
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A REWARD-FREE VIEWPOINT ON MULTI-OBJECTIVE
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many sequential decision-making tasks involve optimizing multiple conflicting
objectives, requiring policies that adapt to different user preferences. Multi-
objective reinforcement learning (MORL) typically addresses this by training a
single policy conditioned on preference-weighted rewards. In this paper, we ex-
plore a novel perspective: leveraging reward-free reinforcement learning (RFRL)
for MORL. While RFRL has historically been studied independently of MORL,
it learns optimal policies for any possible reward function, making it a natural fit
for MORL’s challenge of handling unknown user preferences. We propose using
RFRL’s training objective as an auxiliary task to enhance MORL, enabling more
effective knowledge sharing beyond the multi-objective reward function given at
training time. To this end, we adapt a state-of-the-art RFRL algorithm to the
MORL setting and introduce a preference-guided exploration strategy that focuses
learning on relevant part of the environment. Our approach significantly out-
performs state-of-the-art MORL methods across diverse MO-Gymnasium tasks,
achieving superior performance and data efficiency, especially in settings with
limited preference samples. This work is the first to explicitly adapt RFRL for
MORL, demonstrating its potential as a scalable and effective solution.

1 INTRODUCTION

Many sequential decision-making tasks require optimizing multiple, often conflicting objectives.
For example, in robot control, there is a trade-off between minimizing energy consumption and
maximizing speed. The optimal policy in such cases is the one that maximizes a weighted sum of the
objectives, where the weights represent user preferences. User preferences depend on context—for
instance, prioritizing speed in emergencies and energy efficiency in routine operations. Since user
preferences are unknown in advance, solving multi-objective decision-making requires learning a
set of policies for different preferences before testing.

Reinforcement learning (RL) (Sutton & Barto, 2018) has achieved strong performance in sequential
decision-making, making multi-objective RL (MORL) a widely studied approach for learning poli-
cies for different user preferences (Hayes et al., 2022). A naive but inefficient solution is to train
a separate policy for each preference. Another more scalable approach is to train a single policy
network (Yang et al., 2019; Basaklar et al., 2023; Hung et al., 2023) conditioned on preferences,
enabling parameter sharing and generalization across preferences. During training, the policy is
optimized over a range of sampled preferences, each defining a reward function weighted by the
preference. At test time, users can specify a preference to obtain the corresponding policy.

Another approach to handling unknown user preferences at test time is reward-free reinforcement
learning (RFRL) (Jin et al., 2020; Touati et al., 2023), which has historically been developed inde-
pendently of MORL despite addressing a similar problem. In RFRL, the agent explores the envi-
ronment without receiving reward signals during training and instead learns a set of optimal policies
for any possible reward function in the environment. MORL can be seen as a special case of RFRL
(Alegre et al., 2022), as RFRL does not restrict the reward function to be a weighted sum of prede-
fined reward functions. However, despite their similarities, no prior work has explicitly adapt RFRL
methods to solve MORL problems.

In this paper, we ask: Can RFRL inform MORL? We hypothesize that the objective of RFRL to
learn optimal policies for any reward function could serve as a useful auxiliary task for MORL

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(Jaderberg et al., 2016; Rafiee et al., 2022; Veeriah et al., 2019). Even though MORL only needs
optimal policies for linear combinations of known objectives, learning beyond these combinations
could accelerate MORL through effective knowledge sharing. To investigate this question, we adapt
a state-of-the-art RFRL algorithm (Touati et al., 2023) to the MORL setting, treating the preference-
weighted reward as the test-time reward function given to RFRL. However, this naive approach
performs poorly compared to existing MORL methods, likely because purely reward-free explo-
ration does not prioritize states that are important for optimizing the preference-weighted reward in
the given MORL task. As a result, the policies learned by RFRL for these reward functions could
be suboptimal. To address this, we propose guiding exploration using sampled preferences and
mini-batch sampling, directing the agent to visit states that maximize the corresponding preference-
weighted reward function. This ensures that learning is focused on policies most relevant to MORL.

We highlight the main technical novelty of this paper: (1) A new perspective of solving MORL:
We identify the close connection between MORL and RFRL, which have evolved independently
despite tackling similar challenges of unknown user preferences at test time. This insight motivates
new MORL algorithms by rethinking policy learning with multiple objectives from the perspective
of RFRL. (2) Algorithmic enhancements for adapting RFRL to MORL: Even though RFRL
and MORL are closely related, vanilla RFRL can perform poorly in the MORL setting (see Section
4). To address this, we introduce three key enhancements: (i) Preference-guided exploration: We
propose to use the preference vector to sample latent vectors aligned with the target rewards to
facilitate exploration in the latent space; (ii) Training on latent vectors computed by mini-batch
sampling from replay buffer as auxiliary tasks: Our approach trains the policy network on latent
vectors computed from mini-batch transitions sampled from the replay buffer. This design learns
a broader range of policies than required for MORL and can be beneficial by providing auxiliary
tasks; (iii) Auxiliary Q loss: To better adapt RFRL to MORL, we further facilitate the learning of
representations from the observed reward vectors (instead of pseudo rewards as in RFRL) via an
auxiliary Q loss as an additional learning signal.

Our experimental results demonstrate that our approach is both simple and effective. First, our
method significantly outperforms the state-of-the-art MORL algorithms across various tasks in stan-
dard MO-Gymnasium benchmark (Felten et al., 2023), including discrete and continuous control.
Second, when trained with a limited number of preference samples, our method achieves substan-
tially higher performance than other MORL approaches. This highlights that decoupling environ-
ment knowledge from reward information enhances generalization, particularly in scenarios with
limited preference samples. To the best of our knowledge, this is the first work to adapt RFRL for
MORL and present a practical algorithm that performs well across diverse deep RL tasks.

2 PRELIMINARIES

This section provides a brief review of MORL, along with the notation used throughout the paper.
We use boldface symbols for vectors and matrices. For any n ∈ N, we use [n] as a shorthand for
{1, · · · , n}. For a set Z , we let ∆(Z) denote the set of all probability distributions over Z .

We formulate the MORL problem as an Multi-Objective Markov Decision Process (MOMDP) de-
fined by the tuple (S,A,P,R, γ, µ), where S and A are the state and action spaces, P : S ×A →
∆(S) is the transition function, R : S ×A → Rd is a vector-valued reward function of d objectives,
γ ∈ [0, 1) is the discount factor, and µ is the initial state distribution. Let Π denote the set of all
stationary randomized policies. Let st, at, rt be the state, action, and reward received at time t. For
a policy π ∈ Π, define Vπ := Eπ,s0∼µ[

∑∞
t=0 γ

tR(st, at)] as the expected total discounted return
vector achieved by π. Let Vπ

i denote the i-th entry of Vπ . For a pair of policies π and π′, we say
that π Pareto-dominates π′ (denoted by π ≻ π′) if Vπ

i ≥ Vπ′

i for all i ∈ [d] and there exists some
j ∈ [d] such that Vπ

j > Vπ′

j .

The general goal of MORL is to discover the Pareto front, which is defined as the set of non-
dominated policies. That is, for each policy π in the Pareto Front, there exists no other policy
π′ ∈ Π such that π′ ≻ π. To search for the Pareto front, one common approach is to leverage a
scalarization utility function fλ : Rd → R under a user preference vector λ ∈ Λ, where Λ denotes
the preference set. In this paper, we focus on the linear scalarization setting where fλ(r) = λ⊤r,
as commonly adopted in the MORL literature (Abels et al., 2019; Yang et al., 2019; Basaklar et al.,
2023; Hung et al., 2023; Lu et al., 2023). Without loss of generality, we presume that Λ is the d-
dimensional unit simplex. Notably, it has recently been shown by Lu et al. (2023) that any point on

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the Pareto front can be achieved by training a policy using linear scalarization due to the convexity of
the policy-induced value function’s range. Since the preference λtest at test time is unknown during
training, our goal is to learn a preference-conditioned policy π : S ×Λ→ ∆(A) that can maximize
the total discounted scalarized reward E

[∑∞
t=1 γ

tλ⊤rt
]
, for any λ ∈ Λ.

3 REWARD-FREE RL FOR MULTI-OBJECTIVE RL
This section explains why MORL can be seen as a special case of RFRL. We then discuss how this
perspective enhances MORL by improving generalization and sample efficiency.

MORL as a special case of RFRL. The goal of RFRL is to compute an optimal policy for any scalar
reward function R : S × A → R provided at test time, without observing any reward signal during
training (i.e., “reward-free”) nor requiring additional environment interaction at test time. Formally,
RFRL solves the following optimization problem at test time: argmaxπ Eπ,s0∼µ

[∑∞
t=0 γ

trt
]
,

where rt is the reward realization that corresponds to the test-time reward function.

MORL addresses a similar problem, but presumes the vector-valued reward signal from R(s, a) can
be observed during training, and assigns R(s, a) = λ⊤R(s, a), where λ (a user-specified preference
vector) defines a linear combination of multiple reward components in R, under linear scalarization.
Both RFRL and MORL aim to retrieve an optimal policy for a given reward function at test time, but
their approaches differ. While MORL typically focuses on finding the Pareto front by learning a set
of optimal policies for various preferences λ, RFRL learns policies for all possible reward functions,
potentially including optimal policies for scalarized MORL rewards. RFRL achieves this by training
a conditional policy network (Touati & Ollivier, 2021) or leveraging a pre-collected dataset through
planning or batch RL (Jin et al., 2020), providing a broader policy set than traditional MORL.

Key idea: RFRL as a source of auxiliary tasks. RFRL learns policies for a broader class of reward
functions than required for MORL, but this can be beneficial by providing auxiliary tasks. Prior
research has shown that incorporating auxiliary tasks improves sample efficiency and generalization
in RL (Jaderberg et al., 2016; Veeriah et al., 2019; Rafiee et al., 2022). Since RFRL naturally
trains policies across a spectrum of reward functions, it provides a structured way to design these
auxiliary tasks. However, directly applying RFRL to MORL can be data-inefficient since reward-
free exploration may not prioritize states that are crucial for learning the Pareto front in MORL.
The key challenge is: How to utilize the auxiliary tasks offered by RFRL effectively to accelerate
the learning of optimal policies in MORL? In the sequel, we describe how RFRL can be adapted to
effectively improve training in MORL.

3.1 FORWARD-BACKWARD MORL (MORL-FB)

In this section, we formally present MORL-FB by describing the implementation of RFRL and the
key components that adapt RFRL to MORL by enhancing its learning efficiency.

RFRL Implementation. We implement RFRL for MORL using the state-of-the-art Forward-
Backward (FB) RL algorithm (Touati & Ollivier, 2021). The FB method learns a set of policies
optimized for different reward functions by decomposing the Q-value of an optimal policy for a
scalar reward function R into two neural networks: Fθ (forward representation) and Bω (backward
representation), where θ and ω denote their parameters. This decomposition allows the Q-function
for a given reward function R to be expressed as:

Q(s, a,zR) = Fθ(s, a,zR)
⊤zR, (1)

where zR ∈ Rdz is an dz-dimensional latent vector, and both Fθ and Bω are neural networks
producing dz-dimensional outputs. Intuitively, zR is meant to encode the optimal policy that corre-
sponds to the current reward function. Once a reward function R is revealed, zR is defined as:

zR = E(s,a)∼D [Bω(s, a)R(s, a)] , (2)

where D represents an arbitrary state-action distribution. In our implementation, we use D as the
distribution induced by the replay buffer collected by the agent during training. Using this formula-
tion, the greedy policy for a given reward function R is defined as:

π(s,zR) = argmax
a

Fθ(s, a,zR)
⊤zR. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Now we are ready to present the design of MORL-FB at both training time and test time.

Algorithm 1 MORL-FB

1: Input: z dimension dz , sample number ns

2: Initialize replay bufferM← ∅
3: for each iteration i do
4: Sample preference λ uniformly from Λ
5: z ← PG-EXPLORE(λ)
6: Use z to generate rollouts in environment
7: Sample transitions from bufferM
8: Update FB networks Fθ, Bω and policy π
9: end for

10: function PG-EXPLORE(λ)
11: Sample ns transitions D from bufferM
12: z ←

∑
(s,a,r,s′)∈D

Bω(s,a)r⊤λ
ns

13: Normalize z such that z ←
√
dz

z
∥z∥2

14: return z
15: end function

Test Time: At test time, we can easily
adapt Equation (2) by replacing R(s, a)
with a user-specified scalarized multi-
objective reward based on a preference
vector λ as R(s, a) = λ⊤R(s, a). Next,
given the learned Fθ and Bω , we compute
the corresponding zR and use it in the pol-
icy defined by Equation (3). This effec-
tively retrieves an optimal policy for the
given preference λ.

Training with Preference-Guided Ex-
ploration: During training, Fθ, Bω , and
π must be trained by sampling z and con-
ditioning the networks on these sampled
values. Since the test-time user preference
λtest is unknown at this stage, we cannot
directly compute z using Equation (2). At
a high level, training on a diverse set of z
samples is equivalent to training the agent on a variety of reward functions, since z is inherently
linked to rewards through (2).

Figure 1: A motivating experiment on Deep Sea Trea-
sure. (a)(b) Training performance (UT and HV defined
in the sequel) of MORL-FB under different batch sizes
for ẑλ. (c) KDE contour of return vector distributions
of π(·, z) induced by ẑλ (with various batch sizes)
and ẑ ∼ N (0, Idz). This shows that ẑλ corresponds
to learning for more diverse and relevant behavior in
MORL than zλ and the z sampling strategy of the orig-
inal FB. The detailed configuration is in Appendix.

In principle, z can be sampled from any
distribution without restriction. In (Touati
& Ollivier, 2021), z is drawn from a stan-
dard normal distributionN (0, Idz) in a dz-
dimensional space. However, we found
that this approach leads to poor sample ef-
ficiency when testing the agent on MORL
tasks. We hypothesize that sampling z
from a normal distribution produces rep-
resentations that differ significantly from
the actual zR obtained from a preference-
weighted multi-objective reward function
(see Figure 5 for a visualization of empir-
ical z distributions).

To address this issue, we propose
Preference-Guided Exploration (PG-
Explore), which constructs a more
relevant z distribution via sampling
guided by preference-weighted rewards.
The design of PG-Explore builds on the
following insights:

• Using {zλ}λ∈Λ only leads to limited exploration of z: Recall that in MORL, we can observe
multi-objective rewards R(s, a) (or its noisy version) during training. One direct approach is to
compute z as:

zλ = E[Bω(s, a)λ
⊤R(s, a)]

(a)
= E[Bω(s, a)R(s, a)⊤λ]

(b)
= (E[Bω(s, a)R(s, a)⊤])︸ ︷︷ ︸

=:H

λ, (4)

where (a) holds by that λ⊤R(s, a) is a scalar and can be swapped in the matrix multiplication
with Bω(s, a) and (b) follows from that λ can be moved out of the expectation.
Equation (4) suggests that zλ is in the span of d preference-agnostic column vectors of the dz × d
matrix H, for any preference λ. In practice, since the number of objectives d is usually much
smaller than dz , the coverage of {zλ}λ∈Λ in Rdz can be extremely small. This leads to limited
exploration of z during training such that the agent can commit to a set of improper z, especially
in the early training stage when Fθ and Bω are not well trained.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Constructing ẑλ by mini-batch sampling for exploration: To encourage exploration of z rel-
evant to MORL, we propose a conceptually simple and yet effective technique that leverages
mini-batch sampling to construct ẑλ. Specifically, we sample a batch of ns data samples (denoted
by D) from the replay buffer and compute ẑλ =

∑
(s,a,r,s′)∈D Bω(s, a)r

⊤λ/ns. Figure 1 shows
a comparison of training with zλ, ẑλ under various batch sizes, and z drawn fromN (0, Idz) as in
the original FB method, in Deep Sea Treasure (DST), which is a goal-oriented navigation task with
two-dimensional rewards as (treasure value, step cost). As the true zλ is not available, we use ẑλ
with a large ns as a surrogate for zλ. We can see that: (i) ẑλ indeed corresponds to learning more
diverse behavior than just learning for zλ. (ii) ẑλ’s are more relevant to the reward functions in
MORL encountered at test time than the z sampled fromN (0, Idz), improving sample efficiency.

• Learning induced by ẑλ serves as auxiliary tasks: Recall that in PG-Explore, we construct
ẑλ =

∑
(s,a,r,s′)∈D Bω(s, a)r

⊤λ/ns by mini-batch sampling. This means that for any given
preference λ, the agent can learn beyond zλ and, moreover, from multiple values z from different
batches of transitions, providing richer learning signals. This approach is closely related to the
auxiliary tasks in deep RL, where training objectives that are not directly or totally aligned with
the target objective have been shown to accelerate learning (Jaderberg et al., 2016; Veeriah et al.,
2019; Rafiee et al., 2022).

Training Objective Functions: (i) Measure loss: To train the Fθ and Bω networks in MORL-FB,
we use the standard measure loss LM(Fθ,Bω; zλ), which minimizes the Bellman residual on the
successor measure (Touati et al., 2023). Fθ̄ and Bω̄ are target networks. This loss is defined as:

LM(Fθ,Bω; zλ) = E(st,at,st+1)∼D
(s′,a′)∼D

[
(Fθ(st, at, zλ)

⊤Bω(s
′, a′)− γFθ̄(st+1, π(st+1, zλ), zλ)

⊤Bω̄(s
′, a′))2

]
− 2 E(st,at,st+1)∼D[Fθ(st, at, zλ)

⊤Bω(st+1, at+1)]. (5)

(ii) Auxiliary Q loss: In the context of MORL, we propose to employ an auxiliary Q loss to facilitate
the learning of FB representations from the observed reward vectors, instead of the pseudo rewards
in the original FB (also see the ablation study in Section 4.1). Specifically, the Q-loss is constructed
as the squared temporal difference error represented in Fθ and Bω , and the transitions are sampled
from the replay buffer to compute zλ via our preference-guided function:

LQ(Fθ; zλ) = E(s,a,r,s′)∼D
[
(Fθ(s, a,zλ)

⊤zλ − (λ⊤r + γFθ̄(s
′, π(s′, zλ), zλ)

⊤zλ))
2
]
, (6)

We summarize the implementation in Algorithm 1. The detailed pseudo code (Algorithm 2) and
further details about loss functions and implementation are provided in Section A. Note that the FB
framework can use either state-dependent or state-action-dependent backward representation, and
both perform well in practice (see Appendix C.4). As the original FB (Touati et al., 2023) presumes
a state-dependent design, we focus mainly on state-dependent ones in the subsequent experiments.

4 EXPERIMENTS

Evaluation Domains. We leverage the MO-Gymnasium benchmark suite (Felten et al., 2023) and
consider various discrete and continuous control tasks as follows: (i) Multi-objective MuJoCo: We
consider robot locomotion tasks with up to 5 objectives, including Walker2d, Halfcheetah2d, Ant3d,
Hopper3d, Humanoid2d, and Humanoid5d. Each environment presents a unique set of objectives,
e.g., the goal of Ant3d is to optimize both x-axis and y-axis speeds while minimizing energy con-
sumption. The detailed configurations are provided in Section B.

Benchmark Methods. To evaluate the effectiveness of our proposed approach, we compare MORL-
FB against various benchmark methods, including: (i) Single preference-conditioned policy meth-
ods: PD-MORL (Basaklar et al., 2023), Q-Pensieve (Hung et al., 2023), CAPQL (Lu et al., 2023),
Envelope Q-Learning (EQL) (Yang et al., 2019), and PCN (Reymond et al., 2022); (ii) Multi-policy
MORL: PG-MORL (Xu et al., 2020), SFOLS (Alegre et al., 2022), MORL/D (Felten et al., 2024),
GPI-LS, and GPI-PD (Alegre et al., 2023) ; (iii) Reward-free RL: We take the original FB approach
(Touati et al., 2023) as a baseline.

Regarding PD-MORL, Q-Pensieve, and FB, we leverage their official implementations from (Basak-
lar et al., 2023; Hung et al., 2023; Touati et al., 2023). To ensure a fair comparison among all the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

benchmark methods, we adopt the standard PD-MORL without the auxiliary pre-trained preference
interpolator, which essentially requires a substantial amount of additional data for pre-training and
could bias the comparison. Regarding CAPQL, EQL, PCN, PG-MORL, MORL/D, GPI-LS, and
GPI-PD, we leverage the implementation of MORL-Baselines (Felten et al., 2023) for better repro-
ducibility. As the PG-MORL in MORL-Baselines can only support two-objective tasks, we extend
this code base to accommodate those tasks beyond two objectives. On the other hand, the original
SFOLS only focuses on discrete control tasks by default. For a more thorough comparison, we uti-
lize its official implementation for discrete problems and extend SFOLS with a TD3 backbone for
evaluation on continuous control. Moreover, we apply hyperparameter optimization to the bench-
mark algorithms and MORL-FB. Section B.2 details the selection range of hyperparameters and the
final selected values. For all the tasks, we run each algorithm for 3 million environment steps, which
is comparable to most of the existing MORL studies. Below we report the average performance and
the empirical standard deviation over 5 random seeds for each task. More detailed configurations of
the experiments and benchmark methods are provided in Section B.

Figure 2: Evaluation of MORL-FB and several MORL benchmark algorithms on diverse continuous
control tasks within the MO-Gymnasium suite, assessing performance using key metrics. These
results demonstrate the clear advantage of MORL-FB across all tested benchmarks.

Evaluation Metrics. We evaluate the performance of each algorithm using three metrics that are
widely used in the MORL literature (Van Moffaert & Nowé, 2014; Yang et al., 2019; Kyriakis &
Deshmukh, 2022; Basaklar et al., 2023; Hung et al., 2023; Lu et al., 2023):

• Utility (UT): To evaluate the scalarized total reward across different preferences at an aggregate
level, we employ the utility metric defined as Eλ[

∑
t λ

⊤rt], where the expectation is taken with
respect to the uniform distribution over the preference set Λ (i.e., d-dimensional unit simplex).

• Hypervolume (HV): As a standard metric in the literature of general multi-objective optimization,
hypervolume naturally captures the inherent trade-off among different objective functions using
one aggregate scalar value (Zitzler & Thiele, 1999). Specifically, given a reference point uref ∈ Rd

and any collection for return vectors U ⊆ Rd, the hypervolume of U can be formally defined as
HV(U ;uref) := µ

(⋃
u∈U

{
y
∣∣u ⪰ y ⪰ uref

})
, where µ(·) denotes the d-dimensional Lebesgue

measure. In practice, uref is selected based on the range of possible total return and is task-
dependent. The configuration of uref for each MORL task is provided in Section B.

• Episodic Dominance (ED): As a metric complementary to HV and UT, ED is meant to capture
the relative strength of a pair of algorithms under different preferences. Specifically, given any
two algorithms ALG1,ALG2, we define ED(ALG1,ALG2) := Eλ[I{λ⊤g(τALG1

) ≥ λ⊤g(τALG2
)}],

where g(·) denotes the trajectory-wise cumulative return vector, τALG1
and τALG2

are the trajecto-
ries generated under the policies of ALG1 and ALG2, and λ is drawn uniformly from Λ. Note that
we use 500 uniformly sampled preference vectors and evaluate across 5 distinct random seeds for
each preference vector for statistical robustness.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To ensure rigorous evaluation, we further follow the guidelines of (Agarwal et al., 2021) by tak-
ing the normalized UT scores and reporting the aggregated performance across tasks in median,
mean, and interquartile mean (IQM). Regarding the normalized scores, we follow the procedure
in (Fu et al., 2020), which (i) employs a random policy—where actions are selected uniformly at
random— as the baseline with normalized score of 0 and (ii) an expert policy trained by single-
objective SAC—as the topline with normalized score of 100. The above normalization is done on a
per-preference basis.

Does the reward-free viewpoint of MORL-FB improve sample efficiency over the benchmark
methods? Figure 2 shows the performance of all the methods in UT, HV, and ED for continuous
control tasks. Regarding ED, for each baseline algorithm ALG, we report ED(ALG,MORL-FB) to
show the pairwise comparison. We can make the following observations: (i) MORL-FB achieves
either the best or close to the best UT and HV among all methods on all the tasks, regardless of
the number of objectives. This showcases that MORL-FB is indeed sample-efficient in the sense
that it can discover a diverse collection of high-performing policies across various preferences using
only as few as 3 million samples as used by the expert policy. (ii) Given that ED(ALG,MORL-FB)
are consistently smaller than 0.5 for all baselines, we see that MORL-FB outperforms all bench-
mark methods (including the state-of-the-art methods like PD-MORL and Q-Pensieve), under most
preferences. (iii) PD-MORL and Q-Pensieve perform well on two-objective tasks (e.g., Halfchee-
tah2d and Walker2d) but underperform when the number of objectives is larger (e.g., Ant3d and
Humanoid5d). Additional results on discrete control environments can be found in Section C.3.

Moreover, regarding the aggregated results, Figure 3 shows that MORL-FB reliably outperforms the
benchmark methods both in conventional statistics (e.g., mean and median) and robust metrics like
IQM. MORL-FB achieves the best IQM scores by a large margin vis-à-vis other methods, confirming
the significant improvements over the state-of-the-art MORL.

0.5 0.0 0.5 1.0

PD-MORL
Q-Pensieve

CAPQL
PGMORL
MORL/D

PCN
SFOLS
GPI-LS
GPI-PD

FB
MORL-FB (Ours)

Median

0.25 0.50 0.75

IQM

0.5 0.0 0.5 1.0

Mean

Normalized Weighted Reward

Figure 3: Evaluation of MORL-FB and several
MORL benchmark algorithms using aggregate
metrics, including median, mean, and interquar-
tile mean (IQM). These results show the superior
performance of MORL-FB across all metrics.

Recall that MORL-FB leverages PG-Explore to
address the fundamental exploration issue of
vanilla FB, which suffers from sample ineffi-
ciency in MORL. Remarkably, the per-task re-
sults in Figure 2 and aggregated results in Fig-
ure 3 show that MORL-FB enjoys significantly
better UT and HV across tasks. Accord-
ingly, the ED scores ED(FB,MORL-FB) re-
main nearly zero in all tasks.

Does MORL-FB achieve effective general-
ization across preferences? To better assess
the generalization capabilities of MORL-FB
across preferences, we further evaluate the al-
gorithms in a stylized setting where they are trained only on a small set of preference vectors Λtrain
(rather than the whole Λ) and aim for generalization over Λ at test time. Specifically, for a d-
objective task, we let Λtrain include only the standard basis preferences, i.e., d-dimensional one-hot
vectors, and the uniform preference vector [1/d, · · · , 1/d]. The testing setup is exactly the same as
that for Figure 2. Here we focus on comparing MORL-FB to PD-MORL and Q-Pensieve, which are
the top two benchmark methods in Figure 2 and utilize conditioned networks of structures different
from MORL-FB.

As shown in Figure 4, both PD-MORL and Q-Pensieve exhibit a notable decline in performance
across all three metrics compared to those in Figure 2. In contrast, MORL-FB maintains consistent
performance across the evaluated tasks, with only minimal degradation in UT and HV values com-
pared to Figure 2. These findings showcase that MORL-FB can generalize more effectively over the
entire preference set, even when trained on a limited set of preference vectors. More detailed results,
such as the numerical values and the aggregated performance (e.g., IQM) are in Section C.

4.1 ABLATION STUDY

Preference-Guided Exploration (PG-Explore). To investigate the benefits of sampling z from a
preference-guided distribution, we perform an ablation study on comparing the proposed MORL-
FB and a variant of MORL-FB that samples z from N (0, Idz), i.e., the distribution adopted by the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Evaluation of MORL-FB and bench-
mark methods (PD-MORL and Q-Pensieve) un-
der a reduced preference set Λtrain during train-
ing: These demonstrate the generalization capa-
bility of MORL-FB across preferences.

Figure 5: Empirical z distribution under t-SNE
for Humanoid2d with MORL-FB (preference-
guided sampling, blue) and original FB (stan-
dard normal, red): The multi-modal distribution
observed with MORL-FB suggests a more di-
verse set of latent representations compared to
unimodal nature of original FB.

Figure 6: Evaluation of MORL-FB and its ab-
lated versions on the Ant3d task. The results
highlight the importance of PG-Explore and
auxiliary losses, as removing these components
leads to performance degradation.

Figure 7: Zero-shot cross-objective transfer
from Hopper2d to Hopper3d and Hopper4d us-
ing vanilla FB and MORL-FB: Results demon-
strate effective transfer by MORL-FB, support-
ing the efficacy of its proposed enhancements.

vanilla FB. Figure 6 (specifically the bars in gray and orange) shows that MORL-FB indeed benefits
significantly from a preference-guided distribution across the tested task, highlighting its importance
in enabling directed exploration and sample-efficient policy learning.

Moreover, we visualize the empirical distributions of the sampled z of MORL-FB and the original
FB. Specifically, we record the z vectors used throughout training and apply t-SNE (Van der Maaten
& Hinton, 2008) for visualization in a two-dimensional space. The results on Humanoid2d in Fig-
ure 5 show that sampling z from a normal distribution results in a unimodal empirical distribution
(contours in red). By contrast, MORL-FB with the preference-guided sampling exhibits a multi-
modal distribution (contours in blue), indicating a richer and more diverse set of z distributions.
This multi-modality allows MORL-FB to better capture the underlying reward structure, achieving
improved generalization and adaptation to various objectives. More visualization of z distributions
for other tasks can be found in Section C.

Auxiliary Q loss. To corroborate the efficacy of the auxiliary Q loss, we further conduct an abla-
tion study on this term. From Figure 6 (specifically the bars in black and orange), the Q loss can
facilitate the learning of forward and backward representations in MORL-FB and thereby boost the
performance in both UT and HV. More ablation results across environments are in Section C.2.

4.2 ZERO-SHOT CROSS-OBJECTIVE TRANSFER

Recall that one salient feature of MORL-FB is to use z to encode the λ-dependent scalarized reward
function. Accordingly, MORL-FB is endowed with the ability to achieve zero-shot transfer even
across tasks of different number of objectives. Such zero-shot cross-objective transferability allows
us to add new factors to the reward function without the need for retraining and hence is a very
useful feature in practice. To validate this, we use MORL-FB to learn the F and B networks on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Hopper2d and directly evaluate them on Hopper3d and Hopper4d, which involve additional reward
terms like “jump height” and “z-axis speed”, at test time. Details of the environment configurations
are in Section B. We conducted the same evaluation for vanilla FB (Touati et al., 2023) as a base-
line. From Figure 7, vanilla FB cannot achieve effective cross-objective transfer given that vanilla
FB already suffers in the standard MORL setting (cf. Figure 2). By contrast, MORL-FB achieves
effective transfer across objectives in a zero-shot manner, corroborating the proposed enhancements.

5 RELATED WORK

Single preference-conditioned policy methods. Single preference-conditioned policy methods
learn one policy network that adapts to different objective trade-offs by conditioning on prefer-
ence. Many of these methods employ scalarization techniques (Van Moffaert et al., 2013; Yang
et al., 2019), transforming multi-objective problems into weighted single-objective problems. They
allow policies to dynamically adjust at inference time. However, relying solely on linear reward ag-
gregation without proper representation learning can lead to suboptimal solutions. To address this,
CAPQL (Lu et al., 2023) introduced the concave reward terms for better optimization landscapes,
while CN-DER (Abels et al., 2019) proposed a preference-conditioned Q-network with an experi-
ence replay mechanism to handle dynamic weights and mitigate non-stationarity. Q-Pensieve (Hung
et al., 2023) improved sample efficiency by reusing past policy snapshots. Without using scalariza-
tion, (Abdolmaleki et al., 2020) learned action distributions per objective and fitted a parametric
policy via supervised learning. To improve adaptability to diverse and unseen preference vec-
tors, methods like PCN (Reymond et al., 2022) formulated MORL as a classification problem,
and MOAC (Zhou et al., 2024) finds Pareto-stationary points by adapting multi-gradient descent
to MORL without scalarization. PD-MORL (Basaklar et al., 2023) also trains a single preference-
conditioned network but directly incorporates preference vectors, for example, through cosine sim-
ilarity measures within its value-function update rule to efficiently learn a comprehensive set of
policies across the continuous preference space.

Multi-policy methods. Multi-policy methods explicitly learn multiple policies to cover the Pareto
front, capturing diverse trade-offs in the training process. A key challenge in multi-policy MORL
is efficiently constructing a coverage set that represents the full Pareto front while maintaining scal-
ability. To refine policy selection and handle dominated actions, (Lizotte et al., 2012) introduced
a structured approach using linear value function approximation. Subsequent methods (Kyriakis
& Deshmukh, 2022; Van Moffaert & Nowé, 2014; Xu et al., 2020) focused on improving explo-
ration efficiency across the preference space but lacked structured learning mechanisms to gener-
alize across diverse preferences. Building on the idea of incorporating structure into policy learn-
ing, (Felten et al., 2024; Mossalam et al., 2016) extended structured learning for multi-objective
RL, employing decomposition and sequential single-objective optimization to enhance efficiency.
However, scalability and adaptability remained challenges. DG-MORL (Lu et al., 2024) leveraged
demonstrations and a self-evolving mechanism to improve scalability. As for improving adaptabil-
ity, (Mossalam et al., 2016) extended Optimistic Linear Support (OLS) to deep RL, constructing a
convex coverage set through a sequence of single-objective, providing a structured way to repre-
sent diverse trade-offs, but lacked effective transferability. Successor features (SFs) (Alegre et al.,
2022) addressed this by enabling adaptation to new tasks without additional environment interac-
tions, improving generalization across objectives. However, SF require handcrafted reward features
ϕ(s, a, s′), which could miss important aspects of the environment and limit adaptability. In contrast,
FB learns the F and B representations without relying on handcrafted features.

Due to the page limit, we defer the related work on RFRL to Appendix D.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We propose MORL-FB, which rethinks MORL through the lens of RFRL. By using RFRL as
auxiliary tasks and enhancing its sample efficiency via preference-guided exploration, MORL-FB
achieves strong performance in benchmark tasks, offering superior efficiency, better generalization,
and zero-shot cross-objective transfer. A key limitation, inherited from FB-based RFRL, is the need
for more advanced exploration, especially in complex or sparse-reward environments, where ded-
icated strategies are crucial. Future work includes exploring RFRL methods beyond FB, such as
learning successor measures (Farebrother et al., 2023) or successor features (Chua et al., 2024), to
further reveal RFRL’s advantages in MORL.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work develops and evaluates reinforcement learning algorithms purely in simulated environ-
ments, without involving human subjects or sensitive data. This submission follows the code of
ethics.

REPRODUCIBILITY STATEMENT

We release our code in the supplementary material and describe the commands needed to execute
the code in a Readme file attached in the supplementary material. Additionally, we attach the list of
package dependencies which can be used to build the environment.

BIBLIOGRAPHY

Abbas Abdolmaleki, Sandy H. Huang, Leonard Hasenclever, Michael Neunert, H. Francis Song,
Martina Zambelli, Murilo F. Martins, Nicolas Heess, Raia Hadsell, and Martin Riedmiller. A dis-
tributional view on multi-objective policy optimization. In International Conference on Machine
Learning, 2020.

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic
weights in multi-objective deep reinforcement learning. In International Conference on Machine
Learning, 2019.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural Infor-
mation Processing Systems, 2021.

Lucas Nunes Alegre, Ana Bazzan, and Bruno C Da Silva. Optimistic linear support and successor
features as a basis for optimal policy transfer. In International Conference on Machine Learning,
2022.

Lucas Nunes Alegre, Ana LC Bazzan, Diederik M Roijers, Ann Nowé, and Bruno C da Silva.
Sample-efficient multi-objective learning via generalized policy improvement prioritization. In
International Conference on Autonomous Agents and Multiagent Systems, 2023.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in Neural
Information Processing Systems, 2017.

Toygun Basaklar, Suat Gumussoy, and Umit Ogras. PD-MORL: Preference-driven multi-Objective
reinforcement learning algorithm. In International Conference on Learning Representations,
2023.

Diana Borsa, Andre Barreto, John Quan, Daniel J Mankowitz, Hado van Hasselt, Remi Munos,
David Silver, and Tom Schaul. Universal successor features approximators. In International
Conference on Learning Representations, 2019.

Raymond Chua, Arna Ghosh, Christos Kaplanis, Blake A. Richards, and Doina Precup. Learning
successor features the simple way. In Advances in Neural Information Processing Systems, 2024.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural computation, 1993.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in reinforcement learning
and how to tune them. In International Conference on Machine Learning, 2023.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
Pablo Samuel Castro, and Marc G. Bellemare. Proto-value networks: Scaling representation
learning with auxiliary tasks. In International Conference on Learning Representations, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Florian Felten, Lucas Nunes Alegre, Ann Nowe, Ana Bazzan, El Ghazali Talbi, Grégoire Danoy,
and Bruno C da Silva. A toolkit for reliable benchmarking and research in multi-objective rein-
forcement learning. In Advances in Neural Information Processing Systems, 2023.

Florian Felten, El-Ghazali Talbi, and Grégoire Danoy. Multi-objective reinforcement learning based
on decomposition: A taxonomy and framework. Journal of Artificial Intelligence Research, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, 2018.

Conor F. Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik Heintz,
Enda Howley, Athirai A. Irissappane, Patrick Mannion, Ann Nowé, Gabriel Ramos, Marcello
Restelli, Peter Vamplew, and Diederik M. Roijers. A practical guide to multi-objective reinforce-
ment learning and planning. In International Conference on Autonomous Agents and Multiagent
Systems, 2022.

Jifeng Hu, Yanchao Sun, Hechang Chen, Sili Huang, haiyin piao, Yi Chang, and Lichao Sun. Dis-
tributional reward estimation for effective multi-agent deep reinforcement learning. In Advances
in Neural Information Processing Systems, 2022.

Wei Hung, Bo-Kai Huang, Ping-Chun Hsieh, and Xi Liu. Q-Pensieve: Boosting sample efficiency
of multi-objective RL through memory sharing of Q-snapshots. In International Conference on
Learning Representations, 2023.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning, 2020.

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent,
and Michal Valko. Adaptive reward-free exploration. In Algorithmic Learning Theory, 2021.

Panagiotis Kyriakis and Jyotirmoy Deshmukh. Pareto policy adaptation. In International Confer-
ence on Learning Representations, 2022.

Xi Lin, Xiaoyuan Zhang, Zhiyuan Yang, Fei Liu, Zhenkun Wang, and Qingfu Zhang. Smooth
tchebycheff scalarization for multi-objective optimization. In International Conference on Ma-
chine Learning, 2024.

Daniel J Lizotte, Michael Bowling, and Susan A Murphy. Linear fitted-Q iteration with multiple
reward functions. Journal of Machine Learning Research, 2012.

Haoye Lu, Daniel Herman, and Yaoliang Yu. Multi-objective reinforcement learning: Convexity,
stationarity and pareto optimality. In International Conference on Learning Representations,
2023.

Junlin Lu, Patrick Mannion, and Karl Mason. Demonstration guided multi-objective reinforcement
learning. arXiv preprint arXiv:2404.03997, 2024.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent,
and Michal Valko. Fast active learning for pure exploration in reinforcement learning. In Inter-
national Conference on Machine Learning, 2021.

Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning. arXiv preprint arXiv:1610.02707, 2016.

Shuang Qiu, Jieping Ye, Zhaoran Wang, and Zhuoran Yang. On reward-free RL with kernel and neu-
ral function approximations: Single-agent MDP and Markov game. In International Conference
on Machine Learning, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shuang Qiu, Dake Zhang, Rui Yang, Boxiang Lyu, and Tong Zhang. Traversing Pareto optimal poli-
cies: Provably efficient multi-objective reinforcement learning. arXiv preprint arXiv:2407.17466,
2024.

Banafsheh Rafiee, Jun Jin, Jun Luo, and Adam White. What makes useful auxiliary tasks in rein-
forcement learning: investigating the effect of the target policy. arXiv preprint arXiv:2204.00565,
2022.

Mathieu Reymond, Eugenio Bargiacchi, and Ann Nowé. Pareto conditioned networks. In Interna-
tional Conference on Autonomous Agents and Multiagent Systems, 2022.

Joshua Romoff, Peter Henderson, Alexandre Piché, Vincent Francois-Lavet, and Joelle Pineau. Re-
ward estimation for variance reduction in deep reinforcement learning. In Conference on Robot
Learning, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. A Bradford
Book, 2018.

Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the cvar via sampling. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. In Advances
in Neural Information Processing Systems, 2021.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? In
International Conference on Learning Representations, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine
learning research, 2008.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of Pareto
dominating policies. Journal of Machine Learning Research, 2014.

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective reinforce-
ment learning: Novel design techniques. In Adaptive Dynamic Programming and Reinforcement
Learning, 2013.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L Lewis, Junhyuk
Oh, Hado P van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as
auxiliary tasks. Advances in Neural Information Processing Systems, 32, 2019.

Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, and Kevin Jamieson. Reward-
free RL is no harder than reward-aware RL in linear markov decision processes. In International
Conference on Machine Learning, 2022.

Ruosong Wang, Simon S Du, Lin Yang, and Russ R Salakhutdinov. On reward-free reinforcement
learning with linear function approximation. In Advances in Neural Information Processing Sys-
tems, 2020.

Jingfeng Wu, Vladimir Braverman, and Lin Yang. Gap-dependent unsupervised exploration for
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, 2022.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning for continuous robot control. In In-
ternational Conference on Machine Learning, 2020.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. In Advances in Neural Information Processing
Systems, 2019.

Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill. Provably effi-
cient reward-agnostic navigation with linear value iteration. In Advances in Neural Information
Processing Systems, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Weitong Zhang, Dongruo Zhou, and Quanquan Gu. Reward-free model-based reinforcement learn-
ing with linear function approximation. In Advances in Neural Information Processing Systems,
2021.

Tianchen Zhou, FNU Hairi, Haibo Yang, Jia Liu, Tian Tong, Fan Yang, Michinari Momma, and Yan
Gao. Finite-time convergence and sample complexity of actor-critic multi-objective reinforcement
learning. In International Conference on Machine Learning, 2024.

Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: A comparative case study
and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDICES

A Detailed Pseudo Code of MORL-FB 14

B Detailed Configurations of Experiments 16

B.1 Evaluation Environments . 16

B.2 Experimental Setup . 17

B.3 Compute Resources . 20

C Additional Experimental Results 21

C.1 Visualization of z Distribution in Different Environments 21

C.2 Ablation Study . 22

C.3 Performance Comparison of MORL-FB and Baselines on Discrete Control Tasks . 25

C.4 Performance Comparison of MORL-FB Under State-Action-Based Rewards and
State-Based Rewards . 26

C.5 Performance Comparison of MORL-FB Under Stochastic Rewards 26

C.6 Performance Comparison of MORL-FB With Nonlinear Scalarization 27

C.7 Sample Efficiency of MORL-FB . 27

C.8 Cross-Objective Transfer Capability of MORL-FB 27

C.9 RFRL as a source of auxiliary tasks . 27

C.10 Comparison of Pareto Fronts . 28

C.11 Robustness under Worst-Case Preferences . 30

C.12 Computational Cost Analysis . 30

C.13 Detailed Experimental Results of Section 4 . 30

D Related Work on Reward-Free Reinforcement Learning 34

E The Use of Large Language Models (LLMs) 34

A DETAILED PSEUDO CODE OF MORL-FB

Algorithm 2 details the proposed MORL-FB method. Initially, during the warm-up phase (lines 6-8),
the latent vector z is sampled from a standard multivariate normal distribution. After the warm-up,
z is determined using the preference-guided sampling scheme (line 10). This z is then used to
generate trajectories within the environment, which are stored in the replay bufferM (lines 12-16).
Model updates are performed by sampling transitions fromM (lines 17-22). A delayed actor update
mechanism is employed for the actor model (lines 23-24), and target networks are updated via a soft
update scheme (lines 25-27). The Preference-Guided Exploration function (lines 30-35) normalizes
the sampled latent vector z (line 33) as z ←

√
dz

z
∥z∥2

. This normalization step, motivated by the
prior work (Touati et al., 2023), has been observed to improve performance.

As shown in Algorithm 2, the training of MORL-FB involves the following loss functions:

Measure Loss. The Measure loss, LM(θ, ω; zλ), is central to learning a task-agnostic representation
of environment dynamics, Fθ(st, at, zλ), encoding command-conditioned successor measures. It
enforces Bellman consistency for these measures when projected onto a learned basis Bω(s

′, a′),
as shown in Equation (7). This mechanism, drawn from (Touati et al., 2023), aims to separate the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 MORL-FB

1: Input: Network parameters θ, θ̄, ω, ω̄, η, η̄, preference sampling distribution Pλ, preference set
Λ, actor learning rates µπ , FB presentation learning rate µFB, z dimension dz , sample number
ns, update frequency nu, warm up steps nw, and target smoothing coefficient τ

2: Initialize networks Fθ,Bω, πη and target networks Fθ̄,Bω̄, πη̄

3: Initialize replay bufferM← ∅
4: for each iteration i do
5: Sample a preference vector λ ∼ Pλ

6: if i ≤ nw then ▷ Warm-up stage
7: Sample z from a multivariate normal distribution N (0, Idz)
8: Normalize z such that z ←

√
dz

z
∥z∥2

9: else
10: z ← PG-Explore(λ)
11: end if
12: for each environment step t do
13: at ∼ πη(·|st;λ)
14: st+1 ∼ P(·|st, at)
15: M←M

⋃
{(st, at, rt,λt, st+1)}

16: end for
17: for each gradient step j do
18: Sample a batch of transitions {(s, a, r,λ, s′)} from the replay bufferM
19: zj ← PG-Explore(λ)
20: θ ← θ − µFB∇θ(LQ(θ;λ) + LM(θ, ω;λ))
21: ω ← ω − µFB∇ω(Ln(ω;λ) + LM(θ, ω;λ))
22: end for
23: if i % nu == 0 then
24: η ← η − µπ∇ηLπ(η;λ)
25: θ̄ ← τθ + (1− τ)θ̄
26: ω̄ ← τω + (1− τ)ω̄
27: η̄ ← τη + (1− τ)η̄
28: end if
29: end for
30: function PG-EXPLORE(λ)
31: Sample a batch D of ns non-terminal transitions {(s, a, r, s′)} fromM
32: z ←

∑
(s,a,r,s′)∈D

Bω(s,a)r⊤λ
ns

33: Normalize z such that z ←
√
dz

z
∥z∥2

34: return z
35: end function

environment structure from specific rewards. This disentanglement is crucial for enabling zero-shot
generalization, allowing the agent to understand “what happens next” irrespective of the immediate
goal, forming a reusable foundation for various tasks.

LM(Fθ,Bω; zλ) = E(st,at,st+1)∼D
(s′,a′)∼D

[
(Fθ(st, at, zλ)

⊤Bω(s
′, a′)− γFθ̄(st+1, π(st+1, zλ), zλ)

⊤Bω̄(s
′, a′))2

]
− 2 E(st,at,st+1)∼D[Fθ(st, at, zλ)

⊤Bω(st+1, at+1)]. (7)

where ρ denotes the underlying distributions of the dataset.

Auxiliary Q Loss. To ensure the learned representation Fθ is relevant for decision-making, the
Auxiliary Q Loss, LQ(θ;zλ), connects it to task-specific values. When explicit reward signals rt
and corresponding preferences λ are available, Equation (8) minimizes a standard temporal differ-
ence error. This is vital for MORL contexts, effectively teaching Fθ to support optimizing diverse

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

rewards.
LQ(θ;zλ) = E(st,at,rt,st+1)∼D

[(
Fθ(st, at, zλ)

⊤zλ −
(
λ⊤rt + γFθ̄(st+1, πη̄(st+1), zλ)

⊤zλ
))2]

.

(8)

Orthonormality Loss. The Orthonormality Regularization Loss, Ln(ω), acts as a crucial regular-
izer for the learned basis functions Bω(s, a). Its purpose, as reflected in Equation (9), is to promote
a well-conditioned and non-degenerate basis. By encouraging properties such as orthogonality be-
tween basis vectors and unit norm, this loss helps prevent representational collapse and redundancy
within Bω . This, in turn, ensures that the successor measures are projected onto a stable and diverse
set of features, enhancing the robustness and quality of the learned representations Fθ.

Ln(ω) = E(s,a)∼D,(s′,a′)∼D

[(
Bω(s, a)

⊤Bω(s
′, a′)

)2 − ∥Bω(s, a)∥22 − ∥Bω(s
′, a′)∥22

]
. (9)

Policy Loss. The agent’s behavior is refined through the Policy Optimization Loss, Lπ(η; zλ),
which trains the policy πη within an actor-critic paradigm. The actor’s objective is to maximize the
Q-values estimated by the critic, where these Q-values are derived from the learned representation
as Q(s, a;zλ) = Fθ(s, a,zλ)

⊤zλ (Equation (10)). This loss drives the policy to select actions that
are optimal for the task specified by the current command zλ. It thus enables the agent to translate
its universal understanding of the environment into effective, task-adaptive behavior.

Lπ(η; zλ) = Es∼D [−Q(s, πη(s); zλ)] , where Q(s, a;zλ) = F(s, a, zλ)
⊤zλ. (10)

B DETAILED CONFIGURATIONS OF EXPERIMENTS

In this section, we describe the experimental setup used to evaluate the performance of our approach.
We detail the hyperparameters used in our experiments, as well as the reference points chosen for
HV evaluation across different environments.

B.1 EVALUATION ENVIRONMENTS

We evaluate the performance of our proposed method across several MuJoCo-based multi-objective
environments, each designed with distinct state and action spaces as well as varying numbers of
objectives to assess the adaptability of MORL-FB in diverse settings.

• Halfcheetah2d: The state space and action space are defined as S ⊆ R17 and A ⊆ R6,
respectively. The two objectives for this environment are maximizing moving speed along
the x-axis and minimizing energy cost.

• Walker2d: The state space and action space are defined as S ⊆ R17 and A ⊆ R6, respec-
tively. The two objectives for this environment are maximizing moving speed along the
x-axis and minimizing energy cost.

• Hopper3d: The state space and action space are defined as S ⊆ R11 and A ⊆ R3. The
three objectives include maximizing moving speed along the x-axis, maximizing jumping
height along the z-axis, and minimizing energy cost.

• Ant3d: The state space and action space are defined as S ⊆ R27 and A ⊆ R8. The three
objectives are maximizing moving speed along the x-axis, maximizing moving speed along
the y-axis, and minimizing energy cost.

• Humanoid2d: The state space and action space are defined as S ⊆ R376 and A ⊆ R17.
The two objectives are maximizing moving speed along the x-axis and minimizing energy
cost. Additionally, we set the healthy reward parameter to 1.0 to encourage exploration and
stability.

• Humanoid5d: The state space and action space are defined as S ⊆ R376 and A ⊆ R17.
This environment has five objectives: maximizing moving speed along the x-axis, max-
imizing moving speed along the y-axis, maximizing angular velocity on the left elbow,
maximizing angular velocity on the right elbow, and minimizing energy cost. Similar to
Humanoid2d, the healthy reward parameter is set to 1.0 to ensure meaningful evaluation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 EXPERIMENTAL SETUP

To begin with, we describe the hyperparameters of the benchmark MORL methods and the proposed
MORL-FB for better reproducibility.

Hyperparameters for Experiments. To ensure a fair comparison, for those benchmark methods
that already provide tuned task-specific hyperparameters on MuJoCo, we primarily refer to their
original papers for the hyperparameter configurations, including PGMORL (Xu et al., 2020) and
CAPQL (Lu et al., 2023). Table 1 and Table 3 list the detailed hyperparameters used in our ex-
periments. For PGMORL, the hyperparameters reflect its evolutionary population-based design.
The parameter n defines the number of parallel reinforcement learning tasks in each generation.
Each task includes mw warm-up iterations and mt evolutionary iterations. Pnum and Psize define
the number and size of the performance buffers. The PPO parameters used across all environments
are summarized in Table 2. For CAPQL, the hyperparameter α controls the strength of a concave
regularization term added to the reward. The general hyperparameters shared by CAPQL are listed
in Table 4.

Table 1: Hyperparameters of PGMORL.

Environments n mw mt Pnum K Psize α

HalfCheetah2d 6 80 20 100 2 7 −1
Walker2d 6 80 20 100 2 7 −1
Hopper3d 15 200 40 210 2 7 −106
Ant3d 15 200 40 210 2 7 −106
Humanoid2d 6 200 40 100 2 7 −1
Humanoid5d 35 200 40 550 2 7 −106

Table 2: PPO hyperparameters used in PGMORL.

Parameter Value
Timesteps per actor batch 2,048
Processes number 4
Learning rate 3× 10−4

Discount factor (γ) 0.995
GAE lambda 0.95
Batch size 32
PPO epochs 10
Entropy coefficient 0
Value loss coefficient 0.5

Table 3: Augmentation strength of CAPQL.

Environments α

HalfCheetah2d 0.1
Walker2d 0.05
Hopper3d 0.2
Ant3d 0.2
Humanoid2d 0.005
Humanoid5d 0.005

For algorithms without officially tuned or specified hyperparameters, we perform hyperparameter
optimization (HPO) by following (Eimer et al., 2023). Specifically, we employ Bayesian optimiza-
tion by using the Weights & Biases Sweeps. Each episode refers to a simulation run for 1M envi-
ronment steps, and the optimization is performed over 10 episodes. Tables 5 to 11 summarize the
search ranges and the final selected hyperparameters.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters of CAPQL.

Parameter Value
Optimizer Adam
Learning rate 3× 10−4

Discount factor (γ) 0.99
Number of hidden units per layer 256
Replay buffer size 106

Batch size 256
Nonlinearity ReLU
Target smoothing coefficient (τ) 0.005

• MORL-FB: For MORL-FB, which is built on the implementation of the Twin Delayed
Deep Deterministic Policy Gradient (TD3) algorithm (Fujimoto et al., 2018), we prioritized
the tuning of parameters inherent to TD3. Specifically, this included critical elements such
as learning rates for actor and critic networks, the target network update rate, and policy
delay, which are known to significantly influence the stability and performance of TD3-
based agents.

• Q-Pensieve: Our tuning efforts centered on parameters associated with its core Q-Snapshot
mechanism (Hung et al., 2023). Given that Q-Pensieve’s efficacy in improving sample
efficiency stems from the storage and utilization of these Q-function snapshots, parameters
governing the snapshot buffer, the frequency of snapshot capture, and their influence on the
policy update were key areas of focus during hyperparameter optimization.

• PD-MORL: For PD-MORL, which can be viewed as the multi-objective extensdion of
TD3 (Fujimoto et al., 2018), we prioritized the tuning of parameters inherent to TD3. This
included critical elements such as learning rates for actor and critic networks, the target net-
work update rate, and policy delay, which are known to significantly influence the stability
and performance of TD3-based agents.

• MORL/D: For MORL/D, which is built upon SAC, we tuned the standard hyperparame-
ters of SAC. In addition, we focused on four components that are central to the MORL/D
framework: population size, neighborhood size, scalarization method, and weight adap-
tation method. These elements directly affect how the algorithm decomposes the multi-
objective space and maintains policy diversity.

• PCN: For PCN, since the hyperparameter settings for continuous control tasks such as
MuJoCo environments were not specified in (Reymond et al., 2022), we tuned three critical
parameters: learning rate, batch size, and hidden dimension, which affect training stability,
sample efficiency, and the model’s ability to generalize across diverse preference vectors.

• SFOLS: For SFOLS, since we utilize its official implementation for discrete problems and
extend it with a TD3 backbone for evaluation on continuous control tasks, we tuned the
parameters inherent to TD3, including learning rates for the actor and critic networks, pol-
icy noise, and target policy smoothing noise. These components are known to significantly
influence the stability and performance of TD3-based agents.

• GPI-PD: For GPI-PD, since GPI-PD relies on a learned dynamics model for sample gen-
eration, we tuned four key parameters: dynamics rollout length, rollout frequency, model
training frequency, and real data ratio. These factors critically affect model accuracy, sta-
bility of planning updates, and the overall effectiveness of Dyna-style training.

Hyperparameters of MORL-FB. The hyperparameters for the MORL-FB experiments were cho-
sen to ensure fair evaluation and stable learning, guided by prior research and the HPO results. The
complete configuration is detailed in Table 12.

Reference Points for HV Evaluation. We compute the HV indicator using predefined reference
points (Ref. Point) for each environment. These reference points serve as baselines to measure the
coverage of the Pareto front obtained during training. Table 13 provides the specific reference points
used in different environments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameter tuning for MORL-FB.

Parameter Value Optimal Value
Learning rate [0.0001, 0.01] 0.0001

Policy update delay {1, 2, 5, 10} 10

Steps per update {1, 2, 5, 10} 1

Latent dimension (z dimension) {50, 150, 300} 300

Exploration noise std. [0.1, 1.0] 0.1

Target policy smoothing noise std. [0.1, 1.0] 0.2

Table 6: Hyperparameter tuning for Q-Pensieve.

Parameter Value Optimal Value
Learning rate [0.0001, 0.01] 0.0001

Q replay buffer size {1, 2, 4} 4

Preference set size {1, 2, 4} 4

Table 7: Hyperparameter tuning for PD-MORL.

Parameter Value Optimal Value
Learning rate [0.0001, 0.01] 0.0003

Exploration noise std. [0.1, 1.0] 0.15

Target policy smoothing noise std. [0.1, 1.0] 0.25

Policy update delay {1, 2, 5, 10} 10

Table 8: Hyperparameter tuning for PCN.

Parameter Value Optimal Value
Learning rate [0.0001, 0.01] 0.0023

Batch size {64, 128, 256} 64

Number of hidden units per layer {256, 512, 1024} 1, 024

Table 9: Hyperparameter tuning for MORL/D.

Parameter Value Optimal Value
Learning rate [0.0001, 0.01] 0.0013

Batch size {64, 128, 256} 256

Number of hidden units per layer {256, 512, 1024} 1, 024

Pop size {4, 6, 8} 6

Neighborhood size {0, 1, 2} 1

Scalarization method {none,ws} ws

Weight adaptation method {none, PSA} PSA

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameter tuning for SFOLS.

Parameter Value Optimal Value
Learning rate [0.0001, 0.01] 0.0006

Batch size {64, 128, 256} 256

Number of hidden units per layer {256, 512, 1024} 1, 024

Target smoothing coefficient (τ) [0.001, 0.02] 0.0061

Exploration noise std. [0.1, 0.3] 0.1736

Target policy smoothing noise std. [0.1, 0.5] 0.4232

Table 11: Hyperparameter tuning for GPI-PD.

Parameter Value Optimal Value
Learning rate [0.0001, 0.01] 0.0003

Batch size {64, 128, 256} 256

Number of hidden units per layer {256, 512, 1024} 1, 024

Dynamics rollout length [5, 20] 8

Dynamics rollout freqency [50, 500] 312

Dynamics train freqency [100, 500] 139

Dynamics real ratio [0.05, 0.2] 0.0845

Table 12: Hyperparameter configuration for MORL-FB experiments.

Parameter Value

Total number of environment steps 3× 106

Replay buffer size 1× 106

Latent dimension (z dimension) 300
Interface batch size 5,120
Number of hidden units per layer 1,024
Preprocessing feature dimension 512
Batch size 1,024
Target smoothing coefficient (τ) 0.01
Discount factor (γ) 0.99
Learning rate 1× 10−4

Policy update delay 10
Steps per update 1
Exploration noise std. 0.1
Target policy smoothing noise std. 0.2
Clipping parameter 0.5
Value loss coefficient 1

B.3 COMPUTE RESOURCES

All models were trained on a workstation featuring a single NVIDIA RTX 4090 GPU, an Intel Core
i7-13700K CPU, and 64 GB of system memory.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 13: Reference points used for HV calculation in different environments.

Environment Ref. Point
Deep Sea Treasure (0, -50)
Fruit Tree Navigation (0, 0, 0, 0, 0, 0)
Halfcheetah2d (0, -8000)
Walker2d (0, -8000)
Hopper3d (0, 0, -8000)
Hopper4d (0, 0, -8000, 0)
Ant3d (0, 0, -8000)
Humanoid2d (0, -8000)
Humanoid5d (0, 0, 0, 0, -8000)

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 VISUALIZATION OF z DISTRIBUTION IN DIFFERENT ENVIRONMENTS

We analyze the learned latent representations of MORL-FB by visualizing the distribution of sam-
pled z across various environments using t-SNE (Van der Maaten & Hinton, 2008). These visualiza-
tions offer insight into the method’s ability to capture the underlying structure of the multi-objective
tasks. Consistent with the observations on Humanoid2d (Figure 5), the visualizations for Walker2d,
Hopper3d, and Ant3d (Figure 8, Figure 9, and Figure 10, respectively) demonstrate that preference-
guided sampling yields distinct distributions compared to sampling from a standard normal dis-
tribution. These results further support the hypothesis that preference-guided sampling promotes
the exploration of a more diverse set of latent representations, which may contribute to improved
generalization and adaptation on various objectives.

Figure 8: Empirical z distribution under MORL-FB with preference-guided sampling versus Origi-
nal FB with simple normal distributions on Walker2d.

To shows the multi-modality of MORL-FB, we visualized the positions of latent variables z inferred
from different preferences on the t-SNE plot in Figure 11. This demonstrates that MORL-FB ef-
fectively encodes different preferences into separate regions of the latent space, leading to more
diverse policies. To further illustrate this, we provide a demo of the policies learned by MORL-FB
and vanilla FB in this link: https://imgur.com/a/ehx1v7q, where the z’s are selected from
different positions on the t-SNE plot.

21

https://imgur.com/a/ehx1v7q

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 9: Empirical z distribution under MORL-FB with preference-guided sampling versus Origi-
nal FB with simple normal distributions on Hopper3d.

Figure 10: Empirical z distribution under MORL-FB with preference-guided sampling versus Orig-
inal FB with simple normal distributions on Ant3d.

C.2 ABLATION STUDY

C.2.1 EXPERIMENT ON PREFERENCE-GUIDED EXPLORATION

To assess the data efficiency of our proposed MORL-FB, we compared its performance against PD-
MORL (Basaklar et al., 2023). PD-MORL necessitates three to five times more training samples to
train its preference interpolator. Can MORL-FB maintain superior performance while reducing data
requirements?

Table 14 reveals that MORL-FB consistently outperforms PD-MORL across various environments.
Specifically, MORL-FB achieves higher UT values in five out of six tasks, demonstrating its effec-
tiveness in most scenarios. In more complex settings, such as MO-Humanoid, how does MORL-FB
compare in HV results? The results indicate that MORL-FB remains competitive, underscoring its
significant data efficiency gains. By eliminating the need for additional data to pretrain an interpo-
lator, MORL-FB achieves competitive or superior performance while requiring significantly fewer
training samples in multi-objective environments.

C.2.2 EXPERIMENTS ON z DIMENSION

We investigate the impact of the z dimension in the Hopper3d environment. As shown in Table 15,
the performance metric increases with the z dimension. However, when the z dimension reaches
300, performance declines, likely due to insufficient training steps for the larger network.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 11: Empirical z distribution under MORL-FB with preference-guided sampling (blue) versus
Original FB with simple normal distributions (red) on Humanoid2d. This figure is slightly different
from Figure 5 due to the additional preference points and the inherent randomness of t-SNE.

Table 14: Performance comparison between MORL-FB and PD-MORL (with interpolator) across
key metrics (UT, HV, and ED) on various multi-objective tasks.

Environments Metrics PD-MORL MORL-FB
(w/i interpolator)

Halfcheetah2d
UT(× 103) 5.62 ± 0.05 7.69 ± 0.08
HV(× 108) 1.08 ± 0.00 1.24 ± 0.00

ED 0.07 ± 0.01 -

Walker2d
UT(× 103) 2.18 ± 0.02 2.23 ± 0.03
HV(× 107) 5.45 ± 0.01 4.32 ± 0.02

ED 0.56 ± 0.00 -

Hopper3d
UT(× 103) 2.26 ± 0.01 2.36 ± 0.01

HV(× 1011) 1.08 ± 0.00 1.15 ± 0.00
ED 0.20 ± 0.01 -

Ant3d
UT(× 103) 3.59 ± 0.06 3.43 ± 0.22

HV(× 1011) 4.20 ± 0.04 4.18 ± 0.04
ED 0.60 ± 0.00 -

Humanoid2d
UT(× 102) 2.93 ± 0.07 8.13 ± 0.01
HV(× 107) 1.06 ± 0.01 1.75 ± 0.02

ED 0.33 ± 0.01 -

Humanoid5d
UT(×103) 0.93 ± 0.04 1.11 ± 0.00

HV(×1015) 6.64 ± 0.09 6.99 ± 0.06
ED 0.43 ± 0.01 -

C.2.3 EXPERIMENTS ON AUXILIARY LOSS

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 15: Empirical study on z dimension on Hopper3d.

z dimension Metrics MORL-FB

50 UT(× 103) 2.21 ± 0.01
HV(× 1011) 1.03 ± 0.05

100 UT(× 103) 2.25 ± 0.00
HV(× 1011) 1.13 ± 0.01

150 UT(× 103) 2.36 ± 0.01
HV(× 1011) 1.15 ± 0.00

300 UT(× 103) 2.01 ± 0.01
HV(× 1011) 0.97 ± 0.02

While Touati et al. (2023) also includes a similar auxiliary loss, there is one salient difference
between theirs and our Q loss Equation (6): As the original FB is designed for RFRL, it does
not have the reward signal available at training and hence needs to construct a pseudo reward as
B⊤E[BB⊤]−1z (cf. Equation (9) in (Touati et al., 2023)). On the other hand, as MORL-FB ad-
dresses MORL and can observe vector reward signals at training, we propose to use the actual
scalarized reward λ⊤r in the Q loss. While this algorithmic difference appears seemingly subtle,
this design makes a huge difference in the performance. Below we show an ablation study that
compares MORL-FB with our Q loss (denoted as “Original”) and MORL-FB with the auxiliary
loss using pseudo reward in FB (denoted as “Pseudo Q Loss”). The results are summarized in Ta-
ble 16 and Fig. 12. This shows that the auxiliary loss of FB cannot be directly applied and needs
to be adapted properly in the context of MORL. Note that we use the term “auxiliary” since the
original FB is directly built on the measure loss and hence the Q loss is auxiliary for learning FB
representation, rather than being unimportant for MORL.

Table 16: Performance of MORL-FB with and without measure loss.

Environments Metrics MORL-FB MORL-FB MORL-FB
(w/o PG-Explore) (pseudo q loss) (Ours)

Ant3d UT(× 103) 1.45 ± 0.02 1.27 ± 0.16 3.93 ± 0.04
HV(× 1011) 1.25 ± 0.02 1.91 ± 0.02 3.85 ± 0.01

C.2.4 EXPERIMENTS ON MEASURE LOSS

Q-loss is surely important in our method as it guides our representation to learn the reward function
used in the environment. On the other hand, both the preference-guided exploration and the measure
loss are also essential to the success of MORL-FB based on Figure 12 and an additional ablation
study on the measure loss shown below.

Table 17: Performance of MORL-FB with and without measure loss.

Environments Metrics MORL-FB MORL-FB MORL-FB
(w/o measure loss) (w/o q loss) (Ours)

Ant3d UT(× 103) 1.37 ± 0.28 -1.53 ± 0.00 3.93 ± 0.04
HV(× 1011) 2.74 ± 0.02 0.00 ± 0.00 3.85 ± 0.01

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 12: Evaluation of MORL-FB and its ablated versions across different environments. The
results highlight the importance of preference-guided sampling and the auxiliary Q-loss for MORL
performance.

C.3 PERFORMANCE COMPARISON OF MORL-FB AND BASELINES ON DISCRETE CONTROL
TASKS

Figure 13 shows the performance of all the methods in UT, HV, and ED for discrete control tasks.
Regarding ED, for each baseline algorithm ALG, we report ED(ALG,MORL-FB) to show the pair-
wise comparison. We can observate that MORL-FB consistently achieves competitive or superior
performance across all three metrics on the discrete control tasks Deep Sea Treasure and Fruit Tree
Navigation.

Figure 13: Competitive Results of MORL-FB on Discrete Control Tasks. We evaluate MORL-
FB and several benchmark MORL algorithms on classic discrete control tasks in MO-Gymnasium.
Performance is measured using UT, HV and ED. MORL-FB demonstrates competitive results
against specialized discrete MORL algorithms.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.4 PERFORMANCE COMPARISON OF MORL-FB UNDER STATE-ACTION-BASED REWARDS
AND STATE-BASED REWARDS

In this paper, we primarily focus on state-based rewards. However, as the original FB supports both
state-based (Touati et al., 2023) and state-action-based rewards (Touati & Ollivier, 2021), MORL-FB
can also be extended to state-action-based rewards by replacing B(s) with B(s, a). Since some MO
MuJoCo rewards depend on both states and actions, we compare MORL-FB and the extended one.
As shown in the Figure 14, the state-action-based variant yields slight performance improvements
on several tasks.

Figure 14: Evaluation of MORL-FB with different reward function representations. This figure
presents the performance of MORL-FB when reward functions depend on states only (i.e., R(s))
versus state-action pairs (i.e., R(s, a)).

C.5 PERFORMANCE COMPARISON OF MORL-FB UNDER STOCHASTIC REWARDS

As vanilla FB naturally handles stochastic rewards, MORL-FB inherits this capability. To further
demonstrate this, we evaluated MORL-FB under stochastic rewards by adding zero-mean Gaussian
noise N (0, σ2), similar to prior work (Romoff et al., 2018; Hu et al., 2022). The result is shown in
Figure 15.

Figure 15: Evaluation of MORL-FB under stochastic reward. This figure assesses the perfor-
mance of MORL-FB in environments featuring stochastic reward functions.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C.6 PERFORMANCE COMPARISON OF MORL-FB WITH NONLINEAR SCALARIZATION

While we focus on linear scalarization in this paper, MORL-FB can be readily extended to nonlinear
scalarization schemes by replacing r⊤λ with fλ(r) when sampling z for preference-guided explo-
ration and when computing Q loss, where fλ(r) is the general scalarization function. This is feasible
since the original FB is designed to handle any scalar reward function, and MORL-FB inherits this
property from FB and can also handle nonlinear scalarization. To demonstrate this generalizability,
we further evaluate MORL-FB on Halfcheetah2d by training under smooth Tchebycheff scalariza-
tion as fλ(r) = µ log

(∑m
i=1 exp

(
λi(r−rref)

µ

))
, where λi = is the i-th entry of preference vector,

µ is the smoothing parameter and set to 0.1, and rref is set to [2.0, 0.0] across training (Lin et al.,
2024; Qiu et al., 2024). We see that MORL-FB still achieves comparably strong performance in HV
and UT under nonlinear scalarization.

Table 18: Performance of MORL-FB with Smooth Tchebycheff scalarization.

Environments Metrics MORL-FB MORL-FB
(linear scalarization) (Smooth Tchebycheff scalarization)

HalfCheetah2d UT(× 103) 7.69 ± 0.08 6.33 ± 0.02
HV(× 108) 1.24 ± 0.00 1.00 ± 0.01

C.7 SAMPLE EFFICIENCY OF MORL-FB

We demonstrate the sample efficiency of MORL-FB by evaluating its performance at an intermedi-
ate stage of 1.5M training steps. Notably, as shown in Figure 16, MORL-FB achieves superior HV
and UT scores across most tasks compared to baseline methods trained for a full 3M steps. This
indicates that MORL-FB can attain high performance with significantly fewer environment interac-
tions. Further evidence, presented in Figure 17 and Figure 18, corroborates that MORL-FB reaches
proficient performance levels with reduced training data.

C.8 CROSS-OBJECTIVE TRANSFER CAPABILITY OF MORL-FB

To investigate how well MORL-FB handles transfer across different numbers of objectives, we con-
ducted an empirical study on Hopper across different objective dimensions. We analyze the follow-
ing cases:

• Hopper2d: Moving forward speed on x-axis, Control cost of the action

• Hopper3d: Moving forward speed on x-axis, Jumping height on z-axis, Control cost of the
action

• Hopper4d: Moving forward speed on x-axis, Jumping height on z-axis, Jumping up speed
on z-axis, Control cost of the action

Table 19 summarizes the quantitative results presented visually in Figure 7. MORL-FB consistently
outperforms FB across all configurations in terms of utility and hypervolume.

C.9 RFRL AS A SOURCE OF AUXILIARY TASKS

During training, the z vectors computed for each preference λ are diverse, covering both CCS and
non-CCS policies. Learning from non-CCS policies serves as auxiliary tasks. From Figure 19, we
find that the return vectors achieved by those z-induced polices at the 1.5 million training step span
both non-CCS and CCS regions.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 16: Performance of MORL-FB on continuous control tasks. We evaluate MORL-FB
(1.5M training steps) against several benchmark MORL algorithms (3M training steps) on diverse
continuous control tasks from MO-Gymnasium. Utilizing key metrics, these results demonstrate
that MORL-FB outperforms baselines, achieving superior HV and UT across most tasks despite
significantly fewer training steps.

Figure 17: Learning curves for MORL-FB
and benchmark algorithms on Ant3d. This
figure presents the learning curves in terms of
Hypervolume (HV) for MORL-FB and sev-
eral benchmark MORL algorithms evaluated on
Ant3d.

Figure 18: Learning curves for MORL-FB
and benchmark algorithms on Ant3d. This
figure presents the learning curves in terms of
Utility (UT) for MORL-FB and several bench-
mark MORL algorithms evaluated on Ant3d.

C.10 COMPARISON OF PARETO FRONTS

To evaluate the sample efficiency of MORL-FB, we conduct experiments on 2-objective MuJoCo
tasks with a whole range of 21 preference vectors ([0.0, 1.0], [0.05, 0.95], [0.1, 0.9], ···, [1.0, 0.0]).
As a comparison baseline, we consider SORL which trains a separate policy for each individual
preference. Each single-object SAC (SOSAC) model requires 3M steps, resulting in a total training
budget of 63M steps for all 21 preferences. By contrast, MORL-FB only uses 3M steps in total to

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 19: Zero-shot cross-objective transfer from Hopper2d to Hopper3d and Hopper4d using
vanilla FB and MORL-FB: This figure presents the results demonstrating effective transfer by
MORL-FB, supporting the efficacy of its proposed enhancements.

Environments Metrics FB MORL-FB

2D to 3D
UT(× 103) 0.02 ± 0.00 1.77 ± 0.00

HV(× 1010) 0.40 ± 0.00 7.81 ± 0.06
ED 0.07 ± 0.03 -

2D to 4D
UT(× 103) 0.06 ± 0.00 1.59 ± 0.00

HV(× 1013) 0.05 ± 0.00 7.78 ± 0.10
ED 0.05 ± 0.01 -

Figure 19: Return vectors (Moving Speed vs. Energy Cost) achieved at the initial, intermediate,
and final training stages in Walker2d with preference [0.7, 0.3]: The scatter plot, particularly at
1.5M steps, highlights the diverse policies beyond the CCS policy, supporting that RFRL serves as
auxiliary tasks beneficial for MORL.

learn policies that generalize across the entire preference set. Figure 20 shows the return vectors
attained by MORL-FB and the collection of 21 SOSAC models on the Walker2d task. MORL-FB
achieves comparable or even superior return vectors with only 1/21 of the samples, demonstrating
its strong sample efficiency and generalization ability across diverse preference vectors.

(a) Humanoid2d (b) Walker2d

Figure 20: Return vectors (Moving Speed vs. Energy Cost) achieved under 21 different preference
vectors [0, 1], [0.05, 0.95], . . . , [0.95, 0.05], [1, 0] across different methods. Each scatter cloud corre-
sponds to the learned policies under a specific preference, illustrating how MORL methods adapt to
diverse trade-offs between objectives.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C.11 ROBUSTNESS UNDER WORST-CASE PREFERENCES

Beyond average performance metrics, it is crucial to assess the robustness of multi-objective rein-
forcement learning (MORL) algorithms under unfavorable preference settings. In practice, poli-
cies deployed in dynamic environments may encounter user preferences that significantly diverge
from those seen during training. To capture this aspect, we evaluate each method under worst-case
preferences using the Conditional Value-at-Risk (CVaR). Following the risk-sensitive reinforcement
learning formulation of Tamar et al. (2015), we compute CVaR@0.1 as the mean of the lowest 10%
scalarized returns. Specifically, for each algorithm we uniformly sample 500 preference vectors,
apply linear scalarization to obtain utility values, sort the results, and average the worst 10%. This
quantifies the expected return conditioned on being in the lowest α-quantile:

ϕ(θ) = Eθ[R | R ≤ να(θ)], (11)

Table 20 reports CVaR@0.1 across HalfCheetah2d and Walker2d. MORL-FB achieves the highest
CVaR in both environments, significantly outperforming prior baselines. These results indicate
that MORL-FB not only excels on mean metrics but also demonstrates superior robustness against
adverse preferences, avoiding catastrophic failures more effectively than existing methods.

Table 20: CVaR@0.1 performance across HalfCheetah2d and Walker2d. Higher is better.

Algorithm HalfCheetah2d Walker2d
PD-MORL 2425.91 284.89
Q-Pensieve 6275.89 1516.20
CAPQL 4874.64 1297.40
PGMORL 2630.02 1113.49
MORL/D 407.66 40.47
PCN -0.11 98.28
SFOLS 1390.73 402.19
GPI-LS 3884.67 1546.96
GPI-PD 3999.36 276.74
MORL-FB (Ours) 7123.87 2304.02

C.12 COMPUTATIONAL COST ANALYSIS

To provide a fair and comprehensive comparison of computational efficiency, we evaluated all meth-
ods under the same hardware environment. Each algorithm was trained for 100K environment steps
on a workstation equipped with a single NVIDIA RTX 4090 GPU, an Intel Core i7-13700K CPU,
and 64 GB of system memory. Table 21 reports the total wall-clock time required by each method,
ensuring a fair comparison of time and resource usage across methods. Compared to strong base-
lines such as PD-MORL, Q-Pensieve, and GPI-LS, FB-MORL maintains a reasonable training time.
While some methods require higher computational costs, our approach strikes a good balance be-
tween performance and efficiency.

C.13 DETAILED EXPERIMENTAL RESULTS OF SECTION 4

In this part, we will provide the table we use on plotting the bar chart on Section 4.

The results in Tables 22 to 25 correspond to the visualizations shown in Figure 2, Figure 4, Figure 12
and Figure 13, respectively.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 21: Wall-clock time comparison (100K steps).

Algorithm Wall-Clock Time (seconds)
PD-MORL 1166
CAPQL 3369
MORL/D 793
SFOLS 550
Q-Pensieve 12960
PGMORL 4237
PCN 4445
GPI-LS 3611
GPI-PD 5237
MORL-FB (Ours) 1874

Table 22: Performance of MORL-FB and benchmark algorithms in discrete MORL environments.

Environments Metrics PD-MORL Envelope PCN MORL/D SFOLS MORL-FB Optimal
(w/i interpolator) (Ours)

Deep Sea Treasure
UT 0.52 ± 0.00 6.53 ± 0.00 6.12 ± 0.95 3.88 ± 0.26 5.65 ± 0.95 6.43 ± 0.10 6.89

HV(×102) 9.33 ± 0.00 9.91 ± 0.00 8.71 ± 1.49 5.63 ± 0.41 8.46 ± 0.01 9.92 ± 0.00 9.92
ED 0.69 ± 0.00 0.77 ± 0.00 0.81 ± 0.01 0.15 ± 0.10 0.25 ± 0.00 - -

Fruit Tree Navigation
UT 5.03 ± 0.00 5.07 ± 0.00 5.00 ± 0.02 4.19 ± 0.03 4.77 ± 0.01 5.01 ± 0.01 5.08

HV(×104) 1.25 ± 0.00 1.16 ± 0.00 1.01 ± 0.06 0.18 ± 0.05 0.87 ± 0.01 1.16 ± 0.01 1.25
ED 0.76 ± 0.01 0.95 ± 0.00 0.72 ± 0.03 0.01 ± 0.01 0.08 ± 0.01 - -

Table 23: Performance of MORL-FB, PD-MORL, and Q-Pensieve under constrained preference
training.

Environments Metrics PD-MORL Q-Pensieve MORL-FB

Hopper3d
UT(× 103) 1.05 ± 0.02 1.72 ± 0.01 2.26 ± 0.01

HV(× 1011) 0.61 ± 0.01 0.88 ± 0.01 1.16 ± 0.01
ED 0.01 ± 0.00 0.11 ± 0.00 -

Ant3d
UT(× 103) 1.69 ± 0.04 0.49 ± 0.02 3.11 ± 0.24

HV(× 1011) 2.18 ± 0.03 0.51 ± 0.00 3.17 ± 0.05
ED 0.22 ± 0.02 0.26 ± 0.04 -

Humanoid2d
UT(× 102) -0.04 ± 0.00 4.51 ± 0.38 8.19 ± 0.03
HV(× 107) 0.06 ± 0.00 1.51 ± 0.04 1.83 ± 0.01

ED 0.00 ± 0.00 0.40 ± 0.05 -

Table 24: Performance comparison of MORL-FB and its ablated versions across environments.
This table evaluates MORL-FB against variants lacking preference-guided exploration or the Q-loss
component, showing their performance across different environments.

Environments Metrics MORL-FB MORL-FB MORL-FB
(w/o preference-guided exploration) (w/o q loss)

Hopper3d UT(× 103) 2.03 ± 0.42 0.33 ± 0.07 2.36 ± 0.00
HV(× 1011) 0.91 ± 0.02 0.44 ± 0.02 1.15 ± 0.01

Ant3d UT(× 103) 1.23 ± 0.03 -1.01 ± 0.01 3.43 ± 0.22
HV(× 1011) 1.47 ± 0.03 0.06 ± 0.00 4.18 ± 0.04

Humanoid2d UT(× 102) 2.38 ± 0.30 -1.43 ± 0.14 8.13 ± 0.01
HV(× 107) 1.78 ± 0.00 0.96 ± 0.00 1.75 ± 0.02

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706

Under review as a conference paper at ICLR 2026

Ta
bl

e
25

:C
om

pa
ra

tiv
e

pe
rf

or
m

an
ce

of
M

O
R

L
-F

B
an

d
va

ri
ou

s
be

nc
hm

ar
k

al
go

ri
th

m
s

ac
ro

ss
co

nt
in

uo
us

co
nt

ro
lt

as
ks

in
M

uJ
oC

o.

E
nv

ir
on

m
en

ts
M

et
ri

cs
PD

-M
O

R
L

Q
-P

en
si

ev
e

C
A

PQ
L

PG
M

O
R

L
M

O
R

L
/D

PC
N

SF
O

L
S

G
PI

-L
S

G
PI

-P
D

FB
M

O
R

L
-F

B
(w

/o
in

te
rp

ol
at

or
)

(O
ur

s)

H
al

fc
he

et
ah

2d
U

T
(×

1
03

)
3.

17
±

0.
04

6.
85
±

0.
01

5.
39
±

0.
01

2.
72
±

0.
03

0.
41
±

0.
01

0.
00
±

0.
00

1.
39
±

0.
03

4.
15
±

0.
84

4.
06
±

0.
03

1.
26
±

0.
00

7.
69
±

0.
08

H
V

(×
10

8
)

0.
95
±

0.
00

1.
13
±

0.
00

0.
89
±

0.
00

0.
73
±

0.
01

0.
08
±

0.
00

0.
00
±

0.
00

0.
59
±

0.
03

0.
67
±

0.
12

0.
68
±

0.
00

0.
26
±

0.
00

1.
24
±

0.
00

E
D

0.
06
±

0.
01

0.
08
±

0.
01

0.
06
±

0.
01

0.
03
±

0.
01

0.
05
±

0.
01

0.
05
±

0.
01

0.
01
±

0.
01

0.
05
±

0.
02

0.
06
±

0.
01

0.
04
±

0.
02

-

W
al

ke
r2

d
U

T
(×

1
03

)
1.

70
±

0.
01

1.
66
±

0.
08

1.
49
±

0.
01

1.
15
±

0.
02

0.
05
±

0.
00

0.
10
±

0.
00

0.
41
±

0.
01

1.
92
±

0.
18

0.
54
±

0.
00

0.
29
±

0.
01

1.
87
±

0.
05

H
V

(×
10

7
)

4.
02
±

0.
01

4.
54
±

0.
02

0.
03
±

0.
01

3.
52
±

0.
09

0.
35
±

0.
00

0.
17
±

0.
00

1.
22
±

0.
00

3.
35
±

0.
33

1.
13
±

0.
00

1.
97
±

0.
12

4.
56
±

0.
00

E
D

0.
27
±

0.
03

0.
36
±

0.
01

0.
00
±

0.
00

0.
18
±

0.
01

0.
03
±

0.
01

0.
03
±

0.
01

0.
15
±

0.
02

0.
32
±

0.
01

0.
15
±

0.
02

0.
00
±

0.
00

-

H
op

pe
r3

d
U

T
(×

1
03

)
1.

29
±

0.
02

1.
82
±

0.
02

1.
25
±

0.
01

0.
78
±

0.
00

0.
11
±

0.
00

0.
01
±

0.
01

0.
03
±

0.
01

0.
57
±

0.
23

1.
32
±

0.
01

0.
01
±

0.
00

2.
36
±

0.
01

H
V

(×
1
01

1
)

0.
92
±

0.
00

1.
25
±

0.
01

0.
57
±

0.
01

0.
01
±

0.
00

0.
01
±

0.
00

0.
00
±

0.
00

0.
03
±

0.
00

0.
29
±

0.
00

0.
51
±

0.
00

0.
00
±

0.
00

1.
15
±

0.
00

E
D

0.
05
±

0.
00

0.
35
±

0.
01

0.
00
±

0.
00

0.
03
±

0.
01

0.
00
±

0.
00

0.
00
±

0.
00

0.
00
±

0.
00

0.
02
±

0.
10

0.
10
±

0.
05

0.
00
±

0.
00

-

A
nt

3d
U

T
(×

1
03

)
1.

29
±

0.
11

1.
81
±

0.
08

1.
01
±

0.
00

0.
80
±

0.
00

0.
04
±

0.
00

0.
05
±

0.
01

0.
28
±

0.
01

1.
45
±

0.
10

0.
66
±

0.
00

0.
01
±

0.
01

3.
43
±

0.
22

H
V

(×
1
01

1
)

2.
42
±

0.
05

2.
61
±

0.
02

0.
45
±

0.
00

0.
21
±

0.
03

0.
01
±

0.
00

0.
07
±

0.
01

0.
12
±

0.
00

0.
73
±

0.
15

0.
35
±

0.
01

0.
08
±

0.
00

4.
18
±

0.
04

E
D

0.
11
±

0.
05

0.
14
±

0.
04

0.
08
±

0.
05

0.
08
±

0.
05

0.
05
±

0.
03

0.
06
±

0.
03

0.
06
±

0.
04

0.
17
±

0.
02

0.
08
±

0.
05

0.
03
±

0.
02

-

H
um

an
oi

d2
d

U
T

(×
1
02

)
-0

.0
5
±

0.
00

4.
51
±

0.
03

-0
.0

4
±

0.
00

1.
55
±

0.
04

2.
71
±

0.
02

-3
.7

9
±

0.
72

0.
45
±

0.
03

1.
43
±

0.
12

1.
35
±

0.
00

2.
44
±

0.
00

8.
13
±

0.
01

H
V

(×
10

7
)

0.
06
±

0.
00

1.
51
±

0.
04

0.
01
±

0.
01

1.
01
±

0.
02

0.
62
±

0.
00

0.
25
±

0.
01

0.
75
±

0.
05

0.
77
±

0.
21

0.
42
±

0.
03

1.
19
±

0.
05

1.
75
±

0.
02

E
D

0.
07
±

0.
03

0.
40
±

0.
04

0.
08
±

0.
00

0.
07
±

0.
01

0.
18
±

0.
01

0.
00
±

0.
00

0.
04
±

0.
00

0.
15
±

0.
01

0.
14
±

0.
00

0.
06
±

0.
00

-

H
um

an
oi

d5
d

U
T

(×
1
03

)
0.

38
±

0.
01

0.
12
±

0.
00

0.
08
±

0.
00

0.
54
±

0.
00

0.
58
±

0.
00

-0
.1

0
±

0.
01

0.
54
±

0.
00

0.
72
±

0.
02

0.
30
±

0.
00

0.
55
±

0.
03

1.
11
±

0.
00

H
V

(×
1
01

6
)

3.
91
±

0.
04

1.
80
±

0.
02

0.
00
±

0.
00

0.
59
±

0.
00

0.
31
±

0.
00

0.
00
±

0.
00

2.
15
±

0.
08

3.
48
±

0.
03

0.
20
±

0.
01

4.
69
±

0.
20

6.
99
±

0.
06

E
D

0.
03
±

0.
00

0.
00
±

0.
00

0.
04
±

0.
00

0.
10
±

0.
00

0.
08
±

0.
00

0.
00
±

0.
00

0.
05
±

0.
00

0.
09
±

0.
00

0.
03
±

0.
00

0.
03
±

0.
00

-

32

1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

Under review as a conference paper at ICLR 2026

We also evaluated the probability of improvement (POI) between MORL-FB and the benchmark
algorithms suggested by Agarwal et al. (2021) in Figure 21. POI quantifies the likelihood that one
algorithm will outperform another. The results demonstrate that MORL-FB consistently achieves
superior performance compared to baselines.

Additionally, we assessed the performance of training with constraint preferences using the method
from Agarwal et al. (2021), presented in Figures 22 and 23.

0.6 0.7 0.8 0.9 1.0
P(X < Y)

PD-MORL
Q-Pensieve

CAPQL
PGMORL
MORL/D

PCN
SFOLS

FB
GPI-LS
GPI-PD

Algorithm X

MORL-FB (Ours)
MORL-FB (Ours)
MORL-FB (Ours)
MORL-FB (Ours)
MORL-FB (Ours)
MORL-FB (Ours)
MORL-FB (Ours)
MORL-FB (Ours)
MORL-FB (Ours)
MORL-FB (Ours)

Algorithm Y

Figure 21: Probability of Improvement (POI) of MORL-FB against benchmark algorithms.
This figure illustrates the POI of MORL-FB relative to various benchmark MORL algorithms.

0.4 0.6 0.8 1.0
PD-MORL

Q-Pensieve
MORL-FB (Ours)

Median

0.4 0.6 0.8

IQM

0.4 0.6 0.8 1.0

Mean

Normalized Weighted Reward

Figure 22: Medium, IQM, and Mean performance of MORL-FB and benchmarks trained with
small preference sets. This figure displays the Median, Interquartile Mean (IQM), and Mean per-
formance for MORL-FB and other benchmark algorithms, trained with only a small set of preference
vectors.

0.5 0.6 0.7 0.8 0.9 1.0
P(X < Y)

PD-MORL

Q-Pensieve

Algorithm X

MORL-FB (Ours)

MORL-FB (Ours)

Algorithm Y

Figure 23: Probability of Improvement (POI) of MORL-FB under constrained preference
training. This figure illustrates the POI of MORL-FB relative to other benchmark algorithms, all
trained with specific constraint sets of preference vectors.

33

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Under review as a conference paper at ICLR 2026

D RELATED WORK ON REWARD-FREE REINFORCEMENT LEARNING

Among the studies in the RFRL literature, (Barreto et al., 2017; Borsa et al., 2019; Touati & Ollivier,
2021; Touati et al., 2023) are the most relevant to our work. Firstly, one common reward-free set-
ting is to learn policies for all reward functions that are linear combinations of a finite set of known
features. (Barreto et al., 2017) proposed the successor features (SF), which reflect the state-action
occupancy of a policy and can be viewed as an extension of the classic successor representation
(Dayan, 1993). By design, SFs enable fast policy evaluation and can be followed by generalized
policy improvement to generate a well-performing policy for any reward function. Subsequently,
(Borsa et al., 2019) extended the SFs by decoupling the policy and task description for better rep-
resentational flexibility. That said, one known limitation of SFs and its variants is the need for a
set of pre-defined features, which can be difficult to construct in practice. To address the above
issue, (Touati & Ollivier, 2021) proposed a low-rank model termed the forward-backward (FB)
representations, which capture the state-action occupancy of the optimal policies by learning the re-
quired features directly from data. The FB framework has been implemented and validated for both
reward-free discrete control (Touati & Ollivier, 2021) and continuous control (Touati et al., 2023).

RFRL can also achieve provably efficient exploration without using any reward information, in both
tabular settings (Jin et al., 2020; Kaufmann et al., 2021; Ménard et al., 2021; Wu et al., 2022) and
under function approximation (Qiu et al., 2021; Wagenmaker et al., 2022; Wang et al., 2020; Zanette
et al., 2020; Zhang et al., 2021). Inspired by the RFRL literature, we propose to rethink MORL via
RFRL and adapt the FB method to boost the sample efficiency and generalization in MORL.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were employed exclusively for language editing and polishing of
the manuscript. They were not used for designing methods, conducting experiments, or analyzing
results.

34

	Introduction
	Preliminaries
	Reward-Free RL for Multi-Objective RL
	Forward-Backward MORL (MORL-FB)

	Experiments
	Ablation Study
	Zero-Shot Cross-Objective Transfer

	Related Work
	Conclusion, Limitations, and Future Work
	Bibliography
	Appendices
	Detailed Pseudo Code of MORL-FB
	Detailed Configurations of Experiments
	Evaluation Environments
	Experimental Setup
	Compute Resources

	Additional Experimental Results
	Visualization of z Distribution in Different Environments
	Ablation Study
	Performance Comparison of MORL-FB and Baselines on Discrete Control Tasks
	Performance Comparison of MORL-FB Under State-Action-Based Rewards and State-Based Rewards
	Performance Comparison of MORL-FB Under Stochastic Rewards
	Performance Comparison of MORL-FB With Nonlinear Scalarization
	Sample Efficiency of MORL-FB
	Cross-Objective Transfer Capability of MORL-FB
	RFRL as a source of auxiliary tasks
	Comparison of Pareto Fronts
	Robustness under Worst-Case Preferences
	Computational Cost Analysis
	Detailed Experimental Results of sec:exp

	Related Work on Reward-Free Reinforcement Learning
	The Use of Large Language Models (LLMs)

