that as νk → −∞, the corresponding variance σ2
k →

0. In this limit, the k-th Gaussian component, N (x;µk, σ
2
k), converges to a Dirac delta function,

δ(x− µk). Consequently, this GMM formulation can approximate any discrete distribution over K
points by treating it as a limiting case of the mixture.

B.9.2 UNIMODAL VS. MULTIMODAL PRIORS

This section provides a simple, illustrative example of the benefits of a multimodal GMM prior vs.
a unimodal Gaussian prior for encoding discrete information.

Consider a setting where Alice wants to send Bob a single random bit b ∈ {0, 1}. Let us assume
we have a simple variational code consisting of a prior and posterior over a single scalar parameter
w. Further, assume Bob “decodes” the bit based on the sign of w. Assume the posterior β is
parameterized as a Gaussian, β(w;µ, σ2) = N (w;µ, σ2) with mean µ and variance σ2. We can
consider two different parameterizations of the prior α, as a single unimodal Gaussian, or as a
multimodal mixture of 2 Gaussians, which we show enables a much more efficient transmission
cost. Under a variational code, Alice selects the parameters of the posterior (µ and σ2) that minimize
the cost of the transmission, which is related to the KL divergence between the prior and posterior
distributions (KL[β(w;µ, σ2) ‖ α(w)]) and the probability that the bit can be correctly decoded
(Ew∼β(w;µ,σ2)[sgn(w) = b]).

Figure 7 visualizes posterior distributions for transmitting bits 0 or 1, along with a unimodal Gaus-
sian prior (left) and a multimodal GMM prior (right). Transmission is significantly more efficient
with a GMM prior, highlighting why such a prior is critical for constructing our family of asymptot-
ically optimal variational codes. We provide more detailed analysis of each case below.
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Figure 7: Visualization of posteriors for transmitting a bit b under a unimodal Gaussian prior vs.
multimodal GMM prior.

Unimodal (Gaussian) Prior First, consider the case where the prior is a single zero-mean unit
Gaussian, α(w) = N (w | 0, 1). The KL divergence (in nats) can be computed analytically:

KL
[
β(w;µ, σ2) ‖ α(w)

]
=

1

2

[
σ2 + µ2 − 1− log(σ2)

]
(91)

To make the transmission reliable, the mean µ must be sufficiently far from 0 and the variance σ2

must be sufficiently small. However, increasing µ� 0 or decreasing σ2 � 1 both increase the KL
divergence. Therefore, we must tradeoff the KL divergence with the probability of correct decoding,
with the Pareto frontier visualized in Figure 8. Reaching a probability of correct decoding close to
1 requires a KL of� 1 bits.

0.5 0.6 0.7 0.8 0.9 1.0
Probability of Correct Decoding

0

1
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4

KL
 (b

its
)

Efficiency of Encoding a Bit

Unimodal Prior
Multimodal Prior

Figure 8: With a unimodal prior, we must tradeoff the KL divergence of the posterior against the
expectation that the sign of the sampled parameter matches the sign of a given bit. With a multimodal
prior, we can optimally encode the bit.

Multimodal (GMM) Prior Now, let the adaptive prior be a two-component Gaussian Mixture
Model (GMM) with equal weights, means −1 and 1, and variance σ̂2 ≈ 0.

α(w) =
1

2
N (w;−1, σ̂2) +

1

2
N (w; 1, σ̂2)

To send a bit b = 1 or b = 0, Alice can choose a posterior with mean 1 or −1, respectively, and
variance σ̂2. Consider the b = 1 case. Since σ̂2 ≈ 0, the probability of correct decoding is ≈ 1.
Additionally, the probability of any value sampled from the posterior β(w; 1, σ̂2) according to the
prior mixture component with mean −1 is negligible, so the KL divergence then simplifies to be the
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KL divergence between the posterior and the prior component at 1:

KL[β(w; 1, σ̂2) ‖ α(w)] = Ew∼β(w;1,σ̂2)

[
log2

β(w; 1, σ̂2)

α(w)

]
≈ Ew∼β(w;1,σ̂2)

[
log2

N (w; 1, σ̂2)
1
2 · N (w; 1, σ̂2)

]
= Ew∼β(w;1,σ̂2)[log2 2] = 1 bit.

Thus, we can transmit the bit with an optimal KL cost of 1 bit, with near certain probability of
correct decoding, as shown in Figure 8.

B.9.3 OPTIMAL MIXTURE PRIORS

In this section we discuss how adaptive GMM priors enable efficient encoding of quantized weights,
as previously discussed in Ullrich et al. (2017) and Nowlan & Hinton (1992). Specifically, we will
derive the optimal GMM prior parameters for the following case:

• We have a group of N weights with a shared, adaptive GMM prior with K mixture com-
ponents (B.9.1).

• We want to optimize the KL divergence between this prior and a posterior over these
weights.

• The posterior for each weight approximates a delta function at a particular value.
• These posterior delta functions are all clustered at a small set of M ≤ K unique values.

Let {m1,m2, · · · ,mM} denote these unique values, and let ci be the count of weights that
have the value mi, such that

∑M
i=1 ci = N .

The optimal GMM prior (that minimizes KL divergence) is a mixture of M components, where
each component is a Dirac delta function centered at one of the unique value mi. The remaining
K − M components should have a mixing weight of zero. Specifically, the optimal parameters,
{(µk, νk, wk)}Kk=1, for this prior are:

• Means: The mean of each active component is set to one of the unique weight values. For
i = 1, . . . ,M , the optimal mean is µi = mi.

• Variances: As the components converge to Dirac delta functions, their variances must ap-
proach zero. Thus, the optimal softplus parameter is νi → −∞, which implies σ2

i → 0.
• Mixing coefficients: The mixing coefficient for each active component should be equal to

the empirical frequency of the corresponding unique value in the data. For i = 1, . . . ,M ,
we select wi such that the optimal mixing coefficient is πi =

cj
N . The mixing coefficients

for the remaining K −M components are zero.

By using a GMM with delta function components, the prior perfectly matches the empirical distri-
bution of the weights, leading to the minimum KL divergence. In this idealized setting, the total
KL divergence is equivalent to the Shannon entropy of the empirical distribution of the weights,
scaled by the total number of weights N . Let pi = ci/N be the empirical frequency of the unique
weight value mi. The KL divergence for a single weight whose posterior is a delta function at mi

simplifies to the negative log-likelihood under the prior, − log2 α(mi). Since the optimal prior sets
α(mi) = pi, the cost for this single weight is − log2 pi. Summing this cost over all N weights in
the group, we get the total KL divergence:

M∑
i=1

ci(− log2 pi) =

M∑
i=1

Npi(− log2 pi) = N

(
−

M∑
i=1

pi log2 pi

)
= N ·H(p)

where H(p) is the Shannon entropy of the empirical distribution p = (p1, · · · , pM ). This is the the-
oretical minimum number of bits required to encode the specific weight values given their empirical
frequencies.

This highlights a close connection between the dynamic quantization method of Han et al. (2016),
as employed by Lotfi et al. (2022; 2024), and this special case of optimizing a variational objective
with an adapative GMM prior.
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B.10 PROOF OF THEOREM 2

Theorem (Theorem 2 restated). There exists an asymptotically optimal family of adaptive varia-
tional codes for Transformer encoders where the adaptive prior and posterior distributions are both
specified by products of independent GMMs.

Proof. We construct a family of adaptive variational codes {MR | R ∈ N2} and show it is asymp-
totically optimal with respect to a universal prefix Turing machine T ∈ T .

Construction of the code family For each resource bound R ∈ N2, the code MR is defined as
follows. The hypothesis space HMR

consists of the weights for a Transformer encoder architecture
that uses layerwise weight sharing, as specified by the construction of zmap(T,R, z) in Section B.5.
For a given h ∈ HMR

, let hi ∈ h denote the specific Transformer weight value for some index i,
assuming some arbitrary enumeration of the weights. The mapping function mMR

is also as defined
in that section, prepending Rs prompt tokens to the input before the Transformer forward pass.

The prior and posterior hypotheses spaces, ΨMR
and ΦMR

, are both parameterized by sets of inde-
pendent Gaussian mixture models (GMMs), as described in Section B.9.1. For posterior parameters
φ ∈ ΦMR

, let φi denote the parameters of a GMM with index i. Similarly, for adaptive prior pa-
rameters ψ ∈ ΨMR

, let ψgroup(i) denote the parameters of a GMM with index group(i), where
group : N→ N is a function defining a grouping of Transformer weights that share the same prior
GMM.

The posterior distribution is defined as:

βMR
(h;φ) =

∏
i

GMM(hi;φi). (92)

The adapative prior distribution is similarly defined as:

αMR
(h;ψ) =

∏
i

GMM(hi;ψgroup(i)). (93)

Recall that the number of weights in the Transformer constructed by zmap is finite, except for the
number of prompt token embeddings, where the number of rows (i.e. number of prompt tokens)
grows with the space resource bound Rs, and therefore our asymptotic analysis largely focuses on
these weights (see B.5.6).

For the prompt token embeddings, a separate GMM prior is shared across each feature column.
For all weights other than the prompt token embeddings, this grouping does not formally affect
our results, e.g. we can simply share a single GMM prior across each matrix or bias vector in the
Transformer.

We require that the prior and posterior GMMs corresponding to the weights of the prompt embed-
ding table have at least 2 components. We will show that the other GMMs only formally require a
single component for the desired asymptotic bounds to hold, although a prior with more components
can lead to a more efficient code in practice, as discussed below.

Finally, we construct the encoding of the prior parameters, LΨ
MR

, as follows. Our constructed group-
ing of weights sharing the same prior ensures that the total number of prior parameters in ΨMR

is a
small constant that does not depend on the resource bound R. This is because the number of param-
eters generated by zmap is constant with respect to R, other than the number of rows in the prompt
token embedding table, and a single prior for each column is shared across every row of the prompt
embedding table. Assuming the prior parameters can be encoded with some finite precision, we
select some uniform encoding for the prior parameters, LΨ

MR
, which assigns non-zero probability to

any specific set of prior parameters we construct below, such that they can be transmitted in cΨ bits,
which does not depend on R.

Proof of asymptotic optimality To prove that the family {MR : R ∈ N2} is asymptotically
optimal, we must show that for any resource bound R ∈ N2 and any dataset X,Y :

L∗,adaptive-var
MR

(Y | X)
+
≤ C two-part

T,R (Y | X). (94)
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Recall that the minimum codelength is achieved by minimizing over all possible prior and posterior
parameters,

L∗,adaptive-var
MR

(Y | X) = min
ψ∈ΨMR

,φ∈ΦMR

Ladaptive-var
MR

(Y | X;ψ, φ),

where,

Ladaptive-var
MR

(Y | X;ψ, φ) = LψMR
(ψ) + KL [βMR

(·;φ) ‖ αMR
(·;ψ)]− log2 pMR

(Y | X;φ)

= cΨ + KL [βMR
(·;φ) ‖ αMR

(·;ψ)]− log2 pMR
(Y | X;φ).

We will show that for any resource bound R ∈ N2 and program z ∈ ZT,R, we can construct
a specific set of prior parameters ψR – not dependent on program z – and posterior parameters
φR,z such that the resulting variational codelength satisfies the following bound with respect to the
function fzT computed by prefix Turing machine T with program z. That is, we will show that there
exist ψR ∈ ΨMR

and φR,z ∈ ΦMR
such that:

Ladaptive-var
MR

(Y | X,ψR, φR,z) ≤ cΨ + |z|+ cT − log2 p(Y | X; fzT ), (95)

where cT and cΨ are constants that do not depend on X , Y , z, or R. We address the data like-
lihood and KL divergence terms individually next. Then we will show that this condition implies
asymptotic optimality.

Let hR,z = zmap(T,R, z) be the set of weights generated by the ALTA compiler to emulate the
Turing machine T with program z.

Data likelihood For a given program z ∈ ZT,R, we construct posterior parameters such that any
weights sampled from the posterior distribution compute fzT , i.e. any sampled weights compute the
same function as the weights hR,z .

To accomplish this, we partition the Transformer weights into two disjoint subsets, which we will
denote with respect a set of indexes I ∈ N. For the first subset, consisting of weights with indexes
∈ I, we can set the parameters of the corresponding posterior GMM φR,zi to approximate a Dirac
delta function at the desired weight value, hR,zi . This is possible because a GMM component’s
variance can approach zero (see B.9.1). The second subset, consisting of weights with indexes /∈ I,
consists of only those weights in the first column of the prompt token embedding table (see B.5.6)
corresponding to weights encoding the values of bits on the program tape after z, i.e. rows |z|+ 1 to
Rs. By construction, these parameters are never “read” by the attention head scanning the program
tape, so their value does not affect the function being computed by the Transformer. We therefore
allow these weights to take on a “random” value by setting the corresponding posterior parameters
to approximate the Rademacher distribution. This construction allows these bits to be transmitted
“for free”, as we will show in the next section. Formally, the posterior distribution specified by the
posterior parameters φR,z is therefore:

GMM(w;φR,zi ) =

{
δ(w − hR,zi ) , i ∈ I
1
2δ(w + 1) + 1

2δ(w − 1) , i /∈ I
. (96)

Therefore, given the posterior parameters φR,z , the negative log likelihood of the data is equivalent
to that under a two-part code with weights hR,z:

− log2 pMR
(Y | X;φR,z) = Eh∼βMR

(·;φR,z) [− log2 p(Y |X;mMR
(h))] (97)

= − log2 p(Y |X;mMR
(hR,z)) (98)

= − log2 p(Y |X; fzT ). (99)

KL divergence We now show that we can select prior parameters ψR ∈ ΨMR
such that the KL

divergence term is bounded by |z| + cT , where cT is a constant depending only on T but not on
z or R. Because the prior and posterior are parameterized by independent GMMs, the overall KL
computation factors across the individual weights of the Transformer:

KL
[
β(·;φR,z) ‖ α(·;ψR)

]
=
∑
i

KL
[
β(·;φR,zi ) ‖ α(·;ψRgroup(i))

]
(100)
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We consider the weights in the prompt embedding table first, and then discuss the remaining weights.
Recall that a GMM prior is shared for each column in this table. The weights in the first column
encodes the contents of the program tape. We set the prior for this first column of the program
embedding table to approximate the Rademacher distribution, such that the prior and posterior dis-
tribution are the same for the weights corresponding to the Rs − |z| rows in the table after row |z|.
The KL divergence between two equal distributions is 0. For the weights in the first |z| rows, the
posterior is either a delta function at 1 or −1. In either case, the KL divergence is 1 bit (see B.9.2,
which also highlights the importance of a multimodal prior in our construction). For the remain-
ing columns of the prompt embedding table, each row has the same value, and the posterior for all
rows within a column approximates a delta function at this value. Therefore, we can set the prior to
be equal to the posterior, and the KL divergence is 0 for these weights. Therefore, the overall KL
divergence for the prompt embedding table is |z|.
For the finite set of weights outside of the prompt embedding table, the posterior distribution for each
weight approximates a delta function. The weights generated by zmap contain a relatively small
set of unique values determined by T . We can choose any prior that assigns non-zero probability
to these specific weight values. Summing over all fixed weights gives a total constant cost cT that
depends on T but not on z orR. A single mixture component is formally sufficient, since it can have
sufficiently large variance to assign non-zero probability to each unique value in the corresponding
weight matrix. However, since the weight values generated by zmap have values drawn from a finite
set determined by T , with a sufficient number of components, we can construct the shared GMM
priors to be mixtures of delta functions centered at these values, as described in B.9.3, and therefore
cT can be relatively small.

Combining these parts, the total KL divergence is |z|+ cT .

Conclusion We have shown that for any program z ∈ ZT,R and resource bound R ∈ N2, there
exists a choice of prior and posterior parameters (ψR, φR,z) such that:

Ladaptive-var
MR

(Y | X,ψR, φR,z) ≤ − log2 p(Y | X; fzT ) + |z|+ cT + cΨ. (101)

The minimum codelength for the family MR is found by minimizing over all (ψ, φ), so it must be
less than or equal to the codelength for this specific choice, minimized over all programs z:

L∗,adaptive-var
MR

(Y | X) = min
ψ∈ΨMR

,φ∈ΦMR

Ladaptive-var
MR

(Y | X;ψ, φ)

≤ min
z∈ZT,R

Ladaptive-var
MR

(Y | X;ψR, φR,z)

≤ min
z∈ZT,R

(cΨ + |z|+ cT − log2 p(Y | X; fzT ))

+
≤ min
z∈ZT,R

(|z| − log2 p(Y | X; fzT ))

This last expression is equal to the definition of C two-part
T,R (Y | X):

C two-part
T,R (Y | X) = min

f∈F
(KT,R(f)− log2 p(Y | X; f))

= min
z∈ZT,R

(|z| − log2 p(Y | X; fzT )) .

Therefore our construction satisfies the condition for an asymptotically optimal family of codes.

B.11 ASYMPTOTICALLY QUASI-OPTIMAL FAMILIES OF CODES

A family of codes that is asymptotically optimal represents a theoretical ideal, and while we have
shown that practical instances of such codes exist, we have yet to show that they can be efficiently
optimized. Future work could consider codes with more relaxed asymptotic bounds, especially if
this enables more efficient optimization or inference in practice.

Consider a family of codes {MR | R ∈ N2} with minimum codelength L∗MR
(Y | X) for a dataset

X,Y . If this family of codes is asymptotically optimal then by definition it must satisfy the following
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upper bound the minimum description length for all resource bounds R ∈ N2 and all datasets X,Y :

L∗MR
(Y | X)

+
≤ C two-part

T,R (Y | X). (102)

However, if MR is not asymptotically optimal, we may still be able to establish some upper bound
on L∗MR

(Y | X) with respect to the idealized two-part codelength C two-part
T,R (Y | X) and the time and

space resource bounds Rt and Rs, that holds for any dataset X,Y . Such analysis can still be useful
to understood the asymptotic behavior of the code. We leave it to future work to establish various
specific bounds of interest, and discuss one such example of a quasi-optimal bound here.

One of the key challenges addressed by the adapative variational code proposed in B.10 is that we
wanted to transmit the Rs weights representing the program tape contents in |z| bits in order to
satisfy the conditions of asymptotic optimality. In order for the “unused” capacity to be transmitted
“for free”, our proposal required a multimodal GMM posterior that could be set equal to the prior for
Rs − |z| “unused” weights, which adds complexity relative to a two-part code or a variational code
with simple Gaussian posteriors. Let us instead let MR denote an alternative code, where Alice can
dynamically determine the number of weights (|z| ∈ {1, · · · , Rs}) needed to encode the program
prefix z, e.g. by sweeping over |z| as a hyperparameter, using structured dropout, or using some
other approach. Alice can then communicate |z| to Bob in log2Rs bits, assuming a naive uniform
prior over the integers {1, · · · , Rs} for encoding |z|. Then, Alice can simply communicate z in |z|
bits assuming a Rademacher prior over the |z| weights, as in our previous construction in B.10. The
resulting codelength then has the bound:

L∗MR
(Y | X)

+
≤ C two-part

T,R (Y | X) + log2Rs, (103)

without requiring a multimodal variational posterior. As in our previous construction, this can be
generalized by using an adaptive GMM prior. Alternatively, such a code could potentially be con-
structed using the quantization method of Han et al. (2016), or some other method proposed by prior
work (see D.3). We leave exploring such codes to future work.

C ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

Here we provide additional details and results for the Transformer and MLP experiments discussed
in Section 6.

C.1 TRANSFORMER EXPERIMENTS

Parity task details We follow the setting of Shaw et al. (2024). The train set consists of examples
with lengths ranging from 1 to 20. The train set includes 100, 000 examples, with roughly an equal
number of examples per number of ones. We evaluate out-of-distribution (OOD) accuracy on a test
set with lengths ranging from 21 to 40.

ALTA program for parity The ALTA program for parity that we use for our manual initialization
is based on the sequential algorithm with relative position representations presented in Shaw et al.
(2024). This algorithm computes parity by iterating through each position (one per layer), flipping a
running parity bit every time a one is encountered. We simply reverse the direction of iteration from
left-to-right to right-to-left, to accommodate that our model’s classification decision depends on the
SEP token at the beginning of the input sequence (see below).

Architecture and ALTA weight conversion One implementation challenge is that our experi-
ments require a trainable Transformer that is compatible with ALTA-compiled weights. The ref-
erence ALTA Transformer implementation in numpy is not trainable (Shaw et al., 2024). To ac-
complish this, we implement a trainable version in Jax (Bradbury et al., 2018), following the same
parameterization expected by the ALTA compiler. This parameterization uses relative position rep-
resentations (Shaw et al., 2018) following the parameterization of T5 (Raffel et al., 2020), which
uses a single scalar bias term for relative positions within some window. It also uses an alternative
parameterization for the attention head output transformations, as proposed by Elhage et al. (2021),
to simplify compilation; however, this alternative attention output parameterization is shown to be
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equivalent to that of the original Transformer. We select the logits for the SEP token as the output
of the model, as our experiments focus on classification tasks.

A more significant challenge is that ALTA-compiled weights are not designed to be used with layer
normalization (Ba et al., 2016). As the sequential algorithm for parity requires at least as many layers
as bits in the longest input sequence, and our test set contains sequence up to length 40, we require a
relatively deep Transformer, using 42 layers in our experiments. In our initial experiments we found
that while a shallow Transformer could converge without layer normalization, training a Transformer
with ≥ 40 layers was not feasible on the parity task without some form of normalization. We also
evaluated using tanh normalization, as an alternative to layer normalization, as proposed by Zhu
et al. (2025), which we found to perform at least as well as layer normalization in our experiments,
with or without using the variant with a dynamic scalar. We therefore use tanh normalization, and
adapted the ALTA compiler to generate weights compatible with this form of normalization.

This required a few changes to the ALTA compiler. However, as our parity program only requires
categorical variables, the changes are relatively straightforward. First, we changed how categorical
variables are represented in the residual stream. In the original ALTA compiler, these are represented
as “one-hot” vectors, i.e. a sequence of 0s and 1s. Instead, we represent categorical variables as
“signed one-hot” vectors, i.e. a sequence of −1s and 1s, with the position of the 1 still representing
the value of the variable. This change only requires minor modifications to the compiled embedding
and MLP parameters. We additionally scale the compiled parameters by configurable scalars > 1
to ensure the outputs of every sub-layer sufficiently saturate the tanh function. This also makes
the compiled parameters more robust to noise. We zero-pad the ALTA-generated weights up to
the dimensions specified by the given hyperparameters. Finally, as we are using only categorical
variables, we can use the more standard ReLU activation in the MLP layer, as opposed to the clipped
ReLU activation required to handle numerical variables in the original ALTA compiler.

We can then convert from the scalar weights produced by the ALTA compiler to posterior distribu-
tions used by our experiments with variational codes by setting the mean of the posterior distribution
to the scalar weight and setting the variance to be a small, configurable scalar (e.g. ν = −10). As
ALTA-generated weights contain few unique values, we can analytical determine the optimal pa-
rameters for the adpative prior (B.9.3).

We otherwise use a “tiny” Transformer encoder, which was previously shown to be sufficient to fit
the parity task (Shaw et al., 2024), with 2 attention heads, 128 model dimensions, and 512 hidden
MLP dimensions. We prepend 20 prompt tokens to the model input.

Relation to asymptotic bounds The experiment setting, using a relatively small model on a sim-
ple synthetic task, is potentially not well aligned with where the asymptotic guarantees from our
theory are most likely to apply, which is in the limit as model size and dataset complexity increase.
Regardless, this experiment setting is a useful initial investigation of the proposed variational code.
Relatedly, the ALTA program for parity does not emulate a Turing machine; rather it represents
the algorithm within the weights of the MLP and attention sub-layers and leaves the prompt tokens
effectively unused. However, this is not entirely at odds with our theory; as discussed in 4.2, the min-
imizer of an asymptotically optimal code may be quite different from the Turing machine emulation
used to prove the asymptotic bound, especially under finite resource constraints.

Model training We use Monte-Carlo sampling to estimate the expected data likelihood in the
adaptive variational codelength objective during training. Each gradient step is computed over 2
MC weight samples shared across a minibatch of 128 examples, for a total of 256 forward passes
of the model (computed in parallel) per step. Prior work has commonly shared a single MC weight
sample across a minibatch. In our initial experiments, we did not find significant improvements
from increasing beyond 2 MC weight samples per minibatch. For the posteriors corresponding to
weights in the prompt token embeddings table, we use a GMM posterior with 2 components, and
use Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017) sampling with a temperature of 0.1.
For all other posteriors, we use a single Gaussian, and use the standard Gaussian reparameterization
trick (Kingma & Welling, 2014). We did not implement the local reparameterization trick of Kingma
et al. (2015) for reducing variance, although this could be useful for future work.

Following Blundell et al. (2015), we also use MC samples to estimate KL divergence, as there is
no closed form expression for the KL divergence of GMMs with multiple components. Specifically,
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we use 100 MC samples for estimating KL. For sampling from posterior distributions consisting
of mixtures with more than one component, we use the Straight-Through (ST) Gumbel-Softmax
estimator (Jang et al., 2017), as soft estimates can be problematic and lead to negative KL estimates.
For example, if the components of the true posterior distribution have relatively low variance, then
samples from the Gumbel-Softmax distribution with a sufficiently large temperature can actually
have higher probability under a higher-variance prior distribution than under a prior matching the
posterior.

We use the Adam optimizer (Kingma & Ba, 2014), with a learning rate of 10−3, 1000 warmup
steps, and 50, 000 total steps with exponential decay of the learning rate. We determined some
hyperparameters such as learning rate on an in-distribution validation set.

As we train the model on minibatches consisting of 128 samples from the 100, 000 training ex-
amples, we need to scale the coefficient of the KL term in the loss to accommodate that the data
likelihood estimate is over a small sample, ≈ 10−3, of the full dataset. Therefore, we scale the KL
term in the loss by a coefficient of 10−3, which we found to produce the lowest total codelength.
Sweeping the KL coefficient produces a tradeoff between the data likelihood and the KL divergence,
as observed in Table 2 for the MLP experiments.

Random initialization For the MLE baseline experiment, we initialize the weight matrices using
the standard variant of normal random initialization proposed by He et al. (2015), as our network
uses ReLU activations. Bias vectors are initialized to zeros. For the experiments with random
initialization and the variational objective, there are many possibilities for initializing the parameters
of the prior and posterior GMMs, and we did not explore this space exhaustively. However, we did
find in our initial experiments that it was necessary to initialize the posterior distributions with
relatively low variance in order for the model to converge towards a solution that fits the data.
Therefore, for the means of the posterior distributions, we sample random weight values following
the same method as the MLE experiments, set these sampled weights as the GMM means, and then
set the GMM variance parameter ν (i.e. the variance prior to the softplus function) to be −10. We
initialize the prior parameters similarly, but set the initial variance parameter ν to be 1 to avoid
instability in KL estimates at initialization. We set all mixing weights for the GMMs to be initially
equal. Future work could explore alternative initializations.

C.2 MLP EXPERIMENTS

Here we provide additional details on the MLP experiments discussed in Section 6. To under-
stand why our Transformer models underfit the proposed objective when randomly initialized (as
evidenced by the significantly lower loss achieved by ALTA-initialized models), we study the sim-
plified setting of a 2-layer MLP. Specifically, we study the task of learning an identity function over
a vector of 4 binary values. The model is a MLP with 4 input dimensions, 16 hidden dimensions,
and 4 output dimensions, which makes 4 independent binary classifications. We can again compare
random initialization with initializing the model with manually chosen weights that fit the data and
have low complexity according to the proposed objective, by selecting weights inspired by how the
ALTA compiler generates MLP layers.

Table 2: MLP performance on identity task.

Objective Init. KL Coef. KL (bits) Train NLL (bits) Codelength (bits) Accuracy
MLE Baseline Random – – 20.3 – 100%

Variational Random 10−1 6.6 6076.8 6083.4 54%
Variational Random 10−2 73.4 4380.6 4454.0 63%
Variational Random 10−3 516.9 258.8 775.7 100%
Variational Random 10−4 662.7 124.2 787.0 100%
Variational Random 10−5 685.3 117.3 802.6 100%

Variational Manual 10−2 227.2 0 227.2 100%

The results are shown in Table 2, and show similar trends as the Transformer experiments. We
see that when starting from a random initialization, the optimization process fails to find a loss
comparable to that achieved via manual initialization, indicating poor optimization of the proposed
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Figure 9: Manually specified vs. learned distributions for MLP trained with a variational objective
on the identity task with an adaptive GMM prior. The aggregated posterior shown in the figure is an
equally-weighted mixture of the individual Gaussian posteriors for each MLP weight.

objective. To understand why the randomly initialized models underfit, we can inspect the properties
of the learned prior and posterior distributions compared to those from manual initialization. No-
tably, the prior distribution appears to converge to a unimodal distribution, as visualized in Figure 9,
in contrast to the multimodal prior of the manual solution, with lower-variance components.

Task and network Our network is a 2 layer MLP with 4 inputs dimensions and 16 hidden dimen-
sions, that computes the function:

f(x; θ) = sigmoid(W 2 ReLU(W 1(x) + b1) + b2) (104)
with parameters θ = (W 1, b1, W 2, b2).

Our goal is to learn the identity function such that f(x; θ) ≈ x for any binary vector x ∈ {0, 1}4.

Posterior and prior distributions We parameterize the posterior distribution with an independent
Gaussian corresponding to each weight in the MLP. We use a single adaptive GMM prior with 3
components shared across all weights.

Manual solution A relatively simple “manual” solution to the identity task can be constructed by
choosing some scalar λ � 0 (we choose λ = 20 in our experiments) and defining the network
weights as follows:

W 2 = (W 1)> =

λ 0 0 0 0 · · · 0
0 λ 0 0 0 · · · 0
0 0 λ 0 0 · · · 0
0 0 0 λ 0 · · · 0

 b1 =

−
λ
2

...
−λ2

 b2 =

−
λ
2

...
−λ2


Training details The negative log-likelihood of y given x with respect to θ follows the standard
binary cross-entropy loss:

− log2 p(y | x; θ) =

4∑
i=1

−yi log2(f(x; θ)i)− (1− yi) log2(1− f(x; θ)i) (105)

We train the MLP with a variational objective. We specify posterior and prior distributions over θ
as specified above, minimizing the variational objective consisting of the sum of the KL divergence
between posterior and prior distributions, and the expected binary cross entropy loss with respect to
sampling weights θ from the posterior distribution. We over-sample the space of 24 possible binary
vectors of length 4 to create minibatches for training of 128 examples.

Sampling, initialization, and training details are similar to the Transformer setting detailed above,
except training only required 1, 000 steps. We show a sweep over different KL coefficients in Ta-
ble 2.

D EXTENDED RELATED WORK

Here we offer an extended discussion of related work previously summarized in Section 7.
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D.1 THEORETICAL FOUNDATIONS

Our work is closely related to the theoretical notion of universal induction (Solomonoff, 1964; Hut-
ter, 2000; Lattimore & Hutter, 2013; Achille et al., 2021) – and related resource-bounded vari-
ants (Levin, 1973; Nakkiran, 2021). Previous work has developed theoretical frameworks applying
these notions to density estimation (Barron, 1985; Barron & Cover, 1991), sequential decision the-
ory (Hutter, 2005), and kernel methods (Hamzi et al., 2024). For neural networks, Schmidhuber
(1997) introduced a probabilistic search algorithm for discovering neural networks with low Kol-
mogorov complexity. However, none of these theoretical frameworks directly lead to practical and
scalable training objectives for neural networks.

D.2 VARIATIONAL INFERENCE

Variational inference was proposed as a regularizer to improve generalization (Hinton & Van Camp,
1993), under the “bits back” argument, which can also be viewed as a form of Bayesian infer-
ence (Honkela & Valpola, 2004). Such variational methods were popularized by the success of
variational autoencoders (VAEs) (Kingma & Welling, 2014), and related advances that enabled ap-
plying such methods to neural networks using standard gradient-based optimizers (Graves, 2011;
Blundell et al., 2015). Variational methods have found success for network compression – enabling
weight pruning (Louizos et al., 2017) and quantization (Achterhold et al., 2018; Ullrich et al., 2017)
– as well as for probing (Voita & Titov, 2020) and improving uncertainty modeling (Sankararaman
et al., 2022; Gal & Ghahramani, 2016). Other work has pursued applying variational bottlenecks
to network activations (Fehr & Henderson, 2024), as opposed to network weights. However, in
general, the effectiveness of variational methods for implementing MDL-inspired regularizers for
improving generalization has remained elusive (Blier & Ollivier, 2018; Cinquin et al., 2021).

D.3 NON-VARIATIONAL COMPLEXITY MEASURES

As regularization is a foundational concept in machine learning, there are many related methods for
neural networks (Jiang et al., 2020), and we give only a brief survey here. We focus on recently
proposed compression-based methods with connections to the MDL principle, as these are most
relevant to the description length objectives discussed in this paper.

Motivated by prior work on the intrinsic dimensionality of neural networks (Li et al., 2018), Lotfi
et al. (2022) propose a complexity measure based on subspace sampling combined with dynamic
quantization, similar to the quantization method of Han et al. (2016). Lotfi et al. (2024) combines
the method of Lotfi et al. (2022) with LoRA (Hu et al., 2022; Dettmers et al., 2023), to further
drive compression. Both Lotfi et al. (2022) and Lotfi et al. (2024) discuss generalization bounds
for neural networks related to compression, a relevant topic, but not one we study explicitly in this
paper. DeMoss et al. (2025) studies the connection between the complexity of a neural network
and “Grokking”, i.e. the transition from memorization to generalization during training. To this
end, they propose a new complexity measure and regularizer based on coarse-grained quantization
and spectral entropy, which encourages low rank parameter matrices. Abudy et al. (2025) similarly
advocate for regularizers grounded in MDL instead of standard norm-based penalties on weights.
They demonstrate how norm-based regularizers actively push RNN weights away from perfect ini-
tializations on algorithmic tasks, while their MDL-inspired objective does not. Their proposed MDL
measure can be interpreted as a two-part code, using a non-differentiable prior that encodes individ-
ual weight values according to their representation as a rational number. Dwivedi et al. (2023)
similarly studies MDL-inspired complexity measures in over-parameterized models where param-
eter count does not provide a suitable measure of complexity, and proposes a principled measure,
MDL-COMP. However, their scope is limited to specific classes of linear models and kernel meth-
ods.

The variational code proposed in Section 5.1 drives compression by encouraging soft quantization of
model weights around the means of the components of the GMM prior, and by reducing the effective
number of weights by encouraging higher uncertainty posterior distributions close to the prior for
“unused” capacity. The non-variational approaches discussed here similarly combine some form
of quantization with some alternative means of reducing the effective number of parameters, e.g.
through low-rank approximation. While prior work has not established asymptotic guarantees for
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these alternative encoding schemes, future work could aim to construct families of asymptotically
optimal, or quasi-optimal, codes based on these alternative methods.

D.4 COMPUTATIONAL UNIVERSALITY OF TRANSFORMERS

There has been considerable interest in establishing the theoretical expressivity of various classes
of Transformers (Pérez et al., 2021; Chiang et al., 2023; Yun et al., 2020; Feng et al., 2023;
Merrill & Sabharwal, 2024a; Nowak et al., 2024; Merrill & Sabharwal, 2024b). Most relevant
to our constructed mapping between computable, rational-valued distributions and Transformer
weights is prior work establishing various equivalences between Transformers and Turing machines.
Pérez et al. (2021) established Turing completeness of an encoder-decoder Transformer in a non-
probabilistic language recognition setting, with Merrill & Sabharwal (2024a) and Feng et al. (2023)
extended this result to decoder-only variants. Most relevant to our result is Nowak et al. (2024),
which demonstrates Turing completeness in a probabilistic setting. One difference is that our result
holds for Transformer encoders (in the limit as context size and number of layers increase) compared
with Nowak et al. (2024)’s result for Transformer decoders with intermediate decoding steps. Their
result also does not directly extend to prefix Turing machines, which is necessary to support our the-
oretical results. However, their work could be potentially helpful for future work seeking to establish
the existence of families of asymptotically optimal codes for Transformer decoders with interme-
diate decoding steps. Finally, Schuurmans (2023) shows that a Transformer decoder augmented
with an external memory tape is computationally universal. Broadly, considering description length
objectives over models with external tools could be of interest for future work.

We use the ALTA compiler (Shaw et al., 2024) to support our demonstration of universality. ALTA
was inspired by RASP (Weiss et al., 2021), an alternative language for compiling programs to Trans-
formers, and the related Tracr (Lindner et al., 2023) compiler. ALTA offers better support for pro-
grams with loops, which is useful for emulating a Turing machine.

D.5 SIMPLICITY BIAS

While our work focuses on implementing a simplicity bias explicitly in a training objective, several
studies have evaluated the implicit simplicity bias of neural networks (Zhou et al., 2023; Abbe et al.,
2023; Bhattamishra et al., 2023; Tsoy & Konstantinov, 2024; Chen et al., 2024; Mingard et al.,
2025), or lack thereof (e.g., Nikankin et al., 2025). Others study the simplicity bias of in-context
learning with pre-trained models (Goldblum et al., 2023; Deletang et al., 2024), or proposed tasks
to enhance this bias (Grau-Moya et al., 2024).
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