
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

A Variational Approach to Mutual Information-Based Coordination for
Multi-Agent Reinforcement Learning

Anonymous Authors1

Abstract
In this paper, we propose a new mutual informa-
tion (MMI) framework for multi-agent reinforce-
ment learning (MARL) to enable multiple agents
to learn coordinated behaviors by regularizing
the accumulated return with the mutual informa-
tion between multi-agent actions. By introduc-
ing a latent variable to induce nonzero mutual
information between multi-agent actions and ap-
plying a variational bound, we derive a tractable
lower bound on the considered MMI-regularized
objective function. Applying policy iteration to
maximize the derived lower bound, we propose a
practical algorithm named variational maximum
mutual information multi-agent actor-critic (VM3-
AC). We evaluated VM3-AC for several games re-
quiring coordination, and numerical results show
that VM3-AC outperforms other MARL algo-
rithms in multi-agent tasks requiring coordina-
tion.

1. Introduction
With the success of RL in the single-agent domain (Mnih
et al., 2015; Lillicrap et al., 2015), MARL is being actively
studied and applied to real-world problems such as traf-
fic control systems and connected self-driving cars, which
can be modeled as multi-agent systems requiring coordi-
nated control (Li et al., 2019; Andriotis & Papakonstanti-
nou, 2019). The simplest approach to MARL is indepen-
dent learning, which trains each agent independently while
treating other agents as a part of the environment, but this
approach suffers from the problem of non-stationarity of the
environment. A common solution to this problem is to use
fully-centralized critic in the framework of centralized train-
ing with decentralized execution (CTDE) (OroojlooyJadid
& Hajinezhad, 2019; Rashid et al., 2018; Lowe et al., 2017;

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Iqbal & Sha, 2018; Foerster et al., 2018). For example,
MADDPG (Lowe et al., 2017) uses a centralized critic to
train a decentralized policy for each agent, and COMA (Fo-
erster et al., 2018) uses a common centralized critic to train
all decentralized policies. However, these approaches as-
sume that decentralized policies are independent and hence
the joint policy is the product of each agent’s policy. Such
non-correlated factorization of the joint policy limits the
agents to learn coordinated behavior due to negligence of
the influence of other agents (Wen et al., 2019; de Witt et al.,
2019). Recently, mutual information (MI) between multiple
agents’ actions has been considered as an effective intrinsic
reward to promote coordination in MARL (Jaques et al.,
2018). In (Jaques et al., 2018), MI between agents’ actions
is captured as social influence and the goal is to maximize
the sum of accumulated return and social influence between
agents’ actions. It is shown that the social influence ap-
proach is effective for sequential social dilemma games. In
this framework, however, causality between actions under
coordination is required, and it is not straightforward to
coordinate multi-agents’ simultaneous actions. In certain
multi-agent games, coordination of simultaneous actions of
multiple agents is required to achieve cooperation for a com-
mon goal. For example, suppose that a pack of wolves try to
catch a prey. To catch the prey, coordinating simultaneous
actions among the wolves is more effective than coordinat-
ing one wolf’s action and other wolves’ actions at the next
time because the latter case causes delay in coordination.
In this paper, we propose a new approach to the MI-based
coordination for MARL to coordinate simultaneous actions
among multiple agents under the assumption of the knowl-
edge of timing information among agents. Our approach
is based on introducing a common latent variable to in-
duce MI among simultaneous actions of multiple agents and
on a variational lower bound on MI that enables tractable
optimization. Under the proposed formulation, applying
policy iteration by redefining value functions, we propose
the VM3-AC algorithm for MARL to learn coordination
of simultaneous actions among multiple agents. Numeri-
cal results show its superior performance on cooperative
multi-agent tasks requiring coordination.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2022

2. Related Work
MI is a measure of dependence between two variables
(Cover & Thomas, 2006) and has been considered as an
effective intrinsic reward for MARL (Wang et al., 2019;
Jaques et al., 2018). (Mohamed & Rezende, 2015) proposed
an intrinsic reward for empowerment by maximizing MI
between agent’s action and its future state. (Wang et al.,
2019) proposed two intrinsic rewards capturing the influ-
ence based on a decision-theoretic measure and MI between
an agent’s current actions/states and other agents’ next states.
In particular, (Jaques et al., 2018) proposed a social influ-
ence intrinsic reward, which basically captures the mutual
information between multiple agents’ actions to achieve
coordination, and showed that the social influence formula-
tion yields good performance in sequential social dilemma
environments. The difference of our approach from the so-
cial influence framework to MI-based coordination will be
explained in Section 6.

Some previous works approached correlated policies from
different perspectives. (Liu et al., 2020) proposed explicit
modeling of correlated policies for multi-agent imitation
learning, and (Wen et al., 2019) proposed a recursive reason-
ing framework for MARL to maximize the expected return
by decomposing the joint policy into own policy and oppo-
nents’ policies. Going beyond adopting correlated policies,
our approach maximizes the MI between multiple agents’
actions which is a measure of correlation.

In our approach, the MI between agents’ action distributions
is decomposed as the sum of each agent’s action entropy
and a variational term related to prediction of other agents’
actions. Hence, our framework can be interpreted as enhanc-
ing correlated exploration by increasing the entropy of own
policy (Haarnoja et al., 2018) while decreasing the uncer-
tainty about other agents’ actions. Some previous works
proposed other techniques to enhance correlated exploration
(Zheng & Yue, 2018; Mahajan et al., 2019). MAVEN ad-
dressed the poor exploration problem of QMIX by maximiz-
ing the mutual information between the latent variable and
the observed trajectories (Mahajan et al., 2019). However,
MAVEN does not consider the correlation among policies.

3. Background
Setup We consider a Markov Game (Littman, 1994),
which is an extention of Markov Decision Process (MDP)
to multi-agent setting. An N -agent Markov game is de-
fined by an environment state space S, action spaces for
N agents A1, · · · ,AN , a state transition probability pT :
S × A × S → [0, 1], where A =

∏N
i=1 Ai is the joint

action space, and a reward function R : S ×A → R. At
each time step t, Agent i with policy πi executes action
ait ∈ Ai based on state st ∈ S. The actions of all agents

at = (a1t , · · · , aNt) yield the next state st+1 according to
pT and shared common reward rt according to R under
the assumption of fully-cooperative MARL. The discounted
return is defined as Rt =

∑∞
n=t γ

nrn, where γ ∈ [0, 1) is
the discounting factor.

We assume centralized training and decentralized execu-
tion with timing information (CTDE/TI), which does not
require communication among agents but requires synchro-
nized timing information during the execution phase. Under
CTDE/TI each agent can access all information including
the environment state, observations and actions of other
agents in the training phase, whereas the policy of each
agent can be conditioned only on its own observation oit and
timing information in the execution phase. The goal of fully
cooperative MARL is to find the optimal joint policy π∗

that maximizes the objective J(π) = Eτ0∼π

[
R0

]
, where

τt = (st,at, st+1,at+1, · · ·) and π = (π1, · · · , πN) de-
notes the joint policy of all agents.

Mutual Information-Based Coordination for MARL MI
between agents’ actions has been considered as an intrinsic
reward to promote coordination in MARL (Jaques et al.,
2018). Under this framework, one basically aims to find the
policy that maximizes the weighted sum of the cumulative
return and the MI between multi-agent actions. Thus, the
MI-regularized objective function for joint policy π is given
by

J(π) = Eτ0∼π

[∞∑
t=0

γt
(
rt + α

∑
(i,j)|i ̸=j

I(ait; a
j
t |st)

)]
,

(1)
where I(ait; a

j
t |st) is the MI between ait ∼ πi(·|st) and

ajt ∼ πj(·|st), and α is the temperature parameter that con-
trols the relative importance of the MI against the reward.
It is known that by regularization with MI in the objec-
tive function (1), the policy of each agent is encouraged to
coordinate with other agents’ policies. There are several
approaches to implement (1). Under the social influence
framework in (Jaques et al., 2018), the MI is decomposed as

I(ait; a
j
t |st) =

∫
ait,a

j
t

p(ait, a
j
t |st) log

p(ait, a
j
t |st)

p(ait|st)p(a
j
t |st)

(2)

=

∫
ait

p(ait|st)
∫
ajt

p(ajt |ait, st) log
p(ajt |ait, st)
p(ajt |st)

(3)

=

∫
ait

p(ait|st)DKL(p(a
j
t |ait, st)||p(a

j
t |st))︸ ︷︷ ︸

social influence of i on j

, (4)

where DKL(·||·) is the Kullback-Leibler divergence.Thus,
in this decomposition, influencing Agent i’s policy is given
by πi = p(ait|st) and influenced Agent j’s policy is given
by πj = p(ajt |ait, st). Hence, at time step t, influencing

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2022

(a) (b) (c)

Figure 1. Causal diagram: (a) basic social influence, (b) social
influence of modeling other agents, and (c) the proposed approach

Agent i acts first and then influenced Agent j acts based
on ait after Agent i acts, as shown in Fig. 1(a). Agents
i and j cannot perform actions simultaneously. One way
to remove this action ordering is to model other agents
(Jaques et al., 2018). In this case, the causal influence of
action ait of Agent i at time t on action ajt+1 of Agent j at
time t + 1 is considered, as shown in Fig. 1(b), i.e., the
social influence DKL(p(a

j
t+1|ait, st)||p(a

j
t+1|st)) instead

of the influence term in (4) is considered based on modeling
p(ajt+1|ait, st) so that actions ait and ajt can be performed
simultaneously without ordering. In this case, however, the
actually considered MI is I(ait; a

j
t+1|st) and is not the MI

between ait and ajt occurring at the same time. In this paper,
we propose a different approach to MI regularization which
enables simultaneous coordination between actions ait and
ajt both at time t without action ordering.

4. The Proposed Approach
We assume that the environment is fully observable, i.e.,
each agent can observe the environment state st for theoret-
ical development in this section, and will consider partially
observable environment for practical algorithm construction
under CTDE/TI in the next section.

4.1. Formulation

Our approach to induce MI between concurrent two actions
ait and atj of Agents i and j at time t is to introduce a com-
mon latent variable Zt, as shown in Fig. 1(c). We assume
that the latent variable Zt has a prior distribution pZ(zt) and
that actions ait and ajt are generated from the state variable
st and the latent random variable Zt. Thus, Agent i’s action
ait at time t is drawn from the policy distribution of Agent i
as

ait ∼ πi(· |St = st, Zt), i = 1, 2, · · · , N, (5)

where we use the upper case for random variables and the
lower case as realization for the notation in the conditioning
input terms for clarification. In case of stochastic policy,
there is randomness in ait even for given St = st, and
furthermore we have additional randomness in ait due to the

random input Zt since a function of random variable is a
random variable. One can view the randomness due to Zt
as a perturbation to nominal ait for given St = st. With
the common perturbation-inducing variable Zt, two random
variables ati and atj conditioned on St = st is correlated
due to common Zt, and nonzero MI I(ait; a

j
t |st) between

concurrent ait and ajt is induced. We aim to exploit this
correlation for action coordination. (See Appendix A for a
simple example and explanation of our basic idea with the
simple example.)

With nontrivial MI I(ait; a
j
t |st), we now express this MI.

First, note in (4) that we need p(ajt |ait, st) to compute the MI
but we do not want to use p(ajt |ait, st) directly. For this, we
adopt a variational distribution q(ajt |ait, st) to approximate
p(ajt |ait, st) and derive a lower bound on the MI I(ait; a

j
t |st)

as follows: I(ai
t; a

j
t |st) =∫

ai
t,a

j
t

p(ai
t, a

j
t |st) log

p(ai
t, a

j
t |st)

p(ai
t|st)p(a

j
t |st)

=

∫
ai
t,a

j
t

p(ai
t, a

j
t |st) log

p(ai
t|st)p(aj

t |ai
t, st)q(a

j
t |ai

t, st)

p(ai
t|st)p(a

j
t |st)q(a

j
t |ai

t, st)

= E
p(ai

t,a
j
t |st)

[
log

q(aj
t |ai

t, st)

p(aj
t |st)

]
× Ep(ai

t|st)

[
DKL(p(a

j
t |a

i
t, st)∥q(aj

t |a
i, st)

]
≥ H(aj

t |st) + E
p(ai

t|st)p(a
j
t |a

i
t,st)

[
log q(aj

t |a
i
t, st)

]
, (6)

where H(ajt |st) denotes the entropy of ajt given st, i.e., the
entropy of the following marginal distribution of ajt in our
case:

π̃j(ajt |st) :=
∫
zt

πj(ajt |St = st, Z = zt)pZ(zt)dzt. (7)

The last inequality in (6) holds because the KL diver-
gence is always non-negative. For the variational distri-
bution q(ajt |ait, st) we consider a class of distributions , i.e.,
q(ajt |ait, st) ∈ Q. The lower bound (6) becomes tight when
q(ajt |ait, st) approximates p(ajt |ait, st) well. Note that in
our expansion, the lower bound on the MI I(ait; a

j
t |st) is

expressed as the sum of the action entropy H(ajt |st) and
the negative of the cross entropy of q(ajt |ait, st) relative to
p(ajt |ait, st) averaged over p(ait|st). Using the symmetry of
MI, we can rewrite the lower bound as

I(ai
t; a

j
t |st) ≥

1

2

{
H(ai

t|st) +H(aj
t |st)+

E
p(ai

t,a
j
t |st)

[
log q(aj

t |a
i
t, st) + log q(ai

t|aj
t , st)

]}
.

(8)

Then, our goal is to maximize this lower bound of MI by
using a tractable approximation q(ait|a

j
t , st) ∈ Q. Our de-

compsition of MI based on the action entropy and the cross

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2022

entropy is effective in our variational formulation for MI-
based MARL. Consider one of the cross entropy terms in the
right-hand side (RHS) of (8): Ep(ait,ajt |st)[log q(a

j
t |ait, st)],

which can be rewritten as Ep(ait,ajt |st)[log q(a
j
t |ait, st)] =

−Ep(ai
t|st)

[
H(p(aj

t |a
i
t, st)) +DKL(p(a

j
t |a

i
t, st)||q(aj

t |a
i
t, st))

]
,

(9)

based on the well-known decomposition of the cross entropy.
Hence, by maximizing the negative of this cross entropy
term, we can learn πi (generating ait) and πj (generating ajt)
so that the conditional entropy H(p(ajt |ait, st)) of ajt given
ait is minimized, i.e., the two actions are more correlated to
each other, and learn q that closely approximates the true
p(ajt |ait, st), i.e., the DKL term in (9) is minimized.

4.2. Modified Policy Iteration

Our algorithm construction is based on policy iteration. In
order to develop policy iteration for the proposed MI frame-
work, we first replace the original MI-regularized objective
function (1) with the following tractable objective function
based on the variational lower bound (8):

Ĵ(π, q) = E τ0 ∼ π
zt ∼ pZ

[
∞∑
t=0

γt
(
rt(st,at) + αN

N∑
i=1

H(ai
t|st)

+ α

N∑
i=1

∑
j ̸=i

log q(aj
t |a

i
t, st)

)]
, (10)

where π = [π1, · · · , πN] and πi is given by (5) and at =
[a1t , · · · , aNt]. Then, we determine the individual objective
function Ĵ i(πi, q) for Agent i as the sum of the terms in
(10) associated with Agent i’s policy πi or action ait, given
by

Ĵ i(πi, q) = E τ0 ∼ π
zt ∼ pZ

[
∞∑
t=0

γt
(
rt(st,at) + β ·H(ai|st)︸ ︷︷ ︸

(a)

+
β

N

∑
j ̸=i

[
log q(ai

t|aj
t , st) + log q(aj

t |a
i
t, st)︸ ︷︷ ︸

(b)

])]
, (11)

where β = αN is the temperature parameter. Note that
maximizing the term (a) in (11) implies that each agent max-
imizes the weighted sum of the action entropy and the return,
which can be interpreted as an extension of maximum en-
tropy RL (Haarnoja et al., 2018) to multi-agent setting. On
the other hand, maximizing the term (b) with respect to πi

and q means that we update the policy πi so that the con-
ditional entropy of ajt given ait and the conditional entropy
of ait given ajt are reduced, as already mentioned below (9).
Thus, the objective function (11) can be interpreted as the
maximum entropy MARL objective combined with action
correlation or coordination. Hence, the proposed objective
function (11) can be considered as one implementation of

the concept of correlated exploration in MARL (Mahajan
et al., 2019).

Now, in order to learn policy πi to maximize the objective
function (11), we modify the policy iteration in standard
RL. For this, we redefine the state and state-action value
functions for Agent i as

Qπ
i (s, a) ≜ E τ0 ∼ π

zt ∼ pZ

[
r0 + γV π

i (s1)

∣∣∣∣∣s0 = s,a0 = a

]
,

(12)

V π
i (s) ≜ E τ0 ∼ π

zt ∼ pZ

[
∞∑
t=0

γt
(
rt + βH(ai

t|st)

+
β

N

∑
j ̸=i

log q(i,j)(ai
t, a

j
t |st)

)∣∣∣∣∣s0 = s

]
, (13)

where q(i,j)(ait, a
j
t |st) ≜ q(ait|a

j
t , st)q(a

j
t |ait, st). Then,

the Bellman operator corresponding to V π
i and Qπ

i on the
value function estimates Vi(s) and Qi(s,a) is given by

T πQi(s,a) ≜ r(s,a) + γEs′∼p[Vi(s
′)], (14)

where Vi(s) = E a ∼ π
zt ∼ pZ

[
Qi(s,a) − β log π̃i(ai|s) +

β
N

∑
j ̸=i log q

(i,j)(ai, aj |s)

]
, and π̃i is the marginal distribu-

tion given in (7). In the policy evaluation step, we compute
the value functions defined in (12) and (13) by applying
the modified Bellman operator T π repeatedly to any initial
function Q(0)

i .

Proposition 1. (Variational Policy Evaluation). For fixed
π and the variational distribution q, consider the modified
Bellman operator T π in (14) and an arbitrary initial func-
tion Q(0)

i : S × A → R, and define Q(k+1)
i = T πQ

(k)
i .

Then, Q(k)
i converges to Qπ

i defined in (12).

Proof. See Appendix B.

In the policy improvement step, we update the policy and the
variational distribution by using the value function evaluated
in the policy evaluation step. Here, each agent updates
its policy and variational distribution while keeping other
agents’ policies fixed as follows: (πi

k+1, qk+1) =

argmax
πi,q

E (ai, a−i) ∼ (πi, π−i
k)

zk ∼ PZ

[
Q

πk
i (s,a)− β log π̃i(ai|s)

+
β

N

∑
j ̸=i

log q(i,j)(ai, aj |s))

]
, (15)

where a−i ≜ {a1, · · · , aN}\{ai} and π−i
k is the collection

the policies for all agents except Agent i at the k-th iter-
ation. Then, we have the following lemma regarding the
improvement step.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2022

Proposition 2. (Variational Policy Improvement). Let πinew
and qnew be the updated policy and the variational distribu-

tion from (15). Then, Qπ
i
new,π

−i
old

i (s,a) ≥ Q
πi
old,π

−i
old

i (s,a)

for all (s,a) ∈ (S × A). Here, Qπ
i
new,π

−i
old

i (s,a) means
Qπ
i (s,a)|π=(πi

new,π
−i
old)

.

Proof. See Appendix B.

The modified policy iteration is defined as applying the vari-
ational policy evaluation and variational improvement steps
in an alternating manner. Each agent trains its policy, critic
and the variational distribution to maximize its objective
function (11).

5. Algorithm Construction

Figure 2. Overall operation of the proposed VM3-AC. We only
need the operation in the red box after training.

Summarizing the development above, we now propose the
variational maximum mutual information multi-agent actor-
critic (VM3-AC) algorithm, which can be applied to par-
tially observable multi-agent environments. The overall
operation of VM3-AC is shown in Fig. 2. Under CTDE/TI,
each agent’s policy is conditioned only on local observation
oit and the common input zt, and centralized critics are con-
ditioned on either the environment state or the observations
of all agents, depending on the situation (Lowe et al., 2017).
Let x denote either the environment state s or the observa-
tions of all agents (o1, · · · , oN), whichever is used. In order
to deal with the large state-action spaces, we adopt deep
neural networks to approximate the required functions. For
Agent i, we parameterize the policy as πiϕi(a|oi, z) with pa-
rameter ϕi, the variational distribution as qξi(aj |ai, (oi, oj))
with parameter ξi, the state-value function as V iψi

(x) with
parameter ψi, and two action-value functions as Qiθi,1(x,a)
and Qiθi,2(x,a) with parameters θi,1 and θi,2. Note that in
the original variational distribution, ajt is conditioned on ait
and st. In the partially observable case, we replace st with
(oi, oj).

For the prior distribution PZ of the injection variable zt,
we use zero-mean multivariate Gaussian distribution with
identity covariance matrix, i.e., zt ∼ N (0, I), where the
dimension is a hyperparameter, given in Appendix E. We

further assume that the class Q of the variational distribution
is multivariate Gaussian distribution with constant covari-
ance matrix σ2I with dimension of the action dimension,
i.e., Q = {qξi(aj |ai, (oi, oj)) = N (µξi(a

i, oi, oj), σ2I)},
where µξi(ai, oi, oj) is the mean of the distribution.

Centralized Training The parameterized value functions,
the policy, and the variational distribution are trained based
on proper loss functions derived from Section 4.2 in a similar
way to the training in SAC in a centralized manner. Due
to space limitation, training detail and pseudo code are
provided in Appendices C and D, respectively.

Decentralized Execution with Timing Information In the
centralized training phase, we pick actions (a1t , · · · , aNt)
according to π1(a1t |st, zt), · · · , πN (aNt |st, zt) (or with st
replaced with (o1t , · · · , oNt)), where common zt generated
from zero-mean Gaussian distribution is shared under the
centralized assumption. In the decentralized execution
phase, however, sharing zt among agents for simultaneous
action correlation does not come for free. One simple way
is communication among the agents, but this case prevents
decentralized execution. We can eliminate the necessity of
communication under the assumption of timing information.
Note that zt is not actual message-carrying information but
a dummy random sequence. Practically, a random sequence
is generated based on a random sequence generator. Hence,
we require all agents to have the same Gaussian random
sequence generator and distribute the same seed and initi-
ation timing to these random sequence generators before
deployment for the execution phase. (Mahajan et al. (2019)
also considered that multiple agents share the realization of
latent variables in the beginning of the episode.) Such im-
plementation is possible with reference timing information
such as global positioning system (GPS) and such synchro-
nization is widely used in cellular communication networks.
Note that even with common decentralized execution, time
step synchronization is required. Thus, we additionally
need reference timing information on top of time step syn-
chronization for CTDE/TI. This is the additional cost for
CTDE/TI over CTDE.

An alternative without timing information is to exploit
the property of zero-mean Gaussian input variable zt to
the policy network. During the centralized training pe-
riod, the parameters ϕ1, · · · , ϕN of the policy networks
π1
ϕ1(a|o1, z), · · · , πNϕN (a|oN , z) (with input (oi, z) and out-

put a) are learned so that actions a1t , · · · , aNt are coordi-
nated for random perturbation input zt drawn from PZ .
Note that the coordination behavior is learned and en-
graved into the parameters ϕ1, · · · , ϕN not into the in-
put zt. So, we only use this stored parameter informa-
tion during the decentralized execution phase. We ap-
ply the common mean value E{zt} to the zt input of the
trained policy network πiϕi(ait|oit, zt) of Agent i, ∀i. In this

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2022

(a) MW (N=3) (b) MW (N=4) (c) PP (N=2) (d) PP (N=3)

(e) PP (N=4) (f) CTC (N=4) (g) CTC (N=5) (h) CN (N=3)

Figure 3. Performance of MADDPG (blue), MA-AC (green), MAVEN (purple), SI-MOA (black), and VM3-AC (the proposed method,
red) on multi-walker environments (a)-(b), predator-prey (c)-(e), cooperative treasure collection (f)-(g), and cooperative navigation (f).
(MW, PP, CTC, and CN denote multi-walker, predator-prey, cooperative treasure collection and cooperative navigation, respectively)

case, actions a1t , · · · , aNt are independent conditioned on
st ∋ (o1t , · · · , oNt) but a specific joint bias (most representa-
tive joint bias) is applied to actions a1t , · · · , aNt . We expect
that this joint bias is helpful and this situation is described
in a toy example in Appendix A and the corresponding
numerical result is provided in Appendix A.

6. Experiment
In this section, we provide numerical results on both contin-
uous and discrete action tasks.

Experiment on continuous action tasks We consider the
following continuous action tasks with the varying number
of agents: multi-walker (Gupta et al., 2017), predator-prey
(Lowe et al., 2017), cooperative treasure collection (Iqbal &
Sha, 2019), and cooperative navigation (Lowe et al., 2017).
The detailed setting of each tasks is provided in Appendix F.
Here, we considered four baselines: 1) MADDPG (Lowe
et al., 2017) - an extension of DDPG with a centralized
critic to train a decentralized policy for each agent. 2) Multi-
agent actor-critic (MA-AC) - a variant of VM3-AC (β = 0)
without the latent variable. 3) Multi-agent variational explo-
ration (MAVEN) (Mahajan et al., 2019). Similarly to VM3-
AC, MAVEN introduced latent variable and variational ap-
proach for optimizing the mutual information. However,
MAVEN does not consider the mutual information between
actions but consider the mutual information between the
latent variable and trajectories of the agents. 4) Social Influ-
ence with MOA (SI-MOA) (Jaques et al., 2018), which is
explained in Section 3. Both MAVEN and SI-MOA are im-
plemented on top of MA-AC since we consider continuous
action-space environments.

Fig. 3 shows the learning curves for the considered four
environments with the different number of agents. The y-
axis denotes the average of all agents’ rewards averaged
over 7 random seeds, and the x-axis denotes time step. The
hyperparameters including the temperature parameter β and
the dimension of the latent variable are provided in Ap-
pendix E. As shown in Fig. 3, VM3-AC outperforms the
baselines in the considered environments. Especially, in the
case of the multi-walker environment, VM3-AC has large
performance gain over existing state-of-the-art algorithms.
This is because the agents in the multi-walker environment
are strongly required to learn simultaneous coordination in
order to obtain high rewards. In addition, the agents in the
predator-prey environment, where the number of agents is
four, should spread out in groups of two to get more reward.
In this environment, VM3-AC also has large performance
gain. Thus, it is seen that the proposed MMI framework im-
proves performance in complex multi-agent tasks requiring
high-quality coordination. It is observed that both MAVEN
and SI-MOA outperform the basic algorithm MA-AC but
not VM3-AC. Hence, the numerical results show that the
way of using MI by the proposed VM3-AC algorithm has
some advantages over those by MAVEN and SI-MOA, espe-
cially for MARL tasks requiring coordination of concurrent
actions.

Experiment on discrete action task We also consid-
ered the StarcraftII micromanagement benchmark (SMAC)
environment (Samvelyan et al., 2019). We modified the
SMAC environment to be sparse by giving rewards when
an ally or an enemy dies and a time penalty. Thus, in the
case of 3s vs 3z, the reward is hardly obtained because it
takes a long time to remove a zealot (enemy). We provided

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2022

(a) 3m (b) 2s3z (c) 3s vs 3z

Figure 4. Performance of DOP (green), FOP (blue), LICA (black), MAVEN (purple), VDAC (orange) and VM3-AC (red) on three maps
in the modified SMAC environment.

Figure 5. The positions of four agents after five time-steps after the
episode begins in the early stage of the training: 1st row - VM3-AC
and 2nd row - MA-SAC. The figures in each column correspond
to a different seed. The black squares are the preys and each color
except black shows the position of each agent.

the detailed setting of the modified SMAC environment in
Appendix G. We considered five state-of-the-art baselines:
DOP (Wang et al., 2020), FOP (Zhang et al., 2021), LICA
(Zhou et al., 2020), MAVEN (Mahajan et al., 2019), and
VDAC (Su et al., 2021). We implemented VM3-AC on the
top of FOP by introducing the latent variable and replacing
the entropy term in (Zhang et al., 2021) with the MI. Fig. 5
shows the performances of VM3-AC and the baselines on
three maps in SMAC. It is observed that VM3-AC outper-
forms the baselines. Especially on 3svs3z, in which reward
is higly sparse, VM3-AC outperforms the baselines in terms
of both training speed and final performance.

6.1. Ablation Study and Discussion

In this subsection, we provide ablation study and discussion
on the major techniques and hyperparameters of VM3-AC:
1) mutual information versus entropy 2) the latent variable,
3) the temperature parameter β, and 4) scalability.

Mutual information versus entropy: The proposed MI
framework maximizes the sum of the action entropy and
the negative of the cross entropy of the variational condi-
tional distribution relative to the true conditional distribu-
tion, which provides a lower bound of MI between actions.
As aforementioned, maximizing the sum of the action en-
tropy and the negative of the cross entropy of the variational

conditional distribution relative to the true conditional dis-
tribution enhances exploration and predictability for other
agents’ actions. Hence, the proposed MI framework en-
hances correlated exploration among agents.

We compared VM3-AC with multi-agent-SAC (MA-SAC),
which is an extension of maximum entropy soft actor-critic
(SAC) (Haarnoja et al., 2018) to multi-agent setting. For
MA-SAC, we extended SAC to multi-agent setting in the
manner of independent learning. Each agent trains its de-
centralized policy using decentralized critic to maximize the
weighted sum of the cumulative return and the entropy of its
policy. Adopting the framework of CTDE, we replaced de-
centralized critic with centralized critic which incorporates
observations and actions of all agents.

We performed an experiment in the predator-prey environ-
ment with four agents where the number of required agents
to catch the prey is two. In this environment, the agents
started at the center of the map. Hence, the agents should
spread out in groups of two to catch preys efficiently. Fig.5
shows the positions of the four agents at five time-steps
after the episode starts. The first and second rows in Fig.5
show the results of VM3-AC and MA-SAC in the early
stage of the training, respectively. It is seen that the agents
of VM3-AC explore in groups of two while the agents of
MA-SAC tend to explore independently. We provided the
performance comparisons of VM3-AC with MA-SAC in
Fig.6 (a) and (b).

Latent variable: The role of the latent variable is to induce
MI among concurrent actions and inject additional degree-
of-freedom for action control. We compared VM3-AC and
VM3-AC without the latent variable (implemented by set-
ting dimension(zt) = 0) in the multi-walker environment.
In both cases, VM3-AC yields better performance that VM3-
AC without the latent variable as shown in Fig.6(a) and 6(b).
Here, the gain by VM3-AC without the latent variable (i.e.,
dimension(zt) = 0) over MA-SAC is solely due to passive
modeling p(ajt |ait, st) by using q(ajt |ait, st), not including
active injection of coordination by zt. Performance results

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2022

(a) PP (N=4) (b) MW (N=4) (c) MW (N=3) (d) MW (N=4)

Figure 6. (a) and (b): VM3-AC (red), VM3-AC without latent variable (orange), and MA-SAC (cyan) and (c) and (d): performance with
respect to the temperature parameter

on the case of replacing the latent variable zt ∼ N (0, I)
with mean vector zt = E(zt) in the execution phase is
provided in Appendix H.

Temperature parameter β: The role of temperature pa-
rameter β is to control the relative importance between
the reward and the MI. We evaluated VM3-AC by varying
β = [0, 0.05, 0.1, 0.15] in the multi-walker environment
with N = 3 and N = 4. Fig. 6(c) and 6(d) show that VM3-
AC with the temperature value around [0.05, 0.1] yields
good performance.

Scalability: Many MARL algorithms which use a central-
ized critic such as MADDPG (Lowe et al., 2017) can suffer
from the problem of scalability due to increasing joint state-
action space as the number of agents increases. VM3-AC
can also suffer from the same issue but we can address the
problem by adopting an attention mechanism as in MAAC
(Iqbal & Sha, 2018). Additionally, VM3-AC needs more
variational approximation networks as the number of agents
increases. As many MARL algorithms share the parameters
among agents, we can share the parameters for the varia-
tional approximation networks. We expect that parameter
sharing can handle the scalability of the proposed method.

7. Conclusion
In this paper, we have proposed a new approach to MI-based
coordinated MARL to induce coordination of concurrent
actions under CTDE/TI. In the proposed approach, a com-
mon correlation-inducing random variable is injected into
each policy network, and the MI between actions induced
by this variable is expressed as a tractable form by using a
variational distribution in order to enable construction of a
practical algorithm based on policy iteration. We evaluated
the derived algorithm named VM3-AC on both continuous
and discrete action tasks and the numerical results show
that VM3-AC outperforms other state-of-the-art baselines,
especially in multi-agent tasks requiring high-quality coor-
dination among agents.

References
Achiam, J. Spinning Up in Deep Reinforcement Learning.

2018.

Agarwal, P., Jleli, M., and Samet, B. Fixed point theory in
metric spaces. Recent Advances and Applications, 2018.

Andriotis, C. and Papakonstantinou, K. Managing engineer-
ing systems with large state and action spaces through
deep reinforcement learning. Reliability Engineering &
System Safety, 191:106483, 2019.

Cover, T. M. and Thomas, J. A. Elements of Information
Theory. Wiley, 2006.

de Witt, C. S., Foerster, J., Farquhar, G., Torr, P., Böhmer,
W., and Whiteson, S. Multi-agent common knowledge re-
inforcement learning. In Advances in Neural Information
Processing Systems, pp. 9924–9935, 2019.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradients.
In Thirty-second AAAI conference on artificial intelli-
gence, 2018.

Folland, G. B. Real analysis: modern techniques and their
applications, volume 40. John Wiley & Sons, 1999.

Fujimoto, S., Van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. arXiv
preprint arXiv:1802.09477, 2018.

Gupta, J. K., Egorov, M., and Kochenderfer, M. Cooperative
multi-agent control using deep reinforcement learning.
In International Conference on Autonomous Agents and
Multiagent Systems, pp. 66–83. Springer, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Iqbal, S. and Sha, F. Actor-attention-critic for multi-agent
reinforcement learning. arXiv preprint arXiv:1810.02912,
2018.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2022

Iqbal, S. and Sha, F. Actor-attention-critic for multi-agent
reinforcement learning. In International Conference on
Machine Learning, pp. 2961–2970. PMLR, 2019.

Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Ortega,
P. A., Strouse, D., Leibo, J. Z., and De Freitas, N. Social
influence as intrinsic motivation for multi-agent deep
reinforcement learning. arXiv preprint arXiv:1810.08647,
2018.

Kim, W., Cho, M., and Sung, Y. Message-dropout: An
efficient training method for multi-agent deep reinforce-
ment learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 6079–6086, 2019.

Li, M., Qin, Z., Jiao, Y., Yang, Y., Wang, J., Wang, C., Wu,
G., and Ye, J. Efficient ridesharing order dispatching with
mean field multi-agent reinforcement learning. In The
World Wide Web Conference, pp. 983–994, 2019.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Littman, M. L. Markov games as a framework for multi-
agent reinforcement learning. In Machine learning pro-
ceedings 1994, pp. 157–163. Elsevier, 1994.

Liu, M., Zhou, M., Zhang, W., Zhuang, Y., Wang, J., Liu,
W., and Yu, Y. Multi-agent interactions modeling with
correlated policies. arXiv preprint arXiv:2001.03415,
2020.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P.,
and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in
Neural Information Processing Systems, pp. 6379–6390,
2017.

Mahajan, A., Rashid, T., Samvelyan, M., and Whiteson,
S. Maven: Multi-agent variational exploration. In Ad-
vances in Neural Information Processing Systems, pp.
7611–7622, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Mohamed, S. and Rezende, D. J. Variational information
maximisation for intrinsically motivated reinforcement
learning. In Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems-Volume
2, pp. 2125–2133, 2015.

OroojlooyJadid, A. and Hajinezhad, D. A review of coop-
erative multi-agent deep reinforcement learning. arXiv
preprint arXiv:1908.03963, 2019.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G.,
Foerster, J., and Whiteson, S. Qmix: monotonic value
function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1803.11485, 2018.

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G., Hung, C.-M., Torr, P. H.,
Foerster, J., and Whiteson, S. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043, 2019.

Su, J., Adams, S., and Beling, P. A. Value-decomposition
multi-agent actor-critics. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 11352–
11360, 2021.

Wang, T., Wang, J., Wu, Y., and Zhang, C. Influence-
based multi-agent exploration. arXiv preprint
arXiv:1910.05512, 2019.

Wang, Y., Han, B., Wang, T., Dong, H., and Zhang, C. Dop:
Off-policy multi-agent decomposed policy gradients. In
International Conference on Learning Representations,
2020.

Wen, Y., Yang, Y., Luo, R., Wang, J., and Pan, W. Proba-
bilistic recursive reasoning for multi-agent reinforcement
learning. arXiv preprint arXiv:1901.09207, 2019.

Zhang, T., Li, Y., Wang, C., Xie, G., and Lu, Z. Fop:
Factorizing optimal joint policy of maximum-entropy
multi-agent reinforcement learning. In International Con-
ference on Machine Learning, pp. 12491–12500. PMLR,
2021.

Zheng, S. and Yue, Y. Structured exploration via hierarchi-
cal variational policy networks. 2018.

Zhou, M., Liu, Z., Sui, P., Li, Y., and Chung, Y. Y. Learning
implicit credit assignment for cooperative multi-agent
reinforcement learning. Advances in Neural Information
Processing Systems, 33:11853–11864, 2020.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2022

Appendix A: Correlation Based on Common Zt and Basic Idea
Here, we provide a toy example explaining our idea. The example is as follows. We have two agents: Agents 1 and 2 in a
2-dimensional half-plane (x, y) with y > 0. The state is the locations of the two agents, i.e., st = ((x1t , y

1
t), (x

2
t , y

2
t)), where

(xit, y
i
t) is the location of Agent i. The action of each agent is the displacement, i.e., the action of Agent i is ait = (∆xit,∆y

i
t),

i = 1, 2. The location of Agent i at time t+ 1 is determined as a function of the state and action at current time t:

(xit+1, y
i
t+1) = (xit, y

i
t) + (∆xit,∆y

i
t).

Suppose that Agent i can only observe its own location oi = (xit, y
i
t) and suppose that 22 the policies π1(a1t |o1t , zt) and

π2(a2t |o2t , zt) of the two agents are functions of the observation and an additional common random variable zt, and given by
the following simple linear stochastic model:

a1t =

[
ax,1t
ay,1t

]
=

[
∆x1t
∆y1t

]
=

[
0 0
0 0.1

]
︸ ︷︷ ︸

parameter for o1t

[
x1t
y1t

]
︸ ︷︷ ︸

o1t

+

[
w1

11 w1
12

w1
21 w1

22

]
︸ ︷︷ ︸

parameter for zt at Agent 1

[
zxt
zyt

]
︸ ︷︷ ︸

zt

+

[
nx,1t
ny,1t

]
︸ ︷︷ ︸

noise n1
t at Agent 1

(16)

a2t =

[
ax,2t
ay,2t

]
=

[
∆x2t
∆y2t

]
=

[
0 0
0 0.1

]
︸ ︷︷ ︸

parameter for o2t

[
x2t
y2t

]
︸ ︷︷ ︸

o2t

+

[
w2

11 w2
12

w2
21 w2

22

]
︸ ︷︷ ︸

parameter for zt at Agent 2

[
zxt
zyt

]
︸ ︷︷ ︸

zt

+

[
nx,2t
ny,2t

]
︸ ︷︷ ︸

noise n2
t at Agent 2

, (17)

where the two random noise terms n1
t and n2

t at Agents 1 and 2 are independent random variables; zt =
[
zxt
zyt

]
is a random

variable (precisely speaking, random vector) drawn from PZ(z); and the notation of two consecutive brackets [·][·] means
matrix multiplication. Fig. 7 describes the policy function of Agent 1 given by (16) in a graphical form. ((17) can be
described in a similar graphical form.)

Figure 7. Graphical representation of the policy function of Agent 1, eq. (16)

In (16), the noise term n1
t is added to perturb the action of Agent 1 for exploration around the given term

[
0 0
0 0.1

] [
x1t
y1t

]
︸ ︷︷ ︸

o1t

for given st. In (17), the noise term n2
t is added to perturb the action of Agent 2 for exploration around the given term[

0 0
0 0.1

] [
x2t
y2t

]
︸ ︷︷ ︸

o2t

for given st. Note that two perturbation terms n1
t and n2

t are independent. Hence, these two terms

induce independent exploration for Agents 1 and 2. That is, without the zt-induced terms in (16) and (17), a1t and a2t given
st ∋ (o1t , o

2
t) are independent since in this case only the noise terms n1

t and n2
t remain and the noise terms are independent

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2022

random variables by assumption. However, with the zt-induced terms in (16) and (17), a1t and a2t are correlated and the
corresponding covariance matrix is given by

E[(a1t − E[a1t])(a2t − E[a2t])T |st] = W1Cz(W
2)T , (18)

where a1t and a2t are column vectors as shown in (16) and (17); (·)T denotes matrix transpose; Cz is the covariance matrix

of zt =
[
zxt
zyt

]
determined by pZ ;

W1 =

[
w1

11 w1
12

w1
21 w1

22

]
and W2 =

[
w2

11 w2
12

w2
21 w2

22

]
.

Note that the perturbation structure of W1zt and W2zt is different from that of n1
t and n2

t . Indeed, we are injecting
correlated random perturbation into a1t and a2t to promote correlation exploration to better explore the joint state-action space.
By properly designing Cz (i.e., properly designing PZ), W1 and W2, we can impose an arbitrary correlation structure
between a1t and a2t conditioned on st.

Figure 8. An example

Now, consider the following joint task. The initial location of Agent 1 is (-1,1) and the initial location of Agent 2 is (1,1).
The joint goal is that the two agents meet while going upward, and an episode ends when the two agents meet, as described
in Fig. 8. Suppose that we pick the prior distribution PZ(z) for zt as

zxt ∼ Unif[0, 0.1] (19)
zyt ∼ Unif[0, 0.1], (20)

where Unif[a, b] means the uniform distribution over interval [a, b]. Now, we design the reward rt(st, a1t , a
2
t) as the distance

between the two agents’ locations. We use the policies of the two agents given by (16) and (17).

With this setup, we simply learned the policy parameters W1 and W2 associated with zt by greedily maximizing the
instantaneous reward rt by stochastic gradient descent with Adam optimizer with learning rate 3× 10−4. The parameter
learning curves of W1 and W2 are shown in Fig. 9. It is observed that w1

11 and w1
12 of Agent 1 converge to positive values,

whereas w1
21 and w1

22 of Agent 1 converge to zero. This setting of parameters w1
11, w1

12, w1
21 and w1

22 of Agent 1 generates
movement of Agent 1 to the right side since zxt ≥ 0 and zyt ≥ 0 due to (19) and (20). (Please see (16).) On the other hand,
w2

11 and w2
12 of Agent 2 converge to negative values, whereas w2

21 and w2
22 of Agent 2 converge to zero. This setting of

parameters w2
11, w2

12, w2
21 and w2

22 of Agent 2 generates movement of Agent 2 to the left side since zxt ≥ 0 and zyt ≥ 0 due
to (19) and (20). (Please see (17).) Hence, the two agents meet. Note that the desired coordination between Agents 1 and 2
can be achieved by injecting common random variable zt and learning the set of parameters W1 and W2 associated with zt
properly.

Fig. 10 shows the trajectories of Agents 1 and 2 for an episode in the execution phase after training. Fig. 10(a) shows
the trajectory when we input the random variable zt with distribution (19) and (20) to the policy network just as we did
in the training phase. Fig. 10(b) shows the trajectory when we input E[zt] = (0.05, 0.05) to the policy network for all
t in the execution phase after training. The desired action is still obtained in the case of Fig. 10(b). This is because the

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2022

(a) (b)

Figure 9. (a) the parameter values of W1 associated with zt for Agent 1 and (b) the parameter values of W2 associated with zt for Agent
2 (during the training phase)

(a) (b)

Figure 10. The trajectory of two agents in the execution phase after training: (a) zxt ∼ Unif[0, 0.1], zyt ∼ Unif[0, 0.1]) and (b) zxt = 0.05,
zyt = 0.05

parameters W1 and W2 associated with zt are properly learned during the training phase by enhanced exploration of the
joint state-action space based on correlated exploration due to W1zt and W2zt with zt random. This learned parameters
are used in the execution phase. We can view that by setting zt = E[zt], we pick and apply the representative joint bias on
actions. Note that the desired joint bias in the case of Fig. 10(b) is obtained because of the fact that zt is distributed over
[0, 0.1] by (19) and (20). Hence, the choice of PZ is important in this method. However, at least the shift of the support of
zt is not a big concern when a general neural network is used as the policy function. In the case of a general neural network
as the policy function, shift of zt is automatically done by the node bias of the neural network and this node bias is also
learned as parameter.

In this example, we observe that coordination of actions and coordinated exploration are feasible by injecting a common
random variable zt to the input of every policy function and learning the parameters associated with zt. In this example, we
fixed the weights associated with the observation oit to show the exploration and control capability of the zt part. In general
cases, we have the freedom to design the weights associated with the observation oit too. Designing the conventional policy
parameters associated with the observation together with additional degree-of-freedom for exploration and design generated
by injecting zt combined with nonlinear deep neural network can lead to learning of complicated coordinated behavior via
correlated exploration. This paper fully develops this idea.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2022

Appendix B: Proofs
In the main paper, we defined the state and state-action value functions for Agent i as follows:

Qπ
i (s, a) ≜ E τ0 ∼ π

zt ∼ pZ

[
r0 + γV π

i (s1)

∣∣∣∣∣s0 = s,a0 = a

]
, (21)

V π
i (s) ≜ E τ0 ∼ π

zt ∼ pZ

[∞∑
t=0

γt
(
rt + βH(ait|st) +

β

N

∑
j ̸=i

log q(i,j)(ait, a
j
t |st)

)∣∣∣∣∣s0 = s

]
,

(22)

Then, the Bellman operator corresponding to V π
i and Qπ

i on the value function estimates Vi(s) and Qi(s,a) is given by

T πQi(s,a) ≜ r(s,a) + γEs′∼p[Vi(s′)], (23)

where

Vi(s) = E a ∼ π
zt ∼ pZ

[
Qi(s,a)− β log π̃i(ai|s) + β

N

∑
j ̸=i

log q(i,j)(ai, aj |s)

]
. (24)

(21), (21), (23) and (24) are the rewritings of equations Equations (12), (13), (14) and (15) in the main paper.

Proposition 1 (Variational Policy Evaluation). For fixed π and the variational distribution q, consider the modified Bellman
operator T π in (23) and an arbitrary initial function Q(0)

i : S × A → R, and define Q(k+1)
i = T πQ

(k)
i . Then, Q(k)

i

converges to Qπ
i defined in (21).

Proof. From (23), we have

T πQi(st,at) = r(st,at) + γE st+1 ∼ p,at+1 ∼ π
zt+1 ∼ pZ

[
Qi(st+1,at+1)− β log π̃i(ait|st)

+
β

N

∑
j ̸=i

log q(i,j)(ait, a
j
t |st)

]
(25)

= r(st,at) + γE st+1 ∼ p,at+1 ∼ π
zt+1 ∼ pZ

[
− β log π̃i(ait|st) +

β

N

∑
j ̸=i

log q(i,j)(ait, a
j
t |st)

]
︸ ︷︷ ︸

=:rπ(st,at)

+ γE st+1 ∼ p,at+1 ∼ π
zt+1 ∼ pZ

[
Qi(st+1,at+1)

]
(26)

= rπ(st,at) + γE st+1 ∼ p(·|st, at), zt+1 ∼ pZ ,at+1 ∼ π(·|st+1, zt+1)

[
Qi(st+1,at+1)

]
, (27)

where in the last line the expectation arguments are explicitly shown without abbreviation for clarity. Then, we can apply
the standard convergence results for policy evaluation. Define

T π(v) = Rπ + γPπv (28)

for v = [Q(s,a)]s∈S,a∈A. Then, the operator T π is a γ-contraction.

∥T π(v)− T π(u)∥∞ = ∥(Rπ + γPπv)− (Rπ + γPπu)∥∞ (29)
= ∥γPπ(v − u)∥∞ (30)
≤ ∥γPπ∥∞∥v − u∥∞ (31)
≤ γ∥u− v∥∞ (32)

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2022

since ||Pπ||∞ ≤ 1 Therefore, the operator T π has a unique fixed point by the contraction mapping theorem. Let Qπi (s,a)
be this fixed point. Since

∥Q(k)
i (s,a)−Qπi (s,a)∥∞ ≤ γ∥Q(k−1)

i (s,a)−Qπi (s,a)∥∞ ≤ · · · ≤ γk∥Q(0)
i (s,a)−Qπi (s,a)∥∞, (33)

we have

lim
k→∞

∥Q(k)
i (s,a)−Qπi (s,a)∥∞ = 0 (34)

and this implies

lim
k→∞

Q
(k)
i (s,a) = Qπi (s,a), ∀(s,a) ∈ (S ×A). (35)

We proved the variational policy evaluation in a finite state-action space. We can expand the result to the case of an infinite
state-action space by assuming the followings:

• Assume that Q functions for π are in L infinity

• From (Folland, 1999), L infinity is a Banach space

• From (Agarwal et al., 2018), by the Banach fixed point theorem, Q function should converge to a unique point in L
infinity space and that is the Q function of given π

Proposition 2 (Variational Policy Improvement). Let πinew and qnew be the updated policy and the variational distribution

from (36). Then, Qπ
i
new,π

−i
old

i (s,a) ≥ Q
πi
old,π

−i
old

i (s,a) for all (s,a) ∈ (S ×A). (πik+1, qk+1) =

argmax
πi,q

E (ai, a−i) ∼ (πi, π−i
k)

zk ∼ pZ

[
Qπk
i (s,a)− β log π̃i(ai|s) + β

N

∑
j ̸=i

log q(i,j)(ai, aj |s)

]
. (36)

Proof. Let us rewrite (36) to clarify that which terms are given and which terms are the optimization arguments. We use the
subscript ”old” for the given terms. Then, πnew is updated as (πinew, qnew) =

argmax
πi,q

E (ai, a−i) ∼ (πi, π−i
old)

zk ∼ pZ

[
Qπold
i (st,at)− β log π̃i(ait|st) +

β

N

∑
j ̸=i

log q(i,j)(ait, a
j
t |st))

]
. (37)

Then, the following inequality is hold

E (ait, a
−i
t) ∼ (πi

new, π
−i
old)

zk ∼ PZ

[
Qπold
i (st,at)− β log π̃inew(a

i
t|st) +

β

N

∑
j ̸=i

log q(i,j)new (a
i
t, a

j
t |st))

]
(38)

≥ E (ait, a
−i
t) ∼ (πi

old, π
−i
old)

zk ∼ pZ

[
Qπold
i (st,at)− β log π̃iold(a

i
t|st) +

β

N

∑
j ̸=i

log q
(i,j)
old (ait, a

j
t |st))

]
(39)

= V πold
i (st). (40)

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2022

From the definition of the Bellman operator,

Qπold
i (st,at) = r(st,at) + γEst+1∼p[V

πold
i (st+1)] (41)

≤ r(st,at) + γEst+1∼pE (ait+1, a
−i
t+1) ∼ (πi

new, π
−i
old)

zt+1 ∼ pZ

[
Qπold
i (st+1,at+1)

− β log π̃inew(a
i
t+1|st+1) +

β

N

∑
j ̸=i

log q(i,j)new (a
i
t+1, a

j
t+1|st+1)

]
(42)

≤ r(st,at) + γEst+1∼pE (ait+1, a
−i
t+1) ∼ (πi

new, π
−i
old)

zt+1 ∼ pZ

[
r(st+1,at+1)

− β log π̃inew(a
i
t+1|st+1) +

β

N

∑
j ̸=i

log q(i,j)new (a
i
t+1, a

j
t+1|st+1)

+ γEst+2∼p [V
πold
i (st+2)]

]
(43)

...

≤ Q
πi
new,π

−i
old

i (st, at). (44)

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2022

Appendix C: Details of Centralized Training
The value functions V iψi

(x), Qiθi(x,a) are updated based on the modified Bellman operator defined in (13) and (14). The
state-value function V iψi

(x) is trained to minimize the following loss function:

LV (ψi) = Est∼D
[
1

2
(V iψi(xt)− V̂ iψi(xt))

2

]
(45)

where D is the replay buffer that stores the transitions (xt,at, rt,xt+1); Qimin(xt, a
i
t) = min[Qiθi,1(xt, a

i
t), Q

i
θi,2(xt, a

i
t)]

is the minimum of the two action-value functions to prevent the overestimation problem (Fujimoto et al., 2018); and

V̂ iψi(xt) = Ezt∼N(0,I),{ak∼πk(·|okt ,zt)}N
k=1

[
Qimin(xt,at)− β log πiϕi(ait|oit, zt)

+
β

N

∑
j ̸=i

log q
(i,j)
ξi (ait, a

j
t |oit, o

j
t)

]
. (46)

Note that in the second term of the RHS of (46), originally we should have used the marginalized version,
−β log π̃iϕi(ait|oit) = −β logEzt∼N(0,I)[π

i
ϕi(ait|oit, zt)]. However, for simplicity of computation, we took the expecta-

tion Ezt∼N(0,I) outside the logarithm. Hence, there exists Jensen’s inequality type approximation error. We observe that
this approximation works well.

The two action-value functions are updated by minimizing the loss

LQ(θi) = E(xt,at)∼D

[
1

2
(Qθi(xt,at)− Q̂(xt,at))

2

]
(47)

where
Q̂(xt,at) = rt(xt,at) + γExt+1

[V
ψ

i(xt+1)] (48)

and V
ψ

i is the target value network, which is updated by the exponential moving average method. We implement
the reparameterization trick to estimate the stochastic gradient of policy loss. Then, the action of agent i is given by
ai = fϕi(s; ϵi, z), where ϵi ∼ N (0, I) and z ∼ N (0, I). The policy for Agent i and the variational distribution are trained
to minimize the following policy improvement loss,

Lπi,q(ϕ
i, ξ) = E st ∼ D,

ϵi ∼ N ,
z ∼ N

[
−Qiθi,1(xt,a) + β log πiϕi(ai|oit, z)

− β

N

∑
j ̸=i

log q
(i,j)
ξi (πiϕi(ai|oit, z), π

j
ϕj (a

j |ojt , z)|oit, o
j
t)

]
(49)

where q(i,j)ξi (πiϕi(ai|oit, z), π
j
ϕj (a

j |ojt , z)|oit, o
j
t)

= qξi(π
i
ϕi(ai|oit, z)|π

j
ϕj (a

j |ojt , z)|oit, o
j
t)︸ ︷︷ ︸

(a)

qξi(π
j
ϕj (a

j |ojt , z)|πiϕi(ai|oit, z)|oit, o
j
t)︸ ︷︷ ︸

(b)

. (50)

Again, for simplicity of computation, we took the expectation Ezt∼N(0,I) outside the logarithm for the second term in the
RHS in (49). Since approximation of the variational distribution is not accurate in the early stage of training and the learning
via the term (a) in (50) is more susceptible to approximation error, we propagate the gradient only through the term (b) in
(50) to make learning stable. Note that minimizing − log qξi(a

j |ai, st) is equivalent to minimizing the mean-squared error
between aj and µξi(ai, oi, oj) due to our Gaussian assumption on the variational distribution.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for ICML 2022

Appendix D: Pseudo Code

Algorithm 1 VM3-AC (L=1)
Centralized training phase
Initialize parameter ϕi, θi, ψi, ψ

i
, ξi, ∀i ∈ {1, · · · , N}

for episode = 1, 2, · · · do
Initialize state s0 and each agent observes oi0
for t < T and st ̸= terminal do

Generate zt ∼ N (0, I) and select action ait ∼ πi(·|oit, zt) for each agent i
Execute at and each agent i receives rt and oit+1

Store transitions in D
end for
for each gradient step do

Sample a minibatch from D and generate zl ∼ N (0, I) for each transition.
Update θi, ψi by minimizing the loss (47) and (48)
Update ϕi, ξi by minimizing the loss (49)

end for
Update ψ

i
using the moving average method

end for

Decentralized execution phase
Initialize state s0 and each agent observes oi0
for each environment step do

Select action ait ∼ πi(·|oit, zt) where zt =
−→
0 (or sample from the Gaussian random sequence generator with the same

seed)
Execute at and each agent i receives oit+1

end for

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Submission and Formatting Instructions for ICML 2022

Appendix E: Hyperparameter and Training Detail
The hyperparameters for MA-AC, MA-SAC, MADDPG, and VM3-AC are summarized in Table 1.

Table 1. Hyperparameters of all algorithms

MA-AC SI-MOA MAVEN MADDPG VM3-AC

REPLAY BUFFER SIZE 5× 105 5× 105 5× 105 5× 105 5× 105

DISCOUNT FACTOR 0.99 0.99 0.99 0.99 0.99
MINI-BATCH SIZE 128 128 128 128 128
OPTIMIZER ADAM ADAM ADAM ADAM ADAM
LEARNING RATE 0.0003 0.0003 0.0003 0.0003 0.0003
TARGET SMOOTHING COEFFICIENT 0.005 0.005 0.005 0.005 0.005
NUMBER OF HIDDEN LAYERS (ALL NETWORKS) 2 2 2 2 2
NUMBER OF HIDDEN UNITS PER LAYER 128 128 128 128 128
ACTIVATION FUNCTION FOR HIDDEN LAYER RELU RELU RELU RELU RELU
ACTIVATION FUNCTION FOR FINAL LAYER TANH TANH TANH TANH TANH

Table 2. The temperature parameter β and the dimension of the latent variable z for VM3-AC on the considered environments. Note that
the temperature parameter β in I-SAC and MA-SAC controls the relative importance between the reward and the entropy, whereas the
temperature parameter β in VM3-AC controls the relative importance between the reward and the mutual information.

VM3-AC β DIM(Z)

MW (N=3) 0.05 8
MW (N=4) 0.1 8
PP (N=2) 0.15 8
PP (N=3) 0.1 8
PP (N=4) 0.2 8
CTC (N=4) 0.05 10
CTC (N=5) 0.05 10
CN (N=3) 0.1 8

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Submission and Formatting Instructions for ICML 2022

(a) (b) (c) (d)

Figure 11. Considered environments: (a) Multi-Walker, (b) Predator-Prey, (c) Cooperative Treasure Collection, and (d) Cooperative
Navigation

Appendix F: Environment Detail
We implemented our algorithm based on OpenAI Spinning Up (Achiam, 2018) and conduct the experiments on a server with
Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz. Each experiment took about 12 to 24 hours. We illustrate the considered
environments in Fig. 11.

Multi-walker The multi-walker environment, which was introduced in (Gupta et al., 2017), is a modified version of the
BipedalWalker environment in OpenAI gym to multi-agent setting. The environment consists of N bipedal walkers and
a large package. The goal of the environment is to move forward together while holding the large package on top of
the walkers. The observation of each agent consists of the joint angular speed, the position of joints. Each agent has
4-dimensional continuous actions that control the torque of their legs. Each agent receives shared reward R1 depending on
the distance over which the package has moved and receives negative local compensation R2 if the agent drops the package
or falls to the ground. An episode ends when one of the agents falls, the package is dropped or T time steps elapse. To
obtain higher rewards, the agents should learn coordinated behavior. For example, if one agent only tries to learn to move
forward, ignoring other agents, then other agents may fall. In addition, the different coordinated behavior is required as the
number of agents changes. We set T = 500, R2 = −10 and R1 = 10d, where d is the distance over which the package has
moved. We simulated this environment in three cases by changing the number of agents (N = 2, N = 3, and N = 4).

All algorithms used neural networks to approximate the required functions. We used the neural network architecture
proposed in (Kim et al., 2019) to emphasize the agent’s own observation and action for centralized critics. For Agent i, we
used the shared neural network for the variational distribution qξi(a

j
t |ait, oit, o

j
t) for j ∈ {1, · · · , N}\{i}, and the network

takes the one-hot vector which indicates j as input.

Predator-prey The predator-prey environment, which is a standard task for MARL, consists of N predators and M preys.
We used a variant of the predator-prey environment into the continuous domain. The initial positions on the predators are
randomly determined, and those of the preys are in the shape of a square lattice. The goal of the environment is to capture as
many preys as possible during a given time T . A prey is captured when C predators catch the prey simultaneously. The
predators get team reward R1 when they catch a prey. After all of the preys are captured and removed, we set the preys
to respawn in the same position and increase the value of R1. Thus, the different coordinated behavior is needed as N
and C change. The observation of each agent consists of relative positions between agents and other agents and those
between agents and the preys. Thus, each agent can access to all information of the environment state. The action of each
agent is two-dimensional physical action. We set R1 = 10 and T = 100. We simulated the environment with three cases:
(N = 2,M = 16, C = 1), (N = 3,M = 16, C = 1) and (N = 4,M = 16, C = 2).

Cooperative treasure collection The cooperative treasure collection environment, which was introduced in (Iqbal & Sha,
2019), consists of 2 banks, N − 2 collectors, and 6 hunters. Each bank has a different color and each treasure has one of the
banks’ colors. The goal of this environment is to deposit the treasures by controlling the banks and hunters. The hunters
collect the treasure and then give it to the corresponding bank. Both hunters and banks receive shared reward R1 if a treasure
is deposited. The hunters receive a positive reward R2 when a treasure is collected and a negative reward −R3 if colliding
with other agents. The observation of each agent consists of the locations of all other agents and landmarks, and action is
two-dimensional physical action. We set R1 = 5, R2 = 5, R3 = 5. We simulated the environment with two cases: (N = 4)
and (N = 5).

Cooperative navigation Cooperative navigation, which was proposed in (Lowe et al., 2017), consists of N agents and L
landmarks. The goal of this environment is to occupy all landmarks while avoiding collision with other agents. The agent

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Submission and Formatting Instructions for ICML 2022

receives shared reward R1 which is the sum of the minimum distance of the landmarks from any agents, and the agents
who collide each other receive negative reward −R2. In addition, all agents receive R3 if all landmarks are occupied. The
observation of each agent consists of the locations of all other agents and landmarks, and action is two-dimensional physical
action. We set R2 = 10, R3 = 1, and T = 50. We simulated the environment in the cases of (N = 3, L = 3).

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Submission and Formatting Instructions for ICML 2022

Appendix G: SMAC environment
We modified the SMAC environment to be sparse to make the problem more difficult. The considered sparse reward setting
consists of a time-penalty reward which is obtained −0.1 every time step and a dead reward which is obtained +10 and −1
when one enemy dies and one ally dies, respectively. If all enemies die, the dead reward is given +200.

We implemented VM3-AC by modifying the code provided by (Zhang et al., 2021). We replace the entropy term in (Zhang
et al., 2021) with the sum of entropy and variational approximation. We used the categorical distribution with the dimension
of 3 for the latent variable. We used the deep neural network which consists of a 64-dimensional MLP with ReLU activation
function, GRU, and an MLP to parameterize the policies. In addition, we use an MLP with 2 hidden layers which have 64
hidden units, and a ReLU activation function for both the critic networks. For the variational approximation, q(aj |ai, s), we
use the deep neural network which takes Agent i’s action and outputs Agent j’s action. The variational approximation is a
feed-forward network whose weight is the output of a hyper-network which is a deep neural network taking the global state
as input. The hyper-network is implemented similar to the mixing network in QMIX (Rashid et al., 2018).

As in (Zhang et al., 2021), we annealed the temperature parameter from 0.5 to 0.05 over 2× 105 steps. We provided source
code in the supplementary material.

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Submission and Formatting Instructions for ICML 2022

Appendix H: Replacing the latent variable with mean vector

Table 3. Impact of replacing the latent variable zt ∼ N (0, I)
with mean vector zt = E(zt) in the execution phase

PP (N=2) PP (N=3) PP (N=4)

zt ∼ N (0, I) 413 734 1123
zt = E(zt) 409 743 1147

Injecting mean vector E{zt} to the zt-input of policy net-
work πiϕi(·|oit, zt) during the execution phase: As men-
tioned in the main paper, we applied the mean vector of zt,
i.e., E{zt} to the zt-input of the policy deep neural network
πiϕi(·|oit, zt) during the execution phase so as to execute ac-
tions without communication in the execution phase. We
compared the performance of decentralized policies that use
the mean vector E{zt} and decentralized policies which use
the latent variable zt assuming communication. We used deterministic evaluation based on 20 episodes generated by the
corresponding deterministic policy, i.e., each agent selects action using the mean network of Gaussian policy πiϕi . We
averaged the return over 7 seeds, and the result is shown in Table 3. It is seen that the mean vector replacement method
yields almost the same performance and enables fully decentralized execution without noticeable performance loss. Please
see Appendix A for intuition.

