A Variational Approach to Mutual Information-Based Coordination for
Multi-Agent Reinforcement Learning

Anonymous Authors'

Abstract

In this paper, we propose a new mutual informa-
tion (MMI) framework for multi-agent reinforce-
ment learning (MARL) to enable multiple agents
to learn coordinated behaviors by regularizing
the accumulated return with the mutual informa-
tion between multi-agent actions. By introduc-
ing a latent variable to induce nonzero mutual
information between multi-agent actions and ap-
plying a variational bound, we derive a tractable
lower bound on the considered MMI-regularized
objective function. Applying policy iteration to
maximize the derived lower bound, we propose a
practical algorithm named variational maximum
mutual information multi-agent actor-critic (VM3-
AC). We evaluated VM3-AC for several games re-
quiring coordination, and numerical results show
that VM3-AC outperforms other MARL algo-
rithms in multi-agent tasks requiring coordina-
tion.

1. Introduction

With the success of RL in the single-agent domain (Mnih
et al., 2015; Lillicrap et al., 2015), MARL is being actively
studied and applied to real-world problems such as traf-
fic control systems and connected self-driving cars, which
can be modeled as multi-agent systems requiring coordi-
nated control (Li et al., 2019; Andriotis & Papakonstanti-
nou, 2019). The simplest approach to MARL is indepen-
dent learning, which trains each agent independently while
treating other agents as a part of the environment, but this
approach suffers from the problem of non-stationarity of the
environment. A common solution to this problem is to use
fully-centralized critic in the framework of centralized train-
ing with decentralized execution (CTDE) (OroojlooyJadid
& Hajinezhad, 2019; Rashid et al., 2018; Lowe et al., 2017,

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Igbal & Sha, 2018; Foerster et al., 2018). For example,
MADDPG (Lowe et al., 2017) uses a centralized critic to
train a decentralized policy for each agent, and COMA (Fo-
erster et al., 2018) uses a common centralized critic to train
all decentralized policies. However, these approaches as-
sume that decentralized policies are independent and hence
the joint policy is the product of each agent’s policy. Such
non-correlated factorization of the joint policy limits the
agents to learn coordinated behavior due to negligence of
the influence of other agents (Wen et al., 2019; de Witt et al.,
2019). Recently, mutual information (MI) between multiple
agents’ actions has been considered as an effective intrinsic
reward to promote coordination in MARL (Jaques et al.,
2018). In (Jaques et al., 2018), MI between agents’ actions
is captured as social influence and the goal is to maximize
the sum of accumulated return and social influence between
agents’ actions. It is shown that the social influence ap-
proach is effective for sequential social dilemma games. In
this framework, however, causality between actions under
coordination is required, and it is not straightforward to
coordinate multi-agents’ simultaneous actions. In certain
multi-agent games, coordination of simultaneous actions of
multiple agents is required to achieve cooperation for a com-
mon goal. For example, suppose that a pack of wolves try to
catch a prey. To catch the prey, coordinating simultaneous
actions among the wolves is more effective than coordinat-
ing one wolf’s action and other wolves’ actions at the next
time because the latter case causes delay in coordination.
In this paper, we propose a new approach to the MI-based
coordination for MARL to coordinate simultaneous actions
among multiple agents under the assumption of the knowl-
edge of timing information among agents. Our approach
is based on introducing a common latent variable to in-
duce MI among simultaneous actions of multiple agents and
on a variational lower bound on MI that enables tractable
optimization. Under the proposed formulation, applying
policy iteration by redefining value functions, we propose
the VM3-AC algorithm for MARL to learn coordination
of simultaneous actions among multiple agents. Numeri-
cal results show its superior performance on cooperative
multi-agent tasks requiring coordination.

Submission and Formatting Instructions for ICML 2022

2. Related Work

MI is a measure of dependence between two variables
(Cover & Thomas, 2006) and has been considered as an
effective intrinsic reward for MARL (Wang et al., 2019;
Jaques et al., 2018). (Mohamed & Rezende, 2015) proposed
an intrinsic reward for empowerment by maximizing MI
between agent’s action and its future state. (Wang et al.,
2019) proposed two intrinsic rewards capturing the influ-
ence based on a decision-theoretic measure and MI between
an agent’s current actions/states and other agents’ next states.
In particular, (Jaques et al., 2018) proposed a social influ-
ence intrinsic reward, which basically captures the mutual
information between multiple agents’ actions to achieve
coordination, and showed that the social influence formula-
tion yields good performance in sequential social dilemma
environments. The difference of our approach from the so-
cial influence framework to MI-based coordination will be
explained in Section 6.

Some previous works approached correlated policies from
different perspectives. (Liu et al., 2020) proposed explicit
modeling of correlated policies for multi-agent imitation
learning, and (Wen et al., 2019) proposed a recursive reason-
ing framework for MARL to maximize the expected return
by decomposing the joint policy into own policy and oppo-
nents’ policies. Going beyond adopting correlated policies,
our approach maximizes the MI between multiple agents’
actions which is a measure of correlation.

In our approach, the MI between agents’ action distributions
is decomposed as the sum of each agent’s action entropy
and a variational term related to prediction of other agents’
actions. Hence, our framework can be interpreted as enhanc-
ing correlated exploration by increasing the entropy of own
policy (Haarnoja et al., 2018) while decreasing the uncer-
tainty about other agents’ actions. Some previous works
proposed other techniques to enhance correlated exploration
(Zheng & Yue, 2018; Mahajan et al., 2019). MAVEN ad-
dressed the poor exploration problem of QMIX by maximiz-
ing the mutual information between the latent variable and
the observed trajectories (Mahajan et al., 2019). However,
MAVEN does not consider the correlation among policies.

3. Background

Setup We consider a Markov Game (Littman, 1994),
which is an extention of Markov Decision Process (MDP)
to multi-agent setting. An N-agent Markov game is de-
fined by an environment state space S, action spaces for
N agents Aq,--- , Ay, a state transition probability pr :
SxAxS — [0,1], where A = Hf\il A; is the joint
action space, and a reward function R : S x A — R. At
each time step ¢, Agent i with policy 7 executes action
ai € A, based on state s; € S. The actions of all agents

a; = (a},--- ,al) yield the next state s; 1, according to
p7 and shared common reward r, according to R under
the assumption of fully-cooperative MARL. The discounted
return is defined as Ry = >~ , v"r,, where v € [0, 1) is
the discounting factor.

We assume centralized training and decentralized execu-
tion with timing information (CTDE/TI), which does not
require communication among agents but requires synchro-
nized timing information during the execution phase. Under
CTDE/TI each agent can access all information including
the environment state, observations and actions of other
agents in the training phase, whereas the policy of each
agent can be conditioned only on its own observation of and
timing information in the execution phase. The goal of fully
cooperative MARL is to find the optimal joint policy 7*
that maximizes the objective J(7) = E jn [RO} , Where
T = (8¢, a4, 8¢11,a¢11,--+) and ® = (7t -+ 7V) de-
notes the joint policy of all agents.

Mutual Information-Based Coordination for MARL MI
between agents’ actions has been considered as an intrinsic
reward to promote coordination in MARL (Jaques et al.,
2018). Under this framework, one basically aims to find the
policy that maximizes the weighted sum of the cumulative
return and the MI between multi-agent actions. Thus, the
MlI-regularized objective function for joint policy 7r is given

by
atvat‘st)]

(D
where I(al;a]|s;) is the MI between ai ~ 7°(-|s;) and
aj ~ m(-|s¢), and « is the temperature parameter that con-
trols the relative importance of the MI against the reward.
It is known that by regularization with MI in the objec-
tive function (1), the policy of each agent is encouraged to
coordinate with other agents’ policies. There are several
approaches to implement (1). Under the social influence

framework in (Jaques et al., 2018), the MI is decomposed as

J(== ‘r0~7'r

S ri(rita 3

(i,9)i#7

o pai,aj:s
Hafsalls) = [plabaf]so)tog -0
ot plailsop(alls:)

2
S J\,i
:/Mww/p@MJM%&@i@)
ai o plailse)
— /Z play|st) DKL(p(U«'“ai,st)Hp(a-Z‘St))’ @)

t .] .
social influence of ¢ on j

where D, (+]|-) is the Kullback-Leibler divergence.Thus,
in this decomposition, influencing Agent i’s policy is given
by 7' = p(a}|s;) and influenced Agent j’s policy is given
by 7/ = p(aj|al, s;). Hence, at time step ¢, influencing

Submission and Formatting Instructions for ICML 2022

St

() (b)

Figure 1. Causal diagram: (a) basic social influence, (b) social
influence of modeling other agents, and (c) the proposed approach

Agent ¢ acts first and then influenced Agent j acts based
on a! after Agent i acts, as shown in Fig. 1(a). Agents
1 and j cannot perform actions simultaneously. One way
to remove this action ordering is to model other agents
(Jaques et al., 2018). In this case, the causal influence of
action a! of Agent i at time ¢ on action a; 11 of Agent j at
time ¢ + 1 is considered, as shown in Fig. 1(b), i.e., the
social influence D, (p(aj 4 |ai, s¢)|[p(aj,]s:)) instead
of the influence term in (4) is cons1dered based on modeling
plal 1]}, s¢) so that actions af and a] can be performed
simultaneously without ordering. In this case, however, the
actually considered M is I(a}; aj, |s;) and is not the MI
between a! and a{ occurring at the same time. In this paper,
we propose a different approach to MI regularization which
enables simultaneous coordination between actions a} and
a both at time ¢ without action ordering.

4. The Proposed Approach

We assume that the environment is fully observable, i.e.,
each agent can observe the environment state s; for theoret-
ical development in this section, and will consider partially
observable environment for practical algorithm construction
under CTDE/TT in the next section.

4.1. Formulation

Our approach to induce MI between concurrent two actions
at and a§. of Agents ¢ and j at time ¢ is to introduce a com-
mon latent variable Z,, as shown in Fig. 1(c). We assume
that the latent variable Z; has a prior distribution pz(z;) and
that actions a! and a; are generated from the state variable
s¢ and the latent random variable Z;. Thus, Agent ¢’s action
a! at time ¢ is drawn from the policy distribution of Agent i
as

aiNﬂ-i('lst:StaZt% 7;:1727"'7]\[7 (5)

where we use the upper case for random variables and the
lower case as realization for the notation in the conditioning
input terms for clarification. In case of stochastic policy,
there is randomness in ai even for given S; = s;, and
furthermore we have additional randomness in a? due to the

random input Z; since a function of random variable is a
random variable. One can view the randomness due to Z;
as a perturbation to nominal a! for given S; = s;,. With
the common perturbation-inducing variable Z;, two random
variables af and a conditioned on S; = s; is correlated
due to common Z, and nonzero MI I (a}; al|s;) between
concurrent a! and a] is induced. We aim to exploit this
correlation for action coordination. (See Appendix A for a
simple example and explanation of our basic idea with the
simple example.)

With nontrivial MI I(a}; al|s;), we now express this MI.
First, note in (4) that we need p(a{ lat, s¢) to compute the MI
but we do not want to use p(a? |at, s;) directly. For this, we
adopt a variational distribution ¢(a?|af, s;) to approximate
p(al|at, s;) and derive a lower bound on the MI I (a’; al|s;)
as follows: I(a};al|st) =

plai, af|s)

/ plai, allst)log

ol plailso)p(ails:)
_ plal, ai]se) log PLe3IP(a I?%, St)q(jai lai, st)
af a plailse)p(ailse)q(atlai, st)

. alal |az',st>}

i g lo .
p(aj,aflst) { g p(al|s:)
X Eyafjsr) | Drcr(plalai, so)llaaila’, s0)]

> H(a{ ‘St) +]Ep(ai\St)P(a'l lal,s¢) [Iqu(aglazih St):| ’ ©

where H (al|s;) denotes the entropy of a! given s;, ie., the
entropy of the following marginal distribution of aJ in our
case:

ﬁ'j(aﬂst) = / wj(a{|5t =8, 72 = 2)pz(2ze)dze. (7)

2zt

The last inequality in (6) holds because the KL diver-
gence is always non-negative. For the variational distri-

bution ¢(a] |a}, s;) we consider a class of distributions , i.e.,
q(allal,s;) € Q. The lower bound (6) becomes tight when
q(allal, s;) approximates p(al|al, s;) well. Note that in
our expansion, the lower bound on the MI I(ai;al|s,) is
expressed as the sum of the action entropy H(al|s;) and
the negative of the cross entropy of q(a'z lat, s¢) relative to

p(al|at, s;) averaged over p(ai|s,). Using the symmetry of
MI, we can rewrite the lower bound as

i 1 i .
I(aisails)) > 5{ Hlails:) + H(ai|si)+

E o oy 108 0(0d 10}, 50) + loga(atlad,)] }
(®)

Then, our goal is to maximize this lower bound of MI by

using a tractable approximation ¢(a‘|al, s;) € Q. Our de-
compsition of MI based on the action entropy and the cross

Submission and Formatting Instructions for ICML 2022

entropy is effective in our variational formulation for MI-
based MARL. Consider one of the cross entropy terms in the

right-hand side (RHS) of 8): E i .4, [log q(allal, s,)],

which can be rewritten as E, . i, [log q(allai, s:)] =

~Ep(ailsr) | H(p(allai, st)) + Drcr(plad lat, se)lla(a? lat, 51))
©)

based on the well-known decomposition of the cross entropy.
Hence, by maximizing the negative of this cross entropy
term, we can learn 7" (generating a}) and 7/ (generating a;)
so that the conditional entropy H (p(aj |al, s;)) of a] given
ai is minimized, i.e., the two actions are more correlated to
each other, and learn ¢ that closely approximates the true
p(allai, s;), i.e., the Dy, term in (9) is minimized.

4.2. Modified Policy Iteration

Our algorithm construction is based on policy iteration. In
order to develop policy iteration for the proposed MI frame-
work, we first replace the original MI-regularized objective
function (1) with the following tractable objective function
based on the variational lower bound (8):

J(m,q) = o~ T Z (rt St,at +aNZH ai|st)
zZt ~ Pz t=0 =1
+a2210gq |at,st):| (10)
i=1 j#i
where = [r!,--- 7] and 7 is given by (5) and a; =
[al,---,al]. Then, we determine the individual objective

function J?(7%,) for Agent i as the sum of the terms in

(10) associated with Agent i’s policy 7 or action at, given
by

ji(ﬂi>Q):E TO ~ T |:Z’Yt(rt(st7at)+ﬁ'H(aist)

Zt ~ Pz t=0 (@)

+ 25" [tosataila) + logq(ailai,st)])] . an

J#i RS

where § = aN is the temperature parameter. Note that
maximizing the term (a) in (11) implies that each agent max-
imizes the weighted sum of the action entropy and the return,
which can be interpreted as an extension of maximum en-
tropy RL (Haarnoja et al., 2018) to multi-agent setting. On
the other hand, maximizing the term (b) with respect to
and ¢ means that we update the policy 7 so that the con-
ditional entropy of a; given al and the conditional entropy
of a} given a are reduced, as already mentioned below (9).
Thus, the objective function (11) can be interpreted as the
maximum entropy MARL objective combined with action
correlation or coordination. Hence, the proposed objective
function (11) can be considered as one implementation of

the concept of correlated exploration in MARL (Mahajan
etal., 2019).

Now, in order to learn policy 7* to maximize the objective
function (11), we modify the policy iteration in standard
RL. For this, we redefine the state and state-action value
functions for Agent 7 as

QT (s,a) 2E |10 +7Vi(s1)]50 = 5,00 = a],
2t~ Pz
12)
Vi) 2E o on [Zv" (n + BH (at|st)
Zt ~ Pz t=0
+ s Zlogq“’j)(aﬁ aj|st)) S0 =35 (13)
N - Ly Ut ’
J#i

where ¢(-9)(a}, al|s;) 2 qlailal, s,)q(a]la, s,). Then,
the Bellman operator corresponding to V;™ and Q)T on the

value function estimates V;(s) and Q; (s, a) is given by

T™Qi(s,a) £ 7(s,a) + vEsp[Vi(s)], (14)

where Vi(s) = E , ., [Qi(s,a) — Blog#'(a’|s) +
Zt ~ Pz
L3, 2 1ogq") (a',a’|s) |, and 7 is the marginal distribu-

tion given in (7). In the policy evaluation step, we compute
the value functions defined in (12) and (13) by applying
the modified Bellman operator 7™ repeatedly to any initial

function QEO)

Proposition 1. (Variational Policy Evaluation). For fixed
7 and the variational distribution q, consider the modified
Bellman operator T™ in (14) and an arbitrary initial func-
tion Q) : 8 x A — R, and define Q) = 77"
Then, ng) converges to QT defined in (12).

Proof. See Appendix B.

In the policy improvement step, we update the policy and the
variational distribution by using the value function evaluated
in the policy evaluation step. Here, each agent updates
its policy and variational distribution while keeping other
agents’ policies fixed as follows: (741, gr+1) =

arg max E (@

e
5 @) ~

zp ~ Pz

B God) i i
+N210gq (a*,d’|s))],

Jj#i

f [QZ”"(& a) ~ flog 7' (a'ls)
(15)

where a=* £ {a',--- ,a™}\{a'} and 7}, " is the collection
the policies for all agents except Agent ¢ at the k-th iter-
ation. Then, we have the following lemma regarding the
improvement step.

Submission and Formatting Instructions for ICML 2022

Proposition 2. (Variational Policy Improvement). Let 7',

and Gnew be the updated policy and the variational distribu-
tion from (15). Then, Q?ﬁﬁ“”WUId(S,q) > Q?éld’ﬂ”l‘é(s,a)
for all (s,a) € (S x A). Here, Q;"""° (s, a) means
Q;’r(s7 a)|"'f=(7"fwwv7";zg)'

Proof. See Appendix B.

The modified policy iteration is defined as applying the vari-
ational policy evaluation and variational improvement steps
in an alternating manner. Each agent trains its policy, critic
and the variational distribution to maximize its objective
function (11).

5. Algorithm Construction

Centralized training

Operation of g’

Decentralized execution
[— z~ N(0,I) j
! N

f | tl o p(a,0l,0))

@) & oV aV¥ j

a o o a

111

log q(d/|d!, o', 07)

LVt q* oX v |aX

Figure 2. Overall operation of the proposed VM3-AC. We only
need the operation in the red box after training.

Summarizing the development above, we now propose the
variational maximum mutual information multi-agent actor-
critic (VM3-AC) algorithm, which can be applied to par-
tially observable multi-agent environments. The overall
operation of VM3-AC is shown in Fig. 2. Under CTDE/TI,
each agent’s policy is conditioned only on local observation
oi and the common input z;, and centralized critics are con-
ditioned on either the environment state or the observations
of all agents, depending on the situation (Lowe et al., 2017).
Let « denote either the environment state s or the observa-
tions of all agents (o', - - - , 0V), whichever is used. In order
to deal with the large state-action spaces, we adopt deep
neural networks to approximate the required functions. For
Agent i, we parameterize the policy as 7}, (alo’, z) with pa-
rameter ¢', the variational distribution as g¢: (a’|a’, (0%, 07))
with parameter £', the state-value function as V, (z) with
parameter 1), and two action-value functions as Qg 1(x,a)
and Q}, > (, a) with parameters 6%' and 6%, Note that in

the original variational distribution, a] is conditioned on a!

and s;. In the partially observable case, we replace s, with
(0i,05).

For the prior distribution Pz of the injection variable z,
we use zero-mean multivariate Gaussian distribution with
identity covariance matrix, i.e., z; ~ N(0,I), where the
dimension is a hyperparameter, given in Appendix E. We

further assume that the class Q of the variational distribution
is multivariate Gaussian distribution with constant covari-
ance matrix o2I with dimension of the action dimension,
ie., Q = {ge:(d’|d’, (0", 07)) = N(pei(a’,0",07),0°T)},
where ji¢i (a’, 0', 07) is the mean of the distribution.

Centralized Training The parameterized value functions,
the policy, and the variational distribution are trained based
on proper loss functions derived from Section 4.2 in a similar
way to the training in SAC in a centralized manner. Due
to space limitation, training detail and pseudo code are
provided in Appendices C and D, respectively.

Decentralized Execution with Timing Information In the
centralized training phase, we pick actions (a},--- ,alY)
according to 7 (a}|ss, z¢), -, mN (al¥ |s¢, z¢) (or with sy
replaced with (o}, - - - ,0})), where common z; generated
from zero-mean Gaussian distribution is shared under the
centralized assumption. In the decentralized execution
phase, however, sharing z, among agents for simultaneous
action correlation does not come for free. One simple way
is communication among the agents, but this case prevents
decentralized execution. We can eliminate the necessity of
communication under the assumption of timing information.
Note that z; is not actual message-carrying information but
a dummy random sequence. Practically, a random sequence
is generated based on a random sequence generator. Hence,
we require all agents to have the same Gaussian random
sequence generator and distribute the same seed and initi-
ation timing to these random sequence generators before
deployment for the execution phase. (Mahajan et al. (2019)
also considered that multiple agents share the realization of
latent variables in the beginning of the episode.) Such im-
plementation is possible with reference timing information
such as global positioning system (GPS) and such synchro-
nization is widely used in cellular communication networks.
Note that even with common decentralized execution, time
step synchronization is required. Thus, we additionally
need reference timing information on top of time step syn-
chronization for CTDE/TI. This is the additional cost for
CTDE/TI over CTDE.

An alternative without timing information is to exploit
the property of zero-mean Gaussian input variable z; to
the policy network. During the centralized training pe-
riod, the parameters ¢',--- , ¢V of the policy networks
Ty (alot, 2), -+ mhiv (alo™, 2) (with input (o', 2) and out-
put a) are learned so that actions aj,--- ,al’ are coordi-
nated for random perturbation input z; drawn from Py.
Note that the coordination behavior is learned and en-
graved into the parameters ¢i,---,¢x not into the in-
put z;. So, we only use this stored parameter informa-
tion during the decentralized execution phase. We ap-
ply the common mean value E{z;} to the z; input of the
trained policy network 7} (aj|o}, z;) of Agent 4, Vi. In this

Submission and Formatting Instructions for ICML 2022

00 05 10 25 30 00 05 10 o 25 30

15 2
Time Steps (166)

(b) MW (N=4)

s 20
Time Steps (1e6)

(a) MW (N=3)

M0A
— VM3-AC (ours)

075 100 125
Time steps (1e6)

(f) CTC (N=4)

1o s 20
“Time Steps (1e6)

(e) PP (N=4)

< 100

o
00 05 25 50 00 o5 10 25 30 35

s 20
Time Steps (1e6)

(d) PP (N=3)

o 15 20
Time Steps (1e6)

(c) PP (N=2)

) s 20
Time steps (1e6)

(h) CN (N=3)

1s 20 25
Time steps (1e6)

(g) CTC (N=5)

Figure 3. Performance of MADDPG (blue), MA-AC (green), MAVEN (purple), SI-MOA (black), and VM3-AC (the proposed method,
red) on multi-walker environments (a)-(b), predator-prey (c)-(e), cooperative treasure collection (f)-(g), and cooperative navigation (f).
(MW, PP, CTC, and CN denote multi-walker, predator-prey, cooperative treasure collection and cooperative navigation, respectively)

case, actions a},--- ,a} are independent conditioned on
s¢ > (o}, ,0l) but a specific joint bias (most representa-
tive joint bias) is applied to actions aj, - - - ,al’. We expect
that this joint bias is helpful and this situation is described
in a toy example in Appendix A and the corresponding
numerical result is provided in Appendix A.

6. Experiment

In this section, we provide numerical results on both contin-
uous and discrete action tasks.

Experiment on continuous action tasks We consider the
following continuous action tasks with the varying number
of agents: multi-walker (Gupta et al., 2017), predator-prey
(Lowe et al., 2017), cooperative treasure collection (Igbal &
Sha, 2019), and cooperative navigation (Lowe et al., 2017).
The detailed setting of each tasks is provided in Appendix F.
Here, we considered four baselines: 1) MADDPG (Lowe
et al., 2017) - an extension of DDPG with a centralized
critic to train a decentralized policy for each agent. 2) Multi-
agent actor-critic (MA-AC) - a variant of VM3-AC (8 = 0)
without the latent variable. 3) Multi-agent variational explo-
ration (MAVEN) (Mahajan et al., 2019). Similarly to VM3-
AC, MAVEN introduced latent variable and variational ap-
proach for optimizing the mutual information. However,
MAVEN does not consider the mutual information between
actions but consider the mutual information between the
latent variable and trajectories of the agents. 4) Social Influ-
ence with MOA (SI-MOA) (Jaques et al., 2018), which is
explained in Section 3. Both MAVEN and SI-MOA are im-
plemented on top of MA-AC since we consider continuous
action-space environments.

Fig. 3 shows the learning curves for the considered four
environments with the different number of agents. The y-
axis denotes the average of all agents’ rewards averaged
over 7 random seeds, and the x-axis denotes time step. The
hyperparameters including the temperature parameter /3 and
the dimension of the latent variable are provided in Ap-
pendix E. As shown in Fig. 3, VM3-AC outperforms the
baselines in the considered environments. Especially, in the
case of the multi-walker environment, VM3-AC has large
performance gain over existing state-of-the-art algorithms.
This is because the agents in the multi-walker environment
are strongly required to learn simultaneous coordination in
order to obtain high rewards. In addition, the agents in the
predator-prey environment, where the number of agents is
four, should spread out in groups of two to get more reward.
In this environment, VM3-AC also has large performance
gain. Thus, it is seen that the proposed MMI framework im-
proves performance in complex multi-agent tasks requiring
high-quality coordination. It is observed that both MAVEN
and SI-MOA outperform the basic algorithm MA-AC but
not VM3-AC. Hence, the numerical results show that the
way of using MI by the proposed VM3-AC algorithm has
some advantages over those by MAVEN and SI-MOA, espe-
cially for MARL tasks requiring coordination of concurrent
actions.

Experiment on discrete action task We also consid-
ered the Starcraftll micromanagement benchmark (SMAC)
environment (Samvelyan et al., 2019). We modified the
SMAC environment to be sparse by giving rewards when
an ally or an enemy dies and a time penalty. Thus, in the
case of 3s vs 3z, the reward is hardly obtained because it
takes a long time to remove a zealot (enemy). We provided

Submission and Formatting Instructions for ICML 2022

[

(=]
=
=]

o

)
o
©

o

o
o
o

I

'S
N
'S

o
N}

test_battle_won_mean
test_battle_won_mean

o
N

o
=)

o
(=]

[y
(=]

o
o

test_battle_won_mean
o o
- (=]

o
N

0 20 40 60 80 100 120 0 50
Time Steps (1e4)

(a) 3m

101
Time Steps (1e4)

(b) 253z

150 200 0 50 100 150 200 250 300
Time Steps (1e4)

(c) 3svs 3z

Figure 4. Performance of DOP (green), FOP (blue), LICA (black), MAVEN (purple), VDAC (orange) and VM3-AC (red) on three maps

in the modified SMAC environment.

Figure 5. The positions of four agents after five time-steps after the
episode begins in the early stage of the training: 1st row - VM3-AC
and 2nd row - MA-SAC. The figures in each column correspond
to a different seed. The black squares are the preys and each color
except black shows the position of each agent.

the detailed setting of the modified SMAC environment in
Appendix G. We considered five state-of-the-art baselines:
DOP (Wang et al., 2020), FOP (Zhang et al., 2021), LICA
(Zhou et al., 2020), MAVEN (Mahajan et al., 2019), and
VDAC (Su et al., 2021). We implemented VM3-AC on the
top of FOP by introducing the latent variable and replacing
the entropy term in (Zhang et al., 2021) with the MI. Fig. 5
shows the performances of VM3-AC and the baselines on
three maps in SMAC. It is observed that VM3-AC outper-
forms the baselines. Especially on 3svs3z, in which reward
is higly sparse, VM3-AC outperforms the baselines in terms
of both training speed and final performance.

6.1. Ablation Study and Discussion

In this subsection, we provide ablation study and discussion
on the major techniques and hyperparameters of VM3-AC:
1) mutual information versus entropy 2) the latent variable,
3) the temperature parameter 3, and 4) scalability.

Mutual information versus entropy: The proposed MI
framework maximizes the sum of the action entropy and
the negative of the cross entropy of the variational condi-
tional distribution relative to the true conditional distribu-
tion, which provides a lower bound of MI between actions.
As aforementioned, maximizing the sum of the action en-
tropy and the negative of the cross entropy of the variational

conditional distribution relative to the true conditional dis-
tribution enhances exploration and predictability for other
agents’ actions. Hence, the proposed MI framework en-
hances correlated exploration among agents.

We compared VM3-AC with multi-agent-SAC (MA-SAC),
which is an extension of maximum entropy soft actor-critic
(SAC) (Haarnoja et al., 2018) to multi-agent setting. For
MA-SAC, we extended SAC to multi-agent setting in the
manner of independent learning. Each agent trains its de-
centralized policy using decentralized critic to maximize the
weighted sum of the cumulative return and the entropy of its
policy. Adopting the framework of CTDE, we replaced de-
centralized critic with centralized critic which incorporates
observations and actions of all agents.

We performed an experiment in the predator-prey environ-
ment with four agents where the number of required agents
to catch the prey is two. In this environment, the agents
started at the center of the map. Hence, the agents should
spread out in groups of two to catch preys efficiently. Fig.5
shows the positions of the four agents at five time-steps
after the episode starts. The first and second rows in Fig.5
show the results of VM3-AC and MA-SAC in the early
stage of the training, respectively. It is seen that the agents
of VM3-AC explore in groups of two while the agents of
MA-SAC tend to explore independently. We provided the
performance comparisons of VM3-AC with MA-SAC in
Fig.6 (a) and (b).

Latent variable: The role of the latent variable is to induce
MI among concurrent actions and inject additional degree-
of-freedom for action control. We compared VM3-AC and
VM3-AC without the latent variable (implemented by set-
ting dimension(z;) = 0) in the multi-walker environment.
In both cases, VM3-AC yields better performance that VM3-
AC without the latent variable as shown in Fig.6(a) and 6(b).
Here, the gain by VM3-AC without the latent variable (i.e.,
dimension(z;) = 0) over MA-SAC is solely due to passive
modeling p(a] |al, s;) by using q(ai|al, s;), not including
active injection of coordination by z;. Performance results

Submission and Formatting Instructions for ICML 2022

P
Ll

S/

(b) MW (N=4)

(a) PP (N=4)

o 15 20 25 30 o0 05 10 15 20
Time steps (1e6) ime Steps (1¢6)

(c) MW (N=3) (d) MW (N=4)

Figure 6. (a) and (b): VM3-AC (red), VM3-AC without latent variable (orange), and MA-SAC (cyan) and (c) and (d): performance with

respect to the temperature parameter

on the case of replacing the latent variable z; ~ N (0,T)
with mean vector z; = E(z;) in the execution phase is
provided in Appendix H.

Temperature parameter /5: The role of temperature pa-
rameter (3 is to control the relative importance between
the reward and the MI. We evaluated VM3-AC by varying
8 = 10,0.05,0.1,0.15] in the multi-walker environment
with N = 3 and N = 4. Fig. 6(c) and 6(d) show that VM3-
AC with the temperature value around [0.05,0.1] yields
good performance.

Scalability: Many MARL algorithms which use a central-
ized critic such as MADDPG (Lowe et al., 2017) can suffer
from the problem of scalability due to increasing joint state-
action space as the number of agents increases. VM3-AC
can also suffer from the same issue but we can address the
problem by adopting an attention mechanism as in MAAC
(Igbal & Sha, 2018). Additionally, VM3-AC needs more
variational approximation networks as the number of agents
increases. As many MARL algorithms share the parameters
among agents, we can share the parameters for the varia-
tional approximation networks. We expect that parameter
sharing can handle the scalability of the proposed method.

7. Conclusion

In this paper, we have proposed a new approach to MI-based
coordinated MARL to induce coordination of concurrent
actions under CTDE/TI. In the proposed approach, a com-
mon correlation-inducing random variable is injected into
each policy network, and the MI between actions induced
by this variable is expressed as a tractable form by using a
variational distribution in order to enable construction of a
practical algorithm based on policy iteration. We evaluated
the derived algorithm named VM3-AC on both continuous
and discrete action tasks and the numerical results show
that VM3-AC outperforms other state-of-the-art baselines,
especially in multi-agent tasks requiring high-quality coor-
dination among agents.

References

Achiam, J. Spinning Up in Deep Reinforcement Learning.
2018.

Agarwal, P, Jleli, M., and Samet, B. Fixed point theory in
metric spaces. Recent Advances and Applications, 2018.

Andriotis, C. and Papakonstantinou, K. Managing engineer-
ing systems with large state and action spaces through
deep reinforcement learning. Reliability Engineering &
System Safety, 191:106483, 2019.

Cover, T. M. and Thomas, J. A. Elements of Information
Theory. Wiley, 2006.

de Witt, C. S., Foerster, J., Farquhar, G., Torr, P., Bohmer,
W., and Whiteson, S. Multi-agent common knowledge re-
inforcement learning. In Advances in Neural Information
Processing Systems, pp. 9924-9935, 2019.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradients.
In Thirty-second AAAI conference on artificial intelli-
gence, 2018.

Folland, G. B. Real analysis: modern techniques and their
applications, volume 40. John Wiley & Sons, 1999.

Fujimoto, S., Van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. arXiv
preprint arXiv:1802.09477, 2018.

Gupta, J. K., Egorov, M., and Kochenderfer, M. Cooperative
multi-agent control using deep reinforcement learning.
In International Conference on Autonomous Agents and
Multiagent Systems, pp. 66—83. Springer, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Igbal, S. and Sha, F. Actor-attention-critic for multi-agent
reinforcement learning. arXiv preprint arXiv:1810.02912,
2018.

Submission and Formatting Instructions for ICML 2022

Igbal, S. and Sha, F. Actor-attention-critic for multi-agent
reinforcement learning. In International Conference on
Machine Learning, pp. 2961-2970. PMLR, 2019.

Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Ortega,
P. A., Strouse, D., Leibo, J. Z., and De Freitas, N. Social
influence as intrinsic motivation for multi-agent deep
reinforcement learning. arXiv preprint arXiv:1810.08647,
2018.

Kim, W., Cho, M., and Sung, Y. Message-dropout: An
efficient training method for multi-agent deep reinforce-
ment learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 6079-6086, 2019.

Li, M., Qin, Z., Jiao, Y., Yang, Y., Wang, J., Wang, C., Wu,
G., and Ye, J. Efficient ridesharing order dispatching with
mean field multi-agent reinforcement learning. In The
World Wide Web Conference, pp. 983-994, 2019.

Lillicrap, T. P, Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Littman, M. L. Markov games as a framework for multi-
agent reinforcement learning. In Machine learning pro-
ceedings 1994, pp. 157-163. Elsevier, 1994.

Liu, M., Zhou, M., Zhang, W., Zhuang, Y., Wang, J., Liu,
W., and Yu, Y. Multi-agent interactions modeling with
correlated policies. arXiv preprint arXiv:2001.03415,
2020.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P,
and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in
Neural Information Processing Systems, pp. 6379-6390,
2017.

Mahajan, A., Rashid, T., Samvelyan, M., and Whiteson,
S. Maven: Multi-agent variational exploration. In Ad-
vances in Neural Information Processing Systems, pp.
7611-7622, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529-533, 2015.

Mohamed, S. and Rezende, D. J. Variational information
maximisation for intrinsically motivated reinforcement
learning. In Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems-Volume
2, pp. 2125-2133, 2015.

OroojlooyJadid, A. and Hajinezhad, D. A review of coop-
erative multi-agent deep reinforcement learning. arXiv
preprint arXiv:1908.03963, 2019.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G.,
Foerster, J., and Whiteson, S. Qmix: monotonic value
function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1803.11485, 2018.

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G., Hung, C.-M., Torr, P. H.,
Foerster, J., and Whiteson, S. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043, 2019.

Su, J., Adams, S., and Beling, P. A. Value-decomposition
multi-agent actor-critics. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 11352—
11360, 2021.

Wang, T., Wang, J., Wu, Y., and Zhang, C. Influence-
based multi-agent exploration. arXiv preprint
arXiv:1910.05512, 2019.

Wang, Y., Han, B., Wang, T., Dong, H., and Zhang, C. Dop:
Off-policy multi-agent decomposed policy gradients. In
International Conference on Learning Representations,
2020.

Wen, Y., Yang, Y., Luo, R., Wang, J., and Pan, W. Proba-
bilistic recursive reasoning for multi-agent reinforcement
learning. arXiv preprint arXiv:1901.09207, 2019.

Zhang, T., Li, Y., Wang, C., Xie, G., and Lu, Z. Fop:
Factorizing optimal joint policy of maximum-entropy
multi-agent reinforcement learning. In International Con-
ference on Machine Learning, pp. 12491-12500. PMLR,
2021.

Zheng, S. and Yue, Y. Structured exploration via hierarchi-
cal variational policy networks. 2018.

Zhou, M., Liu, Z., Sui, P, Li, Y., and Chung, Y. Y. Learning
implicit credit assignment for cooperative multi-agent
reinforcement learning. Advances in Neural Information
Processing Systems, 33:11853—11864, 2020.

Submission and Formatting Instructions for ICML 2022

Appendix A: Correlation Based on Common Z; and Basic Idea

Here, we provide a toy example explaining our idea. The example is as follows. We have two agents: Agents 1 and 2 in a
2-dimensional half-plane (x,y) with y > 0. The state is the locations of the two agents, i.e., s; = ((x},y}), (z7,y?)), where
(x%,y?) is the location of Agent i. The action of each agent is the displacement, i.e., the action of Agent i is ai = (Azt, Ay}),
1 = 1,2. The location of Agent 7 at time ¢ + 1 is determined as a function of the state and action at current time ¢:

(xi-&-l’ yi—i—l) = (.I‘i, yz) + (szv Ayz)
Suppose that Agent i can only observe its own location o' = (z¢,y!) and suppose that 22 the policies 7! (a}|of, z;) and

72(a?|0?, z;) of the two agents are functions of the observation and an additional common random variable z;, and given by
the following simple linear stochastic model:

1 -
ol a;’ Az}
t = 1| = 1
aj | Ay,
I ,1

0 0 x} 2Z ny’
_ ey Lo+ » (16)

0 01] | o & ny’

—_——— ~— N—— N——
parameter for 0} ot1 parameter for z; at Agent 1 Zt noise n% at Agent 1

2 -
9 ay’ Az?
a; = =
t ,2 2
aty L Ayt

1 1
{ Wy Wiz]

1 1
W31 Wi

1 2 2 2 ,2
_ 0 0 Ty Wi Wig z Ty 17
— 10 o1 2 | T 2 w2 y | T y,2 ; (17)
L] Yi Wy Wy 2t ny
—_———— —— ——
parameter for o2 o} parameter for z; at Agent 2 2t noise n? at Agent 2
. 1 9 . . z .
where the two random noise terms n; and ny at Agents 1 and 2 are independent random variables; z; = Ly | 1sa random
¢
variable (precisely speaking, random vector) drawn from Py(z); and the notation of two consecutive brackets [-][-] means

matrix multiplication. Fig. 7 describes the policy function of Agent 1 given by (16) in a graphical form. ((17) can be
described in a similar graphical form.)

@ a?
nt
n!

Figure 7. Graphical representation of the policy function of Agent 1, eq. (16)

1
In (16), the noise term n} is added to perturb the action of Agent 1 for exploration around the given term [8 001 } { zf]
‘ t

%
for given s;. In (17), the noise term n? is added to perturb the action of Agent 2 for exploration around the given term

0 0 x? : . :
[0 01 } { yé for given s;. Note that two perturbation terms n; and n? are independent. Hence, these two terms
: t

2
0%

induce independent exploration for Agents 1 and 2. That is, without the z;-induced terms in (16) and (17), a; and a? given
s¢ 2 (of,0?) are independent since in this case only the noise terms n; and n? remain and the noise terms are independent

Submission and Formatting Instructions for ICML 2022

random variables by assumption. However, with the z;-induced terms in (16) and (17), at1 and af are correlated and the
corresponding covariance matrix is given by

El(a; — Elay])(af — E[af])"|s¢] = W'C.(W?)T, (18)

where a% and af are column vectors as shown in (16) and (17); ()T denotes matrix transpose; C, is the covariance matrix

of 2, = { i@ } determined by pz;
t

Wl:{:ﬁl ?wU;ltz] and WQZ[Z? Qwﬂiz]

21 22 21 22

Note that the perturbation structure of W'z, and W2z, is different from that of n} and n?. Indeed, we are injecting
correlated random perturbation into a; and a? to promote correlation exploration to better explore the joint state-action space.
By properly designing C., (i.e., properly designing Pz), W' and W2, we can impose an arbitrary correlation structure
between a;} and a? conditioned on s;.

1 +1
Agent1 Agent2

| |
-1 +1 x

Figure 8. An example

Now, consider the following joint task. The initial location of Agent 1 is (-1,1) and the initial location of Agent 2 is (1,1).
The joint goal is that the two agents meet while going upward, and an episode ends when the two agents meet, as described
in Fig. 8. Suppose that we pick the prior distribution Py (z) for z; as

z} ~ Unif]0,0.1] 19)
z{ ~ Unif{0, 0.1], (20

where Unif[a, b] means the uniform distribution over interval [a, b]. Now, we design the reward r,(s¢, a} , a?) as the distance
between the two agents’ locations. We use the policies of the two agents given by (16) and (17).

With this setup, we simply learned the policy parameters W' and W? associated with z; by greedily maximizing the
instantaneous reward 7; by stochastic gradient descent with Adam optimizer with learning rate 3 x 10~*. The parameter
learning curves of W' and W2 are shown in Fig. 9. It is observed that w}; and w1, of Agent 1 converge to positive values,
whereas w3, and w3, of Agent 1 converge to zero. This setting of parameters w1, wi,, wi; and wi, of Agent 1 generates
movement of Agent 1 to the right side since zf > 0 and zi’ > 0 due to (19) and (20). (Please see (16).) On the other hand,
w?, and w?, of Agent 2 converge to negative values, whereas w3, and w3, of Agent 2 converge to zero. This setting of
parameters w?,, w?,, w3, and w3, of Agent 2 generates movement of Agent 2 to the left side since 27 > 0 and 2} > 0 due
to (19) and (20). (Please see (17).) Hence, the two agents meet. Note that the desired coordination between Agents 1 and 2
can be achieved by injecting common random variable z; and learning the set of parameters W' and W2 associated with z;
properly.

Fig. 10 shows the trajectories of Agents 1 and 2 for an episode in the execution phase after training. Fig. 10(a) shows
the trajectory when we input the random variable z; with distribution (19) and (20) to the policy network just as we did
in the training phase. Fig. 10(b) shows the trajectory when we input E[z;] = (0.05,0.05) to the policy network for all
t in the execution phase after training. The desired action is still obtained in the case of Fig. 10(b). This is because the

Submission and Formatting Instructions for ICML 2022

0.6 4 0.6 N
— Wi,
0.4 4 0.4 4 — w2,
2
Wi,
024 0.2 4
2
Wi,
0.0 4 0.0 4
1
Wi,
-0.2 A -0.2 A
1
W1
1
047 — Wi, ~0.4
1
W3,
-0.6 -0.6
0 2 4 6 8 10 12 14 0 2 4 10 12 14
(a) (b)

Figure 9. (a) the parameter values of W associated with z; for Agent 1 and (b) the parameter values of W? associated with z; for Agent

2 (during the training phase)

) e Agentl 125 4 » e Agentl
L] - L]
1257 . Agent2 . Agent2
L] L]
L] []
. 1.20 4 °
1.20 e o
L] ..
[] 4
115 4 N 115 K
[]
° []
® []
4 L]
1.10 4 o’ 110 °
® L]
™Y L]
Y L]
J 1.05 4 0
105 o* .
L] L]
[] L]
L] L]
1.00 4 1.00 4
-1.00 -0.75 —050 -0.25 000 025 050 075 100 -1.00 -0.75 -050 -0.25 000 025 050 075 100

(a)

(b)

Figure 10. The trajectory of two agents in the execution phase after training: (a) zf ~ Unif[0, 0.1], 2/ ~ Unif]0, 0.1]) and (b) 27 = 0.05,
2Y = 0.05

parameters W' and W? associated with z; are properly learned during the training phase by enhanced exploration of the
joint state-action space based on correlated exploration due to W'z, and W2z, with 2z, random. This learned parameters
are used in the execution phase. We can view that by setting z; = E[z;], we pick and apply the representative joint bias on
actions. Note that the desired joint bias in the case of Fig. 10(b) is obtained because of the fact that z; is distributed over
[0,0.1] by (19) and (20). Hence, the choice of Py is important in this method. However, at least the shift of the support of
z¢ s not a big concern when a general neural network is used as the policy function. In the case of a general neural network
as the policy function, shift of z; is automatically done by the node bias of the neural network and this node bias is also
learned as parameter.

In this example, we observe that coordination of actions and coordinated exploration are feasible by injecting a common
random variable z; to the input of every policy function and learning the parameters associated with z;. In this example, we
fixed the weights associated with the observation 0! to show the exploration and control capability of the z; part. In general
cases, we have the freedom to design the weights associated with the observation o} too. Designing the conventional policy
parameters associated with the observation together with additional degree-of-freedom for exploration and design generated
by injecting z; combined with nonlinear deep neural network can lead to learning of complicated coordinated behavior via
correlated exploration. This paper fully develops this idea.

Submission and Formatting Instructions for ICML 2022

Appendix B: Proofs

In the main paper, we defined the state and state-action value functions for Agent ¢ as follows:

Q?(S,a) é E T0 ~ T

Zt ~ Pz

ro + Vi (s1)

50 = 8, ag 2617 (21)

805],

Then, the Bellman operator corresponding to V;™ and QT on the value function estimates V;(s) and Q;(s, a) is given by

V7(s) £ E To ~ T [Z’Y (TtJrﬂH(at‘St Zlog‘q " (afvat|5t))

zZt ~ pz j;éz

(22)

T™Qi(s,a) = r(s,a) + YEanp[Vi(s)], (23)
where
Viis) =E 4 x lQl(s, a)— Blogfri(aﬂs) + % Zlog q(i’j)(ai,aﬂs)] . (24)
zZt ~ Pz J#i

(21), (21), (23) and (24) are the rewritings of equations Equations (12), (13), (14) and (15) in the main paper.

Proposition 1 (Variational Policy Evaluation). For fixed 7r and the variational distribution g, consider the modified Bellman
operator 7™ in (23) and an arbitrary initial function QZ(.O) : S x A — R, and define QEHI) = T"ng). Then, Qz(.k)
converges to)7 defined in (21).

Proof. From (23), we have

TﬂQi(stv at) = T(SD at) +9E St41 ~ P, Gpy1 ~ T [Qi(st+1= at+1) - ﬁlOg 7~Ti(ai"st)

Zt4+1 ~ Pz

8 i
+ Zlog ¢ (al, alls;) (25)
J#i
=7(st,a¢) +7E 4, ~prasgs ~ l Blog 7 (al|sy) + Z]qu u) (a! at|5t)1
Zt41 ~ Dz J#l
=1 (s¢,at)
+ ’}/E St41 ~ D, Qg1 ~ T [Qz (8t+17 at+1>‘| (26)
Zt41 ~ Pz

= Tﬂ'(stv at) + ’V]E sep1 ~ p(-|se,at), ze401 ~ Pz, app1 ~ w(|Se41, Ze41) [Qi(5t+1, at+1)‘| s (27)

where in the last line the expectation arguments are explicitly shown without abbreviation for clarity. Then, we can apply
the standard convergence results for policy evaluation. Define

T (v) =R" +~P"v (28)

for v = [Q(S, @)]ses,ac.a- Then, the operator 77 is a y-contraction.

[T (v) = T"(Wlloo = (R +9P"0) = (R™ +vYP"u) |00 (29)
= 7P (v — vl (30)
< VP ool — ull o (31)

<llu— vl (32)

Submission and Formatting Instructions for ICML 2022

since ||P™||oo < 1 Therefore, the operator 7™ has a unique fixed point by the contraction mapping theorem. Let Q7 (s, a)
be this fixed point. Since

107 (s,a) — Q7 (s,a)][00 < VQYF ™V (s5,0) = QF(5,a) |00 < - < YQV (5,0) — QT (5,a) |0, (33)

we have
lim (| (s.a) — Q7 (s,)|l =0 (34)
k—o0
and this implies
klim Ql(-k)(s,a) = QI (s,a), VY(s,a)e (SxA). (35)
—00
O

We proved the variational policy evaluation in a finite state-action space. We can expand the result to the case of an infinite
state-action space by assuming the followings:

* Assume that Q functions for 7 are in L infinity
* From (Folland, 1999), L infinity is a Banach space

* From (Agarwal et al., 2018), by the Banach fixed point theorem, Q function should converge to a unique point in L
infinity space and that is the Q function of given 7

Proposition 2 (Var1at10na1 Pollcy Improvement) Let 7%, and g, be the updated policy and the variational distribution
from (36). Then, Qi mew? "’d(s, a) > Q7 otar "’”’(s, a) forall (s,a) € (S x A). (T} 41, qrt1) =

arg max E (', a1y ~ (n, 7w 0) [Q?k(s,a) — Blog 7(a’ls) + % ZIqu(i,j)(ai’ aj|3)] . (36)

7 2 ~ Pz J#i

Proof. Let us rewrite (36) to clarify that which terms are given and which terms are the optimization arguments. We use the
subscript "old” for the given terms. Then, 7, is updated as (7%, Gnew) =

argmaxB (i o) L (ni ooty [QZ"’ld(st,at)—/ﬂogfri(aismﬁZlogq“’ﬁ(ai,a{lst))}. (37)

g 2k ~ Pz JF

Then, the following inequality is hold

™ ~ i B Gg) (0 d
E (ad,a;?) ~ (T s To1h) [QZ old(st’ at) — Blog Trnew(at|st) + N Z log qﬁlézu) (a£7 aé ‘St)) (38)
zk ~ Pz J#i
>E i i iy | QT (sg,a0) — Blog 7, (al)sy) Zlogq(” (al,al|st)) (39)
= (ay,ar ") ~ (To1q, T o00) 7 ty Ot old tlot old ts Ut ot
Zk ~ Pz];ﬁz

_ ‘/;ﬂold(st). (40)

Submission and Formatting Instructions for ICML 2022

From the definition of the Bellman operator,
QZ'TOM (Stv a’t) = T(sta at) + 'Y]ESt+1~P[‘/iﬂ-Old (St+1)]

. . . . Told
< 1(st,at) +7Es. 1 ~pE (abp,ari) ~ (Tl ewr k) [Qi (8t+1,@111)

Zt4+1 ~ Pz

» , B o ,
— Blog Ty e (afy1]Se41) + N Z log qgéfﬂ) (@py15 0741 Se41)
J#

<r(s,a E ~pE i i i r(s a
- (t t) +7 StH1VP (agy1,a,40) ~ (Thews Torg (t+1 t+1)
Zt41 ~ Pz

o 38 o
= Blog ey (@ialsitt) + & > log gl (aiyrs alylsiin)
Jj#i

+ 7E81+2~P [Viﬂ-{)ld (st+2)] ‘|

S Q?:Lew’ﬂ'{:lfi (St7 at)'

(41)

(42)

(43)

(44)

Submission and Formatting Instructions for ICML 2022

Appendix C: Details of Centralized Training

The value functions V'J};i (), Qf, (%, a) are updated based on the modified Bellman operator defined in (13) and (14). The
state-value function Vv/i- (z) is trained to minimize the following loss function:

£v0) = Buep |5V (o0 - V(o) @)

where D is the replay buffer that stores the transitions (¢, a;, 7y, ©141); Qb (X4, af) = min[Q, 1 (x4, af), Q.2 (4, af)]
is the minimum of the two action-value functions to prevent the overestimation problem (Fujimoto et al., 2018); and

VJ) (z:) = Ezth(O,I),{akNﬂ'k(~\of,zt)}szl lQim‘n(xt’ a;) — Blog Wéi (ai\0§, zt)

+ % > log gt (af, af o}, of)] : (46)
i

Note that in the second term of the RHS of (46), originally we should have used the marginalized version,

—Blog i (ajlo}) = —BlogE.,wn(o.n)[m: (ailo}, z)]. However, for simplicity of computation, we took the expecta-

tion £, . n(0,7) outside the logarithm. Hence, there exists Jensen’s inequality type approximation error. We observe that

this approximation works well.

The two action-value functions are updated by minimizing the loss

. 1 .
Ly(0") = Ez,,a,)~D g(Qei (T4, ar) — Q4. ar))? 47

where

Q(z4, ar) = re(x4, ag) + VB, [Vgi (z¢41)] (48)
and VW’ is the target value network, which is updated by the exponential moving average method. We implement
the reparameterization trick to estimate the stochastic gradient of policy loss. Then, the action of agent 7 is given by
a' = fyi(s;€', z), where €t ~ N(0,I) and z ~ N(0, I). The policy for Agent i and the variational distribution are trained
to minimize the following policy improvement loss,

Lrig(@',6) =E , ~p, |~ Qpur(mi,a)+ Blogmy(a’lof, 2)

e ~ N,
2~ N
- Z log qéi'ﬂ)(ﬂ';i (a'log, 2), 7}, (a’ |0}, 2)|ot, 0f) (49)
[e
where ¢\t (i, (a'|of, 2), 7, (a7 |o], 2|0}, of)
= qe (i (a'[0}, 2)|m); (a” o], 2) 0}, 07) gei () (a” 0} , 2)|mss (a' o}, 2)[o}, o) - (50)

(a) (b)

Again, for simplicity of computation, we took the expectation IE,, . (o, 1) outside the logarithm for the second term in the
RHS in (49). Since approximation of the variational distribution is not accurate in the early stage of training and the learning
via the term (a) in (50) is more susceptible to approximation error, we propagate the gradient only through the term (b) in
(50) to make learning stable. Note that minimizing — log g¢i (a’|a’, s;) is equivalent to minimizing the mean-squared error
between a’ and i (a’, o', 07) due to our Gaussian assumption on the variational distribution.

Submission and Formatting Instructions for ICML 2022

Appendix D: Pseudo Code

Algorithm 1 VM3-AC (L=1)
Centralized training phase
Initialize parameter ¢, 0%, ¢, 9" €%, Vi € {1,--- ,N}
for episode = 1,2, --- do
Initialize state sy and each agent observes 0}
for t < T and s; # terminal do
Generate z; ~ N(0,) and select action a’ ~ 7¢(-|o%, z;) for each agent i
Execute a; and each agent i receives r; and o},
Store transitions in D
end for
for each gradient step do
Sample a minibatch from D and generate z; ~ N'(0, I) for each transition.
Update 6%, 1)* by minimizing the loss (47) and (48)
Update ¢°, £¢ by minimizing the loss (49)
end for
Update @Z using the moving average method
end for

Decentralized execution phase

Initialize state sy and each agent observes o},

for each environment step do
Select action a} ~ 7%(-|o}, z;) where z; = ﬁ (or sample from the Gaussian random sequence generator with the same
seed)
Execute a, and each agent i receives o, |

end for

Submission and Formatting Instructions for ICML 2022

Appendix E: Hyperparameter and Training Detail
The hyperparameters for MA-AC, MA-SAC, MADDPG, and VM3-AC are summarized in Table 1.

Table 1. Hyperparameters of all algorithms

MA-AC SI-MOA MAVEN MADDPG VM3-AC

REPLAY BUFFER SIZE 5x10° 5x10° 5x10° 5 x 10° 5 x 10°
DISCOUNT FACTOR 0.99 0.99 0.99 0.99 0.99
MINI-BATCH SIZE 128 128 128 128 128
OPTIMIZER ADAM ADAM ADAM ADAM ADAM
LEARNING RATE 0.0003 0.0003 0.0003 0.0003 0.0003
TARGET SMOOTHING COEFFICIENT 0.005 0.005 0.005 0.005 0.005
NUMBER OF HIDDEN LAYERS (ALL NETWORKS) 2 2 2 2 2
NUMBER OF HIDDEN UNITS PER LAYER 128 128 128 128 128
ACTIVATION FUNCTION FOR HIDDEN LAYER RELU RELU RELU RELU RELU
ACTIVATION FUNCTION FOR FINAL LAYER TANH TANH TANH TANH TANH

Table 2. The temperature parameter 3 and the dimension of the latent variable z for VM3-AC on the considered environments. Note that
the temperature parameter 3 in I-SAC and MA-SAC controls the relative importance between the reward and the entropy, whereas the
temperature parameter 3 in VM3-AC controls the relative importance between the reward and the mutual information.

VM3-AC 3 DIM(2)

MW (N=3) 0.05
MW (N=4) 0.1
PP (N=2) 0.15 8
PP (N=3) 0.1 8
PP (N=4) 0.2 8
CTC (N=4) 0.05 0
CTC (N=5) 0.05 0
CN(N=3) 0.1 8

8
8

—_—

Submission and Formatting Instructions for ICML 2022

[gent]
° o
oe
© [frezmure] O

(a) (b) (©) (d)

Figure 11. Considered environments: (a) Multi-Walker, (b) Predator-Prey, (c) Cooperative Treasure Collection, and (d) Cooperative
Navigation

Appendix F: Environment Detail

We implemented our algorithm based on OpenAl Spinning Up (Achiam, 2018) and conduct the experiments on a server with
Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz. Each experiment took about 12 to 24 hours. We illustrate the considered
environments in Fig. 11.

Multi-walker The multi-walker environment, which was introduced in (Gupta et al., 2017), is a modified version of the
BipedalWalker environment in OpenAl gym to multi-agent setting. The environment consists of N bipedal walkers and
a large package. The goal of the environment is to move forward together while holding the large package on top of
the walkers. The observation of each agent consists of the joint angular speed, the position of joints. Each agent has
4-dimensional continuous actions that control the torque of their legs. Each agent receives shared reward R; depending on
the distance over which the package has moved and receives negative local compensation Rj if the agent drops the package
or falls to the ground. An episode ends when one of the agents falls, the package is dropped or 7" time steps elapse. To
obtain higher rewards, the agents should learn coordinated behavior. For example, if one agent only tries to learn to move
forward, ignoring other agents, then other agents may fall. In addition, the different coordinated behavior is required as the
number of agents changes. We set 7' = 500, R, = —10 and R; = 10d, where d is the distance over which the package has
moved. We simulated this environment in three cases by changing the number of agents (N = 2, N = 3, and N = 4).

All algorithms used neural networks to approximate the required functions. We used the neural network architecture
proposed in (Kim et al., 2019) to emphasize the agent’s own observation and action for centralized critics. For Agent 7, we
used the shared neural network for the variational distribution g (a7 |a}, o}, 0}) for j € {1,---, N}\{i}, and the network
takes the one-hot vector which indicates j as input.

Predator-prey The predator-prey environment, which is a standard task for MARL, consists of N predators and M preys.
We used a variant of the predator-prey environment into the continuous domain. The initial positions on the predators are
randomly determined, and those of the preys are in the shape of a square lattice. The goal of the environment is to capture as
many preys as possible during a given time 7. A prey is captured when C' predators catch the prey simultaneously. The
predators get team reward 27 when they catch a prey. After all of the preys are captured and removed, we set the preys
to respawn in the same position and increase the value of R;. Thus, the different coordinated behavior is needed as [V
and C change. The observation of each agent consists of relative positions between agents and other agents and those
between agents and the preys. Thus, each agent can access to all information of the environment state. The action of each
agent is two-dimensional physical action. We set R; = 10 and 7' = 100. We simulated the environment with three cases:
(N=2,M=16,C=1),(N=3,M =16,C =1)and (N =4, M =16,C = 2).

Cooperative treasure collection The cooperative treasure collection environment, which was introduced in (Igbal & Sha,
2019), consists of 2 banks, N — 2 collectors, and 6 hunters. Each bank has a different color and each treasure has one of the
banks’ colors. The goal of this environment is to deposit the treasures by controlling the banks and hunters. The hunters
collect the treasure and then give it to the corresponding bank. Both hunters and banks receive shared reward R; if a treasure
is deposited. The hunters receive a positive reward Ry when a treasure is collected and a negative reward — R if colliding
with other agents. The observation of each agent consists of the locations of all other agents and landmarks, and action is
two-dimensional physical action. We set Ry = 5, Ry = 5, R3 = 5. We simulated the environment with two cases: (N = 4)
and (N = 5).

Cooperative navigation Cooperative navigation, which was proposed in (Lowe et al., 2017), consists of IV agents and L
landmarks. The goal of this environment is to occupy all landmarks while avoiding collision with other agents. The agent

Submission and Formatting Instructions for ICML 2022

receives shared reward [?; which is the sum of the minimum distance of the landmarks from any agents, and the agents
who collide each other receive negative reward — R5. In addition, all agents receive R3 if all landmarks are occupied. The
observation of each agent consists of the locations of all other agents and landmarks, and action is two-dimensional physical
action. We set Ry = 10, R3 = 1, and T' = 50. We simulated the environment in the cases of (N = 3, L = 3).

Submission and Formatting Instructions for ICML 2022

Appendix G: SMAC environment

We modified the SMAC environment to be sparse to make the problem more difficult. The considered sparse reward setting
consists of a time-penalty reward which is obtained —0.1 every time step and a dead reward which is obtained +10 and —1
when one enemy dies and one ally dies, respectively. If all enemies die, the dead reward is given +200.

We implemented VM3-AC by modifying the code provided by (Zhang et al., 2021). We replace the entropy term in (Zhang
et al., 2021) with the sum of entropy and variational approximation. We used the categorical distribution with the dimension
of 3 for the latent variable. We used the deep neural network which consists of a 64-dimensional MLP with ReL U activation
function, GRU, and an MLP to parameterize the policies. In addition, we use an MLP with 2 hidden layers which have 64
hidden units, and a ReL.U activation function for both the critic networks. For the variational approximation, ¢(a’|a’, s), we
use the deep neural network which takes Agent ¢’s action and outputs Agent j’s action. The variational approximation is a
feed-forward network whose weight is the output of a hyper-network which is a deep neural network taking the global state
as input. The hyper-network is implemented similar to the mixing network in QMIX (Rashid et al., 2018).

As in (Zhang et al., 2021), we annealed the temperature parameter from 0.5 to 0.05 over 2 x 10° steps. We provided source
code in the supplementary material.

Submission and Formatting Instructions for ICML 2022

Appendix H: Replacing the latent variable with mean vector

Injecting mean vector E{z;} to the z;-input of policy net-
work 7/ (-|0}, 2;) during the execution phase: As men-
tioned in the main paper, we applied the mean vector of z,
i.e., E{z:} to the z:-input of the policy deep neural network
W;i (+|0t, z;) during the execution phase so as to execute ac-
tions without communication in the execution phase. We z ~ N(0,1) 413 734 1123
compared the performance of decentralized policies that use 2 = B(z) 409 743 1147

the mean vector E{z, } and decentralized policies which use

the latent variable z; assuming communication. We used deterministic evaluation based on 20 episodes generated by the
corresponding deterministic policy, i.e., each agent selects action using the mean network of Gaussian policy W;, . We
averaged the return over 7 seeds, and the result is shown in Table 3. It is seen that the mean vector replacement method
yields almost the same performance and enables fully decentralized execution without noticeable performance loss. Please
see Appendix A for intuition.

Table 3. Impact of replacing the latent variable z; ~ A(0,I)
with mean vector z; = E(z;) in the execution phase

PP (N=2) PP (N=3) PP (N=4)

