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ABSTRACT

Normalizing flows with a Gaussian base provide a computationally efficient way
to approximate posterior distributions in Bayesian inference, but they often strug-
gle to capture complex posteriors with multimodality and heavy tails. We propose
a stick-breaking mixture base with component-wise tail adaptation (StiCTAF) for
posterior approximation. The method first learns a flexible mixture base to miti-
gate the mode-seeking bias of reverse KL divergence through a weighted average
of component-wise ELBOs. It then estimates local tail indices of unnormalized
densities and finally refines each mixture component using a shared backbone
combined with component-specific tail transforms calibrated by the estimated in-
dices. This design enables accurate mode coverage and anisotropic tail modeling
while retaining exact density evaluation and stable optimization. Experiments on
synthetic posteriors demonstrate improved tail recovery and better coverage of
multiple modes compared to benchmark models. We also present a real-data anal-
ysis illustrating the practical benefits of our approach for posterior inference.

1 INTRODUCTION

Bayesian inference provides a principled framework for learning from data by updating prior beliefs
about model parameters in light of observed evidence. For a probabilistic model with data D, prior
distribution p(z), and likelihood p(D | z), the posterior distribution p(z | D) follows from Bayes’
theorem. In most realistic models, however, computing the exact posterior is intractable because
it requires evaluating the marginal likelihood p(D), which involves high-dimensional integration.
Markov chain Monte Carlo (MCMC) methods yield asymptotically exact samples from the posterior
but are often computationally prohibitive for large-scale or high-dimensional problems.

Variational Inference (VI) offers a scalable alternative to exact Bayesian inference by projecting
the true posterior onto a tractable variational family Q and identifying the member g4(z) that is
closest to p(z | D) under a chosen divergence or distance measure. The accuracy of VI depends
critically on the flexibility of the chosen variational family (Blei & Jordan, 2006). Normalizing
Flows (NF) increase this flexibility by applying a sequence of invertible transformations to a simple
base distribution, thereby yielding a highly expressive family while still permitting exact density
evaluation (Rezende & Mohamed, 2015). NF-based VI can achieve accuracy comparable to Markov
chain Monte Carlo (MCMC) methods, while maintaining the computational efficiency necessary for
large-scale inference (Blei et al., [2017; |Kucukelbir et al., 2017).

While NF can also be employed for density estimation—typically optimized via the forward KL
divergence—posterior approximation settings differ in that direct samples from the target posterior
are unavailable. In such cases, the optimization is instead performed using the reverse KL diver-
gence KL (q I p) =E.q [log q(z) — log p(z|D)], where ¢ is obtained by applying an invertible
transformation to a base distribution, such as a standard Gaussian. This objective has a well-known
mode-seeking bias: it concentrates mass on a dominant mode of the posterior while ignoring other
modes with smaller posterior mass. Consequently, NF-based VI may fail to capture the full mul-
timodal structure of complex posteriors, particularly in models with well-separated or secondary
modes that are important for predictive uncertainty.
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Another limitation arises in representing heavy-tailed posteriors. When the base distribution is light-
tailed, such as a Gaussian, the resulting variational family inherits this tail behavior regardless of the
complexity of the flow transformations. Moreover, because standard flow architectures are built
from Lipschitz-continuous transformations, the extent to which distances in the tail regions can
be expanded is inherently bounded. This structural constraint restricts the ability to map a light-
tailed base distribution into one with substantially heavier tails, making it difficult to approximate
posteriors with extreme tail behavior. These tail limitations, when combined with the mode-seeking
bias, can significantly impair inference quality in scenarios where both multimodality and heavy
tails are present.

To address these limitations, this work makes three key contributions. First, we mitigate the mode-
seeking bias of reverse KL divergence in VI by employing a stick-breaking mixture (SBM) as the
variational base, which enables more faithful coverage of complex multimodal posteriors. Second,
we develop a novel Monte Carlo-based estimator for the local tail index within the VI framework,
providing a principled approach to adapting to heavy-tailed behavior while maintaining tractability.
Third, we propose a component-wise normalizing flow architecture that combines a shared backbone
with per-component Tail Transform Flows, thereby enhancing both flexibility and expressiveness.
This design allows the variational posterior to accurately capture both the bulk structure and the tail
behavior of the target posterior.

1.1 RELATED WORKS

One line of work improves multimodal distribution approximation by modifying the base distribu-
tion within normalizing flows, for example by employing a Gaussian-mixture base (Izmailov et al.,
2020) or Dirichlet-process mixtures (Li et al.;, 2022). However, these methods are typically intended
for density estimation or amortized generative modeling rather than reverse-KL posterior approxi-
mation in variational inference. In contrast, our approach is distinguished by determining mixture
weights through SBM. Stick-breaking mechanisms have been applied to variational inference in
other contexts, such as variational autoencoders (Nalisnick & Smythl 2016} Joo et al., [2020), but to
the best of our knowledge, they have not yet been applied to NF-based variational inference.

Additionally, to enhance robustness and expressive generalization, a parallel line of work has fo-
cused on heavy-tailed distributions in normalizing flows. Jaini et al.| (2020) analyzed Lipschitz
triangular flows and showed that a flow with a light-tailed Gaussian base cannot produce a heavy-
tailed target; subsequently, TAF (Jaini et al) 2020), mTAF (Laszkiewicz et al.l 2022), and ATAF
(Liang et al.l 2022) adopted a Student’s-r bases with varying, dimension-specific degrees of free-
dom to generate heavy-tailed targets. However, TAF and mTAF focus on density estimation, and
while ATAF can be used for VI, it lacks a concrete initialization scheme for the degrees of freedom
and underperforms on tail-index estimation. In Section[2.2] we further show that using the Cartesian
product of Student’s-z distributions with heterogeneous degrees of freedom as the base distribution
is not effective due to the autoregressive structure commonly used in normalizing flows.

There have also been attempts to address tail behavior by modifying the flow layers themselves.
Hickling & Prangle| (2024) propose Tail Transform Flows (TTF), a non-Lipschitz transformation
designed to convert light-tailed base distributions into heavy-tailed targets. However, in the varia-
tional inference setting, no widely adopted procedure exists for estimating and initializing the tail
thickness, and as a result, TTF often fail to produce genuinely heavy-tailed behavior.

2 THEORETICAL BACKGROUND

2.1 VARIATIONAL INFERENCE WITH NORMALIZING FLOWS

Variational inference (VI) is a widely used technique for approximating intractable posterior dis-
tributions in Bayesian inference. Given a target posterior distribution p(z | D), where D denotes
observed data and z represents latent variables, VI seeks a tractable distribution ¢4(z) within a cho-
sen variational family Q that closely approximates the true posterior. The expressiveness of this
family is crucial in determining the quality of the approximation.

Normalizing Flows (NF) extend the flexibility of variational families by transforming a simple base
distribution ¢4 () into a richer distribution through an invertible and differentiable mappings T',.
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Let 6 = (¢, ), where ¢ parameterizes the base distribution and 1) parameterizes the transforma-
tions. The transformed variable is defined as

z=Ty(20), 20~ q4(20),
and the resulting density, obtained via the change-of-variables formula,

00(2) = q5(T,; ' (2))

is used to approximate the target posterior p(z | D).

Since direct sampling from p(z | D) is intractable, the parameters ¢ are optimized by minimizing
the reverse KL divergence KL(qg(z) || p(2 | D)). Equivalently, this corresponds to maximizing the
evidence lower bound (ELBO), defined as

ELBO(0) = E.~q, [logp(D, z) — log ga(2)]
= E.ynq, [logp(D, Ty(20)) — log qs(20) + log |det Jr,, (20)|] , (1)
where J7,, (29) denotes the Jacobian of the transformation T, at 2.

Gradients with respect to both the base distribution parameters ¢ and the flow parameters ¢/ can
be efficiently estimated via Monte Carlo sampling, enabling stable and scalable optimization of the
ELBO (Kingma & Welling, [2013} 2014; Rezende et al.l [2014). A key limitation, however, lies in
the choice of the base distribution ¢4(29). Most NF implementations assume a standard Gaussian
base, which imposes a unimodal, light-tailed inductive bias. Even with complex flows, this restricts
the capacity to approximate posteriors with well-separated modes or heavy tails. In reverse-KL
settings, the problem is further compounded by the KL divergence’s tendency to concentrate on
dominant modes. We address this issue in Section |3| by replacing the standard Gaussian base with
SBM, yielding more flexible, adaptive, and heavy-tailed approximations.

2.2 HEAVY TAIL DISTRIBUTIONS IN NORMALIZING FLOWS

To formalize the heavy-tailed behavior that motivates our design, we adopt a classification of dis-
tribution tails grounded in extreme value theory (EVT) (Bingham et al.l [1989; De Haan & Fer-
reiral 2006). Whereas prior work on heavy-tailed normalizing flows has relied on the existence of
moment-generating functions (Jaini et al.| 2020) or the concentration function (Liang et al.,|2022),
our approach is based on regular variation. This perspective offers a unified framework that builds
directly on standard EVT concepts and tools. In what follows, we introduce the definitions of tail
classes;

Definition 2.1 (Tail classes). For p,a > 0, define
o &P = {X: Pr(|X|>2)=e " L(z), logL(z)=o(zP)},
o LP:={X: Pr(|X| > z) = exp{—a(logz)’} L(z), logL(z) = o((logz)?)},

where L : RT — R is a slowly varying function (i.e. L(cx)/L(x) — 1, for every fixed ¢ > 0). We
call EP the exponential-type (light-tailed) class and L?, the log-Weibull-type (heavy-tailed) class.
Specifically, for X € L1, the exponent o determines the polynomial decay rate, and we refer to it
as the tail index.

Definition 2.2 (Directional tail index). For a directional vector u on a unit sphere S*~' C R¢ and
a random vector X € RY, if the one-sided scalar projection [(u, X)]; = max{(u, X), 0} belongs
to L, for some o, € (0,00), we define the directional tail index of X along u by ax (u) 1= o

Building on these definitions, a key theoretical insight concerns the impact of Lipschitz transforma-
tions on tail behavior. The seminal work of Jaini et al.| (2020)) showed that normalizing flows con-
structed from Lipschitz triangular maps cannot transform a light-tailed Gaussian base into a heavy-
tailed distribution. Later, Liang et al.| (2022) generalized this result by proving that bi-Lipschitz
transformations preserve tail classes, implying that a distribution cannot be mapped from light- to
heavy-tailed, or vice versa. This limitation applies even to highly expressive, state-of-the-art archi-
tectures such as RealNVP and Neural Spline Flows, which are Lipschitz by construction. Within our
EVT-based framework, the same conclusion holds, and the following theorem formalizes this result.
The following is a restatement of the result from Liang et al.[(2022) with a slight modification.
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Theorem 2.1 (Liang et al.|(2022)). Let X be a random vector and let f : R —R® be a bi-Lipschitz
bijective map (i.e. f and f~" are globally Lipschitz). If X € EP, then f(X) € EE for some & > 0.
In addition, if X € L2 then f(X) € L. In particular, no bi-Lipschitz normalizing flow can map a
light-tailed base to a heavy-tailed output, vice versa.

While Theorem@] extends the impossibility result of [Jaini et al.| (2020), the limitation is not con-
fined to the light—versus—heavy dichotomy. In particular, anisotropic tail-adaptive flows (ATAF)
(Liang et al., [2022), which employ an anisotropic ¢-distributed base—the most flexible heavy-tailed
base proposed to date—still suffer from this issue: once variables are mixed through linear layers or
permutations, heterogeneous tail behaviors across dimensions cannot be faithfully preserved. As a
natural corollary of the Lipschitz barrier, whenever coordinates with different tail indices interact,
the effective tail index is determined by the heaviest tail among them. We formalize this observation
in Theorem 2.2

Theorem 2.2 (Tail dominance). Let X = (Xi,...,X4) be a random vector with independent
coordinates and X; € [’(11]- foreach1 < j <d. Fixi € {1,...,d} and letY; = g;(X1,...,X;),

where g; : R® — R is globally Lipschitz. Define the tail-influence set S; == {j <i:3dR>0, ¢ >

0, 7o s.t.  maxy; x| < R, |z;| > ro = |gi(x)] > cj|xj|}. If S; # 0, then Y; € L, with

Qy; = minjesi Q.

Theorem shows that among the inputs influencing the linear-scale growth of g;, the heaviest
tail (i.e., the smallest o) dominates. In practice, g; corresponds to the coordinate-wise update in
autoregressive or coupling layers. In architectures such as neural spline flows, the i-th input x; of g;
always belongs to .5;, s0 .S; is guaranteed to be nonempty as long as no permutation layer precedes it.
However, permutation layers (or invertible 1x1 convolutions)—commonly introduced to improve
expressivity and mixing—disrupt this ordering by re-mixing inputs before they are passed into g;.
By Theorem [2.2] the resulting coordinate tail then collapses to the minimum among them, revealing
a fundamental limitation of standard flow architectures.

3 PROPOSED METHOD

3.1 MIXTURE-BASE LEARNING

In this section, we introduce our choice of base distribution and an efficient loss-computation strat-
egy for normalizing flows. While Gaussian mixtures have previously been employed as flow bases,
to our knowledge this is the first work to use SBM. By extending finite mixtures to a fully non-
parametric setting, SBM admits an unbounded number of components, with weights generated via
a (generalized) stick-breaking process (see, e.g., (Connor & Mosimann, |1969; [[shwaran & James),
2001):

gs(2) = Zﬂk N(z; pr, 2k), TR = Uk H(l —vj;), vi ~ Beta(ag,fr),

k=1 i<k

where ¢ = {ug, Xk, ok, Bk : k = 1,2,...}. This construction reduces to the standard stick-
breaking process when (ax, Srx) = («,3) and to the Dirichlet process when (ag, 8k) = (1, a)
for all k. Because these choices impose a fixed monotonicity on the expected component weights,
we instead employ a generalized stick-breaking mixture, which offers greater modeling flexibility.
For practical implementation, we truncate the infinite mixture at X components, with K chosen
sufficiently large.

A key challenge in estimating the ELBO in equation[I]via Monte Carlo is that differentiating through
the Beta parameters (v, 8 ) would normally require a reparameterization trick. Inspired by Roeder
et al| (2017), we instead adopt an ELBO formulation that places the mixture weights {m} out-
side the expectation, enabling analytic gradient computation with respect to o and [;. The full
derivation is provided in Appendix [A.T}

o0

B f2) = 30— ] 225 | B S0 @

s .
k=1 j<k it B
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This approach eliminates the need for Kumaraswamy approximations (Kumaraswamyl, [1980) for
Beta draws and the Gumbel-Softmax relaxation (Jang et al., 2016) for discrete component assign-
ments, yielding lower-variance and fully differentiable updates.

3.2 TAIL ESTIMATION

Estimating the tail index of a posterior distribution is challenging when only its unnormalized density
is available. To address this, we propose the following simple yet effective procedure for each kth
component. First, draw i.i.d. samples z1, ..., z, from a known heavy-tailed distribution, such as a
Student’s-t with low degrees of freedom (e.g., v = 2). For a chosen direction u on the unit sphere
S4=1 ¢ R, define the projection of each sample as 2z = z;u. The projected samples inherit
heavy-tailed behavior along u. Ordering the projected magnitudes in decreasing order,

Izl = llzgll = - = [z
and applying the estimator to the top-j extremes yields

_ 1 L log p(p + 230 | D) —logp(uk + 2 1yox | D) )
J“ log ||z} [l —log [|2{j )l

)

which captures the decay rate of the distribution in direction u. Here, uy, + z( )Tk and g + z(7 +1)0k
represent scaled versions of z(;) and z(; 1), adjusted for the component’s location p and scale oy
‘We now establish the consistency of this estimator under the following assumption.

Assumption 3.1 (Directional Tail and Monotonicity). For u € R% o > 0, and u € S, the
posterior density p(z | D) has a directional tail index &, € (0,00) along u, and p(u + oru | D)
decreases monotonically for all v > rg, for some constant rq > 0.

Theorem 3.1 (Consistency of the Directional Tail-Index Estimator). Let z1,...,2n R
Student’s-t,, for any v > 0. If Assumption [3.1] holds, then for any component k, the estimator

A,(Jk) defined above satisfies
& —— b

n—oo

For light-tailed classes £? (e.g., Gaussian), the estimator dlverges (fu — 00), whereas for bound-
ary cases heavier than any power law (e.g., p(r) o (r(logr)?)~1), it converges to 0. Formal
statements and proofs of these results, together with convergence-rate analyses, are provided in Ap-

pendix

3.3 COMPONENT-WISE TAIL TRANSFORM FLOWS

Given the optimized base distribution and the estimated tail indices, we construct a flow model that
offers greater flexibility in approximation and thereby captures both the overall shape and tail behav-
ior of the target distribution. We begin by recalling the notion of a pushforward: for a measurable
map 7T : RY — R? and a probability measure ¢ (with a slight abuse of notation, we use ¢ to denote
both a density and its induced measure), the pushforward T q is defined by

(Tyq)(A) = q(T7'(4)), A C RY measurable.
Equivalently, if Z ~ ¢, then T'(Z) ~ Tq.

Because the pushforward is linear over mixtures, different transforms can in principle be applied to
different mixture components. In our setting, we extend this idea by introducing component-wise
invertible maps 7'%) and defining a measurable mapping on the extended space by

T(k},fﬂ) = T(k)(z)7 T~ qk.

The resulting distribution is

T#q = Z’frk T()
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Although this construction is no longer a single globally invertible map, it remains compatible with
the requirements of normalizing flows: each T'*) is invertible with a tractable Jacobian determinant,
exact likelihood evaluation is possible via the change-of-variables formula, and sampling can be
carried out by first drawing a component index and then mapping the corresponding sample through
its associated flow.

To maximize computational efficiency while still allowing flexibility in adjusting tail thickness for
each component, we apply the TTF transform to the component-specific flows:

k k),(1 k),(d
TTETI):: (TIETI)T( )7"'7T”1§Tl)7( )> :Rd%Rd»

with each dimension transformed as

”
O
R, (L. pR) 2RV _ (1), (1) S |z — | _
TTTF (Z7 §+617§751) = My +Uk égfc) erfc() -1 ’ l= 1a"'7da

O

where ¢; denotes the [-th canonical basis vector, ug) and a,(cl) are the [-th elements of the mean and

scale of component k, and s; is set to +¢; if 2 > ug) and —e; otherwise.

This transformation is a slightly modified version of the flow proposed by [Hickling & Prangle
(2024), allowing distinct tail indices for the positive and negative directions in each dimension. The
indices are estimated using the direction-specific procedure described in Section The Jacobian
determinant and closed-form inverse expressions for this transform are provided in Appendix
Overall, the proposed variational inference framework achieves accurate approximation while pre-
serving the tail thickness of the target distribution around each component.

Corollary 3.1. Under Assumption define the axis-wise estimators éfe)l using the directional

procedure of Section and instantiate StiCTAF with tail transforms Tj(«lff)l’?(l)( -3 éfgl,é(_’ﬁl) for
each coordinate | € {1, ...,d}. Then, StiCTAF preserves the target’s tail thickness in every coordi-
nate direction.

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed Stick-Breaking Component-wise Tail-
Adaptive Flow (StiCTAF) in two scenarios and compare it against several benchmark models. The
benchmarks include flow models with a standard Gaussian base, a Gaussian mixture base, and ex-
isting heavy-tailed normalizing-flow models—TAF (Jaini et al., |2020), gTAF (Laszkiewicz et al.,
2022), and ATAF (Liang et al.| 2022). In addition, we consider a normalizing flow model with
a stick-breaking heavy-tailed mixture base to demonstrate that a heavy-tailed mixture base alone
is insufficient. All models are implemented in PyTorch 2.7.0+cul26 with CUDA 12.6 using the
normflows library (Stimper et al., 2023), and executed on a single NVIDIA GeForce RTX 4090
GPU. Further implementation details are provided in Appendix [B]

4.1 NORMAL-INVERSE-GAMMA DISTRIBUTION

We first consider a Normal-Inverse-Gamma (NIG) distribution whose two coordinates exhibit dif-
ferent tail behaviors: one light-tailed and the other heavy-tailed. This distribution frequently arises
in Bayesian linear regression (BLR), with likelihood

y|B,0* ~ N(XB,0%L,).
Using the conjugate priors
B| o ~ N(mg, Vi), 0? ~ Inv-Gamma(ag, by),
the joint posterior is again Normal-Inverse-Gamma.

As a minimal two-dimensional testbed reflecting this light-versus-heavy tail structure, we adopt the
product target
N(p, 03) x Inv-Gamma(a, ),
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Gaussian x Inverse-Gamma Gaussian x Inverse-Gamma Gaussian x Inverse-Gamma
NF(Gaussian) ATAF StiCTAF

99.9% 99.9%

99.9%

o Bk N W A U o ~
o kN W A U o ~
o Bk N W A U o ~

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
0.1% 8 99.9% 0.1% 8 99.9% 0.1% 8 99.9%

(a) NF (Gaussian) (b) ATAF (c) StiCTAF (ours)

Figure 1: Normal x Inverse-Gamma Target: Each panel compares the model and target distribu-
tions using Monte Carlo samples of size 10*. The dotted lines indicate the 0.1% and 99.9% marginal
percentiles for 3, and the 99.9% percentile for o2. From left to right: NF (Gaussian), ATAF, and
StiCTAF.

with parameters set to (u,03,a,3) = (0.0,1.0,3.0,1.0). In this setting, the inverse-gamma
marginal along the o?-direction has tail index 3.0, i.e., Pr(o? > t) = O(t~3).

Figure [I] shows the sample percentiles for the target posterior and each NF model, with dotted
guide lines indicating the 0.1% and 99.9% marginal percentiles for 3, and the 99.9% marginal
percentile for o2. Since the target density is available in closed form, we draw 10* samples from
the target, using the same sample size for each NF model. The Gaussian-base NF captures the
intended light tail in 3 but also imposes an undesirably light tail in o, resulting in a large discrepancy
between the approximated and target 99.9% lines. ATAF, even when initialized close to the oracle—
(vg,Vy2) = (00,3), approximated here by (v, v,2) = (30, 3)-overestimates the upper tail in the
B-direction while underestimating the extreme quantile in the o--direction, deviating from the target
99.9% value. In contrast, StiCTAF provides an accurate tail fit: the S-direction remains light-tailed,
with extreme quantiles aligned to the target, and in the positive o-2-direction the estimated tail index

is £+gz = 3.08, very close to the target value of 3.0.

4.2 COMPLEX MULTIMODAL TARGET WITH HEAVY TAILS

We next test whether the proposed StiCTAF can fit a complex two-dimensional target that ex-
hibits both heavy tails and multimodality. The target distribution is a four-component mixture:
two Gaussian x Student’s-t components (with v = 2 and v = 3, respectively), one Two-Moons
component, and one Student’s-t (v = 2)xStudent’s-t (v = 3) component.

Figure [2] shows raw samples for three methods: Gaussian-base NF, Gaussian-mixture-base N , and
StiCTAF. Each panel displays 2 x 10* points drawn from the target and the corresponding trained
model, enabling direct comparison of how well the flows approximate the target joint distribution.
The curves along the top and right margins depict the marginal densities of the horizontal and vertical
coordinates.

The Gaussian-base NF fails to capture the two Gaussian x Student’s-f modes located on the right and
at the top, concentrating mass in the lower left and center. The Gaussian-mixture-base NF recovers
all modes but places excess probability mass in low-density regions, producing extraneous sample.
In contrast, StiCTAF recovers all modes and more faithfully captures the tail thickness across the
distribution without generating misplaced samples. Although it does not fully capture the tail of
the upper Gaussian x Student’s-¢ component, it nevertheless provides the closest overall match to the
target in both the bulk and the tails.

Quantitatively, since the target density is available in closed form for this synthetic experiment, we
estimate the forward KL divergence Dk, (p||¢) by Monte Carlo. We also report the effective sample
size (ESS), computed from importance weights w; = p(z;)/q(z;) with z; ~ ¢, using

. (> w;)?
ESS = 721 w
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3
—

Target Distribution Target Distribution Target Distribution
NF(Gaussian) NF(Gaussian Mixture) StiCTAF
(a) NF (Gaussian) (b) NF (Gaussian Mixture) (c) StiCTAF (ours)

Figure 2: Complex Multimodal Target: Each panel compares the model and target distributions
using Monte Carlo samples of size 2 x 10*. The curves along the top and right margins show
the univariate marginal densities. From left to right: NF (Gaussian), NF (Gaussian Mixture), and
StiCTAF.

Table 1: Forward KL-divergence and normalized ESS for Complex Mixture Target (mean +
standard deviation)s over 10 different seeds; each repeat uses N=1000 target samples. Lower is
better for KL, higher is better for ESS.

Method Forward KL  normalized ESS
NF (Gaussian) 1.924+1.21 0.31 £0.17
NF (Gaussian Mixture)  0.33 + 0.05 0.65 £ 0.23
StiCTAF (ours) 0.22 +0.09 0.79 £ 0.19

Larger values (normalized, closer to 1) indicate better sample efficiency. Table[T]shows that StiCTAF
achieves the lowest KL among all methods and the highest ESS.

5 REAL DATA ANALYSIS: 2024 DAILY MAXIMUM WIND SPEEDS IN KOREA

We now evaluate the performance of the proposed method on a real data application, which presents
a more complicated posterior density than the simulated examples above. Specifically, we an-
alyze daily maximum wind speed data in 2024 from the Korea Meteorological Administration
(https://data.kma.go.kr/). Consecutive threshold—exceedance pairs are modeled using the logistic
bivariate extreme value framework of [Fawcett & Walshaw|(2006). Data from four stations are con-
sidered, and we analyze four quarters of the year separately. Let X; ) ¢ denote the daily maximum
wind speed at station j € {1,...,4}, season s € {1,...,4}, and day ¢. For each (j, s), we fix a
high threshold u; s and work with residuals Y{; 5) ; = X(; 5),s — u;,s conditional on exceedance.

Logistic dependence. For = > u, define the exceedance—scale transform

Z@) =271+ @)1/”.

On this scale, the joint CDF for a consecutive pair of exceedances is
F(zy, a1 | oyn,a) =1 - [Z(It)fl/a + Z(It+1)71/ai|+a a € (0,1],

where o = 1 corresponds to independence and o — 0% to complete dependence (Fawcett &
Walshawl, [2006)). Full model details are provided in Appendix

Parameterization and priors. We decompose station and season effects using the additive models

Ojs = softplus(vj(.g)) + softplus(e(?)), 7. = softplus(’y§n)) + softplus(e(™),
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— MCMC
— = StickTAF
----- NF (Gaussian)
NF (Gaussian Mixture)
TAF
gTAF
gTAF Mixture
..... ATAF

Left tail (< 5.0%) — MCMC
: — = StickTAF
----- NF (Gaussian)
NF (Gaussian Mixture)
TAF
gTAF
gTAF Mixture
..... ATAF

e éu)

(a) Posterior of g;" ) (b) Posterior of o}

Figure 3: Estimated posteriors for two parameters from the real data analysis: Panel (a) shows

sg’) and panel (b) shows . Insets display the left 5% tail density. The black curve represents the
MCMC reference, and the red curve corresponds to StiCTAF. Baselines include normalizing flows
with Gaussian and Gaussian mixture bases, as well as TAF, gTAF, gTAF mixture, and ATAF.

Table 2: Inference results for the maximum wind speed dataset. For each parameter, the table
reports the estimated mode and the 99% equal-tail credible interval. Computation times (in hours)
for each method are also provided.

Parameter MCMC StickTAF NF (Gaussian) TAF
elm 169 (-11.21,-0.32)  -1.81(-11.89,-0.27)  -1.72(-5.89,-0.31)  -1.70 (-4.71, 0.05)
em 2.02(-11.95,-0.38)  -2.06 (-12.09,-0.51)  -1.95(-6.29,-0.51)  -2.60 (-7.12, 1.89)
5%’” -1.52(-9.18,-0.13)  -1.62(-10.21,-0.26)  -1.50 (-4.71,-0.22)  -1.65 (-6.05, 1.02)
M 2.09 (-11.64,-0.50) 222 (-13.88,-0.71)  -2.14(-5.98,-0.52)  -2.32(-5.32, 0.59)
Comp. time (hr) 11.90 0.08 0.03 0.03

with station-specific o; € (0,1). To avoid bounded supports during training, we instead infer

o € R and set o; = sigmoid(«j). The priors are specified as follows: t,-1¢ for 7&) and 55‘:74),

t,—3 for 7;74) and 5(12, and Beta(1, 1) for ;.

Table [2]reports posterior modes and 99% credible intervals for selected four parameters, along with
key diagnostics. MCMC is included as the gold standard, given its theoretical guarantees. As ex-
pected, all flow models are substantially faster than MCMC. Among the flow models, StiCTAF
provides the tightest and most reliable 99% intervals across marginals, aligning most closely with
the MCMC reference. Figure |3|displays the marginal posteriors for two representative parameters,

55") and oj. For gé"), the MCMC reference shows a pronounced heavy left tail; among the ap-

proximations, only StiCTAF successfully reproduces both the tail thickness and the overall spread.
For o, which follows a light-tailed distribution, StiCTAF performs comparably to the alternatives,
closely matching the central mass and dispersion. Full posterior results for all parameters are also

provided in Appendix

6 CONCLUSION

We have introduced a variational inference framework capable of accurately representing posterior
distributions that exhibit both multimodality and heavy tails. The central contribution is the replace-
ment of a light-tailed, unimodal base distribution with SBM, whose effective number of components
adapts automatically to the target distribution. To further improve tail representation, we incorpo-
rate a per-component tail transformation specifically designed to capture heavy-tailed structure when
present. In both synthetic and empirical studies, the proposed method achieves close agreement with
MCMC results while offering substantially greater computational efficiency. Moreover, it consis-
tently outperforms state-of-the-art flow-based variational inference models in terms of both mode
recovery and tail calibration.
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SUPPLEMENTARY MATERIAL FOR STICK-BREAKING MIXTURE
NORMALIZING FLOWS WITH COMPONENT-WISE TAIL ADAPTATION FOR
VARIATIONAL INFERENCE

A THEORETICAL DETAILS

A.1 DERIVATION OF EQUATION[2]

Here we derive the result in equation [2}

zwqd,f /f Q¢ dZ
:/f <Z/ zcomp.:k7v|,u,2,a,5)dv> dz
v=(v1,02,...
= /f(z) <Z qk(z)/ g(comp. =k | v)q(v|a,p) dv> dz
k=1 v=(v1,v2,...)

= /f(z) <Z qr(2)Ey [Wk(V)]> dz
k=1

[eS)
Q. bj

= EZN )

> (Tt ) et

with f(z) = logp(D, z) — log qg(2).

A.2 PROOF OF THEOREM [2.1]

Theorem A.1 (Liang et al.[(2022)). Let X be a random vector and let f : R¢ —R? be a bi-Lipschitz
bijective map (i.e. f and f~" are globally Lipschitz). If X € EE, then f(X) € EL for some & > 0.
In addition, if X € L2 then f(X) € L2. In particular, no bi-Lipschitz normalizing flow can map a
light-tailed base to a heavy-tailed output, vice versa.

Proof. Since f is bi-Lipschitz, there exist m, M > 0 and C > 0 such that, for all x € R4,
mllz| - C < [[f(2)| < Mllz|+C.
Hence, for all ¢t > 0,
Pr(|X|>@t—-C)/M) > Pr(|f(X)|>t) > Pr(|X|> (t+C)/m). 3)
(1) Assume X € &2, so Fx(r) = Pr(|X| > r) = exp{—arP} L(r) with L slowly varying and
log L(r) = o(r?). From equation[3|with 7 (t) := (t F C)/M, (t + C')/m we obtain
exp{ —ary ()P} L(ry(t)) = Fpx)(t) > exp{ —ar_(t)’} L(r_(t)).

Since r4(t) = O(t), we have r1 (t)? = t? 04 (t) with 04 (t) — M P and m~P, respectively, and
L(r4(t)) is slowly varying as a composition with an affine scaling. Therefore,

exp{—aM PP (1 +o(1))} Ly (t) > Fyx)(t) > exp{—am Pt*(1+o(1))} L_(t)

for some slowly varying L. By squeezing, there exists & € [a/M?, o/mP] and a slowly varying
Ly such that

Fyx)(t) = exp{=at"} Ly(t),  log Ls(t) = o(t"),
hence f(X) € &2.

(2) Assume X € LP, so Fx(r) = exp{—a(logr)?} L(r) with L slowly varying and log L(r) =
o((log 7)P). Using equation 3| again,

exp{ —a(logry(t))"} L(ro(t)) > Fyx)(t) > exp{ —a(logr_(t))"} L(r_(t)).

12
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Since log 74 (t) = log t + O(1), we have (logr (t))” = (logt)? (14 0(1)), and L(r(t)) remains
slowly varying as t — co. Therefore,

—log Fy(x)(t) = a(log t)? {1+ o(1)},
which is equivalent to ~
Frx)(t) = exp{—a(log )"} L (1),
for some slowly varying L with log L;(t) = o((logt)?). Hence f(X) € L.
Combining (1)—-(2) proves the stated closure properties. In particular, a bi-Lipschitz map cannot

send a light-tailed £-law to a heavy-tailed £-law, nor the converse. O

A.3 PROOF OF THEOREM[2.2]

Theorem A.2 (Tail dominance). Let X = (Xi,...,Xy4) be a random vector with independent
coordinates and X; € L(lxj foreach1 < j <d. Fixi e {1,...,d}andletY; = ¢;(X1,..., X)),

where g; : R® — R is globally Lipschitz. Define the tail-influence set S; = {j <i:3dR>0,¢; >
0, 7o s.t.  maxyx;|ze] < R, |z;| > 10 = |gi(x)] > cj|xj|}. If S; # 0, then Y; € L, with
ay, = minjeg, a;.
Proof. Leti € {1,...,d} be fixed and abbreviate Y :=Y; = ¢;(X3,...,X;) and S := S;. Since
gi 1s globally Lipschitz, there exist constants L > 1 and B > 0 such that

l9i(x)| < Lljzli + B (Vz €R). )

Upper bound (no heavier than the heaviest input). By equation 4|and the union bound,
Pr(Y]> 1) < Pr(D X1 > (t=B)/L) < Y Pr(IX;]> (t— B)/(Li)).
J<i §<i

For each 7,

Xl e L}lj, so Pr(|X;| > ) = 2% ¢;(x) with ¢; slowly varying. Hence
—logPr(|Y]| > ¢
lim inf og Pr(|Y| > 1) > mina; > min oy,
t—00 logt j<i jEs
ie. ay > minjeg o.
Lower bound (the heaviest influencer dominates). Pick j* € S with a;« = minjeg ;. By the

definition of S there exists R > 0 such that |z;«| — oo with maxgz ;- |zx| < R implies |g;(z)| —
o0o. Therefore, for each sufficiently large ¢ we can choose a threshold b(t) > 0 with

{lzj-1 > b(t), max o] < R} € {lgs(@)] > t}. (5)

Specifically, Taking b(t) = c;-t directly implies |g;(x)| > t.

By independence,
Pr(|Y| > 1) > Pr(|X;.| > b(t)) - Pr (%ax 1X5| < R).
i
The second factor is a positive constant ¢ € (0, 1] (independent of ¢). For the first factor, | X;-| €

Eij* gives Pr(|X;«| > x) = =% {;- () with £;- slowly varying. Since b(t) — oo ast — oo, we
obtain

—logPr(|Y| >t i« logb(t) — log £+ (b(t)) —
lim sup og Pr([Y| > t) < limsup o+ log b(t) — log £ (b(t)) O8CR
t—o0 logt t—o0 logt

Consider b(t) = c;+t, then log b(t)/logt — 1 and log ;- (b(t))/logt — 0 (slow variation). There-
fore

—logPr(|Y] > t) <

lim su .
P log t ’
Combining the upper and lower bounds shows oy = minjeg o, and thus Y € Eiy. O

13



Under review as a conference paper at ICLR 2025

A.4 TAIL ESTIMATOR IN VARIATIONAL INFERENCE

A.4.1 VALIDITY OF ASSUMPTION

We restate the assumption used in the main text and propose an equivalent condition.

Assumption A.1 (Directional Tail and Monotonicity (restated)). Fix u € R%, o > 0, andu € S* 1.
Assume the posterior density p(z | D):

* p(- | D) has directional tail index &, € (0, 00),

* p(p + oru | D) is monotonically decreasing for all v > rg, for some constant ro > 0.

Lemma A.1 (Directional density regular variation). Under Assumption there exist &, € (0, 00)
and a slowly varying function Ly : (0,00) — (0, 00) such that, as r — oo,

p(p+oru| D) = pm(14Ew) Ly(r) (1 + 0(1)).

Proof. Fix y € R% o > 0, and u € S9!, and write gu(r) = p(u + oru | D) for r > 0. By
Assumption|A.1] g, () is eventually monotone decreasing and the posterior has directional tail index
&u € (0, 00) along u. Define the (one—dimensional) directional tail integral Fiu(r) = [ gu(s) o ds
for r > 0. The directional tail-index assumption means that F', is regularly varying with index —&,,
ie., Fyu(r)=r—t L (r) (14 o(1)) as 7 — oo, for some slowly varying L.

Since g, is eventually monotone, the monotone density theorem (Karamata theory; see Bing-
ham et al| (1989) Th. 1.7.2) yields gu(r) ~ {& Fu(r)}/r as r — oo. Hence gy(r) =
r*(lﬁu){fuL&O)(r)} (14 o(1)). Setting Ly(r) = €L (r), which is slowly varying, we ob-
tain p(p + oru | D) = r~ (&)L, (r) (1 + o(1)) as r — oo, which is the claimed directional
regular variation of the density along u. O

The result of Lemma[A.T]is a density-level regular-variation statement along the ray ;. + or u. By
Karamata’s theorem for integrals (De Haan & Ferreira (2006)), see Th. B.1.5)

o 1
Pr([(u,X)]; >7) = / s~ (s) ds ~ & 75 Ly (r),
so [(u, X)]1 € £, and, by Definition|2.2] the directional tail index satisfies ax (1) = &u. There-
fore, under the condition that p is monotonically decreasing along the direction u over a sufficiently
large range, Definition and the results of Lemma [A.T] are equivalent. Accordingly, we shall
hereafter treat the two conditions interchangeably and refer to them collectively as Assumption[A.T]

This additional monotonicity/regularity is mild and is satisfied by the canonical heavy-tailed families
used in practice (Pareto, Student’s—t/Cauchy, and standard scale mixtures), so in typical settings the
assumption is essentially equivalent to requiring that the projection [(u, X)]; has directional tail
index &,.

Examples. For a Pareto(«) distribution with threshold @i, > 0, F'(2) = (2min/z)*(1+0(1)) and
f(x) = ax®, 2= @D (1 + o(1)), so Assumptionholds with &, = a. For a Student’s—(v)
distribution (Cauchy when v = 1), the one-sided tails satisfy F'(x) ~ C,z~" and f,(x) ~
C!|x|~(»*+1), hence the assumption holds with &, = v, absorbing any slowly varying corrections
into L.

Finally, replacing (u, o) by any fixed (ug, ok ) only shifts logr by a constant, since log(oyr) =
log(or) + log(ok/o); this is absorbed into Ly, so the asymptotic slope —(1 + &) is unaffected.

A.4.2 PROOF OF THEOREM[3.1]

Lid. . Lo
Lemma A.2. Let z1,...,z, ~ Student’s-t, with any fixed v > 0, fix a direction u € S,
and set v; = |z}!| = |(z;,u)|. Let r(1y > --- > () denote the order statistics and fix integers

1 <1 < j. Define
Ai,n = log T(i) — log r(jJrl)-

14
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Then

1 .
A LN log(j—i,— )
n—00 14 1

Proof. Step 1 (Tail regular variation). Since z;' has a univariate ¢, law up to a positive scale,
R := |z}| has a regularly varying tail with index v:

F(z):=Pr(R>z)~Cx VL(x) (z — 00),
for some slowly varying L and constant C' > 0; see, e.g.,|Resnick| (2007} Ch. 1).
Step 2 (Quantile representation of top order statistics). Let U(y) := inf{z : F(z) > 1 — %} be the
tail quantile function. By regular variation of F', one has
Uly) = ¢/ Uy),  y— oo,

for some slowly varying ¢ (Karamata theory; see Bingham et al.|(1989, Thm 1.5.12)). Moreover, for
fixed m,

T(m) = U(%) {1+op()}  (n—00), 6)

see standard order-statistic asymptotics for heavy-tailed models (e.g., Resnick! (2007, Prop. 0.10,
Thm. 3.3)).

Step 3 (Log-spacing limit). Combining equation[6|for m = i and m = j + 1,
n j+1 L(n/i)
J+1 ' tn/(G+1))

Since ¢ is slowly varying, ¢(n/i)/¢(n/(j 4+ 1)) — 1 as n — oo for fixed 4, j, hence the middle term
is o(1). Therefore

A, =log U(%) — log U( ) +op(l) = %log + log + op(1).

1 I+ 1
Aim = ~log? 0 4 op(1),
14 1

which yields the claimed convergence in probability. Tightness follows immediately from conver-
gence to a finite constant. O

Remark A.1. For comparison, if the proposal is light-tailed in the Gumbel domain (e.g., Gaussian),
then U(y) ~ /2logy and the same calculation gives A; , — O; in particular, A; ,, remains tight
but shrinks to zero, reflecting slower access to the extreme region.

We now state and prove a theorem that is slightly broader in scope than Theorem 3.1}
Theorem A.3 (Directional consistency and tail-class behavior). Let z1,..., 2, b Student’s-t,

forafixedv > 0, fix j > 1 and a direction u € S, and define the estimator f&k) asin Section
Under Assumption[A.]]

E(k) P

I
Remark A.2 (Behavior outside the polynomial class). The conclusions extend beyond Assump-
tion[A1|and characterize two complementary regimes in the same density-level scale.

Lighter than any power. If along direction u the density decays faster than every polynomial,

—logp(pr + oxru | D)
logr r—o0

—for instance when, for some o > 0 and slowly varying L,

plur+orru | D) ~ e L(r) (p>0), or  plpxtorru| D) ~ e 218N L(r)  (p>1),
then the slope-based estimator diverges: él(lk) — 00 in probability.

Heavier than any power. If along direction u the density decays more slowly than every polynomial,

—log p(ux + oxru | D)
log r r—oo

0,

15
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—for instance when, for some slowly varying L,

p(px +opru | D) ~ e e L) (0 < p < 1), or

p(pk + opru | D) ~ 00 Lo(r) = oo slowly varying,
then the estimator collapses: él(lk) — 0 in probability.
Proof of Theorem[A.3] Fixu € S%"!and j > 1. Write r; := |28*],let (1) > - -+ > 1, be the order
statistics, and set ¢; := log 7(;) and t := log r(;1). Define the local difference quotients

Qi = log p(pk + oxryu | D) —logp(uy + oxrpnyu | D) =1
(YU tl—to ) - PR BV

By Assumption[A-T]
logp(ux +oxru | D) = Cy — (14 &) logr + Lu(logr) + o(1),
where £44(t) := log Ly(e') satisfies £,,(t + A) — £y () — 0 for each fixed A > 0. Hence

@m:—0+&d+éﬁggéﬁﬁ
1 0

+o(1).
By Lemma to > ocoandt; —tyg = A; E> c¢; > 0 for each fixed ¢ < j, so the fraction
(bu(t;) — Lu(to))/(t; — to) 5o uniformly over ¢ = 1,. .., j. Therefore

1 J

J

P 2 1 P

} E Qin — —(1+&u), N fl(lk) = —; E Qin—1 = &
i—1 i=1

O

Proof of Remark[A2] 'We show the two regimes separately. Let ¢; := logr(;) and to := logr(;41)
as above, and set

_ logp(pk + ope’u | D) —logp(ux + one™u | D) ¢(t:) — ¢(to)

t; —to ti—to

Qi,n

where ¢(t) := —log p(ux + oxetu | D).

(i) Lighter than any power. Assume ¢(t)/t — oo as t — oo. For each fixed i < j, Lemrna
yields t; — ty — ¢; > 0 in probability and ¢y — co. Hence

¢ti) —(to) & _

Qi,n = - ti — tO s
SO f% 5:1 Qin—1 LN +00 and therefore f,(lk) — 00 in probability.

(ii) Heavier than any power. Assume ¢(t) = o(t) as t — oo. Then for any € > 0 there exists T
such that ¢(t) < et forallt > T. Take t = to > T and ¢ = t; — to; for large n, LemmaMensures
¢ — ¢; > 0, and with ¢ eventually increasing we have

¢(to + ) — B(to)

0 < < e
(&
Thus Q; », L 0foreachi < jand j~! > Qin L 0. Consequently, —% I Qim—1 LA
As is standard for tail-index estimation we truncate at 0, hence él(,k) — 0 in probability. [

16
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A.4.3 CONVERGENCE RATES UNDER SECOND-ORDER REGULAR VARIATION

By making an additional assumption on the slowly varying factor L, (r), we can compute the con-
vergence rate of the proposed estimator fl(lk)

Assumption A.2 (Second-order directional density regular variation). In Assumption [A-1} write
Ly(t) :=log Ly(e"). Assume there exist an index p < 0 and an auxiliary function A : (0,00) — R

with A(r) — 0 such that the following uniform second-order increment holds: for every compact
set K C (0,00),

o | fult Flog @) — Gu(1)
oo Alet)

where H,(z) = (zf — 1)/p for p # 0 and Hy(z) = log x. Equivalently, along the ray j1+ oru we
have the uniform log—density increment expansion

suE | [logp(u +orzu| D) —logp(p+oru] D)} + (14 &) logx — A(r) Hp(x)| = O(A(T)),

AS

—Hy(z)] — 0 (t — 00),

as r — oo, for every compact K C (0, 00).

Assumption [A.2]is the standard de Haan second-order refinement for slow variation (De Haan &
Ferreira, [2006). Typical examples (with L,, eventually positive) include: (i) Ly(r) = (logr)” with
B € R, for which p = 0 and one may take A(r) < (log7)~! (hence rates in powers of log 7); (ii)
Ly(r) =14 cr? + o(r?) with p < 0 and ¢ # 0, giving A(r) =< r? (hence polynomial rates). Both
examples satisfy the uniform convergence on compact 2—sets required in Assumption[A.2]

Theorem A.4 (Rate of convergence). Under Assumptionsand with z; Bl ty (v >0)and
fixed j > 1, let 7(,) 1= |z(“m) s tm i= log vy, and denote ¢; := lim,, oo (t; — tj41) = %log%
(Lemma @[) Then

2(k) 1 Hyle™)
EF =t = Riup Alrgiy) + ob(A(rin))s  Kjwp = 5~

o
=

In particular, if A(r) < (logr)=" with B > 0, then A(r11)) =< (logn)~? and él(lk) — &y =
Op((logn)=P); if A(r) < r? with p < 0, then A(rgieny) < nP'v and él(lk) —&u=0p (np/”).
Proof of Theorem[A4] Fix u € S**and j > 1. Let r(,,,) := |20yl tm 1= log 715,y and

_ logp(uk + oxr@u | D) —log p(uy + oxrryu| D)
ti — i1

Qin: , t=1,...,].

By Assumption[3.1} along the ray we can write
log p(px + oreu | D) = Cy — (1 + E4)t + Lu(t),  with  £4(t) := log Ly(e").

Hence ' '
u ti — Lu t;
Qin = —(1+£4) + (t:) »(m)_
ty —tj4

By Lemma tjiy1 —ooandt; —tj41 LN c; > 0withe; = %log#. Setz; , := exp(t;i—t;11).
Then z; , ﬂ e“ and, for all large n, the random multipliers x; ,, take values in a common compact
set K C (0,00) (since {c;}7_, is finite). Apply Assumption witht = t; 41 and ¢ = x; , to
obtain the uniform second-order increment

Cu(ti) — lultjtr) = A<€tj+1)Hp($i,n) + O(A(etHl))
uniformly over ¢ = 1,. .., j. Therefore,
Aleti+r)

Qi,n = _(1 + gu) +
ti —tj1

Hp(ﬂ;‘i,n) + O]p(A(etj+1 )) .

17
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. . ) . . . . P
Averaging over 1 = 1,...,j and using the continuous mapping theorem with ¢; — ;.1 — ¢; and

P . .
Tjpm — €9 ylelds

,ZQM: (1+&)+ (;zi: Cv) (e"+1) + op( A(e+1)).

By the deﬁmtlon of the estimator,

Ak 1
& = 5 D Qi — 1=Ky, A1) + op(A(e'11)),
=1

1y Hy(

with K50 = 52 Jicq 07(:) Finally, e'+ = r(; 1) gives the stated expansion.

For the concrete rates, recall that for ¢,, proposals the (j+-1)-st upper order statistic satisfies 7(; 1) <
n'/?, so that: (i) if A(r) < (log7)~? with 8 > 0, then A(r(;4+1)) < (logn)~#; (i) if A(r) < r°
with p < 0, then A(7(;41)) < nP/V. This yields the two Op(-) displays and completes the proof. [

A.5 COMPONENT-WISE PUSHFORWARD

Construction of a probability measure. Let (7 );en be a probability mass function on N (i.e.,
7 > 0and Y ;- mx = 1). Foreach k € N, let g, be a probability measure on (R, B(R?)) and let

T®) . R? — R be a measurable map. Define v : B(R?) — [0, 1] by
=S () N(A), A e BEY)

Then v is a probability measure on (R, B(R?)). Proof. For each fixed k, the set function A
g ((T™)~1(A)) is a measure because T*) is measurable and gy, is a measure. Since 7 > 0,
Tonelli’s theorem implies that the pointwise countable sum of measures is a measure; thus v is
countably additive and v (& ) = 0. Moreover,

e}
Zﬂ'ka (T™)~ Zﬂ'kq}’c )= m =1,
k=1

so v has total mass one. Hence v is a probability measure. ([

Equivalent product-space construction. On the product space (N x R?, 2N @ B(R?)), define the
probability measure y by

n({k} x A) =7, q(4), keN, AcBR?),
and the measurable map 7 : N x RY — R by T(k,2) := T (z). Then Ty is a probability

measure on R? and satisfies
(Tom)(A Zm a((TM)71(4)) = w(A),

so the component-wise transform followed by marginalization over the index yields the same v.

Change-of-variables for component-wise transforms and the resulting density. Assume each
¢i admits a density (again denoted g;,) with respect to Lebesgue measure and each 7(%) : R4 — R?
is a bijective C! map with measurable inverse and Jacobian J(*)(z) = VT¥)(z). For z € RY,
write 2, := (T®))~1(2). The change-of-variables formula gives

(T4 i) (2) = aqi(@r) |det Jipoy-1 ()| = aqilar)|det T®) ()|

Consequently, the density of the (countably) infinite transformed mixture v = Z;O:I Tk qu&k)qk. is

—1

z) = iﬂk au((T™) 72 (2)) [det JE((TR) 7L (2)) ‘71, 2 e RY,
f=1

whenever the sum is finite (e.g., by Tonelli/DCT under mild tail and Jacobian growth controls). This
identity is sufficient for exact likelihood evaluation of transformed mixtures.
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Sampling and likelihood evaluation (combined). Sampling follows directly from the product-
space viewpoint in A.X.1: draw K ~ Categorical(my, 7o, ...), then X ~ ¢g, and output Z =

T (X),ie., Z = T(K,X) ~ Tyu = v. For likelihood evaluation at z, compute for each k the
inverse 2 = (T"))~1(2) and log|det J ) (z},)],

logq(z) = logz exp{log % + log qr(zk) — log’det J® (xk)|} ,
k=1

using standard log-sum-exp stabilization.
A.6  TAIL TRANSFORM FLOWS

This section presents further details on Tail Transform Flows (Hickling & Pranglel |[2024), which we
employ to perform component-wise transformations from light-tailed base distributions to heavy-
tailed targets.

For component k and coordinate [, write
(k)
n _ k), ). fk) 2R\ _ @) (Ol 2O =P\ 8
0 O €080 = 1ol e ) ]
S1

where s; = sign(z() — u,(f)) € {+1, —1} selects the right/left tail and we denote

l
o _ 20w )
g 7

Forward Jacobian. Differentiating the scalar map in z() yields a closed form:

(k),(1) (1)\2 (D[« — (£ 41

T 2 &+

OTrei wy _ \fexp<_(r ) )erfc(v |) (€57 +1)
8z(l ﬁ 2 \/5

Hence the full Jacobian determinant of the component-wise transform T'pp
(T(k)y(l) T(k)y(d))
TTF » A TTF

is the product
H L0, M — D)\ = (€® 41
‘det T(k) ’— exp( (lﬁ)l‘k )2) erfc(lz(l)i'ukl) ( t )
o2

Monotonicity and smoothness. Bach scalar map is strictly increasing (derivative > 0), and it is C"*
I . : l
at z() = u,i) with 9T/ |z(l>:u§f’ = /2/m, independent of £ and a,i ),

Closed-form inverse. Given z(!), define
o _ 0 . —1/EW
D — % s = sign(t®),  BO = (1+815§§) t(z)) W
T%
Then the inverse map is

(Tgfr)F(l)) H2V) = JTs 0 4 0' D V2 erfe™ (W),
Inverse Jacobian. Letu!’) = erfe™'(E®). The per-coordinate inverse derivative is

a(T(k) (l)) ﬁ W £k g (1)\2
P = S ) o )

Consequently,

d
et Jirg )1 ()] = H

SIS

30! . _1/£0)
erfc (z) &, +1 exp( (ug))z)7 u&z) _ erfc‘1<(1+sl§§f)t(”) /&g )
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Table 3: Estimated percentiles of Gaussian-Inverse-Gamma distribution Reported are the 0.1-
and 99.9-percentiles for the first coordinate and the 99.9-percentile for the second coordinate from
sample of 10,000.

Method B 0.1-ptile  B99.9-ptile o2 99.9-ptile
Target Gaussian-Inverse-Gamma -3.15 3.18 5.56
NF (Gaussian) —3.06 3.01 2.63
NF (Gaussian Mixture) —2.91 3.08 3.30
TAF —7.98 8.48 5.86
¢TAF —2.98 3.06 3.07
¢TAF Mixture -3.21 3.20 2.71
ATAF -3.17 4.33 2.81
StiCTAF —-3.11 3.11 5.15

B EXPERIMENTS DETAILS

This section provides further details for the experimental results conducted on Section ] and Sec-
tion[5] As previously illustrated, we include flow models with a standard Gaussian base, a Gaus-
sian mixture base, TAF (Jaini et al., 2020), gTAF (Laszkiewicz et al.| [2022), and ATAF (Liang
et al.| [2022) as the benchmark methods. In addition, we consider a normalizing flow model with a
stick—breaking heavy—tailed mixture base to show that a heavy—tailed mixture base alone is insuffi-
cient. See Section [C| for the details.

For every flow based models, we use N = 2 blocks, each block consisting of an autoregressive
rational-quadratic spline (ARQS) transform with 3 bins and a coupling network with 64 hidden
units, followed by a learnable LU-linear permutation layer. For every mixture base flow models
including StiCTAF, K = 20 mixture components are used. For the numerical stability, the TTF
were applied to those components with expected weight higher than 1 x 1072, All models are
implemented in PyTorch 2.7.0+cul26 with CUDA 12.6 using the normflows library (Stimper
et al.,[2023)), and are executed on a single NVIDIA GeForce RTX 4090 GPU.

B.1 GAUSSIAN-INVERSE-GAMMA DISTRIBUTION

This section details the numerical experiment in Section[d] where the target distribution is
(8,0%) ~ N(0,1) x Inv-Gamma(shape = 3, scale = 1).

We ran 300 iterations for ATAF and for NF with Gaussian and Gaussian—mixture bases; 500 iter-
ations for TAF and StiCTAF (with 450 for base learning and 50 for flow learning); and 1000 iter-
ations for gTAF and gTAF-Mixture, until convergence. The base distributions were initialized as
Student’s ¢ distributions with degrees of freedom 4 for TAF, (30, 3) for ATAF, (30, 2.89) for gTAF,
and (30, 2.72) for gTAF-Mixture. For the last two, the initial degrees of freedom were estimated
using the tail estimator proposed in Section Student’s-#-based methods showed highly unstable
training process, so the initial degrees of freedom where clamped greater than 2.0, and 4.0 for TAF
which showed the highest instability. All method used learning rate of 5 x 1073,

Figure [4] presents the results across all methods, based on 10* samples from each approximating
distribution. The Dotted reference lines indicate the 0.1% and 99.9% marginal percentiles for 3,
and the 99.9% marginal percentile for 2. Table [3| summarizes these values for each method. We
observe for TAF and ATAF that mixing across dimensions leads to a failure to accurately capture
the tail thickness of 3, which corroborates Theorem [2.2] Only StiCTAF accurately captures the tail
behavior in both 5 and o2.

B.2 COMPLEX MIXTURE TARGET DISTRIBUTION

For the second numerical experiment in Section[d] the target distribution is a mixture of four compo-
nents: two Gaussian x Student-t components (with v = 2 and v = 3, respectively), one Two-Moons
component, and one Student-t(v = 2) x Student-t(v = 3) component. The component centers
are (6,0), (0,6), (—3,—4), and (0, 0), and the mixture weights are (0.2, 0.2, 0.1, 0.5) in the same
order.
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Figure 4: Normal x Inverse-Gamma Target: Full comparison with benchmark methods using
samples of size 10* per model; dotted lines indicate the 0.1%/99.9% marginal percentiles.

We ran 1500 iterations for NF (Gaussian Mixture) and 1000 iterations for all other methods (for
StiCTAF: 800 iterations for base learning and 200 for flow learning), continuing until convergence.
The initial degrees of freedom were (2,2) for TAF, ATAF, and gTAF-Mixture, and (2.54,2) for
gTAF. All methods used a learning rate of 1 x 1073,

Figure shows 2 x 10 samples from each approximating distribution, with marginal density curves
displayed along the top and right margins. It is evident that mixture-based flow models (Gaus-
sian Mixture, gTAF-Mixture, and StiCTAF) more effectively recover all modes compared with
unimodal-based flow models. For a quantitative comparison, Table[d]summarizes the mean and stan-
dard deviation of the forward Kullback—Leibler (KL) divergence (estimated via Monte Carlo using
true target samples) and the normalized effective sample size (ESS) computed from samples drawn
from the trained models. Among all methods, StiCTAF attains the best performance—yielding the
lowest KL divergence and the highest ESS.

B.3 REAL DATA ANALYSIS

We analyze the daily maximum wind speed data for the year 2024 obtained from the Korea Me-
teorological Administration (https://data.kma.go.kr/). We consider four stations (J = 4) and four
seasons (S = 4). Let X(; ), denote the daily maximum wind at station j € {1,...,J}, sea-
sons € {1,...,5}, and day index ¢. For each (7, s), we fix a high threshold w; , and work with
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Figure 5: Complex Multimodal Target: Full comparison with benchmark methods using samples
of size 10* per model; curves along the top and right margins show the marginal densities.

exceedance residuals

Y50 = X(js)t — wjs conditioned on X(; 5) 1 > ujs.

Following [Fawcett & Walshaw| (2006), we adopt a pairwise extreme-value framework: threshold
exceedances are modeled with GPD margins, and dependence between consecutive days is captured
by a logistic bivariate extreme-value model. We use this structure to analyze the 2024 KMA wind
data across stations and seasons.

GPD marginal for threshold exceedances. Following|Fawcett & Walshaw|(2006)), conditional on
exceeding u; s, the residual Y(; oy = X(; 5),t —u;,s is modeled by a Generalized Pareto Distribution
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Table 4: Forward KL-divergence and normalized ESS Scores for estimating complex multimodal
target distributions. (mean =+ standard deviation)s over 10 random seeds are reported. Lower KL
and higher ESS is the better.

Method Forward KL ESS(normalized)
NF (Gaussian) 1.92+1.21 0.31 £0.17
NF (Gaussian Mixture)  0.33 £ 0.05 0.65 £+ 0.23
TAF 0.90 £ 0.09 0.21 +0.06
gTAF 2.80 +0.20 0.07 +0.07
gTAF Mixture 0.43 £0.12 0.48 +£0.20
ATAF 0.94 +0.33 0.19 +0.07
StiCTAF 0.22 +0.09 0.79+0.19

(GPD) with scale parameter o; ; > 0 and shape parameter 7; ;. Its CDF and PDF are

Ni sy —1/nj,s
,5
H(y | Oj,s5 nj,s; uj,s) =1- (1 + OJ_ ) 5 ) S S(Uj,s777j,s)a (7)
3,8
N sy —1/mj,s—1
,5
h(y | Uj7sv77j,s§uj,s) = (1 + ! ) ) (/S S(Uj,sanj,s) (8)
J>s Oji,s

respectively, where the support is

[0, 00) ifn; s >0,

Sogemia) ={y 2 0: 1k miy/og >0} = {[0 —055/55) ifn;s <0
9 7,8 VIG 7,8 :

In the limit n; ; — 0, equation [7| reduces to the exponential CDF H(y) = 1 — exp(—y/0; ).
When n; s > 0, the GPD is heavy-tailed with Pareto-type tail index 1/7; ,; when n; s < 0, it has a
finite upper endpoint (short/light tail).Since our focus is on heavy tails in wind extremes, we restrict
attention to the case 7, > 0 (enforced by the positive parameterization introduced below).

First-order pairwise likelihood decomposition. Daily wind extremes often display short-range
temporal dependence—consecutive days tend to co-vary. To address this, [Fawcett & Walshaw
(2006) model adjacent-day pairs and aggregate them via a first-order (Markov) composite likeli-
hood. Within a fixed (j, s) cell, write z; = X{; ,),; for brevity, the composite likelihood in terms of

(05,55 Mj,s) 18

njs—1
f(xt,xprl | O0j.sy1j S)
L -,s(O’-,s; n ',s) = f(l'l | 0',5777'75) ) 7 ®
.5 (Tjss M 3,815 £[1 f(@e | 0js,m5,s)

where f(x¢,x441 | 0j,s,7j,5) is the joint density for the consecutive pair and f(z; | 0 5,7;,5) is the
corresponding marginal. The joint density is specified in the next paragraph via a logistic bivariate
extreme-value model after transforming each marginal to an extreme-value scale.

Logistic bivariate extreme—value model after marginal transformation. Fix a station—season
cell and suppress indices. Let u be the threshold, A the exceedance rate, and (o > 0,1 > 0) the
GPD parameters. Transform = > u to an extreme—value scale via

1/n
Z() = A7 (14 2e)
The joint CDF for a consecutive pair (x¢, x111) on this (generalized-Pareto) scale is

F(zy, w01 | oyn,0) = 1— [Z(ft)il/a + Z($t+1)71/a}+7 a € (0,1], (10)

where (a); = max(a,0). Here, @ = 1 corresponds to independence, and v — 0 yields complete
dependence.
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Region—wise contributions for consecutive pairs. For each (j,s) and consecutive pair
(x¢, z441), define the four regions by thresholding at u; s:
Ry {xe > uy o1 > u}, Rio:{xe >wu, 241 <u}, Ror:{z: <wu, zy1 >u}, Roo:{z: <wu, 2411 <u},
with u = u; s and 2y = X;,4) ¢ for brevity. Let Z(-) be as above and write
0Z(x Z(x
(&) _ () e
ox 0j75(1 +1js(x— u)/ojvs)
Using F'(-,- | 0j,5,mj,s, ;) from equation the numerator f(x¢, Zi41 | 0j5,7),5) in equation@]is

O2F 0°F 0Z () 8Z($(t+1))
i) Rq1 : jsylljs) = 5 . = ’
) Ri1: f(z, xi41 | 0j,55Mj.5) Oy Orygs | (westers) | D21 020 |(2(0),2(00)) O o
. or oF 0Z(x+)
Rio : i,syTlj,s) = 5 = 5. ’
(") 10 f(mt7$t+1 | SRR ) 8!17t (z¢,ut) 821 (Z(xy), Z(ut)) ox
oF oF 0Z(w(141)
0 o o oy = 2| O o)
(i) Ro1 : f(2¢, 2441 | Oj.s,7j, ) 01 l(ut, 2esr) Oz l(Z(ut), Z(2e11)) ox

. — z — (XJ
(V) Roo : f(z¢, 441 | 05, mj,s) = F(u u™ | 05,5, 05) = 1 = {Z(Uﬂ Ve 4 Z(ut)H e L
where u™ denotes evaluation at the threshold from the exceedance side. The denominator f(z; |
0j.s,7j,s) i equation E] equals the GPD density h(zy — u | 0js,7js) if 2 > u, and the
non—exceedance mass otherwise.

Overall likelihood. The full composite likelihood is £(6) = [T7_; [T5_; £;.(0) with £; ,(6) as
in equation[9]and region-wise c; , ; given above. All other implementation details (threshold choice,
numerical derivatives at u ", and season-specific handling of A; ;) are deferred to the Appendix.

Parameterization. We dispense with hierarchical random effects and use a non-hierarchical pos-
itive parameterization. For j € {1,...,4} and s € {1,...,4},

ojs = softplus (7](0)) + softplus (52”)), n;,s = softplus (,Y;n)) + softplus (52”)),
which enforces o, > 0 and n;, > 0. This additive form models station and season effects sep-
arately. For extremal dependence, each station has its own parameter ; € (0,1). Since the nor-
malizing flows operate most naturally on unconstrained real supports, we introduce a; € R with
a;j = sigmoid(a}) and perform inference on a;.

Prior and experiment settings. We assign independent priors to the 20 parameters as follows: the

raw scale effects 7\%) and £!%) receive Student-t,_1o, and the raw shape effects ") and £\") receive

Student-f,—3. This choice allows the posterior to accommodate dimension-specific tail thickness
(lighter tails for the o-effects, heavier tails for the n-effects). For extremal dependence, «; € (0, 1)
is given a Beta(1,1) prior; as noted above, we work with aj € R via a; = sigmoid(aj), and

include the change-of-variables term 2?21 log{a;(1 — «;)} in the log-likelihood.

Baseline MCMC uses an adaptive random walk Metropolis sampler (Haario et al.l 2001). The pro-
posal covariance is updated online to follow the local posterior geometry, which improves mixing
for correlated and moderately high-dimensional targets while requiring neither gradients nor exten-
sive tuning. This sampler is widely used in applied Bayesian analysis—especially for hierarchical
models, state-space time series, and latent-variable settings—and is available in mainstream soft-
ware. The code is implemented in R and was run on a dual-socket Intel Xeon Silver 4510 system
with 24 physical cores and 48 threads (peak 4.10,GHz) under x86_64 Linux.

Figure [6] compares the estimated posteriors across all methods. Among the flow-based approaches,
StiCTAF most consistently recovers the correct tail thickness in the majority of dimensions and
captures the overall density shape with high stability.

Table[5|reports the posterior modes and 99% equal-tailed credible intervals for each method, together
with computing time. StiCTAF requires more training time than other flows because it optimizes
parameters at the component level, yet it remains far faster than MCMC while achieving comparable
accuracy. Notably, flows with heavy-tailed bases such as TAF, gTAF, and ATAF do not fully recover
the 99% intervals, whereas StiCTAF delivers reliable tail behavior and outperforms all baselines.

24



Under review as a conference paper at ICLR 2025

Table 5: Posterior modes with 99% equal-tailed credible intervals for all twenty parameters of
the 2024 KMA wind dataset. The compared methods include MCMC (reference), NF (Gaus-
sian/Gaussian mixture), and TAF variants (TAF, gTAF, gTAF mixture, ATAF, StiCTAF). Computing
time (hours) is reported per method.

Parameter MCMC StickTAF NF(Gaussian) NF(Gaussian Mixture)
A{) 0.40 (-2.09, 1.66) 0.38 (-1.96, 1.51) 0.38 (-1.62, 1.58) 0.37 (-1.82, 1.56)
A8 1.46 (-0.43, 2.90) 1.45 (-11.43,2.72) 1.47 (-0.43,2.73) 1.32 (-0.74, 2.78)
A8 1.52 (-0.24, 2.91) 1.49 (-0.75, 3.01) 1.46 (-0.24, 2.72) 1.45 (-0.28, 2.80)
’y<g) 0.40 (-1.87, 1.73) 0.36 (-2.21, 1.57) 0.39 (-1.80, 1.61) 0.40 (-2.17, 1.63)
(J) 1.09 (-1.83, 2.55) 0.99 (-0.99, 2.56) 1.04 (-0.77, 2.45) 1.15 (-0.82, 2.46)
(U) 0.29 (-2.27, 1.76) 0.38 (-1.98, 1.78) 0.38 (-1.70, 1.71) 0.32 (-1.87, 1.80)
(”) 1.10 (-0.71, 2.85) 1.32 (-0.65, 2.99) 1.26 (-0.52, 2.74) 1.14 (-0.46, 2.64)
(‘7) 0.56 (-1.60, 1.85) 0.53 (-1.78, 1.88) 0.55 (-1.48, 1.80) 0.52 (-1.46, 1.92)
fy(") -2.35(-16.55,-0.72)  -3.37 (-11.15,-0.70)  -2.45 (-6.50, -0.78) -2.46 (-6.93, -0.71)
fyé") -1.17 (-9.62, 0.19) -1.43 (-9.50, 0.30) -1.23 (-4.89,0.19) -1.30(-4.72,0.22)
fyé”) -1.96 (-10.06, -0.48) -2.14 (-9.30, -0.50) -2.04 (-5.42,-0.41) -2.25 (-6.03, -0.40)
fyfl") -1.67 (-11.47,-0.35) -1.80 (-6.43, -0.18) -1.78 (-5.02, -0.34) -1.82 (-5.52, -0.44)
sg") -1.69 (-11.21,-0.32)  -1.81(-11.89,-0.27)  -1.72(-5.89,-0.31) -1.53 (-6.66, -0.40)
eg") -2.02 (-11.95,-0.38)  -2.06 (-12.09,-0.51)  -1.95(-6.29,-0.51) -1.89 (-7.61,-0.51)
elm -1.52(-9.18, -0.13) -1.62 (-10.21,-0.26)  -1.50 (-4.71, -0.22) -1.45 (-5.14,-0.14)
5?1") -2.09 (-11.64,-0.50)  -2.22(-13.88,-0.71)  -2.14 (-5.98, -0.52) -2.03 (-6.82, -0.45)
ol 0.50 (0.05, 1.02) 0.58 (0.13, 1.06) 0.52 (0.06, 1.02) 0.55 (0.09, 1.07)
1% 0.81 (0.30, 1.33) 0.78 (0.30, 1.32) 0.77 (0.31, 1.30) 0.79 (0.29, 1.32)
o 0.72 (0.21, 1.23) 0.72 (0.24, 1.27) 0.72 (0.26, 1.23) 0.67 (0.22, 1.24)
o 0.55 (0.08, 1.08) 0.60 (0.11, 1.13) 0.53 (0.08, 1.04) 0.56 (0.10, 1.07)
comp.time (hr) 11.90 0.08 0.03 0.03
Parameter TAF ¢TAF ¢TAF Mixture ATAF
(U) 0.38 (-1.78, 3.07) 0.47 (-1.72, 1.63) 0.43 (-1.86, 1.63) 042 (-1.70, 1.73)
(0) 1.40 (-2.72,2.98) 1.41 (-0.36,2.77) 1.39 (-0.31, 2.72) 1.42 (-0.08, 2.85)
(") 1.49 (-0.89, 3.42) 1.47 (-0.07, 2.86) 1.49 (-0.25, 2.80) 1.49 (-0.13, 2.93)
(") 0.34(-1.97,3.23)  0.45(-1.91, 1.69) 0.44 (-1.76, 1.66) 0.35 (-1.63, 1.70)
(0> 0.98 (-3.44, 3.70) 1.01 (-1.06, 2.54) 1.08 (-0.87, 2.56) 0.88 (-1.10, 2.47)
(U) 0.39 (-3.17, 3.44) 0.34 (-2.02, 1.64) 0.45 (-1.65, 1.70) 0.44 (-2.36, 1.82)
(U) 1.14 (-2.96, 3.82) 1.28 (-0.66, 2.88) 1.17 (-0.70, 2.83) 1.18 (-1.04, 2.82)
(U> 0.44 (-3.24,4.10) 0.66 (-1.48, 1.88) 0.45 (-1.70, 1.78) 0.39 (-2.25,2.11)
(") -2.56 (-5.35,0.61)  -2.41(-9.71,-0.69)  -2.60 (-10.51,-0.76)  -2.47 (-7.15, -0.66)
(") -1.30 (-4.93, 3.82) -1.15 (-6.67, 0.31) -1.19 (-6.43, 0.26) -1.2 (-4.33, 0.28)
(") -2.33(-6.97,0.84)  -1.87 (-7.66, -0.51) -2.07 (-9.18, -0.46) -2.02 (-6.07, -0.18)
(") -1.74 (-4.96,2.63)  -1.68 (-7.56, -0.22) -1.63 (-7.50, -0.31) -1.64 (-5.45,-0.15)
07) -1.70 (-4.71,0.05)  -1.66 (-6.73, -0.27) -1.71 (-7.24, -0.34) -1.79 (-6.15,-0.11)
(") -2.60 (-7.12,1.89)  -2.17 (-8.20, -0.47) -1.90 (-8.04, -0.45) -2.04 (-7.91, -0.11)
g") -1.64 (-6.04, 1.02)  -1.56 (-6.54, -0.12) -1.63 (-6.74, -0.22) -1.45 (-5.85, 0.01)
ein) -2.32(-5.31,0.59)  -1.96 (-8.82,-0.47) -1.91 (-9.21, -0.45) -2.16 (-6.62, -0.35)
ol 0.50 (-0.14, 1.23) 0.48 (0.03, 0.97) 0.50 (0.04, 0.99) 0.53 (0.08, 1.00)
% 0.79 (-0.60, 2.78) 0.79 (0.33, 1.32) 0.78 (0.31, 1.30) 0.77 (0.26, 1.33)
o 0.70 (-0.10, 2.11) 0.70 (0.22, 1.22) 0.74 (0.20, 1.24) 0.72 (0.16, 1.26)
o 0.55 (-0.25, 1.56) 0.55 (0.08, 1.08) 0.54 (0.08, 1.07) 0.50 (-0.03, 1.04)

comp.time (hr)

0.03

0.03

0.08

0.03
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— McMC NF (Gaussian) TAF GTAF Mixture
~ = StickTAF NF (Gaussian Mixture) GTAF -+ ATAF

Figure 6: Estimated posteriors for all twenty parameters from the real-data analysis. Insets
highlight the left 5% tail. Black curves show the MCMC reference; red curves show StiCTAF.

C DETAILS OF GTAF-MIXTURE

This appendix provides the essential details of gTAF-mixture, our extension of gTAF (Laszkiewicz|
2022), which augments the method with a stick-breaking mixture of Student-t¢ bases instead
of a single Student-t base.

C.1 REPARAMETERIZED TRUNCATED STICK-BREAKING WEIGHTS

For a mixture of .J components, we use a truncated stick-breaking prior with concentration parameter
a>0:

k—1 J—1
v ~ Beta(l,a), wp =g H(l —vj), (k=1,...,J-1), wy = H(l —vj).
j=1

j=1
To enable pathwise gradients, we employ the inverse-CDF reparameterization for Beta(1, «):

VO e~ U0, 1),

v =1—¢€
and then deterministically map {vy } into {wy, } as above. We deliberately choose this variant because
it has a simple closed-form reparameterization, allowing pathwise gradients without introducing
additional approximations or custom samplers that a more general Beta reparameterization would
require.
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C.2 TAIL-INDEX PROFILING
Pilot base and center pushforward. We train a mixture of diagonal Gaussians with stick-
breaking weights {w1, ..., w }, whose density is given by

J
qo(z) = ij N(z | yj,diag(ag)), 03 € (0,00).
j=1

We then push each center through a normalizing flow model f at its initial state to compute

xj = f(pu;) € RV
We retain only the components with sufficiently large weights:

Feara = {5 € (o, T} 0y > waia }, i = 0.1,

Radius clustering and representatives. Within {z;};c ..., We perform fixed-radius clustering

with radius » = pv' D, where p > 0. From each cluster, we retain the member with the largest w;.
Let M C Jyalia denote the selected indices and {x;, } e their centers.

Local linearization and anchors. For each m € M, we approximate the pushforward covariance
at z = i, using the Jacobian

o)
0z

Jm e RP*D, Yom & Iy diag(ag) I,

Z=Hm

For per-dimension and per-component standard deviations o i = +/(Xz,m)ii» we define the
dimension-wise standard deviation as

0 = MAX Oa,m.i; 1=1,...,D.

We also record per-dimension anchors from the selected centers:

R L ~
=)o el = e
R _ (4R R L _ (,L L
and collect the anchor vectors a'* = (af,...,ars) and a” = (ay,...,ap).

Log-log slope proxies. Following Section for each coordinate i € {1,..., D} we draw i.i.d.

samples {tgi)7 .. ,tgf)} from a low—degrees-of-freedom Student-¢ distribution and form the order
statistics thl)), . ,t&)

right-tail estimate 7/*. Analogously, for the left tail we use the left-anchor vector a”, scale o;, and

order statistics to obtain DX

i

) Using the right-anchor vector a* together with the scale o;, we obtain the

We then combine both sides while ensuring that the estimated degrees of freedom exceed 2:
~ 2N PN
v = max{ymin, mln(ui ,l/iR)}, Vmin = 2,

and cap overly light estimates:

Ui < min{7;, g}, Uight = 30.

Finally, using {7; }2 ;, we partition coordinates into
L={i:0;> thgn }, H={i:0; < vign },

and reorder them so that all indices in L precede those in H. This partition and permutation are used
in the main construction: the light-tailed marginals share a common degrees-of-freedom parameter,
while the heavy-tailed marginals retain their per-dimension initial values 7; for subsequent learning.
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C.3 CONSTRUCTION OF BASE DISTRIBUTION AND NORMALIZING FLOWS

Base construction. For the base gg, we use a stick-breaking mixture of product Student-¢ distribu-
tions. For each k-th component, the coordinates factorize, with each marginal given by a Student-¢
with per-dimension scale o; > 0 (shared across components) and degrees of freedom v; (initialized
from Section[C.2). The base density is

D

QO,k(Z):Htw(Zi‘Mih01‘2)7 Zﬂquk Zﬂk—l T > 0.

i=1

The stick-breaking weights follow

K-
v ~ Beta(l, a), Wk:ka(l—vj), (k=1,..., K —1), H 1—wvy).

When initializing location parameters 15, € R, we select K candidate points from an open ball in
RP centered at the origin (including the origin), denoted {x(m)}ﬁzl. Each candidate is mapped to
the base space via the initial inverse flow:

L(m) f*l(x(m)),
and ranked according to the target likelihood. The mixture centers are then set by assigning the
top-ranked {2(™} to {14}/, in descending order.
For reference, the component log-density is

D
log go x(2) = Z{logI‘(”"'T“) logT' (%) — 4 log(v;m) — log oy — %logo + %)} .

i=1

Normalizing flow structure. We follow the flow structure of Section [B] for each block, but adapt
the group permutation in the LU-linear permutation layer to improve heavy-tail learning. Using the
previously defined groups L (light) and H (heavy), with |L| = d; and |H| = D — dj, each block
applies a block lower-triangular linear map

A O]

A e Ruxde B e RDP=d)xde o ¢ RID=de)x(D—de)
B C b b ) .

|
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