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Figure 1. Our method transfers semantically corresponding appearances from reference images to target images. In contrast to other methods
such as DiffEditor [29] and Cross-Image [1], our method preserves the structure of the target images successfully transfers the colors and

patterns considering the semantic meanings from the references.

Abstract

As pre-trained text-to-image diffusion models have become
a useful tool for image synthesis, people want to specify
the results in various ways. This paper tackles training-free
appearance transfer, which produces an image with the struc-
ture of a target image from the appearance of a reference
image. Existing methods usually do not reflect semantic cor-
respondence, as they rely on query-key similarity within the
self-attention layer to establish correspondences between
images. To this end, we propose explicitly rearranging the
features according to the dense semantic correspondences.
Extensive experiments show the superiority of our method in

various aspects: preserving the structure of the target and
reflecting the correct color from the reference, even when the
two images are not aligned.

1. Introduction

Text-to-image diffusion models [35] generate high-quality,
realistic images from textual inputs. Although it allows users
to easily describe the desired results, it falls short in more
specific controls that are difficult to be described in texts.
Alternatively, it is easier for the users to provide reference
images and carrying their specific elements to the results.
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Such elements include shapes [49], main subject [4, 18], and
most of the images for partial editing [3, 10, 43]. We tackle
a scenario with two input images, where the result has the
shape of one image and the color pattern of the other. It is
often called appearance transfer from a reference image to a
target image.

Although previous methods for appearance transfer
[1, 12, 28, 29] are promising, they struggle when the poses
are not aligned. Fig. 1 shows that they often transfer eyes
to tails and tails to heads. Hence, we hypothesize that the
solution lies in establishing correspondences between the tar-
get and reference. A straightforward solution for the above
problem would be a two-stage procedure: finding semantic
correspondences [37, 47, 48] and following them to transfer
the reference to the target. However, most semantic matches
produce sparse key-point correspondences and dense cor-
respondences are not accurate enough. Moreover, the two-
stage approach is inherently cumbersome and costly.

In this paper, we analyze the limitations of previous meth-
ods with a self-attention injection or two-stage approach and
propose Eye-for-an-eye. It consists of three parts: finding cor-
respondences, transferring features, and recursively running
them through a generative process. As a whole, it considers
dense semantic correspondences to transfer the appearance
of a reference image to the target image. Our method has
non-trivial design choices as follows. We find that the cosine
similarity between features of reference and target features
before the self-attention layer allows for more semantically
meaningful matching than the attention mechanism between
the reference key and target query within self-attention. Then
we replace the target features with the reference features rear-
ranged according to our correspondence. It accurately keeps
the target structure in the result. We recursively run this
operation along the generative process.

Our method accurately transfers the appearance from
precise locations in a reference image even in challenging
scenarios involving complex colors and patterns, or diverse
views and poses. In addition, our results maintain the struc-
ture of the target image. We demonstrate the superiority of
our method compared to previous methods with extensive
qualitative and quantitative evaluation. Beyond intra-domain
appearance transfer, our method generalizes to cross-domain
appearance transfer and supports applying different appear-
ances to multiple objects. Ours not only achieves superior
appearance transfer results but also shows the best dense
correspondence performance compared to existing semantic
matching methods.

2. Related Work

Appearance transfer Appearance transfer produces an
image that combines the shape and color patterns of two
different images. This is accomplished by training on each
target domain [7, 14, 30] and using either input image pairs

[39] or using external models to guide diffusion model [23].
While these methods maintain the structure of the target im-
age, they tend to struggle with unaligned images or those
from different domains. Recent approaches [1, 12, 28, 29]
excel with images from different domains without requiring
fine-tuning. However, self-guidance [12] leads to discrepan-
cies in color distribution between the output and reference
images because they make the average features of the out-
put similar to the reference. The methods with key-value
injection [1, 28] expect the attention mechanism to find the
semantic similarity for the transfer. The attention mecha-
nism often produces wrong semantic correspondences such
as beaks to wings and tails to heads as shown in Fig. 1. In
contrast, our method transfers appearance following correct
semantic correspondence, even in a training-free manner.

Manipulating features for image editing Recent ap-
proaches [1, 5, 11, 15, 18, 24, 26, 31, 32, 40] explore the
manipulation of attention layers of pretrained diffusion mod-
els for image editing. In this context, PnP-diffusion [40]
leverages the semantic information in self-attention layers,
demonstrating that modifying attention features can be used
for editing tasks without requiring fine-tuning. MasaCtrl [5]
and Cross-Image [ 1] replace the key and value features in the
self-attention layer to achieve text-guided translation of refer-
ence images. However, we observe that query-key attention
maps and the weighted summation in the self-attention are in-
sufficient for transferring semantically matched appearances.
Therefore, instead of directly injecting entire key-value pairs
or whole features, we propose injecting features after rear-
ranging them based on their semantic correspondence.

Semantic correspondence Leveraging the diffusion fea-
tures of models, unsupervised semantic correspondence
methods [17, 37] outperform other weakly-supervised meth-
ods. SD-DINO [48] further enhances this performance by in-
corporating DINO ViT [2] as an additional feature extractor.
Recent approaches [5, 40, 46] observe that semantic under-
standing in diffusion models is distributed across timesteps
and U-Net layers. Consequently, Diffusion Hyperfeatures
[27] leverages these distributed representations by integrat-
ing feature maps across timesteps, demonstrating their effec-
tiveness in keypoint correspondence tasks. To incorporate
semantic information distributed across timesteps into ap-
pearance transfer, we rearrange the feature maps according
to the correspondences found at each timestep.

3. Method

We aim to transfer the appearance of objects from a refer-
ence image I™ to a target image /"% based on semantic
correspondences between them. The appearance includes
attributes such as the color and pattern of the object. As
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Figure 2. Pipeline of our method. We transfer the semantically corresponding appearance of objects from a reference image to a target
image. Given I™, %" and their masks M™ and M, we find semantic correspondences between their features before the self-attention

ref

layers Fi* and ;"™ Then, we inject the rearranged features based on these correspondences.

Target ; Reference

@ ®) © @ @

Self- Cross-Image Feature
Attention Attention Matching

Cross-Image Feature
Attention Matching

Figure 3. Query-key attention maps vs. our feature matching.
For each query pixel q denoted by colored markers in the target
image, we show the attention maps based on the QK attention
score. (b) and (d) include other regions in the attention map where
matching is incorrect. In contrast, the feature matching in (c) and
(e) presents a single point with the correct semantic meaning.

shown in Fig. 2, our method produces an image from an
output denoising process (the target process being injected
with reference features) starting from an inversion [20] of
1%t (bottom) with modifications from another reference-
denoising process starting from an inversion of I (top).
The modification includes finding semantic correspondences
between the two denoising processes and injecting features
with rearrangement.

3.1. Revisiting of self-attention

In the self-attention layer of the U-Net in Stable Diffusion
[35], an attention map is generated by applying a dot product
and softmax to the query ) and key K, which indicates
positional similarities. The weighted sum of this attention
map and value V' allows each position in ) to aggregate

relevant information from similar positions in the K-V pairs
and @ .

Recent appearance transfer methods [1, 28] introduces
KV injection, which integrates K-V pairs from a ref-
erence denoising process into the target denoising process.
During this process, the K'V' injection aggregates V¢ based
on the attention map between Qe and Kiep. Therefore,
while the attention map of Qarger and Kot indicates the simi-
larity with Qrger for determining the location from which to
aggregate Vi.y, it does not represent correspondence match-
ing between the target image and the reference image, as
shown in Fig. 3. As a result, this can lead to transfers with
mismatched semantic meanings.

Moreover, the self-attention with the KV injection aggre-
gates features from multiple locations of the reference rather
than borrowing a feature from a single point. Although it
might be a good way to transfer global style, it prevents the
results from having clear local appearances.

In the following subsection, we propose our method that
resolves the above flaws. To ensure that the transferred ap-
pearance aligns with the semantic meaning, we rearrange
the features before the self-attention layer of the reference
denoising process and inject it into the target process, which
is intended to rearrange Q.r. Rearranging the reference fea-
tures before the self-attention layer through precise corre-
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Figure 4. Feature rearrangement and injection. The reference
feature, rearranged based on similarity to the output feature, is
injected into the output denoising process.

A single set of matches

_—
C—
Feature
e
Output Output

(a) Conventional matching
(Fixed matching)

match 1 match2 --- matchn

Feature
Injection

(b) Ours

Figure 5. Comparison between conventional matching meth-
ods and ours. (a) Conventional methods aggregate features from
multiple time steps of the reference and target into a single set
and perform matching only once. (b) Ours matches the reference
features with the output features and performs multiple matches
across individual steps.

spondence matching and injecting them into the output de-
noising process yields better semantic alignment than KV
injection.

3.2. Semantic matching-based feature rearrange-
ment

As described in Sec. 3.1, previous appearance transfer meth-
ods with K'V injection do not always reflect semantic corre-
spondences between the reference and the target objects. On
the other hand, we explicitly rearrange the reference feature
map to match the spatial arrangement of semantics with the
target feature map.

To find the semantic correspondence of a pixel q among
the reference image at pixel p, we take the arg max of the
cosine similarity in the feature map before [-th self-attention
layer at denoising timestep ¢. Additionally, to preserve the
background of the target image, we apply object masks
M@t and M™' to the target and reference features:

Foulput Fref _ Foutput [ Mtarget] Fref[ Mref] (1)

p= argmax sim (Foutp”t(q), Fref(p)) , )
P€E[0,h) X [0,w)

where F°U' € RM*¢ and F'*f € R"X¢ are the feature
maps of the target and reference; sim computes cosine simi-
larity. / and t are omitted from Fy’, for brevity. H denotes
slicing by the object mask.

Then, we rearrange the reference feature map to reflect
semantic correspondence, defining it as F™(q) = F™/(p).
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Figure 6. Fixed matching vs. Our matching. (a) Feature injection
with Ground Truth (GT). GT represents the feature transferred from
the reference. (b) Feature rearrangement and injection with fixed
matching from conventional matching method [37]. (c) Feature
rearrangement and injection at each step (ours). Our method per-
forms dense matching closely aligned with the ground truth in later
steps. Key-point matching at early time steps is represented as star
markers.

This rearrangement is equivalent to modifying () in self-
attention. Since () represents the object’s structure, the re-
arrangement aligns the structure of the reference object to
match the target object based on semantic matching.

Finally, we inject the rearranged reference features into
the output denoising process. Reference features are aligned
to the structure of the target object, enabling an effective
transfer of the reference object’s appearance.

F/output _ ﬁvrrsf ® Mtarget + Foutput ® (1 _ ]\4—target)7 (3)

where © represents the Element-wise product. Fig. 4 pro-
vides these processes of feature rearrangement and injection.
Then the self-attention becomes

Q/oulput (K/output)T V/output
vd ’

Where Q/output — F/outputhuery, K/output — F/outputhey’
and V/output — F/oulpulW\,alue.

Additionally, the transferred output often has different
color brightness and contrast when compared to the refer-
ence. To address this issue, we apply AdaIN[19] used in
Cross-Image [1] to masked noise, thereby reducing the color
discrepancy between the reference and the output.

We next compare the matching processes of conventional
methods and our method to highlight their differences. Con-
ventional matching methods [27, 37, 47, 48] and ours find
semantic correspondence by computing cosine similarity
between two sets of feature pairs. As illustrated in Fig. 5

4)

softmax <



(b), ours matches the reference features with the recursively
transferred output features and produces multiple matches
at multiple individual time steps. It enables sparse key-point
matching in the early step and dense matching in the later
step, meaning that it can effectively capture both key-point
and dense correspondence. As shown in Fig. 6 (c), while
the early step flow map demonstrating dense matching is
noisy compared to the ground truth (a), the sparse key point
correspondences are accurate, and the flow map in the later
step closely resembles the ground truth. This later step’s
noise-free dense matching leads to a clean transferred result.
In contrast, conventional matching methods find matches
between two fixed sets from reference and target features
(Fig. 5 (a)). Each fixed set forms a single set of matches,
either by aggregating features from multiple time steps [27]
or by using features from an early time step [37, 48]. Se-
mantic correspondence found with a single set of matches is
suitable for finding sparse key-point matching at the RGB
level, but inadequate for finding dense matching. In Fig. 6
(b), the sparse key point correspondence in the early step
is accurate, whereas the dense correspondence contains a
lot of noise compared to the ground truth. This noisy dense
correspondence leads to a noisy transferred result. With our
improved dense matching, our transferred results are more
realistic and have fewer artifacts than the ones from the trans-
ferred results using conventional methods, i.e., SD-DINO
[48], DIFT [37] and TLFR [47].

4. Experiments

Competitors We compare our results with recent training-
free diffusion-based methods, including Cross-Image [1],
which uses KV injection, DiffEditor [29], which shows the
best result among methods with score-based editing guid-
ance [12, 28, 29], and DiffuselT [23], which leverages ex-
ternal models for guidance. In addition, we compare our
method with the optimization-based approach Splice ViT
[39], the domain-specific trained Swapping Auto-Encoder
(Swapping AE) [30], and also with IP-Adapter [44] and
ZeST [8], which adjust the appearance of the reference im-
age based on a depth map input through Controlnet [49]. In
Appendix D, we provide more details on implementation
and hyperparameters for each method.

Evaluation Metric In appearance transfer, the key evalua-
tion factors are: 1) whether the appearance information from
the reference is transferred to the correct location, and 2)
whether the structure of the target object is well-preserved.
For appearance evaluation, we assess the preservation of the
overall color distribution by comparing the color histograms
(Apis) and evaluatethe semantic consistency by comparing
the CLIP embeddings (A.ip) between the reference and trans-
ferred objects using the object masks. To evaluate structure
preservation, we assess how much the structure in the gener-

Method Apist + Aclip T
Dataset Building AFHQ Building AFHQ
Ours 0.469 0.577 95.30 97.03
Cross-Image 0.491 0.608 94.05 96.75
DiffEditor 0.478 0.614 91.35 96.13
DiffuselT 0.477 0.607 90.74 96.21
Splice ViT 0.472 0.580 94.64 96.30
Swapping AE 0.481 0.629 85.90 92.35
IP-Adapter 0.487 0.616 93.46 96.76
ZeST 0.497 0.602 89.59 96.04

Table 1. Quantitative evaluation for appearance similarity. We
mark the best score in red and the second-best score in yellow.

ated result deviates from the target image using the following
metrics. First, we evaluate semantic consistency by compar-
ing key points (Siy) detected by ViT-Pose [42] in the result
image with the ground truth key points in the target. Also,
to assess depth accuracy and object shape consistency, we
calculate the RMSE of the depth maps (Sgepn) and the mean
intersection over union (Spey) of the object masks [21]. Fi-
nally, we measure dense correspondence using the method
from a previous study [48], calculating the L1 distance of the
flow map (Dgow). Additional details on evaluation metrics
are provided in Appendix B, and explanations of the datasets
used for evaluation can be found in Appendix C.

4.1. Appearance similarity

As shown in Fig. 7, our method successfully transfers the
correct appearance from the reference to the target, even
when the target and reference images are not aligned. For
instance, in the bird examples, our results capture and re-
flect the complex patterns of the reference image, preserving
the color arrangement of the blue head, green wings, and
red-and-green body, while competitors fail to retain this ar-
rangement. Furthermore, due to our method of rearranging
features according to semantic meaning, the car and cat ex-
amples demonstrate our method’s robustness in cases where
the reference and target are either unaligned or differ in size.
Also, our results accurately reflect the reference object’s
color, while IP-Adapter [44] and ZeST [8] generate unreal-
istic colors. Notably, as shown in Tab. 1, ours achieves the
lowest Apig; score and the highest Ay, highlighting its supe-
rior performance in preserving complex appearance patterns.

Additionally, as shown in Fig. 8, our method successfully
transfers the reference’s appearance across diverse domains,
despite substantial differences domain between the reference
and target images. Even when the reference and target belong
to different domains, it successfully transfers the appearance
of similar semantic meanings, such as a bird’s wing to an
airplane’s wing.

4.2. Structure preservation

As shown in Tab. 2, our method achieves high performance
in Sgepths Smiou> and Skey, Which evaluate structure preserva-
tion. Ours excel in both complex domains (e.g., buildings)
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Figure 7. Qualitative comparison. We compare our results with the competitors on samples where the target and reference objects are
unaligned, have complex patterns, or differ in size. The competitors struggle in various ways.
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Figure 8. Our results of various domain. Our approach can trans-
fer appearance across diverse domains.

and simpler ones (e.g., AFHQ), where the reference and tar-
get have similar sizes and poses. While IP-Adapter [44] and
ZeST [8] may appear sufficient, their high scores result from
using depth as an additional condition. However, relying on
such additional conditions to interpret the target structure
can lead to incorrect estimations, especially when objects
overlap or exhibit complex spatial arrangements, degrading

Method Sdeplh 1 Smiou T Skey T |
Dataset Building ~ AFHQ | Building AFHQ | AP-10K
Ours 0.197 0.114 0.939 0.972 82.99
Cross-Image 0.287 0.139 0.758 0.915 64.49
DiffEditor 0.266 0.124 0.863 0.943 46.26
DiffuselT 0.263 0.123 0.855 0.951 65.07
Splice ViT 0.319 0.120 0.842 0.943 47.54
Swapping AE 0.295 0.128 0.821 0.942 N/A
IP-Adapter 0.374 0.130 0.642 0.950 84.26
ZeST 0.242 0.119 0.925 0.980 78.25

Table 2. Quantitative evaluation for structure preservation. We
mark the best score in red and the second-best score in yellow.

object appearance transfer. In contrast, our method achieves
competitive or superior results without requiring extra depth
information. These quantitative results validate the structure-
preserving capabilities observed in the qualitative examples
in Fig. 7. Cross-Image [1], DiffEdit [10], Splice VIT [39],
and IP-Adapter [44] produce results with altered target struc-
tures. The results highlight that ours notably outperforms in
structure preservation and semantic consistency.
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Figure 9. Comparison of attention maps. (a) shows the corresponding region between the target and the reference from human perception.
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dot) at different timesteps during appearance transfer. The K&V modification (first row) and V modification (second row) perform semantic
matching in the same manner as our method but apply the rearrangement and injection processes to K&V and V instead of the feature map,
respectively. The image at the top right of each attention map represents the result of feature rearrangement, which is indirectly shown by
rearranging the reference RGB image with semantic matching calculated from U-Net’s 2nd up-block.
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Figure 10. Qualitative comparison between the result of fixed
matching and ours. The first row displays the reference color map
and the flow map. The flow map shows the result of mapping the
colors of reference pixels to matched target pixels. The second row
compares the transfer result using fixed matching from an existing
semantic matching method [48] with our transferred result.

In appearance transfer, both appearance similarity and
structure preservation are crucial. As shown in Fig. 7, Tab.
| and Tab. 2, compared to competitors that excel in only
one aspect, ours achieves strong performance in both. It is
possible due to the design of our method, which semanti-
cally rearranges the reference features to correspond with
the target structure and injects them into object regions.

4.3. Dense correspondence evaluation

In this section, we demonstrate, through dense correspon-
dence evaluation, why it is essential to perform matching at
each generation step in our method.

Fig. 10 visualizes the correspondence between the ref-
erence feature map and the transferred feature map as a
flow map. As a baseline, we adopt Fixed Matching, where
the matching rule is determined by a single set of matches
and applied across all generation steps. Our flow maps are
smooth and free from noise, accurately reflecting the ten-
dency of spatially adjacent pixels in an image to exhibit

Method Daow 4
Dataset FG3D CAR  JODS PASCAL
Ours 9.43 28.75 21.83
TLFR[47] * 41.11 65.28 106.53
TLFR[47] 30.75 59.85 102.14
SD-DINO[48] 26.87 47.54 63.27
DIFT[37] 77.53 91.32 135.37

Table 3. Quantitative evaluation for dense matching. * indicates a
fine-tuned backbone. We mark the best score in red and the second-
best score in yellow.

similar correspondences. In contrast, the Fixed Matching’s
flow maps contain more noise and lack smoothness. As a
result, the transferred outputs from Fixed Matching exhibit
significant noise and unnatural mismatched regions.

For quantitative evaluation, Tab. 3 compares the conven-
tional semantic matching method with ours. This is done
using the optical flow smoothness metric Dy, as employed
in the dense matching evaluation protocol [48]. Our method
achieves a significantly lower flow map distance compared
to other semantic correspondence methods. Since the flow
map distance increases when mismatching occurs or match-
ing lacks smooth continuity, it indicates that our method
demonstrates the highest dense correspondence performance
among existing matching methods based on diffusion fea-
tures. Please refer to Appendix B for the evaluation details.

4.4. Analysis of rearrange and injection component

In this section, we demonstrate that our feature injection
aligns with human intuition. Fig. 9 (a) shows an example
of appearance transfer that aligns with human expectations
by considering semantic meaning; for instance, transferring
the appearance of the reference belly to the target belly. Fur-
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Figure 11. We perform an ablation study to validate our method.

thermore, humans tend to interpret even within the same
region by segmenting colors, as in (b), rather than allowing
arbitrary matches within a semantic region. Fig. 9 (c) demon-
strates that our feature injection Ours process aligns with
human intuition, unlike key-value injection (on KV) and
value injection (on V).

Ours produces a clear, lime-like belly that accurately
reflects the reference, while on KV and on V result in red
smudges in the belly. We demonstrate this effect in Fig. 9
(c) by visualizing attention maps across denoising timesteps,
where each attention map corresponds to the activation map
for the red dot in the target image. Ours aggregates visual
elements from the lime-colored reference belly according
to its semantics. In contrast, on KV and on V focus on the
red neck and head, disregarding the belly’s semantics.

We suggest the reason as follows. Our method rearranges
the reference F' according to the semantic correspondence
to the target and replaces the target F' with it. Hence, our
results have the visual elements of the reference arranged in
the semantic structure of the target. In contrast, the () in on
KV and on V assigns high attention to the red color on the
reference belly (yellow boxes in Fig. 9 (c)) and transfers it
to the orange-ish belly of the target bird. It occurs because,
unlike in ours, where the target @) is replaced with the
rearranged reference (), on KV and on V retain the original
target (), causing the target bird’s belly color to be interpreted
as a different structure (Fig. 9 (b)).

4.5. Ablation study

In this section, we perform ablation experiments regarding
different components of our method and show its contribu-
tion in Fig. 11. Compared to KV injection (c), our semantic
matching-based feature rearranging (d) transfers appearance
to regions where the semantic meaning of objects aligns. For
instance, unlike (c), where the reference car’s headlights are
transferred to the side of the target car, (d) correctly transfers
the side of the reference car to the side of the target car, re-
sulting in a properly transferred black car. In (e), the AdaIN
on masked noise matches the global color distribution of the
object, thereby maintaining the color brightness and contrast
of the appearance object. We provide quantitative ablation
results and more various ablation studies in Appendix E to
Appendix J.
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4.6. Application

Cross-style appearance transfer Our method enables se-
mantic matching-based transfer even in challenging samples
where the target object and the reference object belong to
exhibit different styles. In Fig. 12, (a) depicts the appearance
of a real rabbit applied to a Disney-style rabbit.

Multi-objects appearance transfer Our method can indi-
vidually transfer the appearance of multiple objects in the
target image, each from a different reference image. Objects
in the target image are matched and rearranged one by one
with the reference images. Each process is executed simul-
taneously within a single generation process, rather than
sequentially. In Fig. 12, (b) presents the results with three
birds in the target image, each with distinct appearances
from three different images.

5. Conclusion

In this paper, we have introduced a semantic-based appear-
ance transfer method using a pretrained text-to-image dif-
fusion model. Our method faithfully reflects the reference
image to the target image according to semantic correspon-
dences, e.g., fin-to-fin and wing-to-wing, while previous
methods often ignore semantics. Our key arguments for re-
placing features in the target denoising process with the
reference denoising process are 1) reflecting dense semantic
correspondences 2) found during the modified denoising pro-
cess 3) on the input features of self-attention. Experiments
demonstrate that our method achieves faithful appearance
transfer between the semantically corresponding parts of
the result and the reference and better preserves the struc-
ture of the target in the result compared to existing methods.
Furthermore, we achieve significantly superior dense seman-
tic correspondence results compared to existing semantic
matching methods.



Limitation In order to use a real image as a reference, our
method relies on inversion. If the inversion malfunctions,
our method struggles as shown in Fig. 13 (a). Also, Fig.
13 (b) shows that the reference image does not have the
semantically corresponding parts from the target image and
our matching finds the most similar parts instead of semantic
correspondence. Still, the results tend to be realistic in such
cases.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

Yuval Alaluf, Daniel Garibi, Or Patashnik, Hadar Averbuch-
Elor, and Daniel Cohen-Or. Cross-image attention for zero-
shot appearance transfer. arXiv preprint arXiv:2311.03335,
2023.1,2,3,4,5,6,12,13

Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel.
Deep vit features as dense visual descriptors. arXiv preprint
arXiv:2112.05814, 2(3):4,2021. 2

Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended
diffusion for text-driven editing of natural images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18208-18218, 2022. 2

Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structpix2pix: Learning to follow image editing instructions.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18392-18402, 2023. 2
Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xi-
aohu Qie, and Yingiang Zheng. Masactrl: Tuning-free mutual
self-attention control for consistent image synthesis and edit-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 22560-22570, 2023. 2
Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650-9660, 2021. 14

Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao,
and Hengshuang Zhao. Anydoor: Zero-shot object-level im-
age customization. arXiv preprint arXiv:2307.09481, 2023.
2

Ta-Ying Cheng, Prafull Sharma, Andrew Markham, Niki
Trigoni, and Varun Jampani. Zest: Zero-shot material transfer
from a single image. arXiv preprint arXiv:2404.06425, 2024.
5,6, 12

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 8188-8197, 2020. 13
Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and
Matthieu Cord. Diffedit: Diffusion-based semantic image edit-
ing with mask guidance. arXiv preprint arXiv:2210.11427,
2022. 2,6

Yilun Du, Joshua Meier, Jerry Ma, Rob Fergus, and Alexander
Rives. Energy-based models for atomic-resolution protein
conformations. arXiv preprint arXiv:2004.13167, 2020. 2
Dave Epstein, Allan Jabri, Ben Poole, Alexei Efros, and Alek-
sander Holynski. Diffusion self-guidance for controllable
image generation. Advances in Neural Information Process-
ing Systems, 36:16222-16239, 2023. 2, 5

Daniel Gatis. Rembg: A tool to remove image backgrounds,
2024. Accessed: 2024-11-21. 14, 15

Vidit Goel, Elia Peruzzo, Yifan Jiang, Dejia Xu, Nicu
Sebe, Trevor Darrell, Zhangyang Wang, and Humphrey Shi.
Pair-diffusion: Object-level image editing with structure-
and-appearance paired diffusion models. arXiv preprint
arXiv:2303.17546, 2023. 2

10

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

Jing Gu, Yilin Wang, Nanxuan Zhao, Tsu-Jui Fu, Wei Xiong,
Qing Liu, Zhifei Zhang, He Zhang, Jianming Zhang, Hyun-
Joon Jung, et al. Photoswap: Personalized subject swapping in
images. Advances in Neural Information Processing Systems,
36,2024. 2

Bharath Hariharan, Pablo Arbeldez, Lubomir Bourdev,
Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In 2011 international conference on com-
puter vision, pages 991-998. IEEE, 2011. 13

Eric Hedlin, Gopal Sharma, Shweta Mahajan, Hossam Isack,
Abhishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi.
Unsupervised semantic correspondence using stable diffusion.
Advances in Neural Information Processing Systems, 36, 2024.
2

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 2

Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE international conference on computer vision,
pages 1501-1510, 2017. 4

Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer
Michaeli. An edit friendly ddpm noise space: Inversion and
manipulations. arXiv preprint arXiv:2304.06140, 2023. 3,
12,13

Lei Ke, Minggiao Ye, Martin Danelljan, Yu-Wing Tai, Chi-
Keung Tang, Fisher Yu, et al. Segment anything in high
quality. Advances in Neural Information Processing Systems,
36,2024. 5, 12

Lei Ke, Mingqgiao Ye, Martin Danelljan, Yu-Wing Tai, Chi-
Keung Tang, Fisher Yu, et al. Segment anything in high
quality. Advances in Neural Information Processing Systems,
36,2024. 15

Gihyun Kwon and Jong Chul Ye. Diffusion-based image
translation using disentangled style and content representa-
tion. arXiv preprint arXiv:2209.15264,2022. 2,5, 12, 13
Hyunsoo Lee, Minsoo Kang, and Bohyung Han. Conditional
score guidance for text-driven image-to-image translation.
Advances in Neural Information Processing Systems, 36, 2024.
2

Yen-Liang Lin, Vlad I Morariu, Winston Hsu, and Larry S
Davis. Jointly optimizing 3d model fitting and fine-grained
classification. In Computer Vision—-ECCV 2014: 13th Euro-
pean Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part IV 13, pages 466—480. Springer, 2014. 13
Shilin Lu, Yanzhu Liu, and Adams Wai-Kin Kong. Tf-icon:
Diffusion-based training-free cross-domain image composi-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 2294-2305, 2023. 2

Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holyn-
ski, and Trevor Darrell. Diffusion hyperfeatures: Searching
through time and space for semantic correspondence. Ad-
vances in Neural Information Processing Systems, 36, 2024.
2,4,5

Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and
Jian Zhang. Dragondiffusion: Enabling drag-style manipula-



[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

tion on diffusion models. arXiv preprint arXiv:2307.02421,
2023. 2,3,5

Chong Mou, Xintao Wang, Jiechong Song, Ying Shan,
and Jian Zhang. Diffeditor: Boosting accuracy and flex-
ibility on diffusion-based image editing. arXiv preprint
arXiv:2402.02583,2024. 1, 2,5, 12

Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli
Shechtman, Alexei Efros, and Richard Zhang. Swapping au-
toencoder for deep image manipulation. Advances in Neural
Information Processing Systems, 33:7198-7211, 2020. 2, 5,
12,13

Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun
Li, Jingwan Lu, and Jun-Yan Zhu. Zero-shot image-to-image
translation. In ACM SIGGRAPH 2023 Conference Proceed-
ings, pages 1-11, 2023. 2

Or Patashnik, Daniel Garibi, Idan Azuri, Hadar Averbuch-
Elor, and Daniel Cohen-Or. Localizing object-level shape
variations with text-to-image diffusion models. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 23051-23061, 2023. 2

René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE transactions on pattern analysis and machine
intelligence, 44(3):1623-1637, 2020. 12, 14

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 12179-12188, 2021. 14

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684-10695, 2022. 1, 3, 12

Michael Rubinstein, Armand Joulin, Johannes Kopf, and Ce
Liu. Unsupervised joint object discovery and segmentation
in internet images. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1939—1946,
2013. 13

Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng
Phoo, and Bharath Hariharan. Emergent correspondence from
image diffusion. Advances in Neural Information Processing
Systems, 36:1363—-1389, 2023. 2,4, 5,7

Tatsunori Taniai, Sudipta N Sinha, and Yoichi Sato. Joint
recovery of dense correspondence and cosegmentation in two
images. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4246-4255, 2016. 13
Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali Dekel.
Splicing vit features for semantic appearance transfer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10748-10757, 2022. 2, 5, 6,
12, 13

Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel.
Plug-and-play diffusion features for text-driven image-to-
image translation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1921-1930, 2023. 2

11

[41]

(42]

[43]

[44]

[45]

[40]

(47]

(48]

(49]

Yunyang Xiong, Bala Varadarajan, Lemeng Wu, Xiaoyu Xi-
ang, Fanyi Xiao, Chenchen Zhu, Xiaoliang Dai, Dilin Wang,
Fei Sun, Forrest landola, et al. Efficientsam: Leveraged
masked image pretraining for efficient segment anything. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 16111-16121, 2024. 15
Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vit-
pose: Simple vision transformer baselines for human pose
estimation. Advances in Neural Information Processing Sys-
tems, 35:38571-38584, 2022. 5, 12, 13

Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin
Chen, Xiaoyan Sun, Dong Chen, and Fang Wen. Paint by ex-
ample: Exemplar-based image editing with diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18381-18391, 2023. 2
Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-
adapter: Text compatible image prompt adapter for text-to-
image diffusion models. arXiv preprint arXiv:2308.06721,
2023. 5,6, 12

Hang Yu, Yufei Xu, Jing Zhang, Wei Zhao, Ziyu Guan, and
Dacheng Tao. Ap-10k: A benchmark for animal pose esti-
mation in the wild. arXiv preprint arXiv:2108.12617,2021.
13

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and
Jian Zhang. Freedom: Training-free energy-guided condi-
tional diffusion model. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 23174—
23184, 2023. 2

Junyi Zhang, Charles Herrmann, Junhwa Hur, Eric Chen,
Varun Jampani, Deqing Sun, and Ming-Hsuan Yang. Telling
left from right: Identifying geometry-aware semantic corre-
spondence. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 30763085,
2024. 2,4,5,7,13, 14

Junyi Zhang, Charles Herrmann, Junhwa Hur, Luisa Pola-
nia Cabrera, Varun Jampani, Deqing Sun, and Ming-Hsuan
Yang. A tale of two features: Stable diffusion complements
dino for zero-shot semantic correspondence. Advances in
Neural Information Processing Systems, 36,2024. 2,4,5, 7,
13, 14

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836-3847, 2023. 2, 5



A. Implementation details

We apply the proposed methods to the text-to-image dif-
fusion model, Stable Diffusion [35] using checkpoint v1.5.
We begin by inverting real images with the edit-friendly
DDPM inversion [20], sampling images with 100 denoising
timesteps. To find semantic correspondence during transfer,
we use the feature maps input to the self-attention layer. We
set the denoising step t € [42, 100] and layer | € [2, 3] from
the up-blocks of U-net to find correspondences and rearrange
features. Additionally, we apply AdalN at denoising step t
€ [82, 100] and use the off-the-shelf model SAM [21] to
obtain object masks. And we measure dense correspondence
at timestep 92 and layer 2. All of the experiments are con-
ducted on an NVIDIA A6000 GPU and during the transfer
experiments, the GPU memory usage amounted to about
15.17 GB.

B. Evaluation method details

B.1. Appearance similarity

To evaluate the success of transferring the appearance of the
reference image, we conduct an experiment comparing the
color histograms (Ay;s) of the result image and the ground
truth (GT) image. The comparison region is set by segment-
ing the object using SAM [21] for both the GT and result
images. For the comparison of color histograms, we measure
the Bhattacharyya distance as:

Anis(Hg,Ho) = Dp(Hg, Ho) )

where Dp(Hg, Hp) is the Bhattacharyya distance be-
tween the color histograms of the masked GT image (Hg)
and the masked transferred output image (Hp).

Additionally, we measure semantic similarity using CLIP
score:

Aaip(G,0) ZCLIP Gi,0;) (6)

i=1

where GG; and O; are the masked GT and masked trans-
ferred output images, respectively, and NN is the total number
of images.

The dataset used in the experiments is described in Ap-
pendix C.

B.2. Structure preservation

To evaluate the preservation of the target image’s structure,
we conduct a depth evaluation (Igepn), @ mean Intersection
over Union (mloU, Spiou) and a key point evaluation (Skey).

For Sgeptn, we use an off-the-shelf depth estimation
model [33]. We extract depth from the target image and
the transferred results of each model, then measure the root
mean square error (RMSE) at the object level:

N
1
Saepin(Dr, Do) = NZ (Dri—Dos)* (D)

where Dp and Dy are the depth maps of the masked
target image and the transferred output image, respectively,
and N is the total number of pixels.

For Shiou, We use SAM to obtain the masks of the ground
truth (GT) and the transferred result objects. The mloU is
then measured at the object level as:

Z|MT1QMOz| (8)
|MT1 UMO z|

Sml()ll T O

where T and O denote the target and output images, M
represents the object mask obtained from SAM-HQ, and N
is the total number of objects.

To follow the default settings of the models, ours, Cross-
Image [1], DiffEditor [29], Splice VIT [39], IP-Adapter [44],
and ZeST [8] are tested at an image resolution of 5122, Swap-
ping AE [30] and DiffuselT [23] are tested at a resolution of
2562.

For Siey, we assess structural preservation through pose
estimation with ViTPose++ [42]. Following its approach, we
evaluate AP-10K samples [AP-10K] from the training set
and compute Average Precision (AP) using Object Keypoint
Similarity (OKS) over thresholds 7 € [0.5, 0.95] with target
keypoints as ground truth. Our method achieves higher AP
than competitors, demonstrating superior structural retention.
OKS is defined as:

>, exp (—%) d(v; > 0)
Zi 5(’[)1 > 0) ’

where d; is the Euclidean distance between the detected
and ground truth keypoints, s is the object scale, x; is a
keypoint-specific constant, and v; is the keypoint visibility.

Using OKS, the Average Precision (AP) score is com-
puted as:

OKS =

9

1
P= B Z Precision(7). (10)
T

The precision at each threshold 7 is given by:

|{detected keypoints | OKS > 7}|

P
recision(r) = |{all detected keypoints}|

Y

The dataset used in the experiments is described in Ap-
pendix C.



Figure S1. Examples of building and AFHQ for Iyig.

B.3. Dense correspondence

We evaluate dense correspondence using flow maps, which
represent pixel displacements derived from the correspon-
dences estimated by each method. These flow maps are com-
puted by subtracting the difference between the target pixel
coordinates from their corresponding matches. To measure
deviations from the GT flow map, we calculate the L1 dis-
tance at the resolution of 5122 as,

N
1 Fr i E A
Dﬂow(FpredyFGT) _ N § : ZI pred, GT, | (12)
=1

| M

where N is the total number of images, Fpreq; and Fgr,;
are the predicted and ground truth optical flow for image
i, respectively, and M; is the validity mask indicating the
valid pixels in the flow.

SD-DINO [48] and Telling-Left-from-Right [47] employ
both 960% and 8402 image resolutions to extract feature
descriptors across two distinct models, and ours utilizes a
resolution of 5122. Source and target images of varying sizes
are resized to the input resolution required by each method,
following the padding strategy detailed in the official im-
plementation of SD-DINO [48]. Both ours and SD-DINO
[48] compute dense correspondence by upsampling feature
maps to 5122. Telling-Left-from-Right [47] derives dense
correspondence with feature maps at their original resolution
(60?), using a window-soft-argmax operation, and subse-
quently upsamples the correspondence map to 5122. The
dataset used in the experiments is described in Appendix C.

C. Evaluation dataset

For the quantitative evaluation, we used the AFHQ [9], AP-
10K [45], and TSS [38] datasets, and a Building dataset
collected from the Pexels'. This dataset will be publicly
available. Especially, as shown in Fig. S1, to evaluate appear-
ance transfer performance, we created datasets for Ay;g and
Acip with the following setup: (1) Reference: original image
(2) Target: shape and color-augmented image derived from
the original image (3) Ground-Truth (GT): shape augmented
image derived from the original image. We perform appear-
ance transfer on 1) Reference to (2) Target, and measure the
score by comparing the result object with (3) GT object. To
align with the training domain of the pre-trained Swapping

Uhttps://www.pexels.com/
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AE [30], we applied flip and weak warping as augmenta-
tions. Additionally, to evaluate structure preservation, we
use a building dataset comprising 30 pairs of structure and
target images, as well as an AFHQ dataset with 42 pairs.
We evaluate dense correspondence on the TSS dataset [38],
which includes dense correspondence flows and semantic
masks for 400 image pairs sampled from the FG3DCAR
[25], JODS [36], and PASCAL [16] datasets.

D. Baseline settings

All experiments were conducted at a resolution of 5122,
except for the Swapping AE and DiffuselT, which were
trained at a resolution of 2562.

D.1. For appearance transfer comparison

Cross-Image. Cross-Image [I] employs edit-friendly
DDPM inversion [20] for image inversion. Images are sam-
pled with 100 denoising timesteps. And Cross-Image does
not use an object mask during transfer, so the background
of the target is not preserved after the transfer. The KV in-
jection in self-attention occurs at t € [42, 100] and layer 1
€ [2, 3] from the up-blocks. The contrast strength is set to
1.65, and the swap guidance scale is set to 3.5. Additionally,
for consistency with our model, experiments were conducted
using Stable Diffusion v1.5.

DiffEditor. DiffEditor is experimented with under Stable
Diffusion v1.5. We use the standard DDIM scheduler for 50
denoising steps. The classifier-free guidance scale was set to
the default value of 5. And Diffeditor uses an object mask
during transfer, so the background of the target is preserved.

DiffuselT. DiffuselT [23] utilizes external models to guide
the denoising process. We set the denoising timestep to 200,
skipping the initial 80 timesteps, and use a resampling step
of N=10 (resulting in a total of 130 iterations). Images are
resized to a resolution of 2242 to compute the ViT and CLIP
losses, as these models only accept this resolution. These
settings are the default configuration for image-guided ma-
nipulation as specified by the authors. Additionally, other
configurations, including hyperparameters, follow the de-
fault settings provided by the authors. Since the provided
checkpoint is trained at a resolution of 2562, we also con-
ducted experiments at this resolution.

Splice ViT. Splice ViT [39] employs a pre-trained DINO
ViT model [42] as a feature extractor for optimizing the
model on a single image pair. We use the 12-layer pre-trained
ViT-B/8 model provided in the official DINO ViT implemen-
tation. For the ViT loss, images are resized to a resolution of
2242, Keys are derived from the deepest attention module for
self-similarity, and the output of the deepest layer is used to



extract the appearance from the target appearance image. We
optimize using an input image pair with a resolution of 5122
for 2000 iterations. These settings follow the default settings
provided by the authors, and other configurations, including
hyperparameters, also follow the provided configurations.

Swapping AE. We use the pretrained checkpoints pro-
vided on the official GitHub repository. We evaluate the
AFHQ dataset and the LSUN Church pretrained models,
treating the Building dataset as in-domain for LSUN Church
model. In all evaluations, the target image is treated as the
structure image, and the reference image is treated as the
texture image. Additionally, we set the texture mixing alpha
to 1.0, i.e,. simple texture swapping.

IP-Adapter. To account for target depth, we adopt the
IP-Adapter + ControlNet model, using SDXL as the base
model. The target image’s depth map is extracted using off-
the-shelf depth estimator [33], normalized, and then used as
a condition for ControlNet. The reference image is provided
as the input image. The ControlNet conditioning scale is
set to 0.7, and the DDIM step is set to 30, following the
inference settings from the official repository.

ZeST. ZeST utilizes Dense Prediction Transformers [34]
for depth estimation and Rembg [13] for foreground ex-
traction. It also employs Stable Diffusion XL Inpainting in
conjunction with the corresponding version of depth-based
ControlNet and IP-Adapter. Additionally, all other configura-
tions, including hyperparameters, follow the default settings
provided by the authors.

D.2. For semantic correspondence comparison

SD-DINO. SD-DINO [48] employs Stable Diffusion v1.5
with a diffusion model timestep of ¢ = 100 as the visual
descriptor, while integrating DINOv2 [6] as an auxiliary
descriptor. Stable Diffusion features are extracted from the
2nd, 5th, and 8th layers of the U-Net decoder at timestep
t = 50, while DINOv2 descriptors are derived from the
token facet of its 11th layer. The input resolutions are 9602
for Stable Diffusion and 840% for DINOv2, resulting in a
feature map with a resolution of 60%. Then, we use 5122
upsampled feature map to find semantic correspondence.

Telling-Left-from-Right. Telling-Left-from-Right [47]
adopts Stable Diffusion and DINOv2 features in a man-
ner similar with SD-DINO. Furthermore, it incorporates the
instance matching distance (IMD) to compare the target
image with the horizontally flipped source image, thereby
mitigating pose variation in paired images. Semantic cor-
respondence is computed on the 602 resolution map using
window soft argmax with a window size of 10, followed by
upsampling to 5122 for evaluation.
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»
(a) After SA

14 .’.
(b) Before SA

Reference (Ours)

Target

Figure S2. Qualitative comparison between the results trans-
ferred using features after the self-attention layer and ours. (a)
Results transferred using features after the self-attention layer. (b)
Results transferred using features before the self-attention layer
(ours). (a) shows mismatched semantic correspondence, while (b)
demonstrates accurate semantic correspondence.

Metrics Apist +

Dataset Building AFHQ

After SA 0.478 0.581
Before SA(Ours) 0.469 0.577

Table S1. Comparison of appearance similarity on different
feature positions. For all datasets, the appearance similarity of
transferred results using features before the self-attention layer
shows a lower Ihiss compared to those transferred using features
after the self-attention layer. We mark the best score in bold.

E. Ablation study for feature positions

We use the input features of the self-attention layer for corre-
spondence measurement and feature injection. However, the
output of the self-attention layer can also be used for corre-
spondence measurement. Through experiments, we confirm
that the input features to self-attention yield better perfor-
mance. Fig. S2 (a), which uses the self-attention output fea-
tures, shows less accurate matching compared to Fig. S2 (b),
which uses the self-attention input features. And as shown
in Tab. S1, the transferred results using input features better
preserve the reference appearance compared to those using
output features.

F. Ablation study for time steps

Our method measures dense correspondence at timestep 92.
Because our method performs sparse key-point matching
in the early steps and dense matching in the later steps. As
shown in Tab. S2, the flow map distance is lower in the later
steps compared to the early steps. It demonstrates that dense
correspondence is more effectively measured in the later
steps than in the early ones.



Dﬂow *l/
. Dataset | pospcAR  JODS  PASCAL
Time Step
) 10.75 3286 2837
77 971 3016 2472
92(Ours) 9.43 2875 21.83

Table S2. Comparison of dense correspondence on different
time steps. For all datasets, the dense correspondence measured at
later time step shows a lower flow map distance compared to that
measured at mid time step. We mark the best score in bold.

Method Snmiou T A | \
Component \Dataset Building AFHQ Building AFHQ ‘
Baseline(KV injection) | 0.833 0.926 0.495 0.603
+Feature rearrange 0.942 (+0.109)  0.968 (+0.038) | 0.484 (-0.009) 0.582 (-0.021)
+ AdaIN(Ours) 0.939 (-0.003)  0.972 (+0.004) | 0.469 (-0.015) 0.577 (-0.005)

Table S3. Quantitative ablation results. We mark the greatest
difference in scores between the components in bold.

(d) Using

K/V injection Semantic-based
feature rearranging

(a) Target image (b) Reference
image

(c) Using (e) + AdaIN

[ours]

Figure S3. Additional samples of ablation study.

G. Quantitative ablation results for each com-
ponent

We add the below table to provide quantitative ablation
for Fig. H. Feature rearrange is our core component and
mainly helps structure Sy;ou). AdalN adjusts color distribu-
tion (Apg).

H. Additional examples on ablation study

We present additional samples from the ablation study an-
alyzing the effects of each component of our model in Fig.
S3.

I. Ablation study for object mask

This section evaluates the role and effectiveness of object
masks in appearance transfer tasks. Tab. S4 summarizes
the approaches for obtaining object masks adopted by Ours
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DiffEditor
EfficientSAM [41]

ZeST Others
Rembg [13] X

Ours
SAM-HQ [22]

For mask

Table S4. Approaches for obtaining object masks. The table
compares the approaches used to obtain object masks in Ours,
DiffEditor, and ZeST. Others refer to other baselines, including
Cross-Image, DiffEditor, DiffuselT, Splice ViT, Swapping AE, and
IP-Adapter. These baselines do not utilize object masks.

Metrics Ahisl wl/ Smiou T |
Dataset Building  AFHQ Building  AFHQ
Ours * 0.469 0.577 0.939 0.972
Ours w/o mask 0.467 0.579 0.858 0.943
Cross-Image 0.491 0.608 0.758 0.915
DiffEditor * 0.478 0.608 0.863 0.943
DiffuselT 0.477 0.607 0.855 0.951
Splice ViT 0.472 0.580 0.842 0.943
Swapping AE 0.481 0.629 0.821 0.942
IP-Adapter 0.487 0.616 0.642 0.950
ZeST * 0.497 0.602 0.925 0.980

Table S5. Comparison of appearance similarity and structure
preservation for our model without a mask. Ours w/o mask refers
to our method without using an object mask. * indicates a model
using a mask. We mark the best score in red and the second-best
score in yellow.

(a) Ours w/o mask

Reference (b) Ours
Figure S4. Qualitative comparison between our model without
an object mask and the our model. (a), which does not apply the
object mask during transfer, fails to preserve the background of
the target image, whereas (b), with the mask applied, successfully
retains the background.

and each baseline. Ours, DiffEditor, and ZeST utilize object
masks during the transfer process, while other competitors
do not incorporate object masks in their transfer processes.
To analyze the impact of object masks, we conduct ex-
periments with our method without using an object mask.
As shown in Tab. S5, the performance of Ours w/o mask
decreases in structure preservation compared to ZeST and
DiftEditor, which use object masks. This result demonstrates
that object masks are effective in maintaining the structure
of the target object. Among competitors that do not use
object masks, Ours w/o mask achieves the best structure
preservation. Regarding appearance similarity, our model
maintains strong performance even without a mask, owing to
its semantic matching capability during the transfer process.
Fig. S4 illustrates the appearance transfer results without
using an object mask. Without an object mask, the back-
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Figure S5. Comparison of matching component combinations.

ground of the target image is not preserved after the transfer.
This observation highlights that object masks ensure object-
aware appearance transfer. Competitors that do not use object
masks, such as Cross-Image, DiffEditor, DiffuselT, Splice-
ViT, Swapping AE, and IP-Adapter, fail to preserve the back-
ground.

J. Ablation study for matching rule

Rationale: As we aim to transfer appearances according to
semantic matches (e.g., beak-to-beak), it is natural to employ
one-to-one winner-takes-all matches rather than softmax
aggregation.

In Case 1, implicit alignments like softmax aggregation
fail to preserve reference feature values. And in Case 2, the
injection based on the matching between the query and key
with the attention mechanism also produces similar failure
results. There are no scenarios where one-to-many or many-
to-one matching outperforms one-to-one. Features from sim-
ilar regions inherently share similar values, so there are no
cases where top-1 similarity is incorrect while top-2 to N
is correct. If cosine similarity fails in one-to-one matching,
cosine similarity-based attention mechanisms would also
fail.

K. User study

Method
Uapp
Ui

Diffeditor
0.033
0.042

Zest
0.064
0.276

Ours
0.661
0.462

Cross-Image
0.059
0.014

DiffuselT  Splice VIT
0.026 0.096
0.121 0.030

IP-Adapter
0.062
0.062

Table S6. User study results. The bold is the best score.

We conducted a user study with 53 participants, evaluat-
ing 15 randomly selected samples for appearance similarity
(Uapp) and structure preservation (Ugy).

L. Additional qualitative results

In Fig. S6 and Fig. S7, we provide more additional qualitative
comparisons with competitors. In particular, Fig. S6 illus-
trates the results when the reference and target are aligned
but the reference object has complex patterns, as well as
when the reference and target are unaligned. And Fig. S8
and Fig. S9 showcase our transferred results across various
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domains. Additionally, Fig. S10 shows the results of appear-
ance transfer from each object from two different reference
images to multiple objects in a single target image. Each
appearance transfer process occurs simultaneously.
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Figure S6. Our results on samples where the reference and target are aligned but the reference has complex patterns, as well as on various
samples where the reference and target are misaligned.

17



Reference

Reference

1ydepy-d1

"

Figure S7. Qualitative comparison of appearance transfer for bird samples.
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Figure S8. Our results on samples where the reference and target differ in size or are misaligned.
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Figure S9. Our results of various domain.
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Figure S10. Results of appearance transfer between multiple objects.
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