

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 STICK-BREAKING MIXTURE NORMALIZING FLOWS WITH COMPONENT-WISE TAIL ADAPTATION FOR VARIATIONAL INFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

Normalizing flows with a Gaussian base provide a computationally efficient way to approximate posterior distributions in Bayesian inference, but they often struggle to capture complex posteriors with multimodality and heavy tails. We propose a stick-breaking mixture base with component-wise tail adaptation (StiCTAF) for posterior approximation. The method first learns a flexible mixture base to mitigate the mode-seeking bias of reverse KL divergence through a weighted average of component-wise ELBOs. It then estimates local tail indices of unnormalized densities and finally refines each mixture component using a shared backbone combined with component-specific tail transforms calibrated by the estimated indices. This design enables accurate mode coverage and anisotropic tail modeling while retaining exact density evaluation and stable optimization. Experiments on synthetic posteriors demonstrate improved tail recovery and better coverage of multiple modes compared to benchmark models. We also present a real-data analysis illustrating the practical benefits of our approach for posterior inference.

1 INTRODUCTION

Bayesian inference provides a principled framework for learning from data by updating prior beliefs about model parameters in light of observed evidence. For a probabilistic model with data D , prior distribution $p(z)$, and likelihood $p(D | z)$, the posterior distribution $p(z | D)$ follows from Bayes' theorem. In most realistic models, however, computing the exact posterior is intractable because it requires evaluating the marginal likelihood $p(D)$, which involves high-dimensional integration. Markov chain Monte Carlo (MCMC) methods yield asymptotically exact samples from the posterior but are often computationally prohibitive for large-scale or high-dimensional problems.

Variational Inference (VI) offers a scalable alternative to exact Bayesian inference by projecting the true posterior onto a tractable variational family \mathcal{Q} and identifying the member $q_\phi(z)$ that is closest to $p(z | D)$ under a chosen divergence or distance measure. The accuracy of VI depends critically on the flexibility of the chosen variational family (Blei & Jordan, 2006). Normalizing Flows (NF) increase this flexibility by applying a sequence of invertible transformations to a simple base distribution, thereby yielding a highly expressive family while still permitting exact density evaluation (Rezende & Mohamed, 2015). NF-based VI can achieve accuracy comparable to Markov chain Monte Carlo (MCMC) methods, while maintaining the computational efficiency necessary for large-scale inference (Blei et al., 2017; Kucukelbir et al., 2017).

While NF can also be employed for density estimation—typically optimized via the forward KL divergence—posterior approximation settings differ in that direct samples from the target posterior are unavailable. In such cases, the optimization is instead performed using the reverse KL divergence $\text{KL}(q \parallel p) = \mathbb{E}_{z \sim q}[\log q(z) - \log p(z|D)]$, where q is obtained by applying an invertible transformation to a base distribution, such as a standard Gaussian. This objective has a well-known mode-seeking bias: it concentrates mass on a dominant mode of the posterior while ignoring other modes with smaller posterior mass. Consequently, NF-based VI may fail to capture the full multimodal structure of complex posteriors, particularly in models with well-separated or secondary modes that are important for predictive uncertainty.

054 Another limitation arises in representing heavy-tailed posteriors. When the base distribution is light-
 055 tailed, such as a Gaussian, the resulting variational family inherits this tail behavior regardless of the
 056 complexity of the flow transformations. Moreover, because standard flow architectures are built
 057 from Lipschitz-continuous transformations, the extent to which distances in the tail regions can
 058 be expanded is inherently bounded. This structural constraint restricts the ability to map a light-
 059 tailed base distribution into one with substantially heavier tails, making it difficult to approximate
 060 posteriors with extreme tail behavior. These tail limitations, when combined with the mode-seeking
 061 bias, can significantly impair inference quality in scenarios where both multimodality and heavy
 062 tails are present.

063 To address these limitations, this work makes three key contributions. First, we mitigate the mode-
 064 seeking bias of reverse KL divergence in VI by employing a stick-breaking mixture (SBM) as the
 065 variational base, which enables more faithful coverage of complex multimodal posteriors. Second,
 066 we develop a novel Monte Carlo-based estimator for the local tail index within the VI framework,
 067 providing a principled approach to adapting to heavy-tailed behavior while maintaining tractability.
 068 Third, we propose a component-wise normalizing flow architecture that combines a shared backbone
 069 with per-component Tail Transform Flows, thereby enhancing both flexibility and expressiveness.
 070 This design allows the variational posterior to accurately capture both the bulk structure and the tail
 071 behavior of the target posterior.

072 1.1 RELATED WORKS

073 One line of work improves multimodal distribution approximation by modifying the base distribution
 074 within normalizing flows, for example by employing a Gaussian-mixture base (Izmailov et al.,
 075 2020) or Dirichlet-process mixtures (Li et al., 2022). However, these methods are typically intended
 076 for density estimation or amortized generative modeling rather than reverse-KL posterior approxi-
 077 mation in variational inference. In contrast, our approach is distinguished by determining mixture
 078 weights through SBM. Stick-breaking mechanisms have been applied to variational inference in
 079 other contexts, such as variational autoencoders (Nalisnick & Smyth, 2016; Joo et al., 2020), but to
 080 the best of our knowledge, they have not yet been applied to NF-based variational inference.

081 Additionally, to enhance robustness and expressive generalization, a parallel line of work has fo-
 082 cused on heavy-tailed distributions in normalizing flows. Jaini et al. (2020) analyzed Lipschitz
 083 triangular flows and showed that a flow with a light-tailed Gaussian base cannot produce a heavy-
 084 tailed target; subsequently, TAF (Jaini et al., 2020), mTAF (Laszkiewicz et al., 2022), and ATAF
 085 (Liang et al., 2022) adopted a Student’s- t bases with varying, dimension-specific degrees of free-
 086 dom to generate heavy-tailed targets. However, TAF and mTAF focus on density estimation, and
 087 while ATAF can be used for VI, it lacks a concrete initialization scheme for the degrees of freedom
 088 and underperforms on tail-index estimation. In Section 2.2, we further show that using the Cartesian
 089 product of Student’s- t distributions with heterogeneous degrees of freedom as the base distribution
 090 is not effective due to the autoregressive structure commonly used in normalizing flows.

091 There have also been attempts to address tail behavior by modifying the flow layers themselves.
 092 Hickling & Prangle (2024) propose Tail Transform Flows (TTF), a non-Lipschitz transformation
 093 designed to convert light-tailed base distributions into heavy-tailed targets. However, in the varia-
 094 tional inference setting, no widely adopted procedure exists for estimating and initializing the tail
 095 thickness, and as a result, TTF often fail to produce genuinely heavy-tailed behavior.

096 2 THEORETICAL BACKGROUND

100 2.1 VARIATIONAL INFERENCE WITH NORMALIZING FLOWS

101 Variational inference (VI) is a widely used technique for approximating intractable posterior dis-
 102 tributions in Bayesian inference. Given a target posterior distribution $p(z | D)$, where D denotes
 103 observed data and z represents latent variables, VI seeks a tractable distribution $q_\phi(z)$ within a cho-
 104 sen variational family \mathcal{Q} that closely approximates the true posterior. The expressiveness of this
 105 family is crucial in determining the quality of the approximation.

106 Normalizing Flows (NF) extend the flexibility of variational families by transforming a simple base
 107 distribution $q_\phi(z_0)$ into a richer distribution through an invertible and differentiable mappings T_ψ .

108 Let $\theta = (\phi, \psi)$, where ϕ parameterizes the base distribution and ψ parameterizes the transformations. The transformed variable is defined as
 109

$$110 \quad z = T_\psi(z_0), \quad z_0 \sim q_\phi(z_0),$$

112 and the resulting density, obtained via the change-of-variables formula,
 113

$$114 \quad q_\theta(z) = q_\phi(T_\psi^{-1}(z)) \left| \det \left(\frac{\partial T_\psi^{-1}}{\partial z} \right) \right|,$$

116 is used to approximate the target posterior $p(z | D)$.
 117

118 Since direct sampling from $p(z | D)$ is intractable, the parameters θ are optimized by minimizing
 119 the reverse KL divergence $\text{KL}(q_\theta(z) \| p(z | D))$. Equivalently, this corresponds to maximizing the
 120 evidence lower bound (ELBO), defined as
 121

$$122 \quad \text{ELBO}(\theta) = \mathbb{E}_{z \sim q_\theta} [\log p(D, z) - \log q_\theta(z)] \\ 123 \quad = \mathbb{E}_{z_0 \sim q_\phi} [\log p(D, T_\psi(z_0)) - \log q_\phi(z_0) + \log |\det J_{T_\psi}(z_0)|], \quad (1)$$

124 where $J_{T_\psi}(z_0)$ denotes the Jacobian of the transformation T_ψ at z_0 .
 125

126 Gradients with respect to both the base distribution parameters ϕ and the flow parameters ψ can
 127 be efficiently estimated via Monte Carlo sampling, enabling stable and scalable optimization of the
 128 ELBO (Kingma & Welling, 2013; 2014; Rezende et al., 2014). A key limitation, however, lies in
 129 the choice of the base distribution $q_\phi(z_0)$. Most NF implementations assume a standard Gaussian
 130 base, which imposes a unimodal, light-tailed inductive bias. Even with complex flows, this restricts
 131 the capacity to approximate posteriors with well-separated modes or heavy tails. In reverse-KL
 132 settings, the problem is further compounded by the KL divergence's tendency to concentrate on
 133 dominant modes. We address this issue in Section 3 by replacing the standard Gaussian base with
 134 SBM, yielding more flexible, adaptive, and heavy-tailed approximations.
 135

2.2 HEAVY TAIL DISTRIBUTIONS IN NORMALIZING FLOWS

136 To formalize the heavy-tailed behavior that motivates our design, we adopt a classification of dis-
 137 tribution tails grounded in extreme value theory (EVT) (Bingham et al., 1989; De Haan & Fer-
 138 reira, 2006). Whereas prior work on heavy-tailed normalizing flows has relied on the existence of
 139 moment-generating functions (Jaini et al., 2020) or the concentration function (Liang et al., 2022),
 140 our approach is based on regular variation. This perspective offers a unified framework that builds
 141 directly on standard EVT concepts and tools. In what follows, we introduce the definitions of tail
 142 classes;

143 **Definition 2.1** (Tail classes). *For $p, \alpha > 0$, define*

- 144 • $\mathcal{E}_\alpha^p := \{X : \Pr(|X| \geq x) = e^{-\alpha x^p} L(x), \quad \log L(x) = o(x^p)\},$
- 145 • $\mathcal{L}_\alpha^p := \{X : \Pr(|X| \geq x) = \exp\{-\alpha(\log x)^p\} L(x), \quad \log L(x) = o((\log x)^p)\},$

146 where $L : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is a slowly varying function (i.e. $L(cx)/L(x) \rightarrow 1$, for every fixed $c > 0$). We
 147 call \mathcal{E}_α^p the exponential-type (light-tailed) class and \mathcal{L}_α^p the log-Weibull-type (heavy-tailed) class.
 148 Specifically, for $X \in \mathcal{L}_\alpha^1$, the exponent α determines the polynomial decay rate, and we refer to it
 149 as the **tail index**.
 150

151 **Definition 2.2** (Directional tail index). *For a directional vector u on a unit sphere $\mathbb{S}^{d-1} \subset \mathbb{R}^d$ and
 152 a random vector $X \in \mathbb{R}^d$, if the one-sided scalar projection $[\langle u, X \rangle]_+ := \max\{\langle u, X \rangle, 0\}$ belongs
 153 to $\mathcal{L}_{\alpha_u}^1$ for some $\alpha_u \in (0, \infty)$, we define the directional tail index of X along u by $\alpha_X(u) := \alpha_u$.*
 154

155 Building on these definitions, a key theoretical insight concerns the impact of Lipschitz transfor-
 156 mations on tail behavior. The seminal work of Jaini et al. (2020) showed that normalizing flows
 157 constructed from Lipschitz triangular maps cannot transform a light-tailed Gaussian base into a heavy-
 158 tailed distribution. Later, Liang et al. (2022) generalized this result by proving that bi-Lipschitz
 159 transformations preserve tail classes, implying that a distribution cannot be mapped from light-
 160 to heavy-tailed, or vice versa. This limitation applies even to highly expressive, state-of-the-art archi-
 161 tectures such as RealNVP and Neural Spline Flows, which are Lipschitz by construction. Within our
 162 EVT-based framework, the same conclusion holds, and the following theorem formalizes this result.
 163 The following is a restatement of the result from Liang et al. (2022) with a slight modification.
 164

162 **Theorem 2.1** (Liang et al. (2022)). *Let X be a random vector and let $f : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be a bi-Lipschitz
163 bijective map (i.e. f and f^{-1} are globally Lipschitz). If $X \in \mathcal{E}_\alpha^p$, then $f(X) \in \mathcal{E}_{\tilde{\alpha}}^p$ for some $\tilde{\alpha} > 0$.
164 In addition, if $X \in \mathcal{L}_\alpha^p$ then $f(X) \in \mathcal{L}_{\tilde{\alpha}}^p$. In particular, no bi-Lipschitz normalizing flow can map a
165 light-tailed base to a heavy-tailed output, vice versa.*

166 While Theorem 2.1 extends the impossibility result of Jaini et al. (2020), the limitation is not con-
167 fined to the light-versus-heavy dichotomy. In particular, anisotropic tail-adaptive flows (ATAF)
168 (Liang et al., 2022), which employ an anisotropic t -distributed base—the most flexible heavy-tailed
169 base proposed to date—still suffer from this issue: once variables are mixed through linear layers or
170 permutations, heterogeneous tail behaviors across dimensions cannot be faithfully preserved. As a
171 natural corollary of the Lipschitz barrier, whenever coordinates with different tail indices interact,
172 the effective tail index is determined by the heaviest tail among them. We formalize this observation
173 in Theorem 2.2.

174 **Theorem 2.2** (Tail dominance). *Let $X = (X_1, \dots, X_d)$ be a random vector with independent
175 coordinates and $X_j \in \mathcal{L}_{\alpha_j}^1$ for each $1 \leq j \leq d$. Fix $i \in \{1, \dots, d\}$ and let $Y_i = g_i(X_1, \dots, X_i)$,
176 where $g_i : \mathbb{R}^i \rightarrow \mathbb{R}$ is globally Lipschitz. Define the tail-influence set $S_i := \{j \leq i : \exists R > 0, c_j >
177 0, r_0 \text{ s.t. } \max_{k \neq j} |x_k| \leq R, |x_j| \geq r_0 \Rightarrow |g_i(x)| \geq c_j |x_j|\}$. If $S_i \neq \emptyset$, then $Y_i \in \mathcal{L}_{\alpha_{Y_i}}^1$ with
178 $\alpha_{Y_i} = \min_{j \in S_i} \alpha_j$.*

179 Theorem 2.2 shows that among the inputs influencing the linear-scale growth of g_i , the heaviest
180 tail (i.e., the smallest α) dominates. In practice, g_i corresponds to the coordinate-wise update in
181 autoregressive or coupling layers. In architectures such as neural spline flows, the i -th input x_i of g_i
182 always belongs to S_i , so S_i is guaranteed to be nonempty as long as no permutation layer precedes it.
183 However, permutation layers (or invertible 1×1 convolutions)—commonly introduced to improve
184 expressivity and mixing—disrupt this ordering by re-mixing inputs before they are passed into g_i .
185 By Theorem 2.2, the resulting coordinate tail then collapses to the minimum among them, revealing
186 a fundamental limitation of standard flow architectures.

3 PROPOSED METHOD

3.1 MIXTURE-BASE LEARNING

187 In this section, we introduce our choice of base distribution and an efficient loss-computation strat-
188 egy for normalizing flows. While Gaussian mixtures have previously been employed as flow bases,
189 to our knowledge this is the first work to use SBM. By extending finite mixtures to a fully non-
190 parametric setting, SBM admits an unbounded number of components, with weights generated via
191 a (generalized) stick-breaking process (see, e.g., Connor & Mosimann, 1969; Ishwaran & James,
192 2001):

$$q_\phi(z) = \sum_{k=1}^{\infty} \pi_k \mathcal{N}(z; \mu_k, \Sigma_k), \quad \pi_k = v_k \prod_{j < k} (1 - v_j), \quad v_k \sim \text{Beta}(\alpha_k, \beta_k),$$

201 where $\phi = \{\mu_k, \Sigma_k, \alpha_k, \beta_k : k = 1, 2, \dots\}$. This construction reduces to the standard stick-
202 breaking process when $(\alpha_k, \beta_k) = (\alpha, \beta)$ and to the Dirichlet process when $(\alpha_k, \beta_k) = (1, \alpha)$
203 for all k . Because these choices impose a fixed monotonicity on the expected component weights,
204 we instead employ a generalized stick-breaking mixture, which offers greater modeling flexibility.
205 For practical implementation, we truncate the infinite mixture at K components, with K chosen
206 sufficiently large.

207 A key challenge in estimating the ELBO in equation 1 via Monte Carlo is that differentiating through
208 the Beta parameters (α_k, β_k) would normally require a reparameterization trick. Inspired by Roeder
209 et al. (2017), we instead adopt an ELBO formulation that places the mixture weights $\{\pi_k\}$ out-
210 side the expectation, enabling analytic gradient computation with respect to α_k and β_k . The full
211 derivation is provided in Appendix A.1:

$$\mathbb{E}_{z \sim q_\phi} f(z) = \sum_{k=1}^{\infty} \frac{\alpha_k}{\alpha_k + \beta_k} \left(\prod_{j < k} \frac{\beta_j}{\alpha_j + \beta_j} \right) \mathbb{E}_{z \sim q_k} f(z) \quad (2)$$

216 This approach eliminates the need for Kumaraswamy approximations (Kumaraswamy, 1980) for
 217 Beta draws and the Gumbel–Softmax relaxation (Jang et al., 2016) for discrete component assign-
 218 ments, yielding lower-variance and fully differentiable updates.

220 **3.2 TAIL ESTIMATION**

222 Estimating the tail index of a posterior distribution is challenging when only its unnormalized density
 223 is available. To address this, we propose the following simple yet effective procedure for each k th
 224 component. First, draw i.i.d. samples z_1, \dots, z_n from a known heavy-tailed distribution, such as a
 225 Student’s- t with low degrees of freedom (e.g., $\nu = 2$). For a chosen direction \mathbf{u} on the unit sphere
 226 $\mathbb{S}^{d-1} \subset \mathbb{R}^d$, define the projection of each sample as $z_i^{\mathbf{u}} = z_i \mathbf{u}$. The projected samples inherit
 227 heavy-tailed behavior along \mathbf{u} . Ordering the projected magnitudes in decreasing order,

$$228 \|z_{(1)}^{\mathbf{u}}\| \geq \|z_{(2)}^{\mathbf{u}}\| \geq \dots \geq \|z_{(n)}^{\mathbf{u}}\|,$$

230 and applying the estimator to the top- j extremes yields

$$231 \hat{\xi}_{\mathbf{u}}^{(k)} = -\frac{1}{j} \sum_{i=1}^j \frac{\log p(\mu_k + z_{(i)}^{\mathbf{u}} \sigma_k | D) - \log p(\mu_k + z_{(j+1)}^{\mathbf{u}} \sigma_k | D)}{\log \|z_{(i)}^{\mathbf{u}}\| - \log \|z_{(j+1)}^{\mathbf{u}}\|} - 1,$$

235 which captures the decay rate of the distribution in direction \mathbf{u} . Here, $\mu_k + z_{(i)}^{\mathbf{u}} \sigma_k$ and $\mu_k + z_{(j+1)}^{\mathbf{u}} \sigma_k$
 236 represent scaled versions of $z_{(i)}$ and $z_{(j+1)}$, adjusted for the component’s location μ_k and scale σ_k .
 237 We now establish the consistency of this estimator under the following assumption.

238 **Assumption 3.1** (Directional Tail and Monotonicity). *For $\mu \in \mathbb{R}^d$, $\sigma > 0$, and $\mathbf{u} \in \mathbb{S}^{d-1}$, the
 239 posterior density $p(z | D)$ has a directional tail index $\xi_{\mathbf{u}} \in (0, \infty)$ along \mathbf{u} , and $p(\mu + \sigma r \mathbf{u} | D)$
 240 decreases monotonically for all $r \geq r_0$, for some constant $r_0 > 0$.*

241 **Theorem 3.1** (Consistency of the Directional Tail-Index Estimator). *Let $z_1, \dots, z_n \stackrel{\text{i.i.d.}}{\sim}$
 242 Student’s- t_{ν} for any $\nu > 0$. If Assumption 3.1 holds, then for any component k , the estimator
 243 $\hat{\xi}_{\mathbf{u}}^{(k)}$ defined above satisfies*

$$244 \hat{\xi}_{\mathbf{u}}^{(k)} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \xi_{\mathbf{u}}.$$

247 For light-tailed classes \mathcal{E}_{α}^p (e.g., Gaussian), the estimator diverges ($\hat{\xi}_{\mathbf{u}}^{(k)} \rightarrow \infty$), whereas for bound-
 248 ary cases heavier than any power law (e.g., $p(r) \propto (r(\log r)^{\beta})^{-1}$), it converges to 0. Formal
 249 statements and proofs of these results, together with convergence-rate analyses, are provided in Ap-
 250 pendix A.4.

252 **3.3 COMPONENT-WISE TAIL TRANSFORM FLOWS**

254 Given the optimized base distribution and the estimated tail indices, we construct a flow model that
 255 offers greater flexibility in approximation and thereby captures both the overall shape and tail behav-
 256 ior of the target distribution. We begin by recalling the notion of a pushforward: for a measurable
 257 map $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$ and a probability measure q (with a slight abuse of notation, we use q to denote
 258 both a density and its induced measure), the pushforward $T_{\#}q$ is defined by

$$259 (T_{\#}q)(A) = q(T^{-1}(A)), \quad A \subseteq \mathbb{R}^d \text{ measurable.}$$

261 Equivalently, if $Z \sim q$, then $T(Z) \sim T_{\#}q$.

262 Because the pushforward is linear over mixtures, different transforms can in principle be applied to
 263 different mixture components. In our setting, we extend this idea by introducing component-wise
 264 invertible maps $T^{(k)}$ and defining a measurable mapping on the extended space by

$$266 \mathcal{T}(k, x) := T^{(k)}(x), \quad x \sim q_k.$$

267 The resulting distribution is

$$269 \mathcal{T}_{\#}q = \sum_{k=1}^{\infty} \pi_k (T_{\#}^{(k)} q_k).$$

270 Although this construction is no longer a single globally invertible map, it remains compatible with
 271 the requirements of normalizing flows: each $T^{(k)}$ is invertible with a tractable Jacobian determinant,
 272 exact likelihood evaluation is possible via the change-of-variables formula, and sampling can be
 273 carried out by first drawing a component index and then mapping the corresponding sample through
 274 its associated flow.

275 To maximize computational efficiency while still allowing flexibility in adjusting tail thickness for
 276 each component, we apply the TTF transform to the component-specific flows:
 277

$$278 \quad T_{\text{TTF}}^{(k)} = (T_{\text{TTF}}^{(k),(1)}, \dots, T_{\text{TTF}}^{(k),(d)}) : \mathbb{R}^d \rightarrow \mathbb{R}^d,$$

280 with each dimension transformed as

$$281 \quad T_{\text{TTF}}^{(k),(l)}(z; \hat{\xi}_{+e_l}^{(k)}, \hat{\xi}_{-e_l}^{(k)}) = \mu_k^{(l)} + \sigma_k^{(l)} \frac{s_l}{\hat{\xi}_{s_l}^{(k)}} \left[\text{erfc} \left(\frac{|z - \mu_k^{(l)}|}{\sigma_k^{(l)} \sqrt{2}} \right)^{-\hat{\xi}_{s_l}^{(k)}} - 1 \right], \quad l = 1, \dots, d,$$

285 where e_l denotes the l -th canonical basis vector, $\mu_k^{(l)}$ and $\sigma_k^{(l)}$ are the l -th elements of the mean and
 286 scale of component k , and s_l is set to $+e_l$ if $z \geq \mu_k^{(l)}$ and $-e_l$ otherwise.
 287

288 This transformation is a slightly modified version of the flow proposed by Hickling & Prangle
 289 (2024), allowing distinct tail indices for the positive and negative directions in each dimension. The
 290 indices are estimated using the direction-specific procedure described in Section 3.2. The Jacobian
 291 determinant and closed-form inverse expressions for this transform are provided in Appendix A.6.
 292 Overall, the proposed variational inference framework achieves accurate approximation while pre-
 293 serving the tail thickness of the target distribution around each component.

294 **Corollary 3.1.** *Under Assumption 3.1, define the axis-wise estimators $\hat{\xi}_{\pm e_l}^{(k)}$ using the directional
 295 procedure of Section 3.2, and instantiate StiCTAF with tail transforms $T_{\text{TTF}}^{(k),(l)}(\cdot; \hat{\xi}_{+e_l}^{(k)}, \hat{\xi}_{-e_l}^{(k)})$ for
 296 each coordinate $l \in \{1, \dots, d\}$. Then, StiCTAF preserves the target’s tail thickness in every coordi-
 297 nate direction.*

299 4 EXPERIMENTS

301 In this section, we evaluate the performance of the proposed Stick-Breaking Component-wise Tail-
 302 Adaptive Flow (StiCTAF) in two scenarios and compare it against several benchmark models. The
 303 benchmarks include flow models with a standard Gaussian base, a Gaussian mixture base, and ex-
 304 isting heavy-tailed normalizing-flow models—TAF (Jaini et al., 2020), gTAF (Laszkiewicz et al.,
 305 2022), and ATAF (Liang et al., 2022). In addition, we consider a normalizing flow model with
 306 a stick-breaking heavy-tailed mixture base to demonstrate that a heavy-tailed mixture base alone
 307 is insufficient. All models are implemented in PyTorch 2.7.0+cu126 with CUDA 12.6 using the
 308 `normflows` library (Stimper et al., 2023), and executed on a single NVIDIA GeForce RTX 4090
 309 GPU. Further implementation details are provided in Appendix B.

310 4.1 NORMAL-INVARIANT-GAMMA DISTRIBUTION

312 We first consider a Normal–Inverse-Gamma (NIG) distribution whose two coordinates exhibit dif-
 313 ferent tail behaviors: one light-tailed and the other heavy-tailed. This distribution frequently arises
 314 in Bayesian linear regression (BLR), with likelihood
 315

$$316 \quad y \mid \beta, \sigma^2 \sim \mathcal{N}(X\beta, \sigma^2 I_n).$$

317 Using the conjugate priors

$$319 \quad \beta \mid \sigma^2 \sim \mathcal{N}(m_0, \sigma^2 V_0), \quad \sigma^2 \sim \text{Inv-Gamma}(a_0, b_0),$$

320 the joint posterior is again Normal–Inverse-Gamma.
 321

322 As a minimal two-dimensional testbed reflecting this light-versus-heavy tail structure, we adopt the
 323 product target

$$\mathcal{N}(\mu, \sigma_0^2) \times \text{Inv-Gamma}(\alpha, \beta),$$

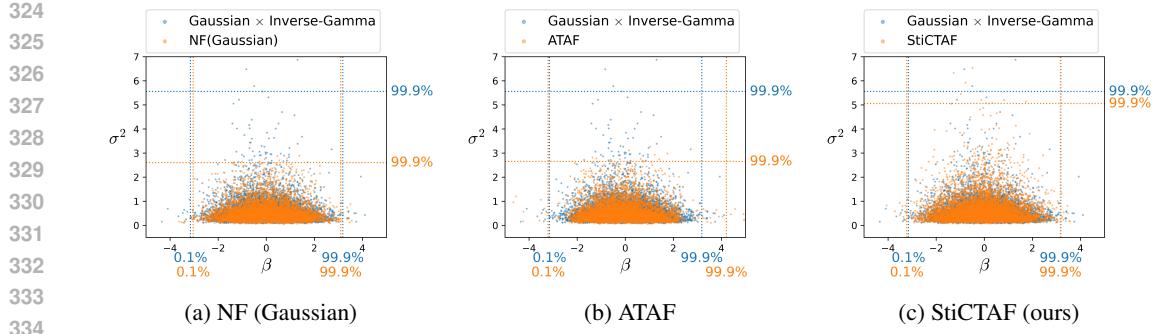


Figure 1: **Normal × Inverse-Gamma Target:** Each panel compares the model and target distributions using Monte Carlo samples of size 10^4 . The dotted lines indicate the 0.1% and 99.9% marginal percentiles for β , and the 99.9% percentile for σ^2 . From left to right: NF (Gaussian), ATAF, and StiCTAF.

with parameters set to $(\mu, \sigma_0^2, \alpha, \beta) = (0.0, 1.0, 3.0, 1.0)$. In this setting, the inverse-gamma marginal along the σ^2 -direction has tail index 3.0, i.e., $\Pr(\sigma^2 > t) = \Theta(t^{-3})$.

Figure 1 shows the sample percentiles for the target posterior and each NF model, with dotted guide lines indicating the 0.1% and 99.9% marginal percentiles for β , and the 99.9% marginal percentile for σ^2 . Since the target density is available in closed form, we draw 10^4 samples from the target, using the same sample size for each NF model. The Gaussian-base NF captures the intended light tail in β but also imposes an undesirably light tail in σ , resulting in a large discrepancy between the approximated and target 99.9% lines. ATAF, even when initialized close to the oracle— $(\nu_\beta, \nu_{\sigma^2}) = (\infty, 3)$, approximated here by $(\nu_\beta, \nu_{\sigma^2}) = (30, 3)$ —overestimates the upper tail in the β -direction while underestimating the extreme quantile in the σ^2 -direction, deviating from the target 99.9% value. In contrast, StiCTAF provides an accurate tail fit: the β -direction remains light-tailed, with extreme quantiles aligned to the target, and in the positive σ^2 -direction the estimated tail index is $\hat{\xi}_{+\sigma^2} = 3.08$, very close to the target value of 3.0.

4.2 COMPLEX MULTIMODAL TARGET WITH HEAVY TAILS

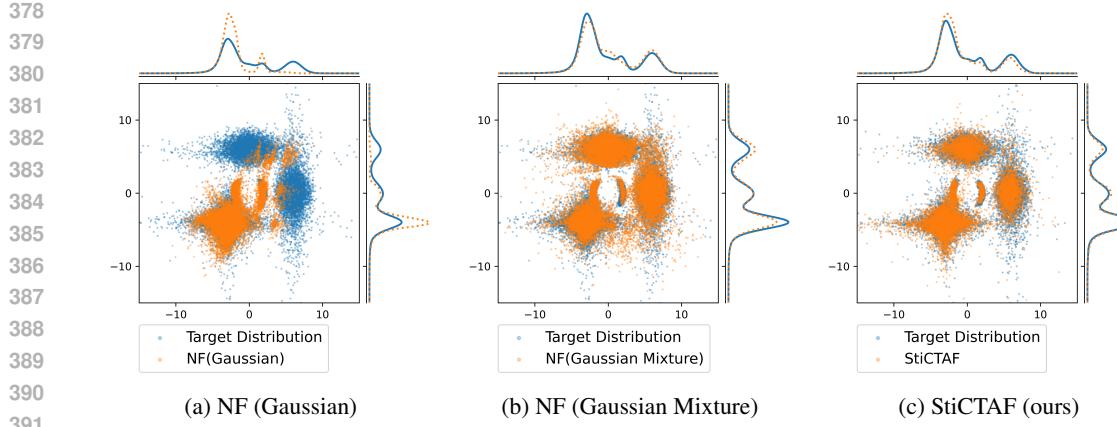
We next test whether the proposed StiCTAF can fit a complex two-dimensional target that exhibits both heavy tails and multimodality. The target distribution is a four-component mixture: two Gaussian \times Student’s- t components (with $\nu = 2$ and $\nu = 3$, respectively), one Two-Moons component, and one Student’s- t ($\nu = 2$) \times Student’s- t ($\nu = 3$) component.

Figure 2 shows raw samples for three methods: Gaussian-base NF, Gaussian-mixture-base N, and StiCTAF. Each panel displays 2×10^4 points drawn from the target and the corresponding trained model, enabling direct comparison of how well the flows approximate the target joint distribution. The curves along the top and right margins depict the marginal densities of the horizontal and vertical coordinates.

The Gaussian-base NF fails to capture the two Gaussian \times Student’s- t modes located on the right and at the top, concentrating mass in the lower left and center. The Gaussian-mixture-base NF recovers all modes but places excess probability mass in low-density regions, producing extraneous sample. In contrast, StiCTAF recovers all modes and more faithfully captures the tail thickness across the distribution without generating misplaced samples. Although it does not fully capture the tail of the upper Gaussian \times Student’s- t component, it nevertheless provides the closest overall match to the target in both the bulk and the tails.

Quantitatively, since the target density is available in closed form for this synthetic experiment, we estimate the forward KL divergence $D_{\text{KL}}(p\|q)$ by Monte Carlo. We also report the effective sample size (ESS), computed from importance weights $w_i = p(z_i)/q(z_i)$ with $z_i \sim q$, using

$$\text{ESS} = \frac{(\sum_i w_i)^2}{\sum_i w_i^2}.$$



392 **Figure 2: Complex Multimodal Target:** Each panel compares the model and target distributions
393 using Monte Carlo samples of size 2×10^4 . The curves along the top and right margins show
394 the univariate marginal densities. From left to right: NF (Gaussian), NF (Gaussian Mixture), and
395 StiCTAF.

396
397 **Table 1: Forward KL-divergence and normalized ESS for Complex Mixture Target** (mean \pm
398 standard deviation) over 10 different seeds; each repeat uses $N=1000$ target samples. Lower is
399 better for KL, higher is better for ESS.

Method	Forward KL	normalized ESS
NF (Gaussian)	1.92 ± 1.21	0.31 ± 0.17
NF (Gaussian Mixture)	0.33 ± 0.05	0.65 ± 0.23
StiCTAF (ours)	0.22 ± 0.09	0.79 ± 0.19

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Larger values (normalized, closer to 1) indicate better sample efficiency. Table 1 shows that StiCTAF
achieves the lowest KL among all methods and the highest ESS.

5 REAL DATA ANALYSIS: 2024 DAILY MAXIMUM WIND SPEEDS IN KOREA

420
421
422
423
424
425
426
427
428
429
430
431
We now evaluate the performance of the proposed method on a real data application, which presents
a more complicated posterior density than the simulated examples above. Specifically, we an-
alyze daily maximum wind speed data in 2024 from the Korea Meteorological Administra-
tion (<https://data.kma.go.kr/>). Consecutive threshold-exceedance pairs are modeled using the logistic
bivariate extreme value framework of Fawcett & Walshaw (2006). Data from four stations are con-
sidered, and we analyze four quarters of the year separately. Let $X_{(j,s),t}$ denote the daily maximum
wind speed at station $j \in \{1, \dots, 4\}$, season $s \in \{1, \dots, 4\}$, and day t . For each (j, s) , we fix a
high threshold $u_{j,s}$ and work with residuals $Y_{(j,s),t} = X_{(j,s),t} - u_{j,s}$ conditional on exceedance.

Logistic dependence. For $x > u$, define the exceedance-scale transform

$$Z(x) = \Lambda^{-1} \left(1 + \frac{\eta(x-u)}{\sigma} \right)^{1/\eta}.$$

On this scale, the joint CDF for a consecutive pair of exceedances is

$$F(x_t, x_{t+1} | \sigma, \eta, \alpha) = 1 - \left[Z(x_t)^{-1/\alpha} + Z(x_{t+1})^{-1/\alpha} \right]_+^\alpha, \quad \alpha \in (0, 1],$$

where $\alpha = 1$ corresponds to independence and $\alpha \rightarrow 0^+$ to complete dependence (Fawcett & Walshaw, 2006). Full model details are provided in Appendix B.3.

Parameterization and priors. We decompose station and season effects using the additive models

$$\sigma_{j,s} = \text{softplus}(\gamma_j^{(\sigma)}) + \text{softplus}(\varepsilon_s^{(\sigma)}), \quad \eta_{j,s} = \text{softplus}(\gamma_j^{(\eta)}) + \text{softplus}(\varepsilon_s^{(\eta)}),$$

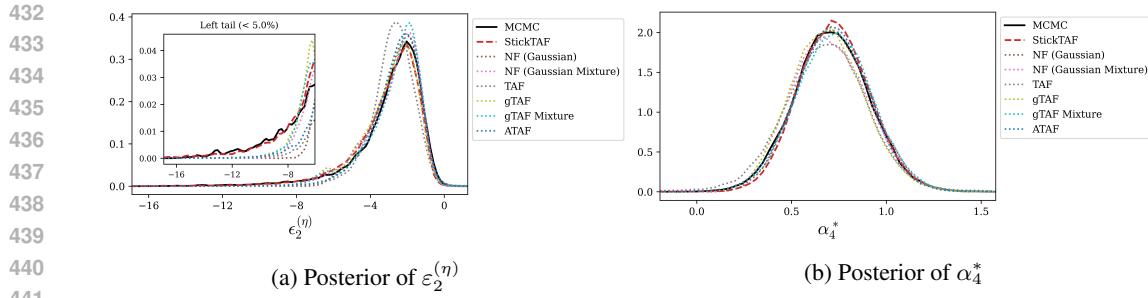


Figure 3: **Estimated posteriors for two parameters from the real data analysis:** Panel (a) shows $\varepsilon_2^{(\eta)}$ and panel (b) shows α_4^* . Insets display the left 5% tail density. The black curve represents the MCMC reference, and the red curve corresponds to StiCTAF. Baselines include normalizing flows with Gaussian and Gaussian mixture bases, as well as TAF, gTAF, gTAF mixture, and ATAF.

Table 2: **Inference results for the maximum wind speed dataset.** For each parameter, the table reports the estimated mode and the 99% equal-tail credible interval. Computation times (in hours) for each method are also provided.

Parameter	MCMC	StickTAF	NF (Gaussian)	TAF
$\varepsilon_1^{(\eta)}$	-1.69 (-11.21, -0.32)	-1.81 (-11.89, -0.27)	-1.72 (-5.89, -0.31)	-1.70 (-4.71, 0.05)
$\varepsilon_2^{(\eta)}$	-2.02 (-11.95, -0.38)	-2.06 (-12.09, -0.51)	-1.95 (-6.29, -0.51)	-2.60 (-7.12, 1.89)
$\varepsilon_3^{(\eta)}$	-1.52 (-9.18, -0.13)	-1.62 (-10.21, -0.26)	-1.50 (-4.71, -0.22)	-1.65 (-6.05, 1.02)
$\varepsilon_4^{(\eta)}$	-2.09 (-11.64, -0.50)	-2.22 (-13.88, -0.71)	-2.14 (-5.98, -0.52)	-2.32 (-5.32, 0.59)
Comp. time (hr)	11.90	0.08	0.03	0.03

with station-specific $\alpha_j \in (0, 1)$. To avoid bounded supports during training, we instead infer $\alpha_j^* \in \mathbb{R}$ and set $\alpha_j = \text{sigmoid}(\alpha_j^*)$. The priors are specified as follows: $t_{\nu=10}$ for $\gamma_{1:4}^{(\sigma)}$ and $\varepsilon_{1:4}^{(\sigma)}$, $t_{\nu=3}$ for $\gamma_{1:4}^{(\eta)}$ and $\varepsilon_{1:4}^{(\eta)}$, and Beta(1, 1) for α_j .

Table 2 reports posterior modes and 99% credible intervals for selected four parameters, along with key diagnostics. MCMC is included as the gold standard, given its theoretical guarantees. As expected, all flow models are substantially faster than MCMC. Among the flow models, StiCTAF provides the tightest and most reliable 99% intervals across marginals, aligning most closely with the MCMC reference. Figure 3 displays the marginal posteriors for two representative parameters, $\varepsilon_2^{(\eta)}$ and α_4^* . For $\varepsilon_2^{(\eta)}$, the MCMC reference shows a pronounced heavy left tail; among the approximations, only StiCTAF successfully reproduces both the tail thickness and the overall spread. For α_4^* , which follows a light-tailed distribution, StiCTAF performs comparably to the alternatives, closely matching the central mass and dispersion. Full posterior results for all parameters are also provided in Appendix B.3.

6 CONCLUSION

We have introduced a variational inference framework capable of accurately representing posterior distributions that exhibit both multimodality and heavy tails. The central contribution is the replacement of a light-tailed, unimodal base distribution with SBM, whose effective number of components adapts automatically to the target distribution. To further improve tail representation, we incorporate a per-component tail transformation specifically designed to capture heavy-tailed structure when present. In both synthetic and empirical studies, the proposed method achieves close agreement with MCMC results while offering substantially greater computational efficiency. Moreover, it consistently outperforms state-of-the-art flow-based variational inference models in terms of both mode recovery and tail calibration.

486 ACKNOWLEDGMENTS
487488 We acknowledge the use of large language model (LLM) tools to assist in proofreading and improv-
489 ing the clarity of the manuscript.

490

491 REFERENCES
492493 Nicholas H Bingham, Charles M Goldie, and Jef L Teugels. *Regular variation*, volume 27. Cam-
494 bridge university press, 1989.

495 David M Blei and Michael I Jordan. Variational inference for dirichlet process mixtures. 2006.

497 David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
498 cians. *Journal of the American statistical Association*, 112(518):859–877, 2017.499 Robert J Connor and James E Mosimann. Concepts of independence for proportions with a gener-
500 alization of the dirichlet distribution. *Journal of the American Statistical Association*, 64(325):
501 194–206, 1969.502 Laurens De Haan and Ana Ferreira. *Extreme value theory: an introduction*. Springer, 2006.504 Lee Fawcett and David Walshaw. A hierarchical model for extreme wind speeds. *Journal of the*
505 *Royal Statistical Society Series C: Applied Statistics*, 55(5):631–646, 2006.

507 Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive metropolis algorithm. 2001.

508 Tennessee Hickling and Dennis Prangle. Flexible tails for normalizing flows. *arXiv preprint*
509 *arXiv:2406.16971*, 2024.511 Hemant Ishwaran and Lancelot F James. Gibbs sampling methods for stick-breaking pri-
512 ors. *Journal of the American Statistical Association*, 96(453):161–173, 2001. doi: 10.1198/
513 016214501750332758.514 Pavel Izmailov, Polina Kirichenko, Marc Finzi, and Andrew Gordon Wilson. Semi-supervised learn-
515 ing with normalizing flows. In *International conference on machine learning*, pp. 4615–4630.
516 PMLR, 2020.518 Priyank Jaini, Ivan Kobyzev, Yaoliang Yu, and Marcus Brubaker. Tails of lipschitz triangular flows.
519 In *International Conference on Machine Learning*, pp. 4673–4681. PMLR, 2020.520 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv*
521 *preprint arXiv:1611.01144*, 2016.523 Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon. Dirichlet variational autoencoder.
524 *Pattern Recognition*, 107:107514, 2020.525 Diederik Kingma and Max Welling. Efficient gradient-based inference through transformations
526 between bayes nets and neural nets. In *International Conference on Machine Learning*, pp. 1782–
527 1790. PMLR, 2014.529 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
530 *arXiv:1312.6114*, 2013.531 Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic
532 differentiation variational inference. *Journal of machine learning research*, 18(14):1–45, 2017.534 Ponnambalam Kumaraswamy. A generalized probability density function for double-bounded ran-
535 dom processes. *Journal of hydrology*, 46(1-2):79–88, 1980.536 Mike Laszkiewicz, Johannes Lederer, and Asja Fischer. Marginal tail-adaptive normalizing flows.
537 In *International Conference on Machine Learning*, pp. 12020–12048. PMLR, 2022.538 Naiqi Li, Wenjie Li, Yong Jiang, and Shu-Tao Xia. Deep dirichlet process mixture models. In
539 *Uncertainty in Artificial Intelligence*, pp. 1138–1147. PMLR, 2022.

540 Feynman Liang, Michael Mahoney, and Liam Hodgkinson. Fat-tailed variational inference with
541 anisotropic tail adaptive flows. In *International Conference on Machine Learning*, pp. 13257–
542 13270. PMLR, 2022.

543
544 Eric Nalisnick and Padhraic Smyth. Stick-breaking variational autoencoders. *arXiv preprint*
545 *arXiv:1605.06197*, 2016.

546 Sidney I Resnick. *Heavy-tail phenomena: probabilistic and statistical modeling*. Springer, 2007.

547
548 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *International*
549 *conference on machine learning*, pp. 1530–1538. PMLR, 2015.

550
551 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
552 proximate inference in deep generative models. In *International conference on machine learning*,
553 pp. 1278–1286. PMLR, 2014.

554
555 Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the landing: Simple, lower-variance
556 gradient estimators for variational inference. *Advances in Neural Information Processing Systems*,
557 30, 2017.

558
559 Vincent Stimper, David Liu, Andrew Campbell, Vincent Berenz, Lukas Ryll, Bernhard Schölkopf,
560 and José Miguel Hernández-Lobato. normflows: A pytorch package for normalizing flows. *arXiv*
561 *preprint arXiv:2302.12014*, 2023.

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 SUPPLEMENTARY MATERIAL FOR STICK-BREAKING MIXTURE
 595 NORMALIZING FLOWS WITH COMPONENT-WISE TAIL ADAPTATION FOR
 596 VARIATIONAL INFERENCE

598 **A THEORETICAL DETAILS**

600 **A.1 DERIVATION OF EQUATION 2**

602 Here we derive the result in equation 2:

$$\begin{aligned}
 604 \mathbb{E}_{z \sim q_\phi} f(z) &= \int f(z) q_\phi(z) dz \\
 605 &= \int f(z) \left(\sum_{k=1}^{\infty} \int_{\mathbf{v}=(v_1, v_2, \dots)} q(z, \text{comp.} = k, \mathbf{v} \mid \mu, \Sigma, \alpha, \beta) d\mathbf{v} \right) dz \\
 606 &= \int f(z) \left(\sum_{k=1}^{\infty} q_k(z) \int_{\mathbf{v}=(v_1, v_2, \dots)} q(\text{comp.} = k \mid \mathbf{v}) q(\mathbf{v} \mid \alpha, \beta) d\mathbf{v} \right) dz \\
 607 &= \int f(z) \left(\sum_{k=1}^{\infty} q_k(z) \mathbb{E}_{\mathbf{v}} [\pi_k(\mathbf{v})] \right) dz \\
 608 &= \sum_{k=1}^{\infty} \frac{\alpha_k}{\alpha_k + \beta_k} \left(\prod_{j < k} \frac{b_j}{a_j + b_j} \right) \mathbb{E}_{z \sim q_k} f(z),
 \end{aligned}$$

618 with $f(z) = \log p(D, z) - \log q_\theta(z)$.

620 **A.2 PROOF OF THEOREM 2.1**

622 **Theorem A.1** (Liang et al. (2022)). *Let X be a random vector and let $f : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be a bi-Lipschitz
 623 bijective map (i.e. f and f^{-1} are globally Lipschitz). If $X \in \mathcal{E}_\alpha^p$, then $f(X) \in \mathcal{E}_{\tilde{\alpha}}^p$ for some $\tilde{\alpha} > 0$.
 624 In addition, if $X \in \mathcal{L}_\alpha^p$ then $f(X) \in \mathcal{L}_{\tilde{\alpha}}^p$. In particular, no bi-Lipschitz normalizing flow can map a
 625 light-tailed base to a heavy-tailed output, vice versa.*

626 *Proof.* Since f is bi-Lipschitz, there exist $m, M > 0$ and $C \geq 0$ such that, for all $x \in \mathbb{R}^d$,

$$628 m\|x\| - C \leq \|f(x)\| \leq M\|x\| + C.$$

629 Hence, for all $t > 0$,

$$631 \Pr(|X| > (t - C)/M) \geq \Pr(|f(X)| > t) \geq \Pr(|X| > (t + C)/m). \quad (3)$$

633 (1) Assume $X \in \mathcal{E}_\alpha^p$, so $\bar{F}_X(r) = \Pr(|X| > r) = \exp\{-\alpha r^p\} L(r)$ with L slowly varying and
 634 $\log L(r) = o(r^p)$. From equation 3 with $r_\pm(t) := (t \mp C)/M, (t \pm C)/m$ we obtain

$$635 \exp\{-\alpha r_+(t)^p\} L(r_+(t)) \geq \bar{F}_{f(X)}(t) \geq \exp\{-\alpha r_-(t)^p\} L(r_-(t)).$$

637 Since $r_\pm(t) = \Theta(t)$, we have $r_\pm(t)^p = t^p \theta_\pm(t)$ with $\theta_\pm(t) \rightarrow M^{-p}$ and m^{-p} , respectively, and
 638 $L(r_\pm(t))$ is slowly varying as a composition with an affine scaling. Therefore,

$$639 \exp\{-\alpha M^{-p} t^p (1 + o(1))\} \tilde{L}_+(t) \geq \bar{F}_{f(X)}(t) \geq \exp\{-\alpha m^{-p} t^p (1 + o(1))\} \tilde{L}_-(t),$$

640 for some slowly varying \tilde{L}_\pm . By squeezing, there exists $\tilde{\alpha} \in [\alpha/M^p, \alpha/m^p]$ and a slowly varying
 641 L_f such that

$$643 \bar{F}_{f(X)}(t) = \exp\{-\tilde{\alpha} t^p\} L_f(t), \quad \log L_f(t) = o(t^p),$$

644 hence $f(X) \in \mathcal{E}_{\tilde{\alpha}}^p$.

645 (2) Assume $X \in \mathcal{L}_\alpha^p$, so $\bar{F}_X(r) = \exp\{-\alpha(\log r)^p\} L(r)$ with L slowly varying and $\log L(r) = o((\log r)^p)$. Using equation 3 again,

$$647 \exp\{-\alpha(\log r_+(t))^p\} L(r_+(t)) \geq \bar{F}_{f(X)}(t) \geq \exp\{-\alpha(\log r_-(t))^p\} L(r_-(t)).$$

648 Since $\log r_{\pm}(t) = \log t + O(1)$, we have $(\log r_{\pm}(t))^p = (\log t)^p (1 + o(1))$, and $L(r_{\pm}(t))$ remains
 649 slowly varying as $t \rightarrow \infty$. Therefore,
 650

$$651 -\log \bar{F}_{f(X)}(t) = \alpha(\log t)^p \{1 + o(1)\},$$

652 which is equivalent to

$$653 \bar{F}_{f(X)}(t) = \exp\{-\alpha(\log t)^p\} L_f(t),$$

654 for some slowly varying L_f with $\log L_f(t) = o((\log t)^p)$. Hence $f(X) \in \mathcal{L}_{\alpha}^p$.
 655

656 Combining (1)–(2) proves the stated closure properties. In particular, a bi-Lipschitz map cannot
 657 send a light-tailed \mathcal{E} -law to a heavy-tailed \mathcal{L} -law, nor the converse. \square
 658

659 A.3 PROOF OF THEOREM 2.2

660 **Theorem A.2** (Tail dominance). *Let $X = (X_1, \dots, X_d)$ be a random vector with independent
 661 coordinates and $X_j \in \mathcal{L}_{\alpha_j}^1$ for each $1 \leq j \leq d$. Fix $i \in \{1, \dots, d\}$ and let $Y_i = g_i(X_1, \dots, X_i)$,
 662 where $g_i : \mathbb{R}^i \rightarrow \mathbb{R}$ is globally Lipschitz. Define the tail-influence set $S_i := \{j \leq i : \exists R > 0, c_j >
 663 0, r_0 \text{ s.t. } \max_{k \neq j} |x_k| \leq R, |x_j| \geq r_0 \Rightarrow |g_i(x)| \geq c_j |x_j|\}$. If $S_i \neq \emptyset$, then $Y_i \in \mathcal{L}_{\alpha_{Y_i}}^1$ with
 664 $\alpha_{Y_i} = \min_{j \in S_i} \alpha_j$.*
 665

666 *Proof.* Let $i \in \{1, \dots, d\}$ be fixed and abbreviate $Y := Y_i = g_i(X_1, \dots, X_i)$ and $S := S_i$. Since
 667 g_i is globally Lipschitz, there exist constants $L \geq 1$ and $B \geq 0$ such that
 668

$$669 |g_i(x)| \leq L\|x\|_1 + B \quad (\forall x \in \mathbb{R}^i). \quad (4)$$

670 *Upper bound (no heavier than the heaviest input).* By equation 4 and the union bound,
 671

$$672 \Pr(|Y| > t) \leq \Pr\left(\sum_{j \leq i} |X_j| > (t - B)/L\right) \leq \sum_{j \leq i} \Pr(|X_j| > (t - B)/(Li)).$$

673 For each j , $|X_j| \in \mathcal{L}_{\alpha_j}^1$, so $\Pr(|X_j| > x) = x^{-\alpha_j} \ell_j(x)$ with ℓ_j slowly varying. Hence
 674

$$675 \liminf_{t \rightarrow \infty} \frac{-\log \Pr(|Y| > t)}{\log t} \geq \min_{j \leq i} \alpha_j \geq \min_{j \in S} \alpha_j,$$

676 i.e. $\alpha_Y \geq \min_{j \in S} \alpha_j$.
 677

678 *Lower bound (the heaviest influencer dominates).* Pick $j^* \in S$ with $\alpha_{j^*} = \min_{j \in S} \alpha_j$. By the
 679 definition of S there exists $R > 0$ such that $|x_{j^*}| \rightarrow \infty$ with $\max_{k \neq j^*} |x_k| \leq R$ implies $|g_i(x)| \rightarrow$
 680 ∞ . Therefore, for each sufficiently large t we can choose a threshold $b(t) > 0$ with
 681

$$682 \{|x_{j^*}| > b(t), \max_{k \neq j^*} |x_k| \leq R\} \subseteq \{|g_i(x)| > t\}. \quad (5)$$

683 Specifically, Taking $b(t) = c_{j^*} t$ directly implies $|g_i(x)| > t$.
 684

685 By independence,
 686

$$687 \Pr(|Y| > t) \geq \Pr(|X_{j^*}| > b(t)) \cdot \Pr\left(\max_{k \neq j^*} |X_k| \leq R\right).$$

688 The second factor is a positive constant $c_R \in (0, 1]$ (independent of t). For the first factor, $|X_{j^*}| \in$
 689 $\mathcal{L}_{\alpha_{j^*}}^1$ gives $\Pr(|X_{j^*}| > x) = x^{-\alpha_{j^*}} \ell_{j^*}(x)$ with ℓ_{j^*} slowly varying. Since $b(t) \rightarrow \infty$ as $t \rightarrow \infty$, we
 690 obtain
 691

$$692 \limsup_{t \rightarrow \infty} \frac{-\log \Pr(|Y| > t)}{\log t} \leq \limsup_{t \rightarrow \infty} \frac{\alpha_{j^*} \log b(t) - \log \ell_{j^*}(b(t)) - \log c_R}{\log t}.$$

693 Consider $b(t) = c_{j^*} t$, then $\log b(t)/\log t \rightarrow 1$ and $\log \ell_{j^*}(b(t))/\log t \rightarrow 0$ (slow variation). Therefore
 694

$$695 \limsup_{t \rightarrow \infty} \frac{-\log \Pr(|Y| > t)}{\log t} \leq \alpha_{j^*}.$$

696 Combining the upper and lower bounds shows $\alpha_Y = \min_{j \in S} \alpha_j$, and thus $Y \in \mathcal{L}_{\alpha_Y}^1$. \square
 697

702 A.4 TAIL ESTIMATOR IN VARIATIONAL INFERENCE
703704 A.4.1 VALIDITY OF ASSUMPTION
705

706 We restate the assumption used in the main text and propose an equivalent condition.

707 **Assumption A.1** (Directional Tail and Monotonicity (restated)). *Fix $\mu \in \mathbb{R}^d$, $\sigma > 0$, and $\mathbf{u} \in \mathbb{S}^{d-1}$.
708 Assume the posterior density $p(z | D)$:*709

- 710 • *$p(\cdot | D)$ has directional tail index $\xi_{\mathbf{u}} \in (0, \infty)$,*
- 711 • *$p(\mu + \sigma r \mathbf{u} | D)$ is monotonically decreasing for all $r \geq r_0$, for some constant $r_0 > 0$.*

712 **Lemma A.1** (Directional density regular variation). *Under Assumption A.1, there exist $\xi_{\mathbf{u}} \in (0, \infty)$
713 and a slowly varying function $L_{\mathbf{u}} : (0, \infty) \rightarrow (0, \infty)$ such that, as $r \rightarrow \infty$,*

714
$$715 p(\mu + \sigma r \mathbf{u} | D) = r^{-(1+\xi_{\mathbf{u}})} L_{\mathbf{u}}(r) (1 + o(1)).$$

716 *Proof.* Fix $\mu \in \mathbb{R}^d$, $\sigma > 0$, and $\mathbf{u} \in \mathbb{S}^{d-1}$, and write $g_{\mathbf{u}}(r) = p(\mu + \sigma r \mathbf{u} | D)$ for $r \geq 0$. By
717 Assumption A.1, $g_{\mathbf{u}}(r)$ is eventually monotone decreasing and the posterior has directional tail index
718 $\xi_{\mathbf{u}} \in (0, \infty)$ along \mathbf{u} . Define the (one-dimensional) directional tail integral $\bar{F}_{\mathbf{u}}(r) = \int_r^{\infty} g_{\mathbf{u}}(s) \sigma ds$
719 for $r \geq 0$. The directional tail-index assumption means that $\bar{F}_{\mathbf{u}}$ is regularly varying with index $-\xi_{\mathbf{u}}$,
720 i.e., $\bar{F}_{\mathbf{u}}(r) = r^{-\xi_{\mathbf{u}}} L_{\mathbf{u}}^{(0)}(r) (1 + o(1))$ as $r \rightarrow \infty$, for some slowly varying $L_{\mathbf{u}}^{(0)}$.
721722 Since $g_{\mathbf{u}}$ is eventually monotone, the monotone density theorem (Karamata theory; see Bing-
723 ham et al. (1989) Th. 1.7.2) yields $g_{\mathbf{u}}(r) \sim \{\xi_{\mathbf{u}} \bar{F}_{\mathbf{u}}(r)\}/r$ as $r \rightarrow \infty$. Hence $g_{\mathbf{u}}(r) = r^{-(1+\xi_{\mathbf{u}})} \{\xi_{\mathbf{u}} L_{\mathbf{u}}^{(0)}(r)\} (1 + o(1))$. Setting $L_{\mathbf{u}}(r) = \xi_{\mathbf{u}} L_{\mathbf{u}}^{(0)}(r)$, which is slowly varying, we ob-
724 tain $p(\mu + \sigma r \mathbf{u} | D) = r^{-(1+\xi_{\mathbf{u}})} L_{\mathbf{u}}(r) (1 + o(1))$ as $r \rightarrow \infty$, which is the claimed directional
725 regular variation of the density along \mathbf{u} . \square 726 The result of Lemma A.1 is a density-level regular-variation statement along the ray $\mu + \sigma r \mathbf{u}$. By
727 Karamata's theorem for integrals (De Haan & Ferreira (2006), see Th. B.1.5)

728
$$729 \Pr([\langle \mathbf{u}, X \rangle]_+ \geq r) = \int_r^{\infty} s^{-(1+\xi_{\mathbf{u}})} L_{\mathbf{u}}(s) ds \sim \frac{1}{\xi_{\mathbf{u}}} r^{-\xi_{\mathbf{u}}} L_{\mathbf{u}}(r),$$

730 so $[\langle \mathbf{u}, X \rangle]_+ \in \mathcal{L}_{\xi_{\mathbf{u}}}^1$ and, by Definition 2.2, the directional tail index satisfies $\alpha_X(\mathbf{u}) = \xi_{\mathbf{u}}$. There-
731 fore, under the condition that p is monotonically decreasing along the direction \mathbf{u} over a sufficiently
732 large range, Definition 2.2 and the results of Lemma A.1 are equivalent. Accordingly, we shall
733 hereafter treat the two conditions interchangeably and refer to them collectively as Assumption A.1.
734735 This additional monotonicity/regularity is mild and is satisfied by the canonical heavy-tailed families
736 used in practice (Pareto, Student's- t /Cauchy, and standard scale mixtures), so in typical settings the
737 assumption is essentially equivalent to requiring that the projection $[\langle \mathbf{u}, X \rangle]_+$ has directional tail
738 index $\xi_{\mathbf{u}}$.
739740 **Examples.** For a Pareto(α) distribution with threshold $x_{\min} > 0$, $\bar{F}(x) = (x_{\min}/x)^{\alpha} (1 + o(1))$ and
741 $f(x) = \alpha x_{\min}^{\alpha} x^{-(\alpha+1)} (1 + o(1))$, so Assumption A.1 holds with $\xi_{\mathbf{u}} = \alpha$. For a Student's- t (ν)
742 distribution (Cauchy when $\nu = 1$), the one-sided tails satisfy $\bar{F}(x) \sim C_{\nu} x^{-\nu}$ and $f_{\nu}(x) \sim C'_{\nu} |x|^{-(\nu+1)}$, hence the assumption holds with $\xi_{\mathbf{u}} = \nu$, absorbing any slowly varying corrections
743 into $L_{\mathbf{u}}$.
744745 Finally, replacing (μ, σ) by any fixed (μ_k, σ_k) only shifts $\log r$ by a constant, since $\log(\sigma_k r) =$
746 $\log(\sigma r) + \log(\sigma_k/\sigma)$; this is absorbed into $L_{\mathbf{u}}$, so the asymptotic slope $-(1 + \xi_{\mathbf{u}})$ is unaffected.
747748 A.4.2 PROOF OF THEOREM 3.1
749750 **Lemma A.2.** *Let $z_1, \dots, z_n \stackrel{\text{i.i.d.}}{\sim}$ Student's- t_{ν} with any fixed $\nu > 0$, fix a direction $\mathbf{u} \in \mathbb{S}^{d-1}$,
751 and set $r_i := |z_i^{\mathbf{u}}| = |\langle z_i, \mathbf{u} \rangle|$. Let $r_{(1)} \geq \dots \geq r_{(n)}$ denote the order statistics and fix integers
752 $1 \leq i \leq j$. Define*

753
$$\Delta_{i,n} := \log r_{(i)} - \log r_{(j+1)}.$$

756 Then

757
$$\Delta_{i,n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \frac{1}{\nu} \log \left(\frac{j+1}{i} \right).$$

759
760 *Proof. Step 1 (Tail regular variation).* Since $z_i^{\mathbf{u}}$ has a univariate t_{ν} law up to a positive scale,
761 $R := |z_i^{\mathbf{u}}|$ has a regularly varying tail with index ν :

762
$$\bar{F}(x) := \Pr(R > x) \sim C x^{-\nu} L(x) \quad (x \rightarrow \infty),$$

763 for some slowly varying L and constant $C > 0$; see, e.g., Resnick (2007, Ch. 1).

764
765 *Step 2 (Quantile representation of top order statistics).* Let $U(y) := \inf\{x : F(x) \geq 1 - \frac{1}{y}\}$ be the
766 tail quantile function. By regular variation of \bar{F} , one has

767
$$U(y) = y^{1/\nu} \ell(y), \quad y \rightarrow \infty,$$

768 for some slowly varying ℓ (Karamata theory; see Bingham et al. (1989, Thm 1.5.12)). Moreover, for
769 fixed m ,

770
$$r_{(m)} = U\left(\frac{n}{m}\right) \{1 + o_{\mathbb{P}}(1)\} \quad (n \rightarrow \infty), \quad (6)$$

771 see standard order-statistic asymptotics for heavy-tailed models (e.g., Resnick (2007, Prop. 0.10,
772 Thm. 3.3)).

773
774 *Step 3 (Log-spacing limit).* Combining equation 6 for $m = i$ and $m = j + 1$,

775
$$\Delta_{i,n} = \log U\left(\frac{n}{i}\right) - \log U\left(\frac{n}{j+1}\right) + o_{\mathbb{P}}(1) = \frac{1}{\nu} \log \frac{j+1}{i} + \log \frac{\ell(n/i)}{\ell(n/(j+1))} + o_{\mathbb{P}}(1).$$

776 Since ℓ is slowly varying, $\ell(n/i)/\ell(n/(j+1)) \rightarrow 1$ as $n \rightarrow \infty$ for fixed i, j , hence the middle term
777 is $o(1)$. Therefore

778
$$\Delta_{i,n} = \frac{1}{\nu} \log \frac{j+1}{i} + o_{\mathbb{P}}(1),$$

779 which yields the claimed convergence in probability. Tightness follows immediately from convergence
780 to a finite constant. \square

781
782 **Remark A.1.** For comparison, if the proposal is light-tailed in the Gumbel domain (e.g., Gaussian),
783 then $U(y) \sim \sqrt{2} \log y$ and the same calculation gives $\Delta_{i,n} \rightarrow 0$; in particular, $\Delta_{i,n}$ remains tight
784 but shrinks to zero, reflecting slower access to the extreme region.

785 We now state and prove a theorem that is slightly broader in scope than Theorem 3.1.

786
787 **Theorem A.3** (Directional consistency and tail-class behavior). Let $z_1, \dots, z_n \stackrel{\text{i.i.d.}}{\sim}$ Student's- t_{ν}
788 for a fixed $\nu > 0$, fix $j \geq 1$ and a direction $\mathbf{u} \in \mathbb{S}^{d-1}$, and define the estimator $\hat{\xi}_{\mathbf{u}}^{(k)}$ as in Section 3.2.
789 Under Assumption A.1,

790
$$\hat{\xi}_{\mathbf{u}}^{(k)} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \xi_{\mathbf{u}}.$$

791
792 **Remark A.2** (Behavior outside the polynomial class). The conclusions extend beyond Assumption
793 A.1 and characterize two complementary regimes in the same density-level scale.

794 Lighter than any power. If along direction \mathbf{u} the density decays faster than every polynomial,

795
$$\frac{-\log p(\mu_k + \sigma_k r \mathbf{u} \mid D)}{\log r} \xrightarrow[r \rightarrow \infty]{} \infty,$$

796 —for instance when, for some $\alpha > 0$ and slowly varying L ,

797
$$p(\mu_k + \sigma_k r \mathbf{u} \mid D) \sim e^{-\alpha r^p} L(r) \quad (p > 0), \quad \text{or} \quad p(\mu_k + \sigma_k r \mathbf{u} \mid D) \sim e^{-\alpha(\log r)^p} L(r) \quad (p > 1),$$

798 then the slope-based estimator diverges: $\hat{\xi}_{\mathbf{u}}^{(k)} \rightarrow \infty$ in probability.

799 Heavier than any power. If along direction \mathbf{u} the density decays more slowly than every polynomial,

800
$$\frac{-\log p(\mu_k + \sigma_k r \mathbf{u} \mid D)}{\log r} \xrightarrow[r \rightarrow \infty]{} 0,$$

810 —for instance when, for some slowly varying L ,

811

$$812 p(\mu_k + \sigma_k r \mathbf{u} \mid D) \sim e^{-\alpha(\log r)^p} L(r) \quad (0 < p < 1), \quad \text{or}$$

813

$$814 p(\mu_k + \sigma_k r \mathbf{u} \mid D) \sim r^{-1/L_0(r)}, \quad L_0(r) \rightarrow \infty \text{ slowly varying,}$$

815

816 then the estimator collapses: $\hat{\xi}_{\mathbf{u}}^{(k)} \rightarrow 0$ in probability.

817

818

819 *Proof of Theorem A.3.* Fix $\mathbf{u} \in \mathbb{S}^{d-1}$ and $j \geq 1$. Write $r_i := |z_i^{\mathbf{u}}|$, let $r_{(1)} \geq \dots \geq r_{(n)}$ be the order

820 statistics, and set $t_i := \log r_{(i)}$ and $t_0 := \log r_{(j+1)}$. Define the local difference quotients

821

$$822 Q_{i,n} := \frac{\log p(\mu_k + \sigma_k r_{(i)} \mathbf{u} \mid D) - \log p(\mu_k + \sigma_k r_{(j+1)} \mathbf{u} \mid D)}{t_i - t_0}, \quad i = 1, \dots, j.$$

823

824 By Assumption A.1,

825

$$826 \log p(\mu_k + \sigma_k r \mathbf{u} \mid D) = C_{\mathbf{u}} - (1 + \xi_{\mathbf{u}}) \log r + \ell_{\mathbf{u}}(\log r) + o(1),$$

827 where $\ell_{\mathbf{u}}(t) := \log L_{\mathbf{u}}(e^t)$ satisfies $\ell_{\mathbf{u}}(t + \Delta) - \ell_{\mathbf{u}}(t) \rightarrow 0$ for each fixed $\Delta > 0$. Hence

828

$$829 Q_{i,n} = -(1 + \xi_{\mathbf{u}}) + \frac{\ell_{\mathbf{u}}(t_i) - \ell_{\mathbf{u}}(t_0)}{t_i - t_0} + o(1).$$

830

831

832 By Lemma A.2, $t_0 \rightarrow \infty$ and $t_i - t_0 = \Delta_{i,n} \xrightarrow{\mathbb{P}} c_i > 0$ for each fixed $i \leq j$, so the fraction

833 $(\ell_{\mathbf{u}}(t_i) - \ell_{\mathbf{u}}(t_0))/(t_i - t_0) \xrightarrow{\mathbb{P}} 0$ uniformly over $i = 1, \dots, j$. Therefore

834

$$835 \frac{1}{j} \sum_{i=1}^j Q_{i,n} \xrightarrow{\mathbb{P}} -(1 + \xi_{\mathbf{u}}), \quad \text{so} \quad \hat{\xi}_{\mathbf{u}}^{(k)} = -\frac{1}{j} \sum_{i=1}^j Q_{i,n} - 1 \xrightarrow{\mathbb{P}} \xi_{\mathbf{u}}.$$

836

837

838

839 \square

840

841

842 *Proof of Remark A.2.* We show the two regimes separately. Let $t_i := \log r_{(i)}$ and $t_0 := \log r_{(j+1)}$

843 as above, and set

844

$$845 Q_{i,n} = \frac{\log p(\mu_k + \sigma_k e^{t_i} \mathbf{u} \mid D) - \log p(\mu_k + \sigma_k e^{t_0} \mathbf{u} \mid D)}{t_i - t_0} = -\frac{\phi(t_i) - \phi(t_0)}{t_i - t_0},$$

846

847 where $\phi(t) := -\log p(\mu_k + \sigma_k e^t \mathbf{u} \mid D)$.

848

849 (i) *Lighter than any power.* Assume $\phi(t)/t \rightarrow \infty$ as $t \rightarrow \infty$. For each fixed $i \leq j$, Lemma A.2

850 yields $t_i - t_0 \rightarrow c_i > 0$ in probability and $t_0 \rightarrow \infty$. Hence

851

$$852 Q_{i,n} = -\frac{\phi(t_i) - \phi(t_0)}{t_i - t_0} \xrightarrow{\mathbb{P}} -\infty,$$

853

854 so $-\frac{1}{j} \sum_{i=1}^j Q_{i,n} - 1 \xrightarrow{\mathbb{P}} +\infty$ and therefore $\hat{\xi}_{\mathbf{u}}^{(k)} \rightarrow \infty$ in probability.

855

856 (ii) *Heavier than any power.* Assume $\phi(t) = o(t)$ as $t \rightarrow \infty$. Then for any $\varepsilon > 0$ there exists T

857 such that $\phi(t) \leq \varepsilon t$ for all $t \geq T$. Take $t = t_0 \geq T$ and $c = t_i - t_0$; for large n , Lemma A.2 ensures

858 $c \rightarrow c_i > 0$, and with ϕ eventually increasing we have

859

$$860 0 \leq \frac{\phi(t_0 + c) - \phi(t_0)}{c} \leq \varepsilon.$$

861

862 Thus $Q_{i,n} \xrightarrow{\mathbb{P}} 0$ for each $i \leq j$ and $j^{-1} \sum_i Q_{i,n} \xrightarrow{\mathbb{P}} 0$. Consequently, $-\frac{1}{j} \sum_{i=1}^j Q_{i,n} - 1 \xrightarrow{\mathbb{P}} -1$.

863 As is standard for tail-index estimation we truncate at 0, hence $\hat{\xi}_{\mathbf{u}}^{(k)} \rightarrow 0$ in probability. \square

864 A.4.3 CONVERGENCE RATES UNDER SECOND-ORDER REGULAR VARIATION
865

866 By making an additional assumption on the slowly varying factor $L_{\mathbf{u}}(r)$, we can compute the con-
867 vergence rate of the proposed estimator $\hat{\xi}_{\mathbf{u}}^{(k)}$.

868 **Assumption A.2** (Second-order directional density regular variation). *In Assumption A.1, write*
869 $\ell_{\mathbf{u}}(t) := \log L_{\mathbf{u}}(e^t)$. *Assume there exist an index $\rho \leq 0$ and an auxiliary function $A : (0, \infty) \rightarrow \mathbb{R}$*
870 *with $A(r) \rightarrow 0$ such that the following uniform second-order increment holds: for every compact*
871 *set $K \subset (0, \infty)$,*

$$873 \sup_{x \in K} \left| \frac{\ell_{\mathbf{u}}(t + \log x) - \ell_{\mathbf{u}}(t)}{A(e^t)} - H_{\rho}(x) \right| \rightarrow 0 \quad (t \rightarrow \infty),$$

875 where $H_{\rho}(x) = (x^{\rho} - 1)/\rho$ for $\rho \neq 0$ and $H_0(x) = \log x$. Equivalently, along the ray $\mu + \sigma r \mathbf{u}$ we
876 have the uniform log-density increment expansion

$$878 \sup_{x \in K} |[\log p(\mu + \sigma r x \mathbf{u} \mid D) - \log p(\mu + \sigma r \mathbf{u} \mid D)] + (1 + \xi_{\mathbf{u}}) \log x - A(r) H_{\rho}(x)| = o(A(r)),$$

880 as $r \rightarrow \infty$, for every compact $K \subset (0, \infty)$.

881 Assumption A.2 is the standard de Haan second-order refinement for slow variation (De Haan &
882 Ferreira, 2006). Typical examples (with $L_{\mathbf{u}}$ eventually positive) include: (i) $L_{\mathbf{u}}(r) = (\log r)^{\beta}$ with
883 $\beta \in \mathbb{R}$, for which $\rho = 0$ and one may take $A(r) \asymp (\log r)^{-1}$ (hence rates in powers of $\log r$); (ii)
884 $L_{\mathbf{u}}(r) = 1 + c r^{\rho} + o(r^{\rho})$ with $\rho < 0$ and $c \neq 0$, giving $A(r) \asymp r^{\rho}$ (hence polynomial rates). Both
885 examples satisfy the uniform convergence on compact x -sets required in Assumption A.2.

886 **Theorem A.4** (Rate of convergence). *Under Assumptions A.1 and A.2, with $z_i \stackrel{\text{i.i.d.}}{\sim} t_{\nu}$ ($\nu > 0$) and*
887 *fixed $j \geq 1$, let $r_{(m)} := |z_{(m)}^{\mathbf{u}}|$, $t_m := \log r_{(m)}$, and denote $c_i := \lim_{n \rightarrow \infty} (t_i - t_{j+1}) = \frac{1}{\nu} \log \frac{j+1}{i}$*
888 *(Lemma A.2). Then*

$$891 \hat{\xi}_{\mathbf{u}}^{(k)} - \xi_{\mathbf{u}} = \kappa_{j,\nu,\rho} A(r_{(j+1)}) + o_{\mathbb{P}}(A(r_{(j+1)})), \quad \kappa_{j,\nu,\rho} = \frac{1}{j} \sum_{i=1}^j \frac{H_{\rho}(e^{c_i})}{c_i}.$$

894 In particular, if $A(r) \asymp (\log r)^{-\beta}$ with $\beta > 0$, then $A(r_{(j+1)}) \asymp (\log n)^{-\beta}$ and $\hat{\xi}_{\mathbf{u}}^{(k)} - \xi_{\mathbf{u}} =$
895 $O_{\mathbb{P}}((\log n)^{-\beta})$; if $A(r) \asymp r^{\rho}$ with $\rho < 0$, then $A(r_{(j+1)}) \asymp n^{\rho/\nu}$ and $\hat{\xi}_{\mathbf{u}}^{(k)} - \xi_{\mathbf{u}} = O_{\mathbb{P}}(n^{\rho/\nu})$.

897 *Proof of Theorem A.4.* Fix $\mathbf{u} \in \mathbb{S}^{d-1}$ and $j \geq 1$. Let $r_{(m)} := |z_{(m)}^{\mathbf{u}}|$, $t_m := \log r_{(m)}$ and

$$900 Q_{i,n} := \frac{\log p(\mu_k + \sigma_k r_{(i)} \mathbf{u} \mid D) - \log p(\mu_k + \sigma_k r_{(j+1)} \mathbf{u} \mid D)}{t_i - t_{j+1}}, \quad i = 1, \dots, j.$$

902 By Assumption 3.1, along the ray we can write

$$903 \log p(\mu_k + \sigma_k e^t \mathbf{u} \mid D) = C_{\mathbf{u}} - (1 + \xi_{\mathbf{u}})t + \ell_{\mathbf{u}}(t), \quad \text{with } \ell_{\mathbf{u}}(t) := \log L_{\mathbf{u}}(e^t).$$

905 Hence

$$906 Q_{i,n} = -(1 + \xi_{\mathbf{u}}) + \frac{\ell_{\mathbf{u}}(t_i) - \ell_{\mathbf{u}}(t_{j+1})}{t_i - t_{j+1}}.$$

909 By Lemma A.2, $t_{j+1} \rightarrow \infty$ and $t_i - t_{j+1} \xrightarrow{\mathbb{P}} c_i > 0$ with $c_i = \frac{1}{\nu} \log \frac{j+1}{i}$. Set $x_{i,n} := \exp(t_i - t_{j+1})$.
910 Then $x_{i,n} \xrightarrow{\mathbb{P}} e^{c_i}$ and, for all large n , the random multipliers $x_{i,n}$ take values in a common compact
911 set $K \subset (0, \infty)$ (since $\{c_i\}_{i=1}^j$ is finite). Apply Assumption A.2 with $t = t_{j+1}$ and $x = x_{i,n}$ to
912 obtain the uniform second-order increment

$$913 \ell_{\mathbf{u}}(t_i) - \ell_{\mathbf{u}}(t_{j+1}) = A(e^{t_{j+1}}) H_{\rho}(x_{i,n}) + o(A(e^{t_{j+1}}))$$

915 uniformly over $i = 1, \dots, j$. Therefore,

$$917 Q_{i,n} = -(1 + \xi_{\mathbf{u}}) + \frac{A(e^{t_{j+1}})}{t_i - t_{j+1}} H_{\rho}(x_{i,n}) + o_{\mathbb{P}}(A(e^{t_{j+1}})).$$

Averaging over $i = 1, \dots, j$ and using the continuous mapping theorem with $t_i - t_{j+1} \xrightarrow{\mathbb{P}} c_i$ and $x_{i,n} \xrightarrow{\mathbb{P}} e^{c_i}$ yields

$$\frac{1}{j} \sum_{i=1}^j Q_{i,n} = -(1 + \xi_{\mathbf{u}}) + \left(\frac{1}{j} \sum_{i=1}^j \frac{H_{\rho}(e^{c_i})}{c_i} \right) A(e^{t_{j+1}}) + o_{\mathbb{P}}(A(e^{t_{j+1}})).$$

By the definition of the estimator,

$$\hat{\xi}_{\mathbf{u}}^{(k)} = -\frac{1}{j} \sum_{i=1}^j Q_{i,n} - 1 = \kappa_{j,\nu,\rho} A(e^{t_{j+1}}) + o_{\mathbb{P}}(A(e^{t_{j+1}})),$$

with $\kappa_{j,\nu,\rho} = \frac{1}{j} \sum_{i=1}^j \frac{H_{\rho}(e^{c_i})}{c_i}$. Finally, $e^{t_{j+1}} = r_{(j+1)}$ gives the stated expansion.

For the concrete rates, recall that for t_{ν} proposals the $(j+1)$ -st upper order statistic satisfies $r_{(j+1)} \asymp n^{1/\nu}$, so that: (i) if $A(r) \asymp (\log r)^{-\beta}$ with $\beta > 0$, then $A(r_{(j+1)}) \asymp (\log n)^{-\beta}$; (ii) if $A(r) \asymp r^{\rho}$ with $\rho < 0$, then $A(r_{(j+1)}) \asymp n^{\rho/\nu}$. This yields the two $O_{\mathbb{P}}(\cdot)$ displays and completes the proof. \square

A.5 COMPONENT-WISE PUSHFORWARD

Construction of a probability measure. Let $(\pi_k)_{k \in \mathbb{N}}$ be a probability mass function on \mathbb{N} (i.e., $\pi_k \geq 0$ and $\sum_{k=1}^{\infty} \pi_k = 1$). For each $k \in \mathbb{N}$, let q_k be a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ and let $T^{(k)} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be a measurable map. Define $\nu : \mathcal{B}(\mathbb{R}^d) \rightarrow [0, 1]$ by

$$\nu(A) := \sum_{k=1}^{\infty} \pi_k q_k((T^{(k)})^{-1}(A)), \quad A \in \mathcal{B}(\mathbb{R}^d).$$

Then ν is a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. *Proof.* For each fixed k , the set function $A \mapsto q_k((T^{(k)})^{-1}(A))$ is a measure because $T^{(k)}$ is measurable and q_k is a measure. Since $\pi_k \geq 0$, Tonelli's theorem implies that the pointwise countable sum of measures is a measure; thus ν is countably additive and $\nu(\emptyset) = 0$. Moreover,

$$\nu(\mathbb{R}^d) = \sum_{k=1}^{\infty} \pi_k q_k((T^{(k)})^{-1}(\mathbb{R}^d)) = \sum_{k=1}^{\infty} \pi_k q_k(\mathbb{R}^d) = \sum_{k=1}^{\infty} \pi_k = 1,$$

so ν has total mass one. Hence ν is a probability measure. \square

Equivalent product-space construction. On the product space $(\mathbb{N} \times \mathbb{R}^d, 2^{\mathbb{N}} \otimes \mathcal{B}(\mathbb{R}^d))$, define the probability measure μ by

$$\mu(\{k\} \times A) := \pi_k q_k(A), \quad k \in \mathbb{N}, A \in \mathcal{B}(\mathbb{R}^d),$$

and the measurable map $\mathcal{T} : \mathbb{N} \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ by $\mathcal{T}(k, x) := T^{(k)}(x)$. Then $\mathcal{T}_{\#}\mu$ is a probability measure on \mathbb{R}^d and satisfies

$$(\mathcal{T}_{\#}\mu)(A) = \sum_{k=1}^{\infty} \pi_k q_k((T^{(k)})^{-1}(A)) = \nu(A),$$

so the component-wise transform followed by marginalization over the index yields the same ν .

Change-of-variables for component-wise transforms and the resulting density. Assume each q_k admits a density (again denoted q_k) with respect to Lebesgue measure and each $T^{(k)} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a bijective C^1 map with measurable inverse and Jacobian $J^{(k)}(x) = \nabla T^{(k)}(x)$. For $z \in \mathbb{R}^d$, write $x_k := (T^{(k)})^{-1}(z)$. The change-of-variables formula gives

$$(T_{\#}^{(k)} q_k)(z) = q_k(x_k) |\det J_{(T^{(k)})^{-1}}(z)| = q_k(x_k) |\det J^{(k)}(x_k)|^{-1}.$$

Consequently, the density of the (countably) infinite transformed mixture $\nu = \sum_{k=1}^{\infty} \pi_k T_{\#}^{(k)} q_k$ is

$$q(z) = \sum_{k=1}^{\infty} \pi_k q_k((T^{(k)})^{-1}(z)) |\det J^{(k)}((T^{(k)})^{-1}(z))|^{-1}, \quad z \in \mathbb{R}^d,$$

whenever the sum is finite (e.g., by Tonelli/DCT under mild tail and Jacobian growth controls). This identity is sufficient for exact likelihood evaluation of transformed mixtures.

Sampling and likelihood evaluation (combined). Sampling follows directly from the product-space viewpoint in A.X.1: draw $K \sim \text{Categorical}(\pi_1, \pi_2, \dots)$, then $X \sim q_K$, and output $Z = T^{(K)}(X)$, i.e., $Z = \mathcal{T}(K, X) \sim \mathcal{T}_\# \mu = \nu$. For likelihood evaluation at z , compute for each k the inverse $x_k = (T^{(k)})^{-1}(z)$ and $\log |\det J^{(k)}(x_k)|$, then assemble

$$\log q(z) = \log \sum_{k=1}^{\infty} \exp \left\{ \log \pi_k + \log q_k(x_k) - \log |\det J^{(k)}(x_k)| \right\},$$

using standard log-sum-exp stabilization.

A.6 TAIL TRANSFORM FLOWS

This section presents further details on Tail Transform Flows (Hickling & Prangle, 2024), which we employ to perform component-wise transformations from light-tailed base distributions to heavy-tailed targets.

For component k and coordinate l , write

$$x^{(l)} = T_{\text{TTF}}^{(k),(l)}(z^{(l)}; \hat{\xi}_{+e_l}^{(k)}, \hat{\xi}_{-e_l}^{(k)}) = \mu_k^{(l)} + \sigma_k^{(l)} \frac{s_l}{\hat{\xi}_{s_l}^{(k)}} \left[\text{erfc} \left(\frac{|z^{(l)} - \mu_k^{(l)}|}{\sigma_k^{(l)} \sqrt{2}} \right)^{-\hat{\xi}_{s_l}^{(k)}} - 1 \right],$$

where $s_l = \text{sign}(z^{(l)} - \mu_k^{(l)}) \in \{+1, -1\}$ selects the right/left tail and we denote

$$r^{(l)} = \frac{z^{(l)} - \mu_k^{(l)}}{\sigma_k^{(l)}}, \quad u^{(l)} = \frac{|r^{(l)}|}{\sqrt{2}}.$$

Forward Jacobian. Differentiating the scalar map in $z^{(l)}$ yields a closed form:

$$\frac{\partial T_{\text{TTF}}^{(k),(l)}}{\partial z^{(l)}}(z^{(l)}) = \frac{\sqrt{2}}{\sqrt{\pi}} \exp \left(-\frac{(r^{(l)})^2}{2} \right) \text{erfc} \left(\frac{|r^{(l)}|}{\sqrt{2}} \right)^{-(\hat{\xi}_{s_l}^{(k)} + 1)}.$$

Hence the full Jacobian determinant of the component-wise transform $T_{\text{TTF}}^{(k)} = (T_{\text{TTF}}^{(k),(1)}, \dots, T_{\text{TTF}}^{(k),(d)})$ is the product

$$\left| \det J_{T_{\text{TTF}}^{(k)}}(z) \right| = \prod_{l=1}^d \frac{\sqrt{2}}{\sqrt{\pi}} \exp \left(-\frac{1}{2} \left(\frac{z^{(l)} - \mu_k^{(l)}}{\sigma_k^{(l)}} \right)^2 \right) \text{erfc} \left(\frac{|z^{(l)} - \mu_k^{(l)}|}{\sigma_k^{(l)} \sqrt{2}} \right)^{-(\hat{\xi}_{s_l}^{(k)} + 1)}.$$

Monotonicity and smoothness. Each scalar map is strictly increasing (derivative > 0), and it is C^1 at $z^{(l)} = \mu_k^{(l)}$ with $\partial T / \partial z^{(l)}|_{z^{(l)}=\mu_k^{(l)}} = \sqrt{2/\pi}$, independent of $\hat{\xi}$ and $\sigma_k^{(l)}$.

Closed-form inverse. Given $x^{(l)}$, define

$$t^{(l)} = \frac{x^{(l)} - \mu_k^{(l)}}{\sigma_k^{(l)}}, \quad s_l = \text{sign}(t^{(l)}), \quad E^{(l)} = \left(1 + s_l \hat{\xi}_{s_l}^{(k)} t^{(l)} \right)^{-1/\hat{\xi}_{s_l}^{(k)}}.$$

Then the inverse map is

$$(T_{\text{TTF}}^{(k),(l)})^{-1}(x^{(l)}) = \mu_k^{(l)} + \sigma_k^{(l)} s_l \sqrt{2} \text{erfc}^{-1}(E^{(l)}).$$

Inverse Jacobian. Let $u_*^{(l)} = \text{erfc}^{-1}(E^{(l)})$. The per-coordinate inverse derivative is

$$\frac{\partial (T_{\text{TTF}}^{(k),(l)})^{-1}}{\partial x^{(l)}}(x^{(l)}) = \frac{\sqrt{\pi}}{\sqrt{2}} \text{erfc}(u_*^{(l)})^{\hat{\xi}_{s_l}^{(k)} + 1} \exp \left((u_*^{(l)})^2 \right).$$

Consequently,

$$\left| \det J_{(T_{\text{TTF}}^{(k)})^{-1}}(x) \right| = \prod_{l=1}^d \frac{\sqrt{\pi}}{\sqrt{2}} \text{erfc}(u_*^{(l)})^{\hat{\xi}_{s_l}^{(k)} + 1} \exp \left((u_*^{(l)})^2 \right), \quad u_*^{(l)} = \text{erfc}^{-1} \left(\left(1 + s_l \hat{\xi}_{s_l}^{(k)} t^{(l)} \right)^{-1/\hat{\xi}_{s_l}^{(k)}} \right).$$

1026 Table 3: **Estimated percentiles of Gaussian-Inverse-Gamma distribution** Reported are the 0.1-
 1027 and 99.9-percentiles for the first coordinate and the 99.9-percentile for the second coordinate from
 1028 sample of 10,000.

Method	β 0.1-ptile	β 99.9-ptile	σ^2 99.9-ptile
Target Gaussian-Inverse-Gamma	-3.15	3.18	5.56
NF (Gaussian)	-3.06	3.01	2.63
NF (Gaussian Mixture)	-2.91	3.08	3.30
TAF	-7.98	8.48	5.86
gTAF	-2.98	3.06	3.07
gTAF Mixture	-3.21	3.20	2.71
ATAF	-3.17	4.33	2.81
StiCTAF	-3.11	3.11	5.15

B EXPERIMENTS DETAILS

This section provides further details for the experimental results conducted on Section 4 and Section 5. As previously illustrated, we include flow models with a standard Gaussian base, a Gaussian mixture base, TAF (Jaini et al., 2020), gTAF (Laszkiewicz et al., 2022), and ATAF (Liang et al., 2022) as the benchmark methods. In addition, we consider a normalizing flow model with a stick-breaking heavy-tailed mixture base to show that a heavy-tailed mixture base alone is insufficient. See Section C for the details.

For every flow based models, we use $N = 2$ blocks, each block consisting of an autoregressive rational-quadratic spline (ARQS) transform with 3 bins and a coupling network with 64 hidden units, followed by a learnable LU-linear permutation layer. For every mixture base flow models including StiCTAF, $K = 20$ mixture components are used. For the numerical stability, the TTF were applied to those components with expected weight higher than 1×10^{-2} . All models are implemented in PyTorch 2.7.0+cu126 with CUDA 12.6 using the `normflows` library (Stimper et al., 2023), and are executed on a single NVIDIA GeForce RTX 4090 GPU.

B.1 GAUSSIAN-INVVERSE-GAMMA DISTRIBUTION

This section details the numerical experiment in Section 4, where the target distribution is

$$(\beta, \sigma^2) \sim \mathcal{N}(0, 1) \times \text{Inv-Gamma}(\text{shape} = 3, \text{scale} = 1).$$

We ran 300 iterations for ATAF and for NF with Gaussian and Gaussian-mixture bases; 500 iterations for TAF and StiCTAF (with 450 for base learning and 50 for flow learning); and 1000 iterations for gTAF and gTAF-Mixture, until convergence. The base distributions were initialized as Student's t distributions with degrees of freedom 4 for TAF, (30, 3) for ATAF, (30, 2.89) for gTAF, and (30, 2.72) for gTAF-Mixture. For the last two, the initial degrees of freedom were estimated using the tail estimator proposed in Section 3.2. Student's- t -based methods showed highly unstable training process, so the initial degrees of freedom were clamped greater than 2.0, and 4.0 for TAF which showed the highest instability. All method used learning rate of 5×10^{-3} .

Figure 4 presents the results across all methods, based on 10^4 samples from each approximating distribution. The Dotted reference lines indicate the 0.1% and 99.9% marginal percentiles for β , and the 99.9% marginal percentile for σ^2 . Table 3 summarizes these values for each method. We observe for TAF and ATAF that mixing across dimensions leads to a failure to accurately capture the tail thickness of β , which corroborates Theorem 2.2. Only StiCTAF accurately captures the tail behavior in both β and σ^2 .

B.2 COMPLEX MIXTURE TARGET DISTRIBUTION

For the second numerical experiment in Section 4, the target distribution is a mixture of four components: two Gaussian \times Student- t components (with $\nu = 2$ and $\nu = 3$, respectively), one Two-Moons component, and one Student- t ($\nu = 2$) \times Student- t ($\nu = 3$) component. The component centers are (6, 0), (0, 6), (-3, -4), and (0, 0), and the mixture weights are (0.2, 0.2, 0.1, 0.5) in the same order.

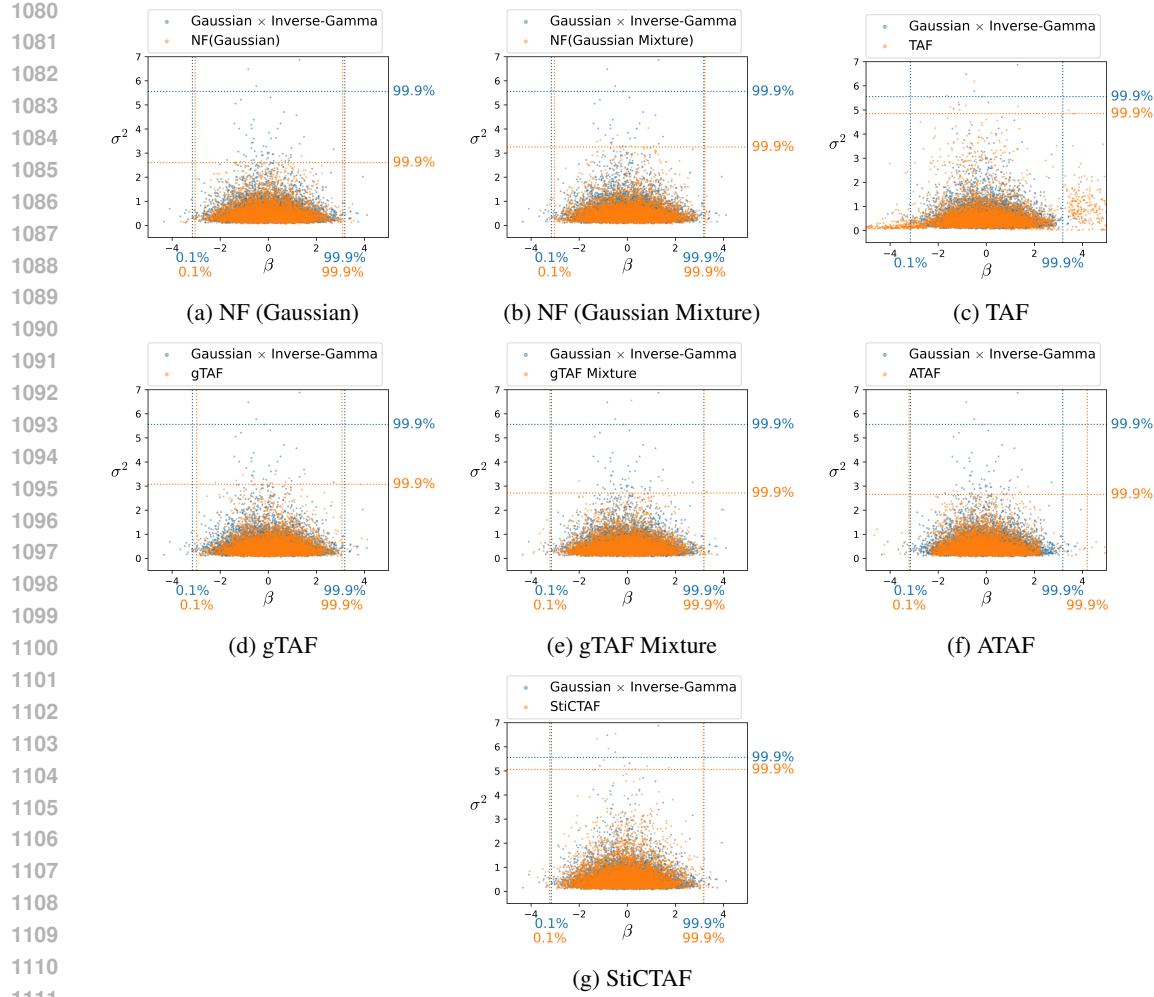


Figure 4: **Normal × Inverse-Gamma Target:** Full comparison with benchmark methods using samples of size 10^4 per model; dotted lines indicate the 0.1%/99.9% marginal percentiles.

We ran 1500 iterations for NF (Gaussian Mixture) and 1000 iterations for all other methods (for StiCTAF: 800 iterations for base learning and 200 for flow learning), continuing until convergence. The initial degrees of freedom were $(2, 2)$ for TAF, ATAF, and gTAF–Mixture, and $(2.54, 2)$ for gTAF. All methods used a learning rate of 1×10^{-3} .

Figure 5 shows 2×10^4 samples from each approximating distribution, with marginal density curves displayed along the top and right margins. It is evident that mixture-based flow models (Gaussian Mixture, gTAF–Mixture, and StiCTAF) more effectively recover all modes compared with unimodal-based flow models. For a quantitative comparison, Table 4 summarizes the mean and standard deviation of the forward Kullback–Leibler (KL) divergence (estimated via Monte Carlo using true target samples) and the normalized effective sample size (ESS) computed from samples drawn from the trained models. Among all methods, StiCTAF attains the best performance—yielding the lowest KL divergence and the highest ESS.

B.3 REAL DATA ANALYSIS

We analyze the daily maximum wind speed data for the year 2024 obtained from the Korea Meteorological Administration (<https://data.kma.go.kr/>). We consider four stations ($J = 4$) and four seasons ($S = 4$). Let $X_{(j,s),t}$ denote the daily maximum wind at station $j \in \{1, \dots, J\}$, season $s \in \{1, \dots, S\}$, and day index t . For each (j, s) , we fix a high threshold $u_{j,s}$ and work with

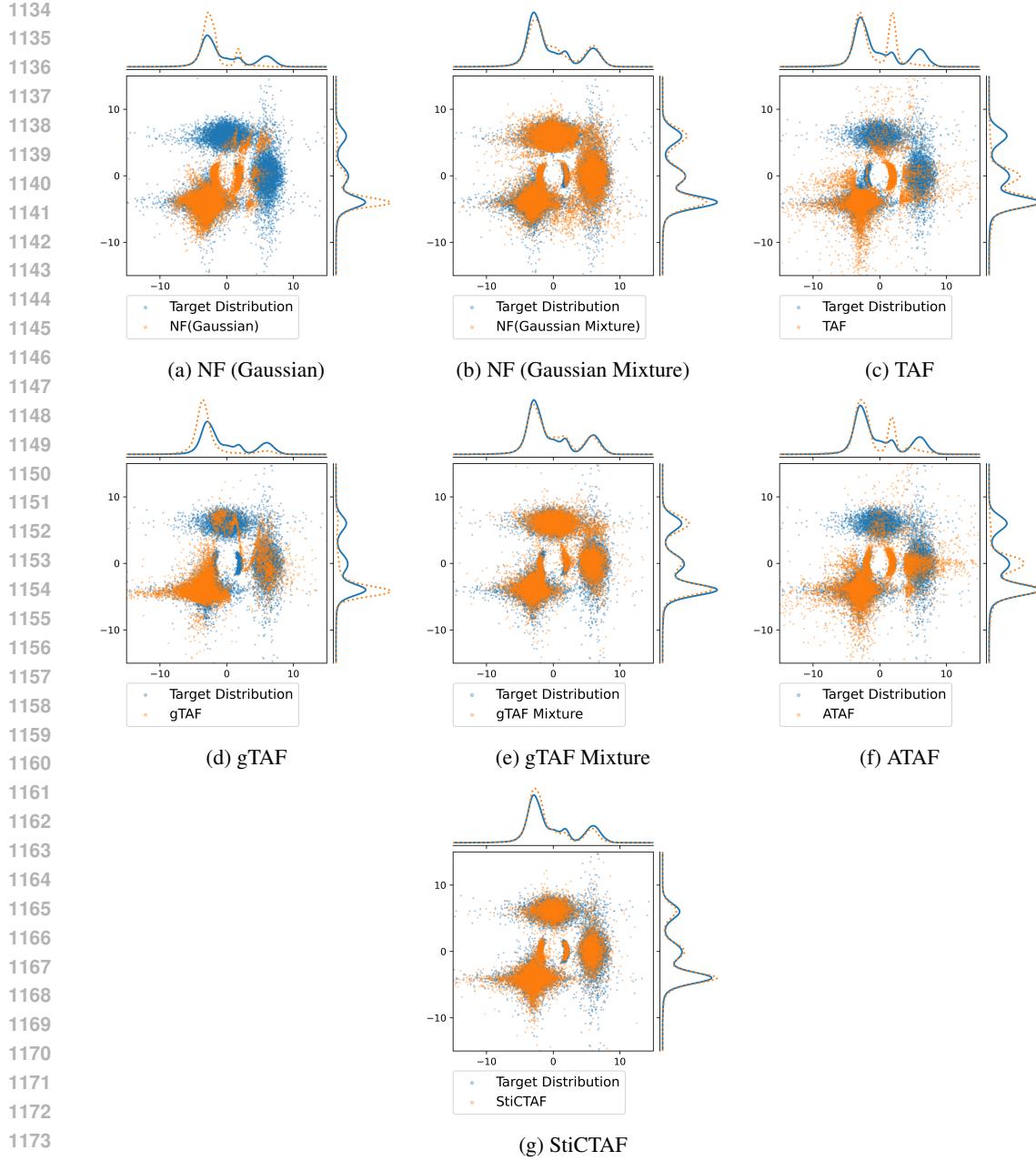


Figure 5: **Complex Multimodal Target:** Full comparison with benchmark methods using samples of size 10^4 per model; curves along the top and right margins show the marginal densities.

exceedance residuals

$$Y_{(j,s),t} = X_{(j,s),t} - u_{j,s} \quad \text{conditioned on } X_{(j,s),t} > u_{j,s}.$$

Following Fawcett & Walshaw (2006), we adopt a pairwise extreme-value framework: threshold exceedances are modeled with GPD margins, and dependence between consecutive days is captured by a logistic bivariate extreme-value model. We use this structure to analyze the 2024 KMA wind data across stations and seasons.

GPD marginal for threshold exceedances. Following Fawcett & Walshaw (2006), conditional on exceeding $u_{j,s}$, the residual $Y_{(j,s),t} = X_{(j,s),t} - u_{j,s}$ is modeled by a Generalized Pareto Distribution

1188 Table 4: **Forward KL-divergence and normalized ESS** Scores for estimating complex multimodal
 1189 target distributions. (mean \pm standard deviation)s over 10 random seeds are reported. Lower KL
 1190 and higher ESS is the better.

Method	Forward KL	ESS(normalized)
NF (Gaussian)	1.92 ± 1.21	0.31 ± 0.17
NF (Gaussian Mixture)	0.33 ± 0.05	0.65 ± 0.23
TAF	0.90 ± 0.09	0.21 ± 0.06
gTAF	2.80 ± 0.20	0.07 ± 0.07
gTAF Mixture	0.43 ± 0.12	0.48 ± 0.20
ATAF	0.94 ± 0.33	0.19 ± 0.07
StICTAF	0.22 ± 0.09	0.79 ± 0.19

1200 (GPD) with scale parameter $\sigma_{j,s} > 0$ and shape parameter $\eta_{j,s}$. Its CDF and PDF are

$$1203 \quad H(y \mid \sigma_{j,s}, \eta_{j,s}; u_{j,s}) = 1 - \left(1 + \frac{\eta_{j,s}y}{\sigma_{j,s}}\right)^{-1/\eta_{j,s}}, \quad y \in \mathcal{S}(\sigma_{j,s}, \eta_{j,s}), \quad (7)$$

$$1206 \quad h(y \mid \sigma_{j,s}, \eta_{j,s}; u_{j,s}) = \frac{1}{\sigma_{j,s}} \left(1 + \frac{\eta_{j,s}y}{\sigma_{j,s}}\right)^{-1/\eta_{j,s}-1}, \quad y \in \mathcal{S}(\sigma_{j,s}, \eta_{j,s}) \quad (8)$$

1209 respectively, where the support is

$$1210 \quad \mathcal{S}(\sigma_{j,s}, \eta_{j,s}) = \{y \geq 0 : 1 + \eta_{j,s}y/\sigma_{j,s} > 0\} = \begin{cases} [0, \infty) & \text{if } \eta_{j,s} \geq 0, \\ [0, -\sigma_{j,s}/\eta_{j,s}) & \text{if } \eta_{j,s} < 0. \end{cases}$$

1213 In the limit $\eta_{j,s} \rightarrow 0$, equation 7 reduces to the exponential CDF $H(y) = 1 - \exp(-y/\sigma_{j,s})$.
 1214 When $\eta_{j,s} > 0$, the GPD is heavy-tailed with Pareto-type tail index $1/\eta_{j,s}$; when $\eta_{j,s} < 0$, it has a
 1215 finite upper endpoint (short/light tail). Since our focus is on heavy tails in wind extremes, we restrict
 1216 attention to the case $\eta_{j,s} > 0$ (enforced by the positive parameterization introduced below).

1217 **First-order pairwise likelihood decomposition.** Daily wind extremes often display short-range
 1218 temporal dependence—consecutive days tend to co-vary. To address this, Fawcett & Walshaw
 1219 (2006) model adjacent-day pairs and aggregate them via a first-order (Markov) composite likeli-
 1220 hood. Within a fixed (j, s) cell, write $x_t = X_{(j,s),t}$ for brevity, the composite likelihood in terms of
 1221 $(\sigma_{j,s}, \eta_{j,s})$ is

$$1224 \quad \mathcal{L}_{j,s}(\sigma_{j,s}, \eta_{j,s}) = f(x_1 \mid \sigma_{j,s}, \eta_{j,s}) \prod_{t=1}^{n_{j,s}-1} \frac{f(x_t, x_{t+1} \mid \sigma_{j,s}, \eta_{j,s})}{f(x_t \mid \sigma_{j,s}, \eta_{j,s})}, \quad (9)$$

1227 where $f(x_t, x_{t+1} \mid \sigma_{j,s}, \eta_{j,s})$ is the joint density for the consecutive pair and $f(x_t \mid \sigma_{j,s}, \eta_{j,s})$ is the
 1228 corresponding marginal. The joint density is specified in the next paragraph via a logistic bivariate
 1229 extreme-value model after transforming each marginal to an extreme-value scale.

1230 **Logistic bivariate extreme-value model after marginal transformation.** Fix a station–season
 1231 cell and suppress indices. Let u be the threshold, Λ the exceedance rate, and $(\sigma > 0, \eta > 0)$ the
 1232 GPD parameters. Transform $x > u$ to an extreme-value scale via

$$1234 \quad Z(x) = \Lambda^{-1} \left(1 + \frac{\eta(x-u)}{\sigma}\right)^{1/\eta}.$$

1237 The joint CDF for a consecutive pair (x_t, x_{t+1}) on this (generalized–Pareto) scale is

$$1238 \quad F(x_t, x_{t+1} \mid \sigma, \eta, \alpha) = 1 - \left[Z(x_t)^{-1/\alpha} + Z(x_{t+1})^{-1/\alpha} \right]_+^\alpha, \quad \alpha \in (0, 1], \quad (10)$$

1241 where $(a)_+ = \max(a, 0)$. Here, $\alpha = 1$ corresponds to independence, and $\alpha \rightarrow 0^+$ yields complete
 1242 dependence.

1242 **Region-wise contributions for consecutive pairs.** For each (j, s) and consecutive pair
 1243 (x_t, x_{t+1}) , define the four regions by thresholding at $u_{j,s}$:
 1244 $R_{11} : \{x_t > u, x_{t+1} > u\}, \quad R_{10} : \{x_t > u, x_{t+1} \leq u\}, \quad R_{01} : \{x_t \leq u, x_{t+1} > u\}, \quad R_{00} : \{x_t \leq u, x_{t+1} \leq u\},$
 1245 with $u \equiv u_{j,s}$ and $x_t = X_{(j,s),t}$ for brevity. Let $Z(\cdot)$ be as above and write
 1246

$$\frac{\partial Z(x)}{\partial x} = \frac{Z(x)}{\sigma_{j,s}(1 + \eta_{j,s}(x - u)/\sigma_{j,s})} \quad (x > u).$$

1249 Using $F(\cdot, \cdot | \sigma_{j,s}, \eta_{j,s}, \alpha_j)$ from equation 10, the numerator $f(x_t, x_{t+1} | \sigma_{j,s}, \eta_{j,s})$ in equation 9 is
 1250

$$\mathbf{(i)} \quad R_{11} : f(x_t, x_{t+1} | \sigma_{j,s}, \eta_{j,s}) = \frac{\partial^2 F}{\partial x_t \partial x_{t+1}} \Big|_{(x_t, x_{t+1})} = \frac{\partial^2 F}{\partial z_1 \partial z_2} \Big|_{(Z(x_t), Z(x_{t+1}))} \frac{\partial Z(x_t)}{\partial x} \frac{\partial Z(x_{t+1})}{\partial x},$$

$$\mathbf{(ii)} \quad R_{10} : f(x_t, x_{t+1} | \sigma_{j,s}, \eta_{j,s}) = \frac{\partial F}{\partial x_t} \Big|_{(x_t, u^+)} = \frac{\partial F}{\partial z_1} \Big|_{(Z(x_t), Z(u^+))} \frac{\partial Z(x_t)}{\partial x},$$

$$\mathbf{(iii)} \quad R_{01} : f(x_t, x_{t+1} | \sigma_{j,s}, \eta_{j,s}) = \frac{\partial F}{\partial x_{t+1}} \Big|_{(u^+, x_{t+1})} = \frac{\partial F}{\partial z_2} \Big|_{(Z(u^+), Z(x_{t+1}))} \frac{\partial Z(x_{t+1})}{\partial x},$$

$$\mathbf{(iv)} \quad R_{00} : f(x_t, x_{t+1} | \sigma_{j,s}, \eta_{j,s}) = F(u^+, u^+ | \sigma_{j,s}, \eta_{j,s}, \alpha_j) = 1 - \left[Z(u^+)^{-1/\alpha_j} + Z(u^+)^{-1/\alpha_j} \right]_+^{\alpha_j},$$

1259 where u^+ denotes evaluation at the threshold from the exceedance side. The denominator $f(x_t |$
 1260 $\sigma_{j,s}, \eta_{j,s})$ in equation 9 equals the GPD density $h(x_t - u | \sigma_{j,s}, \eta_{j,s})$ if $x_t > u$, and the
 1261 non-exceedance mass otherwise.
 1262

1263 **Overall likelihood.** The full composite likelihood is $\mathcal{L}(\theta) = \prod_{j=1}^J \prod_{s=1}^S \mathcal{L}_{j,s}(\theta)$ with $\mathcal{L}_{j,s}(\theta)$ as
 1264 in equation 9 and region-wise $c_{j,s,t}$ given above. All other implementation details (threshold choice,
 1265 numerical derivatives at u^+ , and season-specific handling of $\Lambda_{j,s}$) are deferred to the Appendix.
 1266

1267 **Parameterization.** We dispense with hierarchical random effects and use a non-hierarchical pos-
 1268 itive parameterization. For $j \in \{1, \dots, 4\}$ and $s \in \{1, \dots, 4\}$,

1269 $\sigma_{j,s} = \text{softplus}(\gamma_j^{(\sigma)}) + \text{softplus}(\varepsilon_s^{(\sigma)}), \quad \eta_{j,s} = \text{softplus}(\gamma_j^{(\eta)}) + \text{softplus}(\varepsilon_s^{(\eta)}),$
 1270 which enforces $\sigma_{j,s} > 0$ and $\eta_{j,s} > 0$. This additive form models station and season effects sep-
 1271 arately. For extremal dependence, each station has its own parameter $\alpha_j \in (0, 1)$. Since the
 1272 normalizing flows operate most naturally on unconstrained real supports, we introduce $a_j^* \in \mathbb{R}$ with
 1273 $\alpha_j = \text{sigmoid}(a_j^*)$ and perform inference on a_j^* .
 1274

1275 **Prior and experiment settings.** We assign independent priors to the 20 parameters as follows: the
 1276 raw scale effects $\gamma_{1:4}^{(\sigma)}$ and $\varepsilon_{1:4}^{(\sigma)}$ receive Student- $t_{\nu=10}$, and the raw shape effects $\gamma_{1:4}^{(\eta)}$ and $\varepsilon_{1:4}^{(\eta)}$ receive
 1277 Student- $t_{\nu=3}$. This choice allows the posterior to accommodate dimension-specific tail thickness
 1278 (lighter tails for the σ -effects, heavier tails for the η -effects). For extremal dependence, $\alpha_j \in (0, 1)$
 1279 is given a Beta(1, 1) prior; as noted above, we work with $a_j^* \in \mathbb{R}$ via $\alpha_j = \text{sigmoid}(a_j^*)$, and
 1280 include the change-of-variables term $\sum_{j=1}^4 \log\{\alpha_j(1 - \alpha_j)\}$ in the log-likelihood.
 1281

1282 Baseline MCMC uses an adaptive random walk Metropolis sampler (Haario et al., 2001). The pro-
 1283 posal covariance is updated online to follow the local posterior geometry, which improves mixing
 1284 for correlated and moderately high-dimensional targets while requiring neither gradients nor exten-
 1285 sive tuning. This sampler is widely used in applied Bayesian analysis—especially for hierarchical
 1286 models, state-space time series, and latent-variable settings—and is available in mainstream soft-
 1287 ware. The code is implemented in R and was run on a dual-socket Intel Xeon Silver 4510 system
 1288 with 24 physical cores and 48 threads (peak 4.10,GHz) under x86_64 Linux.
 1289

1290 Figure 6 compares the estimated posteriors across all methods. Among the flow-based approaches,
 1291 StiCTAF most consistently recovers the correct tail thickness in the majority of dimensions and
 1292 captures the overall density shape with high stability.
 1293

1294 Table 5 reports the posterior modes and 99% equal-tailed credible intervals for each method, together
 1295 with computing time. StiCTAF requires more training time than other flows because it optimizes
 1296 parameters at the component level, yet it remains far faster than MCMC while achieving comparable
 1297 accuracy. Notably, flows with heavy-tailed bases such as TAF, gTAF, and ATAF do not fully recover
 1298 the 99% intervals, whereas StiCTAF delivers reliable tail behavior and outperforms all baselines.
 1299

1296 Table 5: Posterior modes with 99% equal-tailed credible intervals for all twenty parameters of
 1297 the 2024 KMA wind dataset. The compared methods include MCMC (reference), NF (Gaus-
 1298 sian/Gaussian mixture), and TAF variants (TAF, gTAF, gTAF mixture, ATAF, StiCTAF). Computing
 1299 time (hours) is reported per method.

1300

1301 Parameter	1302 MCMC	1303 StickTAF	1304 NF(Gaussian)	1305 NF(Gaussian Mixture)
$\gamma_1^{(\sigma)}$	0.40 (-2.09, 1.66)	0.38 (-1.96, 1.51)	0.38 (-1.62, 1.58)	0.37 (-1.82, 1.56)
$\gamma_2^{(\sigma)}$	1.46 (-0.43, 2.90)	1.45 (-11.43, 2.72)	1.47 (-0.43, 2.73)	1.32 (-0.74, 2.78)
$\gamma_3^{(\sigma)}$	1.52 (-0.24, 2.91)	1.49 (-0.75, 3.01)	1.46 (-0.24, 2.72)	1.45 (-0.28, 2.80)
$\gamma_4^{(\sigma)}$	0.40 (-1.87, 1.73)	0.36 (-2.21, 1.57)	0.39 (-1.80, 1.61)	0.40 (-2.17, 1.63)
$\varepsilon_1^{(\sigma)}$	1.09 (-1.83, 2.55)	0.99 (-0.99, 2.56)	1.04 (-0.77, 2.45)	1.15 (-0.82, 2.46)
$\varepsilon_2^{(\sigma)}$	0.29 (-2.27, 1.76)	0.38 (-1.98, 1.78)	0.38 (-1.70, 1.71)	0.32 (-1.87, 1.80)
$\varepsilon_3^{(\sigma)}$	1.10 (-0.71, 2.85)	1.32 (-0.65, 2.99)	1.26 (-0.52, 2.74)	1.14 (-0.46, 2.64)
$\varepsilon_4^{(\sigma)}$	0.56 (-1.60, 1.85)	0.53 (-1.78, 1.88)	0.55 (-1.48, 1.80)	0.52 (-1.46, 1.92)
$\gamma_1^{(\eta)}$	-2.35 (-16.55, -0.72)	-3.37 (-11.15, -0.70)	-2.45 (-6.50, -0.78)	-2.46 (-6.93, -0.71)
$\gamma_2^{(\eta)}$	-1.17 (-9.62, 0.19)	-1.43 (-9.50, 0.30)	-1.23 (-4.89, 0.19)	-1.30 (-4.72, 0.22)
$\gamma_3^{(\eta)}$	-1.96 (-10.06, -0.48)	-2.14 (-9.30, -0.50)	-2.04 (-5.42, -0.41)	-2.25 (-6.03, -0.40)
$\gamma_4^{(\eta)}$	-1.67 (-11.47, -0.35)	-1.80 (-6.43, -0.18)	-1.78 (-5.02, -0.34)	-1.82 (-5.52, -0.44)
$\varepsilon_1^{(\eta)}$	-1.69 (-11.21, -0.32)	-1.81 (-11.89, -0.27)	-1.72 (-5.89, -0.31)	-1.53 (-6.66, -0.40)
$\varepsilon_2^{(\eta)}$	-2.02 (-11.95, -0.38)	-2.06 (-12.09, -0.51)	-1.95 (-6.29, -0.51)	-1.89 (-7.61, -0.51)
$\varepsilon_3^{(\eta)}$	-1.52 (-9.18, -0.13)	-1.62 (-10.21, -0.26)	-1.50 (-4.71, -0.22)	-1.45 (-5.14, -0.14)
$\varepsilon_4^{(\eta)}$	-2.09 (-11.64, -0.50)	-2.22 (-13.88, -0.71)	-2.14 (-5.98, -0.52)	-2.03 (-6.82, -0.45)
α_1^*	0.50 (0.05, 1.02)	0.58 (0.13, 1.06)	0.52 (0.06, 1.02)	0.55 (0.09, 1.07)
α_2^*	0.81 (0.30, 1.33)	0.78 (0.30, 1.32)	0.77 (0.31, 1.30)	0.79 (0.29, 1.32)
α_3^*	0.72 (0.21, 1.23)	0.72 (0.24, 1.27)	0.72 (0.26, 1.23)	0.67 (0.22, 1.24)
α_4^*	0.55 (0.08, 1.08)	0.60 (0.11, 1.13)	0.53 (0.08, 1.04)	0.56 (0.10, 1.07)
1321 comp.time (hr)	11.90	0.08	0.03	0.03
1322 Parameter	1323 TAF	1324 gTAF	1325 gTAF Mixture	1326 ATAF
$\gamma_1^{(\sigma)}$	0.38 (-1.78, 3.07)	0.47 (-1.72, 1.63)	0.43 (-1.86, 1.63)	0.42 (-1.70, 1.73)
$\gamma_2^{(\sigma)}$	1.40 (-2.72, 2.98)	1.41 (-0.36, 2.77)	1.39 (-0.31, 2.72)	1.42 (-0.08, 2.85)
$\gamma_3^{(\sigma)}$	1.49 (-0.89, 3.42)	1.47 (-0.07, 2.86)	1.49 (-0.25, 2.80)	1.49 (-0.13, 2.93)
$\gamma_4^{(\sigma)}$	0.34 (-1.97, 3.23)	0.45 (-1.91, 1.69)	0.44 (-1.76, 1.66)	0.35 (-1.63, 1.70)
$\varepsilon_1^{(\sigma)}$	0.98 (-3.44, 3.70)	1.01 (-1.06, 2.54)	1.08 (-0.87, 2.56)	0.88 (-1.10, 2.47)
$\varepsilon_2^{(\sigma)}$	0.39 (-3.17, 3.44)	0.34 (-2.02, 1.64)	0.45 (-1.65, 1.70)	0.44 (-2.36, 1.82)
$\varepsilon_3^{(\sigma)}$	1.14 (-2.96, 3.82)	1.28 (-0.66, 2.88)	1.17 (-0.70, 2.83)	1.18 (-1.04, 2.82)
$\varepsilon_4^{(\sigma)}$	0.44 (-3.24, 4.10)	0.66 (-1.48, 1.88)	0.45 (-1.70, 1.78)	0.39 (-2.25, 2.11)
$\gamma_1^{(\eta)}$	-2.56 (-5.35, 0.61)	-2.41 (-9.71, -0.69)	-2.60 (-10.51, -0.76)	-2.47 (-7.15, -0.66)
$\gamma_2^{(\eta)}$	-1.30 (-4.93, 3.82)	-1.15 (-6.67, 0.31)	-1.19 (-6.43, 0.26)	-1.2 (-4.33, 0.28)
$\gamma_3^{(\eta)}$	-2.33 (-6.97, 0.84)	-1.87 (-7.66, -0.51)	-2.07 (-9.18, -0.46)	-2.02 (-6.07, -0.18)
$\gamma_4^{(\eta)}$	-1.74 (-4.96, 2.63)	-1.68 (-7.56, -0.22)	-1.63 (-7.50, -0.31)	-1.64 (-5.45, -0.15)
$\varepsilon_1^{(\eta)}$	-1.70 (-4.71, 0.05)	-1.66 (-6.73, -0.27)	-1.71 (-7.24, -0.34)	-1.79 (-6.15, -0.11)
$\varepsilon_2^{(\eta)}$	-2.60 (-7.12, 1.89)	-2.17 (-8.20, -0.47)	-1.90 (-8.04, -0.45)	-2.04 (-7.91, -0.11)
$\varepsilon_3^{(\eta)}$	-1.64 (-6.04, 1.02)	-1.56 (-6.54, -0.12)	-1.63 (-6.74, -0.22)	-1.45 (-5.85, 0.01)
$\varepsilon_4^{(\eta)}$	-2.32 (-5.31, 0.59)	-1.96 (-8.82, -0.47)	-1.91 (-9.21, -0.45)	-2.16 (-6.62, -0.35)
α_1^*	0.50 (-0.14, 1.23)	0.48 (0.03, 0.97)	0.50 (0.04, 0.99)	0.53 (0.08, 1.00)
α_2^*	0.79 (-0.60, 2.78)	0.79 (0.33, 1.32)	0.78 (0.31, 1.30)	0.77 (0.26, 1.33)
α_3^*	0.70 (-0.10, 2.11)	0.70 (0.22, 1.22)	0.74 (0.20, 1.24)	0.72 (0.16, 1.26)
α_4^*	0.55 (-0.25, 1.56)	0.55 (0.08, 1.08)	0.54 (0.08, 1.07)	0.50 (-0.03, 1.04)
1344 comp.time (hr)	0.03	0.03	0.08	0.03

1345

1346

1347

1348

1349

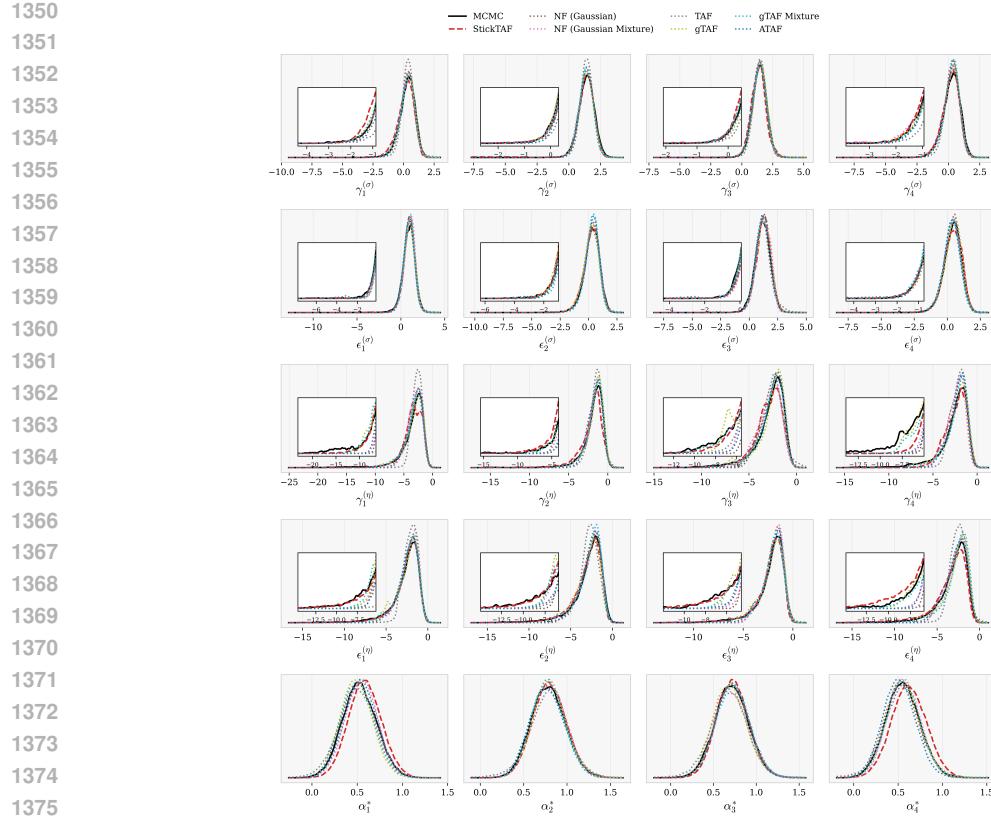


Figure 6: **Estimated posteriors for all twenty parameters from the real-data analysis.** Insets highlight the left 5% tail. Black curves show the MCMC reference; red curves show StiCTAF.

C DETAILS OF GTAF-MIXTURE

This appendix provides the essential details of gTAF-mixture, our extension of gTAF (Laszkiewicz et al., 2022), which augments the method with a stick-breaking mixture of Student- t bases instead of a single Student- t base.

C.1 REPARAMETERIZED TRUNCATED STICK-BREAKING WEIGHTS

For a mixture of J components, we use a truncated stick-breaking prior with concentration parameter $\alpha > 0$:

$$v_k \sim \text{Beta}(1, \alpha), \quad w_k = v_k \prod_{j=1}^{k-1} (1 - v_j), \quad (k = 1, \dots, J-1), \quad w_J = \prod_{j=1}^{J-1} (1 - v_j).$$

To enable pathwise gradients, we employ the inverse-CDF reparameterization for $\text{Beta}(1, \alpha)$:

$$v_k = 1 - \epsilon_k^{1/\alpha}, \quad \epsilon_k \sim \mathcal{U}(0, 1),$$

and then deterministically map $\{v_k\}$ into $\{w_k\}$ as above. We deliberately choose this variant because it has a simple closed-form reparameterization, allowing pathwise gradients without introducing additional approximations or custom samplers that a more general Beta reparameterization would require.

1404 C.2 TAIL-INDEX PROFILING
14051406 **Pilot base and center pushforward.** We train a mixture of diagonal Gaussians with stick-
1407 breaking weights $\{w_1, \dots, w_J\}$, whose density is given by
1408

1409
$$q_0(z) = \sum_{j=1}^J w_j \mathcal{N}(z \mid \mu_j, \text{diag}(\sigma_0^2)), \quad \sigma_0^2 \in (0, \infty).$$

1410
1411

1412 We then push each center through a normalizing flow model f at its initial state to compute
1413

1414
$$x_j = f(\mu_j) \in \mathbb{R}^D.$$

1415

1416 We retain only the components with sufficiently large weights:
1417

1418
$$\mathcal{J}_{\text{valid}} = \{j \in \{1, \dots, J\} : w_j \geq w_{\min}\}, \quad w_{\min} = 0.1.$$

1419

1420 **Radius clustering and representatives.** Within $\{x_j\}_{j \in \mathcal{J}_{\text{valid}}}$ we perform fixed-radius clustering
1421 with radius $r = \rho\sqrt{D}$, where $\rho > 0$. From each cluster, we retain the member with the largest w_j .
1422 Let $\mathcal{M} \subseteq \mathcal{J}_{\text{valid}}$ denote the selected indices and $\{x_m\}_{m \in \mathcal{M}}$ their centers.
14231424 **Local linearization and anchors.** For each $m \in \mathcal{M}$, we approximate the pushforward covariance
1425 at $z = \mu_m$ using the Jacobian
1426

1427
$$J_m = \left. \frac{\partial f(z)}{\partial z} \right|_{z=\mu_m} \in \mathbb{R}^{D \times D}, \quad \Sigma_{x,m} \approx J_m \text{diag}(\sigma_0^2) J_m^\top.$$

1428

1429 For per-dimension and per-component standard deviations $\sigma_{x,m,i} = \sqrt{(\Sigma_{x,m})_{ii}}$, we define the
1430 dimension-wise standard deviation as
1431

1432
$$\sigma_i = \max_{m \in \mathcal{M}} \sigma_{x,m,i}, \quad i = 1, \dots, D.$$

1433

1434 We also record per-dimension anchors from the selected centers:
1435

1436
$$a_i^R = \max_{m \in \mathcal{M}} (x_m)_i, \quad a_i^L = \min_{m \in \mathcal{M}} (x_m)_i,$$

1437

1438 and collect the anchor vectors $\mathbf{a}^R = (a_1^R, \dots, a_D^R)$ and $\mathbf{a}^L = (a_1^L, \dots, a_D^L)$.
14391440 **Log-log slope proxies.** Following Section 3.2, for each coordinate $i \in \{1, \dots, D\}$ we draw i.i.d.
1441 samples $\{t_1^{(i)}, \dots, t_n^{(i)}\}$ from a low-degrees-of-freedom Student- t distribution and form the order
1442 statistics $t_{(1)}^{(i)}, \dots, t_{(n)}^{(i)}$. Using the right-anchor vector \mathbf{a}^R together with the scale σ_i , we obtain the
1443 right-tail estimate $\hat{\nu}_i^R$. Analogously, for the left tail we use the left-anchor vector \mathbf{a}^L , scale σ_i , and
1444 order statistics to obtain $\hat{\nu}_i^L$.
14451446 We then combine both sides while ensuring that the estimated degrees of freedom exceed 2:
1447

1448
$$\hat{\nu}_i = \max \left\{ \nu_{\min}, \min(\hat{\nu}_i^L, \hat{\nu}_i^R) \right\}, \quad \nu_{\min} = 2,$$

1449

1450 and cap overly light estimates:
1451

1452
$$\hat{\nu}_i \leftarrow \min \{ \hat{\nu}_i, \nu_{\text{light}} \}, \quad \nu_{\text{light}} = 30.$$

1453

1454 Finally, using $\{\hat{\nu}_i\}_{i=1}^D$, we partition coordinates into
1455

1456
$$L = \{i : \hat{\nu}_i \geq \nu_{\text{light}}\}, \quad H = \{i : \hat{\nu}_i < \nu_{\text{light}}\},$$

1457

1458 and reorder them so that all indices in L precede those in H . This partition and permutation are used
1459 in the main construction: the light-tailed marginals share a common degrees-of-freedom parameter,
1460 while the heavy-tailed marginals retain their per-dimension initial values $\hat{\nu}_i$ for subsequent learning.
1461

1458
1459

C.3 CONSTRUCTION OF BASE DISTRIBUTION AND NORMALIZING FLOWS

1460
1461
1462
1463

Base construction. For the base q_0 , we use a stick-breaking mixture of product Student- t distributions. For each k -th component, the coordinates factorize, with each marginal given by a Student- t with per-dimension scale $\sigma_i > 0$ (shared across components) and degrees of freedom ν_i (initialized from Section C.2). The base density is

1464
1465
1466

$$q_{0,k}(z) = \prod_{i=1}^D t_{\nu_i}(z_i \mid \mu_{ik}, \sigma_i^2), \quad q_0(z) = \sum_{k=1}^K \pi_k q_{0,k}(z), \quad \sum_{k=1}^K \pi_k = 1, \quad \pi_k > 0.$$

1467
1468

The stick-breaking weights follow

1469
1470
1471

$$v_k \sim \text{Beta}(1, \alpha), \quad \pi_k = v_k \prod_{j=1}^{k-1} (1 - v_j), \quad (k = 1, \dots, K-1), \quad \pi_K = \prod_{j=1}^{K-1} (1 - v_j).$$

1472

When initializing location parameters $\mu_k \in \mathbb{R}^D$, we select K candidate points from an open ball in \mathbb{R}^D centered at the origin (including the origin), denoted $\{x^{(m)}\}_{m=1}^K$. Each candidate is mapped to the base space via the initial inverse flow:

1476
1477

$$z^{(m)} = f^{-1}(x^{(m)}),$$

1478
1479

and ranked according to the target likelihood. The mixture centers are then set by assigning the top-ranked $\{z^{(m)}\}$ to $\{\mu_k\}_{k=1}^K$ in descending order.

1480
1481

For reference, the component log-density is

1482
1483
1484

$$\log q_{0,k}(z) = \sum_{i=1}^D \left[\log \Gamma\left(\frac{\nu_i+1}{2}\right) - \log \Gamma\left(\frac{\nu_i}{2}\right) - \frac{1}{2} \log(\nu_i \pi) - \log \sigma_i - \frac{\nu_i+1}{2} \log\left(1 + \frac{(z_i - \mu_{ik})^2}{\nu_i \sigma_i^2}\right) \right].$$

1485
1486
1487
1488
1489

Normalizing flow structure. We follow the flow structure of Section B for each block, but adapt the group permutation in the LU-linear permutation layer to improve heavy-tail learning. Using the previously defined groups L (light) and H (heavy), with $|L| = d_\ell$ and $|H| = D - d_\ell$, each block applies a block lower-triangular linear map

1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

$$W = \begin{bmatrix} A & 0 \\ B & C \end{bmatrix}, \quad A \in \mathbb{R}^{d_\ell \times d_\ell}, \quad B \in \mathbb{R}^{(D-d_\ell) \times d_\ell}, \quad C \in \mathbb{R}^{(D-d_\ell) \times (D-d_\ell)}.$$