Under review as a conference paper at ICLR 2026

A REWARD-FREE VIEWPOINT ON MULTI-OBJECTIVE
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many sequential decision-making tasks involve optimizing multiple conflicting
objectives, requiring policies that adapt to different user preferences. Multi-
objective reinforcement learning (MORL) typically addresses this by training a
single policy conditioned on preference-weighted rewards. In this paper, we ex-
plore a novel perspective: leveraging reward-free reinforcement learning (RFRL)
for MORL. While RFRL has historically been studied independently of MORL,
it learns optimal policies for any possible reward function, making it a natural fit
for MORL’s challenge of handling unknown user preferences. We propose using
RFRL’s training objective as an auxiliary task to enhance MORL, enabling more
effective knowledge sharing beyond the multi-objective reward function given at
training time. To this end, we adapt a state-of-the-art RFRL algorithm to the
MORL setting and introduce a preference-guided exploration strategy that focuses
learning on relevant part of the environment. Our approach significantly out-
performs state-of-the-art MORL methods across diverse MO-Gymnasium tasks,
achieving superior performance and data efficiency, especially in settings with
limited preference samples. This work is the first to explicitly adapt RFRL for
MORL, demonstrating its potential as a scalable and effective solution.

1 INTRODUCTION

Many sequential decision-making tasks require optimizing multiple, often conflicting objectives.
For example, in robot control, there is a trade-off between minimizing energy consumption and
maximizing speed. The optimal policy in such cases is the one that maximizes a weighted sum of the
objectives, where the weights represent user preferences. User preferences depend on context—for
instance, prioritizing speed in emergencies and energy efficiency in routine operations. Since user
preferences are unknown in advance, solving multi-objective decision-making requires learning a
set of policies for different preferences before testing.

Reinforcement learning (RL) (Sutton & Bartol |2018) has achieved strong performance in sequential
decision-making, making multi-objective RL. (MORL) a widely studied approach for learning poli-
cies for different user preferences (Hayes et al., 2022). A naive but inefficient solution is to train
a separate policy for each preference. Another more scalable approach is to train a single policy
network (Yang et al., 2019; |Basaklar et al.| [2023; [Hung et al.l 2023)) conditioned on preferences,
enabling parameter sharing and generalization across preferences. During training, the policy is
optimized over a range of sampled preferences, each defining a reward function weighted by the
preference. At test time, users can specify a preference to obtain the corresponding policy.

Another approach to handling unknown user preferences at test time is reward-free reinforcement
learning (RFRL) (Jin et al.l [2020; [Touati et al., [2023), which has historically been developed inde-
pendently of MORL despite addressing a similar problem. In RFRL, the agent explores the envi-
ronment without receiving reward signals during training and instead learns a set of optimal policies
for any possible reward function in the environment. MORL can be seen as a special case of RFRL
(Alegre et al.,[2022), as RFRL does not restrict the reward function to be a weighted sum of prede-
fined reward functions. However, despite their similarities, no prior work has explicitly adapt RFRL
methods to solve MORL problems.

In this paper, we ask: Can RFRL inform MORL? We hypothesize that the objective of RFRL to
learn optimal policies for any reward function could serve as a useful auxiliary task for MORL
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(Jaderberg et al 2016} Rafiee et al., |2022; [Veeriah et al., 2019). Even though MORL only needs
optimal policies for linear combinations of known objectives, learning beyond these combinations
could accelerate MORL through effective knowledge sharing. To investigate this question, we adapt
a state-of-the-art RFRL algorithm (Touati et al.| 2023) to the MORL setting, treating the preference-
weighted reward as the test-time reward function given to RFRL. However, this naive approach
performs poorly compared to existing MORL methods, likely because purely reward-free explo-
ration does not prioritize states that are important for optimizing the preference-weighted reward in
the given MORL task. As a result, the policies learned by RFRL for these reward functions could
be suboptimal. To address this, we propose guiding exploration using sampled preferences and
mini-batch sampling, directing the agent to visit states that maximize the corresponding preference-
weighted reward function. This ensures that learning is focused on policies most relevant to MORL.

We highlight the main technical novelty of this paper: (1) A new perspective of solving MORL:
We identify the close connection between MORL and RFRL, which have evolved independently
despite tackling similar challenges of unknown user preferences at test time. This insight motivates
new MORL algorithms by rethinking policy learning with multiple objectives from the perspective
of RFRL. (2) Algorithmic enhancements for adapting RFRL to MORL: Even though RFRL
and MORL are closely related, vanilla RFRL can perform poorly in the MORL setting (see Section
). To address this, we introduce three key enhancements: (i) Preference-guided exploration: We
propose to use the preference vector to sample latent vectors aligned with the target rewards to
facilitate exploration in the latent space; (ii) Training on latent vectors computed by mini-batch
sampling from replay buffer as auxiliary tasks: Our approach trains the policy network on latent
vectors computed from mini-batch transitions sampled from the replay buffer. This design learns
a broader range of policies than required for MORL and can be beneficial by providing auxiliary
tasks; (iii) Auxiliary Q loss: To better adapt RFRL to MORL, we further facilitate the learning of
representations from the observed reward vectors (instead of pseudo rewards as in RFRL) via an
auxiliary Q loss as an additional learning signal.

Our experimental results demonstrate that our approach is both simple and effective. First, our
method significantly outperforms the state-of-the-art MORL algorithms across various tasks in stan-
dard MO-Gymnasium benchmark (Felten et al., 2023), including discrete and continuous control.
Second, when trained with a limited number of preference samples, our method achieves substan-
tially higher performance than other MORL approaches. This highlights that decoupling environ-
ment knowledge from reward information enhances generalization, particularly in scenarios with
limited preference samples. To the best of our knowledge, this is the first work to adapt RFRL for
MORL and present a practical algorithm that performs well across diverse deep RL tasks.

2 PRELIMINARIES

This section provides a brief review of MORL, along with the notation used throughout the paper.
We use boldface symbols for vectors and matrices. For any n € N, we use [n] as a shorthand for
{1,--- ,n}. For a set Z, we let A(Z) denote the set of all probability distributions over Z.

We formulate the MORL problem as an Multi-Objective Markov Decision Process (MOMDP) de-
fined by the tuple (S, A, P, R,~, i), where S and A are the state and action spaces, P : S x A —
A(S) is the transition function, R : S x A — R% is a vector-valued reward function of d objectives,
v € [0,1) is the discount factor, and p is the initial state distribution. Let II denote the set of all
stationary randomized policies. Let s¢, a, 7 be the state, action, and reward received at time ¢. For
a policy 7 € II, define V™ := E, ;o[> oo V' R(s¢, ar)] as the expected total discounted return
vector achieved by 7. Let VT denote the i-th entry of V™. For a pair of policies 7 and 7', we say
that 7 Pareto-dominates 7' (denoted by m > 7') if VI > V7T for all i € [d] and there exists some

j € [d] such that VT > VT,

The general goal of MORL is to discover the Pareto front, which is defined as the set of non-
dominated policies. That is, for each policy 7 in the Pareto Front, there exists no other policy
7' € II such that 7" > . To search for the Pareto front, one common approach is to leverage a
scalarization utility function fy : R? — R under a user preference vector A € A, where A denotes
the preference set. In this paper, we focus on the linear scalarization setting where fx(r) = AT,
as commonly adopted in the MORL literature (Abels et al.,[2019; [Yang et al., [2019; [Basaklar et al.,
2023; [Hung et al.l [2023} [Lu et al.| [2023). Without loss of generality, we presume that A is the d-
dimensional unit simplex. Notably, it has recently been shown by |Lu et al.| (2023) that any point on
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the Pareto front can be achieved by training a policy using linear scalarization due to the convexity of
the policy-induced value function’s range. Since the preference A at test time is unknown during
training, our goal is to learn a preference-conditioned policy 7 : S XA — A(.A) that can maximize
the total discounted scalarized reward E [Zfi : 'yt)\Trt] ,forany X € A.

3 REWARD-FREE RL FOR MULTI-OBJECTIVE RL

This section explains why MORL can be seen as a special case of RFRL. We then discuss how this
perspective enhances MORL by improving generalization and sample efficiency.

MORL as a special case of RFRL. The goal of RFRL is to compute an optimal policy for any scalar
reward function R : § x A — R provided at test time, without observing any reward signal during
training (i.e., “reward-free”) nor requiring additional environment interaction at test time. Formally,
RFRL solves the following optimization problem at test time: arg max; Er s ~u [ >do 'ytrt] ,
where r; is the reward realization that corresponds to the test-time reward function.

MORL addresses a similar problem, but presumes the vector-valued reward signal from R(s, a) can
be observed during training, and assigns R(s,a) = AT R(s, a), where X (a user-specified preference
vector) defines a linear combination of multiple reward components in R, under linear scalarization.
Both RFRL and MORL aim to retrieve an optimal policy for a given reward function at test time, but
their approaches differ. While MORL typically focuses on finding the Pareto front by learning a set
of optimal policies for various preferences A, RFRL learns policies for all possible reward functions,
potentially including optimal policies for scalarized MORL rewards. RFRL achieves this by training
a conditional policy network (Touati & Ollivier, [2021)) or leveraging a pre-collected dataset through
planning or batch RL (Jin et al.} 2020), providing a broader policy set than traditional MORL.

Key idea: RFRL as a source of auxiliary tasks. RFRL learns policies for a broader class of reward
functions than required for MORL, but this can be beneficial by providing auxiliary tasks. Prior
research has shown that incorporating auxiliary tasks improves sample efficiency and generalization
in RL (Jaderberg et al.l [2016; Veeriah et al.| 2019; Rafiee et al. [2022). Since RFRL naturally
trains policies across a spectrum of reward functions, it provides a structured way to design these
auxiliary tasks. However, directly applying RFRL to MORL can be data-inefficient since reward-
free exploration may not prioritize states that are crucial for learning the Pareto front in MORL.
The key challenge is: How to utilize the auxiliary tasks offered by RFRL effectively to accelerate
the learning of optimal policies in MORL? In the sequel, we describe how RFRL can be adapted to
effectively improve training in MORL.

3.1 FORWARD-BACKWARD MORL (MORL-FB)

In this section, we formally present MORL-FB by describing the implementation of RFRL and the
key components that adapt RFRL to MORL by enhancing its learning efficiency.

RFRL Implementation. We implement RFRL for MORL using the state-of-the-art Forward-
Backward (FB) RL algorithm (Touati & Ollivier, 2021). The FB method learns a set of policies
optimized for different reward functions by decomposing the Q-value of an optimal policy for a
scalar reward function R into two neural networks: Fy (forward representation) and B,, (backward
representation), where 6 and w denote their parameters. This decomposition allows the Q-function
for a given reward function R to be expressed as:

Q(S,G,ZR) = F9(87a7zR)TZR7 (1)

where zr € R% is an d,-dimensional latent vector, and both Fy and B, are neural networks
producing d.-dimensional outputs. Intuitively, zy is meant to encode the optimal policy that corre-
sponds to the current reward function. Once a reward function R is revealed, zp is defined as:

z2r = K50y~ [Bu(s,a)R(s,a)], 2)

where D represents an arbitrary state-action distribution. In our implementation, we use D as the
distribution induced by the replay buffer collected by the agent during training. Using this formula-
tion, the greedy policy for a given reward function R is defined as:

(s, zp) = argmax Fg(s,a,zR)TzR. 3)
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Now we are ready to present the design of MORL-FB at both training time and test time.

Test Time: At test time, we can easily
adapt Equation by replacing R(s,a)
with a user-specified scalarized multi-
objective reward based on a preference
vector X as R(s,a) = AT R(s,a). Next,
given the learned Fy and B, we compute
the corresponding zr and use it in the pol-
icy defined by Equation (3). This effec-
tively retrieves an optimal policy for the
given preference .

Training with Preference-Guided Ex-
ploration: During training, Fy, B,,, and
7 must be trained by sampling z and con-
ditioning the networks on these sampled
values. Since the test-time user preference
Awest 18 unknown at this stage, we cannot
directly compute z using Equation (2)). At
a high level, training on a diverse set of z

Algorithm 1 MORL-FB

1: Input: z dimension d., sample number 7
2: Initialize replay buffer M + &

3: for each iteration 7 do

4 Sample preference A uniformly from A
5: z <+ PG-EXPLORE(A)
6
7
8

Use z to generate rollouts in environment
Sample transitions from buffer M
Update FB networks Fy, B, and policy 7
9: end for
10: function PG-EXPLORE(A)

11: Sample ng transitions D from buffer M
. B, (s,a)r' A
12: z Z(é ar,s)eD n.

13: Normalize z such that z < /d ”z
14: return z
15: end function

Il2

samples is equivalent to training the agent on a variety of reward functions, since z is inherently

linked to rewards through (2.

In principle, z can be sampled from any
distribution without restriction. In (Touati
& Ollivier, 2021), z is drawn from a stan-
dard normal distribution A/(0,1%) inad,-
dimensional space. However, we found
that this approach leads to poor sample ef-
ficiency when testing the agent on MORL
tasks. We hypothesize that sampling z
from a normal distribution produces rep-
resentations that differ significantly from
the actual zp obtained from a preference-
weighted multi-objective reward function
(see Figure [5] for a visualization of empir-
ical z distributions).

To address this issue, we propose
Preference-Guided  Exploration (PG-
Explore), which constructs a more
relevant z distribution via sampling
guided by preference-weighted rewards.
The design of PG-Explore builds on the
following insights:

5.0 (a) UT on Deep Sea Treasure o (c) KDE Contour on Deep Sea Treasure
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Figure 1: A motivating experiment on Deep Sea Trea-
sure. (a)(b) Training performance (UT and HV defined
in the sequel) of MORL-FB under different batch sizes
for 2. (c) KDE contour of return vector distributions
of 7(-,z) induced by 2, (with various batch sizes)
and 2 ~ N(0,1¢). This shows that £ corresponds
to learning for more diverse and relevant behavior in
MORL than zj and the z sampling strategy of the orig-
inal FB. The detailed configuration is in Appendix.

* Using {zx}xca only leads to limited exploration of z: Recall that in MORL, we can observe
multi-objective rewards R (s, a) (or its noisy version) during training. One direct approach is to

compute z as:
(@)

zx = E[B,(s,a)A"R(s,a)] = E[B,(s,a)R(s,a) A] = @ (E[Bu(s,a)R(s,a) ')A, (4)

=H

where (a) holds by that ATR(s,a) is a scalar and can be swapped in the matrix multiplication
with B, (s, a) and (b) follows from that A can be moved out of the expectation.

Equation (4) suggests that z is in the span of d preference-agnostic column vectors of the d, x d
matrix H, for any preference A. In practice, since the number of objectives d is usually much
smaller than d., the coverage of {zx}aca in R% can be extremely small. This leads to limited
exploration of z during training such that the agent can commit to a set of improper z, especially
in the early training stage when Fy and B, are not well trained.
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* Constructing z, by mini-batch sampling for exploration: To encourage exploration of z rel-
evant to MORL, we propose a conceptually simple and yet effective technique that leverages
mini-batch sampling to construct 2. Specifically, we sample a batch of n, data samples (denoted
by D) from the replay buffer and compute £x = 3, , . o)ep Bu(s, a)r' A/ns. Figure shows
a comparison of training with z, £ under various batch sizes, and z drawn from A/ (0,1) as in
the original FB method, in Deep Sea Treasure (DST), which is a goal-oriented navigation task with
two-dimensional rewards as (treasure value, step cost). As the true z) is not available, we use 2
with a large n, as a surrogate for z. We can see that: (i) 2, indeed corresponds to learning more
diverse behavior than just learning for z. (ii) 2»’s are more relevant to the reward functions in
MORL encountered at test time than the z sampled from A/ (0, 1¢¢), improving sample efficiency.

* Learning induced by z, serves as auxiliary tasks: Recall that in PG-Explore, we construct
ZX = Y(s.arsep Buw(s,a)r’ A/n, by mini-batch sampling. This means that for any given
preference A, the agent can learn beyond z and, moreover, from multiple values z from different
batches of transitions, providing richer learning signals. This approach is closely related to the
auxiliary tasks in deep RL, where training objectives that are not directly or totally aligned with
the target objective have been shown to accelerate learning (Jaderberg et al., [2016} |Veeriah et al.,
2019; [Rafiee et al., [2022)).

Training Objective Functions: (i) Measure loss: To train the Fy and B,, networks in MORL-FB,
we use the standard measure loss Ly (Fg, B; zx), which minimizes the Bellman residual on the
successor measure (Touati et al.,2023). F5 and B are target networks. This loss is defined as:

EM(F97 Bw; Z)\) = E(st,at,st+1)~D [(FQ(Stv Qt, Z)\)TBUJ(SI7 Cl/) - 7F5(8t+1a F(Sﬂ‘lv z>\)7 ZA)TB@(S/7 a/))ﬂ
(s',a")~D

—2E(s,.00,5000)~D Fo(s, ar, 23) ' Bu(se41, ar41)]. (5)

(i1) Auxiliary Q loss: In the context of MORL, we propose to employ an auxiliary Q loss to facilitate
the learning of FB representations from the observed reward vectors, instead of the pseudo rewards
in the original FB (also see the ablation study in Section[4.T)). Specifically, the Q-loss is constructed
as the squared temporal difference error represented in Fy and B,,, and the transitions are sampled
from the replay buffer to compute z via our preference-guided function:

Lo(Fo;zx) = E(sarmsyon [(Fo(s,a,2x) T2a — (AT +9F5(s', (s, 20), 2a) ' 22))%], (6)

We summarize the implementation in Algorithm |1} The detailed pseudo code (Algorithm [2)) and
further details about loss functions and implementation are provided in Section[A] Note that the FB
framework can use either state-dependent or state-action-dependent backward representation, and
both perform well in practice (see Appendix[C.4). As the original FB (Touati et al., 2023 presumes
a state-dependent design, we focus mainly on state-dependent ones in the subsequent experiments.

4 EXPERIMENTS

Evaluation Domains. We leverage the MO-Gymnasium benchmark suite (Felten et al., [2023)) and
consider various discrete and continuous control tasks as follows: (i) Multi-objective MuJoCo: We
consider robot locomotion tasks with up to 5 objectives, including Walker2d, Halfcheetah2d, Ant3d,
Hopper3d, Humanoid2d, and Humanoid5d. Each environment presents a unique set of objectives,
e.g., the goal of Ant3d is to optimize both x-axis and y-axis speeds while minimizing energy con-
sumption. The detailed configurations are provided in Section B}

Benchmark Methods. To evaluate the effectiveness of our proposed approach, we compare MORL-
FB against various benchmark methods, including: (i) Single preference-conditioned policy meth-
ods: PD-MORL (Basaklar et al., 2023, Q-Pensieve (Hung et al., 2023), CAPQL (Lu et al.,|2023)),
Envelope Q-Learning (EQL) (Yang et al., 2019), and PCN (Reymond et al.| [2022); (ii)) Multi-policy
MORL: PG-MORL (Xu et al.l |2020), SFOLS (Alegre et al., [2022), MORL/D (Felten et al.| 2024),
GPI-LS, and GPI-PD (Alegre et al.,2023) ; (iii) Reward-free RL: We take the original FB approach
(Touat1 et al.| [2023) as a baseline.

Regarding PD-MORL, Q-Pensieve, and FB, we leverage their official implementations from (Basak-
lar et al.| 2023} Hung et al., 2023} [Touati et al., [2023). To ensure a fair comparison among all the
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benchmark methods, we adopt the standard PD-MORL without the auxiliary pre-trained preference
interpolator, which essentially requires a substantial amount of additional data for pre-training and
could bias the comparison. Regarding CAPQL, EQL, PCN, PG-MORL, MORL/D, GPI-LS, and
GPI-PD, we leverage the implementation of MORL-Baselines (Felten et al., 2023)) for better repro-
ducibility. As the PG-MORL in MORL-Baselines can only support two-objective tasks, we extend
this code base to accommodate those tasks beyond two objectives. On the other hand, the original
SFOLS only focuses on discrete control tasks by default. For a more thorough comparison, we uti-
lize its official implementation for discrete problems and extend SFOLS with a TD3 backbone for
evaluation on continuous control. Moreover, we apply hyperparameter optimization to the bench-
mark algorithms and MORL-FB. Section[B.2]details the selection range of hyperparameters and the
final selected values. For all the tasks, we run each algorithm for 3 million environment steps, which
is comparable to most of the existing MORL studies. Below we report the average performance and
the empirical standard deviation over 5 random seeds for each task. More detailed configurations of
the experiments and benchmark methods are provided in Section B

Halfcheetah2d Walker2d Hopper3d Ant3d Humanoid2d ~ Humanoid5d
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Figure 2: Evaluation of MORL-FB and several MORL benchmark algorithms on diverse continuous
control tasks within the MO-Gymnasium suite, assessing performance using key metrics. These
results demonstrate the clear advantage of MORL-FB across all tested benchmarks.

Evaluation Metrics. We evaluate the performance of each algorithm using three metrics that are
widely used in the MORL literature (Van Moffaert & Nowél 2014; [Yang et all |2019; Kyriakis &
Deshmukh, |2022; Basaklar et al., 2023} [Hung et al.,|2023; [Lu et al., 2023)):

« Utility (UT): To evaluate the scalarized total reward across different preferences at an aggregate
level, we employ the utility metric defined as Ex[>", AT r;], where the expectation is taken with
respect to the uniform distribution over the preference set A (i.e., d-dimensional unit simplex).

* Hypervolume (HV): As a standard metric in the literature of general multi-objective optimization,
hypervolume naturally captures the inherent trade-off among different objective functions using
one aggregate scalar value (Zitzler & Thiele,1999). Specifically, given a reference point .t € R?
and any collection for return vectors { C R?, the hypervolume of I/ can be formally defined as

HV(U; Ures) = u( U {y’u =y = uref}>, where 1(-) denotes the d-dimensional Lebesgue
ueU

measure. In practice, u.r is selected based on the range of possible total return and is task-
dependent. The configuration of w,.¢ for each MORL task is provided in Section[B]

* Episodic Dominance (ED): As a metric complementary to HV and UT, ED is meant to capture
the relative strength of a pair of algorithms under different preferences. Specifically, given any
two algorithms ALG;, ALGy, we define ED(ALG1, ALGy) := Ex[I{ATg(Tars,) > A 9(Tare, )}
where g(-) denotes the trajectory-wise cumulative return vector, 7arc, and 7arc, are the trajecto-
ries generated under the policies of ALG; and ALG,, and A is drawn uniformly from A. Note that
we use 500 uniformly sampled preference vectors and evaluate across 5 distinct random seeds for
each preference vector for statistical robustness.
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To ensure rigorous evaluation, we further follow the guidelines of (Agarwal et al., |2021) by tak-
ing the normalized UT scores and reporting the aggregated performance across tasks in median,
mean, and interquartile mean (IQM). Regarding the normalized scores, we follow the procedure
in (Fu et al 2020), which (i) employs a random policy—where actions are selected uniformly at
random— as the baseline with normalized score of 0 and (ii) an expert policy trained by single-
objective SAC—as the topline with normalized score of 100. The above normalization is done on a
per-preference basis.

Does the reward-free viewpoint of MORL-FB improve sample efficiency over the benchmark
methods? Figure E] shows the performance of all the methods in UT, HV, and ED for continuous
control tasks. Regarding ED, for each baseline algorithm ALG, we report ED(ALG, MORL—-FB) to
show the pairwise comparison. We can make the following observations: (i) MORL-FB achieves
either the best or close to the best UT and HV among all methods on all the tasks, regardless of
the number of objectives. This showcases that MORL-FB is indeed sample-efficient in the sense
that it can discover a diverse collection of high-performing policies across various preferences using
only as few as 3 million samples as used by the expert policy. (ii) Given that ED(ALG, MORL-FB)
are consistently smaller than 0.5 for all baselines, we see that MORL-FB outperforms all bench-
mark methods (including the state-of-the-art methods like PD-MORL and Q-Pensieve), under most
preferences. (iii) PD-MORL and Q-Pensieve perform well on two-objective tasks (e.g., Halfchee-
tah2d and Walker2d) but underperform when the number of objectives is larger (e.g., Ant3d and
Humanoid5d). Additional results on discrete control environments can be found in Section[C.3]

Moreover, regarding the aggregated results, Figure[3|shows that MORL-FB reliably outperforms the
benchmark methods both in conventional statistics (e.g., mean and median) and robust metrics like
IQM. MORL-FB achieves the best IQM scores by a large margin vis-a-vis other methods, confirming
the significant improvements over the state-of-the-art MORL.

Recall that MORL-FB leverages PG-Explore to Median oM Mean
address the fundamental exploration issue of "™ | " ' | y
vanilla FB, which suffers from sample ineffi- EELE m K o
ciency in MORL. Remarkably, the per-task re- pobeN ‘ . :
sults in Figure [2and aggregated results in Fig- P EAnaL \ " \
ure 3] show that MORL-FB enjoys significantly FoNOR - ' -
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better UT and HV across tasks. Accord-
ingly, the ED scores ED(FB,MORL-FB) re-

main nearly zero in all tasks. Figure 3: Evaluation of MORL-FB and several

Does MORL-FB achieve effective general- MORL benchmark algorithms using aggregate
ization across preferences? To better assess metrics, including median, mean, and interquar-

the generalization capabilities of MORL-FB tile mean (IQM). These results show the S}lperior
across preferences, we further evaluate the al- performance of MORL-FB across all metrics.

Normalized Weighted Reward

gorithms in a stylized setting where they are trained only on a small set of preference vectors Ayin
(rather than the whole A) and aim for generalization over A at test time. Specifically, for a d-
objective task, we let Ay, include only the standard basis preferences, i.e., d-dimensional one-hot
vectors, and the uniform preference vector [1/d, - - - ,1/d]. The testing setup is exactly the same as
that for Figure2] Here we focus on comparing MORL-FB to PD-MORL and Q-Pensieve, which are
the top two benchmark methods in Figure [2|and utilize conditioned networks of structures different
from MORL-FB.

As shown in Figure f] both PD-MORL and Q-Pensieve exhibit a notable decline in performance
across all three metrics compared to those in Figure 2] In contrast, MORL-FB maintains consistent
performance across the evaluated tasks, with only minimal degradation in UT and HV values com-
pared to Figure[2] These findings showcase that MORL-FB can generalize more effectively over the
entire preference set, even when trained on a limited set of preference vectors. More detailed results,
such as the numerical values and the aggregated performance (e.g., IQM) are in Section[C]

4.1 ABLATION STUDY

Preference-Guided Exploration (PG-Explore). To investigate the benefits of sampling z from a
preference-guided distribution, we perform an ablation study on comparing the proposed MORL-
FB and a variant of MORL-FB that samples z from A(0,19), i.e., the distribution adopted by the
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Figure 7: Zero-shot cross-objective transfer
from Hopper2d to Hopper3d and Hopper4d us-
ing vanilla FB and MORL-FB: Results demon-
strate effective transfer by MORL-FB, support-

ing the efficacy of its proposed enhancements.

vanilla FB. Figure[6] (specifically the bars in gray and orange) shows that MORL-FB indeed benefits
significantly from a preference-guided distribution across the tested task, highlighting its importance
in enabling directed exploration and sample-efficient policy learning.

Moreover, we visualize the empirical distributions of the sampled z of MORL-FB and the original
FB. Specifically, we record the z vectors used throughout training and apply t-SNE
* 2008) for visualization in a two-dimensional space. The results on Humanoid2d in Fig-
ure [5| show that sampling z from a normal distribution results in a unimodal empirical distribution
(contours in red). By contrast, MORL-FB with the preference-guided sampling exhibits a multi-
modal distribution (contours in blue), indicating a richer and more diverse set of z distributions.
This multi-modality allows MORL-FB to better capture the underlying reward structure, achieving
improved generalization and adaptation to various objectives. More visualization of z distributions
for other tasks can be found in Section [Cl

Auxiliary Q loss. To corroborate the efficacy of the auxiliary Q loss, we further conduct an abla-
tion study on this term. From Figure [6] (specifically the bars in black and orange), the Q loss can
facilitate the learning of forward and backward representations in MORL-FB and thereby boost the
performance in both UT and HV. More ablation results across environments are in Section[C.2}

4.2 ZERO-SHOT CROSS-OBJECTIVE TRANSFER

Recall that one salient feature of MORL-FB is to use 2z to encode the A-dependent scalarized reward
function. Accordingly, MORL-FB is endowed with the ability to achieve zero-shot transfer even
across tasks of different number of objectives. Such zero-shot cross-objective transferability allows
us to add new factors to the reward function without the need for retraining and hence is a very
useful feature in practice. To validate this, we use MORL-FB to learn the F' and B networks on
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Hopper2d and directly evaluate them on Hopper3d and Hopper4d, which involve additional reward
terms like “jump height” and “z-axis speed”, at test time. Details of the environment configurations
are in Section We conducted the same evaluation for vanilla FB (Touat1 et al., [2023) as a base-
line. From Figure[/] vanilla FB cannot achieve effective cross-objective transfer given that vanilla
FB already suffers in the standard MORL setting (cf. Figure [2). By contrast, MORL-FB achieves
effective transfer across objectives in a zero-shot manner, corroborating the proposed enhancements.

5 RELATED WORK

Single preference-conditioned policy methods. Single preference-conditioned policy methods
learn one policy network that adapts to different objective trade-offs by conditioning on prefer-
ence. Many of these methods employ scalarization techniques (Van Moffaert et al.l [2013; [Yang
et al.l 2019), transforming multi-objective problems into weighted single-objective problems. They
allow policies to dynamically adjust at inference time. However, relying solely on linear reward ag-
gregation without proper representation learning can lead to suboptimal solutions. To address this,
CAPQL (Lu et al.l 2023) introduced the concave reward terms for better optimization landscapes,
while CN-DER (Abels et al., 2019) proposed a preference-conditioned Q-network with an experi-
ence replay mechanism to handle dynamic weights and mitigate non-stationarity. Q-Pensieve (Hung
et al.l 2023) improved sample efficiency by reusing past policy snapshots. Without using scalariza-
tion, (Abdolmaleki et al., [2020) learned action distributions per objective and fitted a parametric
policy via supervised learning. To improve adaptability to diverse and unseen preference vec-
tors, methods like PCN (Reymond et al., |2022)) formulated MORL as a classification problem,
and MOAC (Zhou et all 2024) finds Pareto-stationary points by adapting multi-gradient descent
to MORL without scalarization. PD-MORL (Basaklar et al., |2023) also trains a single preference-
conditioned network but directly incorporates preference vectors, for example, through cosine sim-
ilarity measures within its value-function update rule to efficiently learn a comprehensive set of
policies across the continuous preference space.

Multi-policy methods. Multi-policy methods explicitly learn multiple policies to cover the Pareto
front, capturing diverse trade-offs in the training process. A key challenge in multi-policy MORL
is efficiently constructing a coverage set that represents the full Pareto front while maintaining scal-
ability. To refine policy selection and handle dominated actions, (Lizotte et al., 2012) introduced
a structured approach using linear value function approximation. Subsequent methods (Kyriakis
& Deshmukhl 20225 [Van Moffaert & Nowé, 2014} [Xu et al., [2020) focused on improving explo-
ration efficiency across the preference space but lacked structured learning mechanisms to gener-
alize across diverse preferences. Building on the idea of incorporating structure into policy learn-
ing, (Felten et al., 2024} [Mossalam et al., |2016) extended structured learning for multi-objective
RL, employing decomposition and sequential single-objective optimization to enhance efficiency.
However, scalability and adaptability remained challenges. DG-MORL (Lu et al.,|2024)) leveraged
demonstrations and a self-evolving mechanism to improve scalability. As for improving adaptabil-
ity, (Mossalam et al [2016) extended Optimistic Linear Support (OLS) to deep RL, constructing a
convex coverage set through a sequence of single-objective, providing a structured way to repre-
sent diverse trade-offs, but lacked effective transferability. Successor features (SFs) (Alegre et al.,
2022) addressed this by enabling adaptation to new tasks without additional environment interac-
tions, improving generalization across objectives. However, SF require handcrafted reward features
@(s,a, s"), which could miss important aspects of the environment and limit adaptability. In contrast,
FB learns the F' and B representations without relying on handcrafted features.

Due to the page limit, we defer the related work on RFRL to Appendix

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We propose MORL-FB, which rethinks MORL through the lens of RFRL. By using RFRL as
auxiliary tasks and enhancing its sample efficiency via preference-guided exploration, MORL-FB
achieves strong performance in benchmark tasks, offering superior efficiency, better generalization,
and zero-shot cross-objective transfer. A key limitation, inherited from FB-based RFRL, is the need
for more advanced exploration, especially in complex or sparse-reward environments, where ded-
icated strategies are crucial. Future work includes exploring RFRL methods beyond FB, such as
learning successor measures (Farebrother et al., [2023) or successor features (Chua et al.| [2024), to
further reveal RFRL’s advantages in MORL.
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ETHICS STATEMENT

Our work develops and evaluates reinforcement learning algorithms purely in simulated environ-
ments, without involving human subjects or sensitive data. This submission follows the code of
ethics.

REPRODUCIBILITY STATEMENT

We release our code in the supplementary material and describe the commands needed to execute
the code in a Readme file attached in the supplementary material. Additionally, we attach the list of
package dependencies which can be used to build the environment.
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A DETAILED PSEUDO CODE OF MORL-FB

Algorithm 2]details the proposed MORL-FB method. Initially, during the warm-up phase (lines 6-8),
the latent vector z is sampled from a standard multivariate normal distribution. After the warm-up,
z is determined using the preference-guided sampling scheme (line 10). This z is then used to
generate trajectories within the environment, which are stored in the replay buffer M (lines 12-16).
Model updates are performed by sampling transitions from M (lines 17-22). A delayed actor update
mechanism is employed for the actor model (lines 23-24), and target networks are updated via a soft
update scheme (lines 25-27). The Preference-Guided Exploration function (lines 30-35) normalizes
the sampled latent vector z (line 33) as z < /d. ﬁ This normalization step, motivated by the

prior work (Touati et al,[2023), has been observed to improve performance.
As shown in Algorithm 2] the training of MORL-FB involves the following loss functions:

Measure Loss. The Measure loss, Ly (6, w; zy), is central to learning a task-agnostic representation
of environment dynamics, Fy(s¢, at, ), encoding command-conditioned successor measures. It
enforces Bellman consistency for these measures when projected onto a learned basis B, (s, a’),
as shown in Equation @) This mechanism, drawn from (Touati et al.l 2023)), aims to separate the

14
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Algorithm 2 MORL-FB

1: Input: Network parameters 6, 0, w, @, 7, 7, preference sampling distribution Py, preference set
A, actor learning rates j,, FB presentation learning rate ypg, z dimension d,, sample number
ns, update frequency n,,, warm up steps n,,, and target smoothing coefficient 7

2: Initialize networks Fg, B, 7, and target networks Fg, By, 75
3: Initialize replay buffer M + &
4: for each iteration ¢ do
5: Sample a preference vector A ~ Py
6: if i < n,, then > Warm-up stage
7: Sample 2z from a multivariate normal distribution A/(0, 1¢=)
8: Normalize z such that z «+ /d, T2
9: else
10: z < PG-Explore(])
11: end if
12: for each environment step ¢ do
13: ag ~ my(-[se; A)
14: St41 ™~ 73’(-|st,at)
15: M (*MU{(St,CLhTt,)\t,SH_l)}
16: end for
17: for each gradient step j do
18: Sample a batch of transitions {(s, a, 7, X\, s’)} from the replay buffer M
19: z; < PG-Explore(\)
20: 0«0 — urpVo(Lg(0; X) + Lm(0, w3 X))
21: w4 w — Upg Vi (Ln(w; X) + Lm (0, w; X))
22: end for
23: if 7 % n, == 0 then
24: N1 — paVypLa(m;X)
25: 0«10+ (1—71)0
26: W Tw+(1—7)w
27: nmm+1—-7)7
28: end if
29: end for
30: function PG-EXPLORE()
3L Sample a batch D of ns non-terminal transitions {(s, a, r, s")} from M

. B.(s,a)r A
32: Z Z(s,a,r,s’)ED N

33: Normalize z such that z < @ﬁ
34: return z
35: end function

environment structure from specific rewards. This disentanglement is crucial for enabling zero-shot
generalization, allowing the agent to understand “what happens next” irrespective of the immediate
goal, forming a reusable foundation for various tasks.

Ln(Fo,Bus2x) = E(s, 00,50 )~ [(Fo(st, ar, 23) "B (s, a') — vF5(se41, (5641, 2x), 22) ' Ba (s, a'))?]
(s',a")~D

—2E(s, 00500100 Fo(s,ar, 23) ' Bu(se41, ar41)]. (7)

where p denotes the underlying distributions of the dataset.

Auxiliary Q Loss. To ensure the learned representation Fy is relevant for decision-making, the
Auxiliary Q Loss, Lg(8; zx), connects it to task-specific values. When explicit reward signals r;
and corresponding preferences A are available, Equation minimizes a standard temporal differ-
ence error. This is vital for MORL contexts, effectively teaching Fy to support optimizing diverse
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rewards.
2

Lo(0;2x) = E(s,.a0,m0,50101)~D [(FO(Staatazk)Tz)\ — (ATre +vFg(se41, m(s041), 23) ' 22)) ] .

®)

Orthonormality Loss. The Orthonormality Regularization Loss, £,(w), acts as a crucial regular-
izer for the learned basis functions B, (s, a). Its purpose, as reflected in Equation @) is to promote
a well-conditioned and non-degenerate basis. By encouraging properties such as orthogonality be-
tween basis vectors and unit norm, this loss helps prevent representational collapse and redundancy
within B,,. This, in turn, ensures that the successor measures are projected onto a stable and diverse
set of features, enhancing the robustness and quality of the learned representations Fy.

2
Lo(w) = Es,0)~D (5" ,a/)~D [(Bw(s,a)TBw(s’,a’)) — IBu(s,a)|]3 — |IBu(s’,a)|3] . (9)

Policy Loss. The agent’s behavior is refined through the Policy Optimization Loss, £, (n; zx),
which trains the policy m,, within an actor-critic paradigm. The actor’s objective is to maximize the
Q-values estimated by the critic, where these Q-values are derived from the learned representation
as Q(s,a; zx) = Fy(s,a, zx) " zx (Equation ). This loss drives the policy to select actions that
are optimal for the task specified by the current command zy. It thus enables the agent to translate
its universal understanding of the environment into effective, task-adaptive behavior.

Lr(n;zx) = Esop [-Q(s,my(s); 2x)], where Q(s,a; zx) = F(s,a, zA)TzA. (10)

B DETAILED CONFIGURATIONS OF EXPERIMENTS

In this section, we describe the experimental setup used to evaluate the performance of our approach.
We detail the hyperparameters used in our experiments, as well as the reference points chosen for
HYV evaluation across different environments.

B.1 EVALUATION ENVIRONMENTS

We evaluate the performance of our proposed method across several MuJoCo-based multi-objective
environments, each designed with distinct state and action spaces as well as varying numbers of
objectives to assess the adaptability of MORL-FB in diverse settings.

* Halfcheetah2d: The state space and action space are defined as S C R!7 and A C RS,
respectively. The two objectives for this environment are maximizing moving speed along
the x-axis and minimizing energy cost.

» Walker2d: The state space and action space are defined as S C R'” and A C RS, respec-
tively. The two objectives for this environment are maximizing moving speed along the
x-axis and minimizing energy cost.

» Hopper3d: The state space and action space are defined as S C R and A C R3. The
three objectives include maximizing moving speed along the x-axis, maximizing jumping
height along the z-axis, and minimizing energy cost.

» Ant3d: The state space and action space are defined as S C R27 and A C R®. The three
objectives are maximizing moving speed along the x-axis, maximizing moving speed along
the y-axis, and minimizing energy cost.

» Humanoid2d: The state space and action space are defined as S C R376 and A C R'7.
The two objectives are maximizing moving speed along the x-axis and minimizing energy
cost. Additionally, we set the healthy reward parameter to 1.0 to encourage exploration and
stability.

« Humanoid5d: The state space and action space are defined as S C R376 and A C R'7.
This environment has five objectives: maximizing moving speed along the x-axis, max-
imizing moving speed along the y-axis, maximizing angular velocity on the left elbow,
maximizing angular velocity on the right elbow, and minimizing energy cost. Similar to
Humanoid2d, the healthy reward parameter is set to 1.0 to ensure meaningful evaluation.
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B.2 EXPERIMENTAL SETUP

To begin with, we describe the hyperparameters of the benchmark MORL methods and the proposed
MORL-FB for better reproducibility.

Hyperparameters for Experiments. To ensure a fair comparison, for those benchmark methods
that already provide tuned task-specific hyperparameters on MuJoCo, we primarily refer to their
original papers for the hyperparameter configurations, including PGMORL (Xu et al., 2020) and
CAPQL (Lu et all [2023). Table [I] and Table [3] list the detailed hyperparameters used in our ex-
periments. For PGMORL, the hyperparameters reflect its evolutionary population-based design.
The parameter n defines the number of parallel reinforcement learning tasks in each generation.
Each task includes m,, warm-up iterations and m, evolutionary iterations. P, and F,. define
the number and size of the performance buffers. The PPO parameters used across all environments
are summarized in Table 2] For CAPQL, the hyperparameter « controls the strength of a concave
regularization term added to the reward. The general hyperparameters shared by CAPQL are listed
in Table

Table 1: Hyperparameters of PGMORL.

Environments n m, m; Pun K Pie o
HalfCheetah2d 6 80 20 100 2 7 -1
Walker2d 6 80 20 100 2 7 -1
Hopper3d 15 200 40 210 2 7 —10°
Ant3d 15 200 40 210 2 7 —108
Humanoid2d 6 200 40 100 2 7 -1
Humanoid5d 35 200 40 550 2 7 —108

Table 2: PPO hyperparameters used in PGMORL.

Parameter Value
Timesteps per actor batch 2,048
Processes number 4
Learning rate 3x 1074
Discount factor () 0.995
GAE lambda 0.95
Batch size 32

PPO epochs 10
Entropy coefficient 0

Value loss coefficient 0.5

Table 3: Augmentation strength of CAPQL.

Environments «
HalfCheetah2d 0.1

Walker2d 0.05
Hopper3d 0.2
Ant3d 0.2

Humanoid2d 0.005
Humanoid5d 0.005

For algorithms without officially tuned or specified hyperparameters, we perform hyperparameter
optimization (HPO) by following (Eimer et al., 2023)). Specifically, we employ Bayesian optimiza-
tion by using the Weights & Biases Sweeps. Each episode refers to a simulation run for 1M envi-
ronment steps, and the optimization is performed over 10 episodes. Tables [5] to [TT] summarize the
search ranges and the final selected hyperparameters.
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Table 4: Hyperparameters of CAPQL.

Parameter Value
Optimizer Adam
Learning rate 3x107*
Discount factor () 0.99
Number of hidden units per layer 256
Replay buffer size 108
Batch size 256
Nonlinearity ReLU

Target smoothing coefficient (7)  0.005

* MORL-FB: For MORL-FB, which is built on the implementation of the Twin Delayed
Deep Deterministic Policy Gradient (TD3) algorithm (Fujimoto et al.,|2018]), we prioritized
the tuning of parameters inherent to TD3. Specifically, this included critical elements such
as learning rates for actor and critic networks, the target network update rate, and policy
delay, which are known to significantly influence the stability and performance of TD3-
based agents.

¢ Q-Pensieve: Our tuning efforts centered on parameters associated with its core Q-Snapshot
mechanism (Hung et al., 2023). Given that Q-Pensieve’s efficacy in improving sample
efficiency stems from the storage and utilization of these Q-function snapshots, parameters
governing the snapshot buffer, the frequency of snapshot capture, and their influence on the
policy update were key areas of focus during hyperparameter optimization.

* PD-MORL: For PD-MORL, which can be viewed as the multi-objective extensdion of
TD3 (Fujimoto et al.,[2018)), we prioritized the tuning of parameters inherent to TD3. This
included critical elements such as learning rates for actor and critic networks, the target net-
work update rate, and policy delay, which are known to significantly influence the stability
and performance of TD3-based agents.

* MORL/D: For MORL/D, which is built upon SAC, we tuned the standard hyperparame-
ters of SAC. In addition, we focused on four components that are central to the MORL/D
framework: population size, neighborhood size, scalarization method, and weight adap-
tation method. These elements directly affect how the algorithm decomposes the multi-
objective space and maintains policy diversity.

* PCN: For PCN, since the hyperparameter settings for continuous control tasks such as
MulJoCo environments were not specified in (Reymond et al., 2022])), we tuned three critical
parameters: learning rate, batch size, and hidden dimension, which affect training stability,
sample efficiency, and the model’s ability to generalize across diverse preference vectors.

* SFOLS: For SFOLS, since we utilize its official implementation for discrete problems and
extend it with a TD3 backbone for evaluation on continuous control tasks, we tuned the
parameters inherent to TD3, including learning rates for the actor and critic networks, pol-
icy noise, and target policy smoothing noise. These components are known to significantly
influence the stability and performance of TD3-based agents.

* GPI-PD: For GPI-PD, since GPI-PD relies on a learned dynamics model for sample gen-
eration, we tuned four key parameters: dynamics rollout length, rollout frequency, model
training frequency, and real data ratio. These factors critically affect model accuracy, sta-
bility of planning updates, and the overall effectiveness of Dyna-style training.

Hyperparameters of MORL-FB. The hyperparameters for the MORL-FB experiments were cho-
sen to ensure fair evaluation and stable learning, guided by prior research and the HPO results. The
complete configuration is detailed in Table[I2}

Reference Points for HV Evaluation. We compute the HV indicator using predefined reference
points (Ref. Point) for each environment. These reference points serve as baselines to measure the
coverage of the Pareto front obtained during training. Table[T3]provides the specific reference points
used in different environments.
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Table 5: Hyperparameter tuning for MORL-FB.

Parameter Value

Optimal Value

Learning rate [0.0001,0.01]  0.0001

Policy update delay {1,2,5,10} 10
Steps per update {1,2,5,10} 1
Latent dimension (z dimension) {50,150,300} 300
Exploration noise std. [0.1,1.0] 0.1
Target policy smoothing noise std.  [0.1,1.0] 0.2

Table 6: Hyperparameter tuning for Q-Pensieve.

Parameter Value Optimal Value
Learning rate [0.0001,0.01] 0.0001

Q replay buffer size  {1,2,4} 4

Preference set size  {1,2,4} 4

Table 7: Hyperparameter tuning for PD-MORL.

Parameter Value Optimal Value
Learning rate [0.0001,0.01] 0.0003
Exploration noise std. [0.1,1.0] 0.15

Target policy smoothing noise std.  [0.1, 1.0] 0.25

Policy update delay {1,2,5,10} 10

Table 8: Hyperparameter tuning for PCN.

Parameter Value Optimal Value
Learning rate [0.0001, 0.01] 0.0023

Batch size {64, 128,256} 64

Number of hidden units per layer  {256,512,1024} 1,024

Table 9: Hyperparameter tuning for MORL/D.

Parameter Value Optimal Value
Learning rate [0.0001,0.01] 0.0013

Batch size {64, 128,256} 256

Number of hidden units per layer  {256,512,1024} 1,024

Pop size {4,6,8} 6
Neighborhood size {0,1,2} 1

Scalarization method {none,ws} ws

Weight adaptation method {none, PSA} PSA
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Table 10: Hyperparameter tuning for SFOLS.

Parameter Value Optimal Value
Learning rate [0.0001,0.01] 0.0006

Batch size {64,128,256} 256

Number of hidden units per layer ~ {256,512,1024} 1,024

Target smoothing coefficient (7) [0.001,0.02] 0.0061
Exploration noise std. [0.1,0.3] 0.1736

Target policy smoothing noise std.  [0.1,0.5] 0.4232

Table 11: Hyperparameter tuning for GPI-PD.

Parameter Value Optimal Value
Learning rate [0.0001,0.01] 0.0003

Batch size (64,128,256} 256

Number of hidden units per layer {256,512,1024} 1,024
Dynamics rollout length [5, 20] 8

Dynamics rollout freqency [50, 500] 312

Dynamics train freqency [100, 500] 139

Dynamics real ratio [0.05,0.2] 0.0845

Table 12: Hyperparameter configuration for MORL-FB experiments.

Parameter Value
Total number of environment steps 3 x 106
Replay buffer size 1 x 108
Latent dimension (z dimension) 300
Interface batch size 5,120
Number of hidden units per layer 1,024
Preprocessing feature dimension 512
Batch size 1,024
Target smoothing coefficient (1) 0.01
Discount factor () 0.99
Learning rate 1x10™4
Policy update delay 10
Steps per update 1
Exploration noise std. 0.1
Target policy smoothing noise std. 0.2
Clipping parameter 0.5
Value loss coefficient 1

B.3 COMPUTE RESOURCES

All models were trained on a workstation featuring a single NVIDIA RTX 4090 GPU, an Intel Core
i7-13700K CPU, and 64 GB of system memory.
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Table 13: Reference points used for HV calculation in different environments.

Environment Ref. Point
Deep Sea Treasure (0, -50)
Fruit Tree Navigation 0,0,0,0,0,0)
Halfcheetah2d (0, -8000)
Walker2d (0, -8000)
Hopper3d (0, 0, -8000)
Hopper4d (0, 0, -8000, 0)
Ant3d (0, 0, -8000)
Humanoid2d (0, -8000)
Humanoid5d 0, 0, 0, 0, -8000)

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 VISUALIZATION OF z DISTRIBUTION IN DIFFERENT ENVIRONMENTS

We analyze the learned latent representations of MORL-FB by visualizing the distribution of sam-
pled z across various environments using t-SNE (Van der Maaten & Hinton, 2008)). These visualiza-
tions offer insight into the method’s ability to capture the underlying structure of the multi-objective
tasks. Consistent with the observations on Humanoid2d (Figure E]) the visualizations for Walker2d,
Hopper3d, and Ant3d (Figure 8] Figure[9] and Figure[I0} respectively) demonstrate that preference-
guided sampling yields distinct distributions compared to sampling from a standard normal dis-
tribution. These results further support the hypothesis that preference-guided sampling promotes
the exploration of a more diverse set of latent representations, which may contribute to improved
generalization and adaptation on various objectives.

Z Distribution During Training on Walker2d

e MORL-FB
20 Original FB
~ 10
()
—
2
= 0
()
w
-10
-20
-30 -20 -10 0 10 20 30

Feature 1

Figure 8: Empirical z distribution under MORL-FB with preference-guided sampling versus Origi-
nal FB with simple normal distributions on Walker2d.

To shows the multi-modality of MORL-FB, we visualized the positions of latent variables z inferred
from different preferences on the t-SNE plot in Figure [IT] This demonstrates that MORL-FB ef-
fectively encodes different preferences into separate regions of the latent space, leading to more
diverse policies. To further illustrate this, we provide a demo of the policies learned by MORL-FB
and vanilla FB in this link: https://imgur.com/a/ehx1v7q, where the z’s are selected from
different positions on the t-SNE plot.
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Z Distribution During Training on Hopper3d
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Figure 9: Empirical z distribution under MORL-FB with preference-guided sampling versus Origi-
nal FB with simple normal distributions on Hopper3d.
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Figure 10: Empirical z distribution under MORL-FB with preference-guided sampling versus Orig-
inal FB with simple normal distributions on Ant3d.

C.2 ABLATION STUDY

C.2.1 EXPERIMENT ON PREFERENCE-GUIDED EXPLORATION

To assess the data efficiency of our proposed MORL-FB, we compared its performance against PD-
MORL (Basaklar et al,[2023). PD-MORL necessitates three to five times more training samples to
train its preference interpolator. Can MORL-FB maintain superior performance while reducing data
requirements?

Table [T4]reveals that MORL-FB consistently outperforms PD-MORL across various environments.
Specifically, MORL-FB achieves higher UT values in five out of six tasks, demonstrating its effec-
tiveness in most scenarios. In more complex settings, such as MO-Humanoid, how does MORL-FB
compare in HV results? The results indicate that MORL-FB remains competitive, underscoring its
significant data efficiency gains. By eliminating the need for additional data to pretrain an interpo-
lator, MORL-FB achieves competitive or superior performance while requiring significantly fewer
training samples in multi-objective environments.

C.2.2 EXPERIMENTS ON z DIMENSION
We investigate the impact of the z dimension in the Hopper3d environment. As shown in Table [T3]

the performance metric increases with the z dimension. However, when the z dimension reaches
300, performance declines, likely due to insufficient training steps for the larger network.
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Z Distribution During Training on Humanoid2d
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Figure 11: Empirical z distribution under MORL-FB with preference-guided sampling (blue) versus
Original FB with simple normal distributions (red) on Humanoid2d. This figure is slightly different
from Figure|§| due to the additional preference points and the inherent randomness of t-SNE.

Table 14: Performance comparison between MORL-FB and PD-MORL (with interpolator) across
key metrics (UT, HV, and ED) on various multi-objective tasks.

Environments Metrics PD-MORL MORL-FB
(w/i interpolator)

UT(x 10?) 5.62 +0.05 7.69 + 0.08
Halfcheetah2d HV(x 108) 1.08 £ 0.00 1.24 £ 0.00

ED 0.07 + 0.01 -

UT(x 10%) 2.18 +0.02 2.23 £ 0.03

Walker2d HV(x 107) 5.45+0.01 4.32+0.02
ED 0.56 4 0.00 -

UT(x 10%) 2.26 +0.01 2.36 £ 0.01

Hopper3d HV(x 101 1.08 + 0.00 1.15+0.00
ED 0.20 + 0.01 -

UT(x 10%) 3.59 + 0.06 3.43+0.22

Ant3d HV(x 101 4.20 + 0.04 4.18 +0.04
ED 0.60 & 0.00 -

UT(x 10%) 2.93 £0.07 8.13 £ 0.01
Humanoid2d HV(x 107) 1.06 £ 0.01 1.75 £ 0.02
ED 0.33 £ 0.01 -

UT(x10%) 0.93 £0.04 1.11 £ 0.00
Humanoid5d HV(x10'?) 6.64 +0.09 6.99 £ 0.06
ED 0.43 +0.01 -

C.2.3 EXPERIMENTS ON AUXILIARY LOSS
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Table 15: Empirical study on z dimension on Hopper3d.

z dimension Metrics MORL-FB
UT(x 10%) 221 40.01

30 HV(x 10')  1.03 £ 0.05
100 UT(x 10%) 2.2540.00
HV(x 10'") 1.13 £0.01
150 UT(x 10%)  2.36 +0.01
HV(x 10  1.15 £ 0.00

3
300 UT(x 10%)  2.01 4+ 0.01

HV(x 10'%)  0.97 + 0.02

While [Touati et al.| (2023) also includes a similar auxiliary loss, there is one salient difference
between theirs and our Q loss Equation (6): As the original FB is designed for RFRL, it does
not have the reward signal available at training and hence needs to construct a pseudo reward as
BTE[BBT]|~'z (cf. Equation (9) in (Touati et al.,[2023)). On the other hand, as MORL-FB ad-
dresses MORL and can observe vector reward signals at training, we propose to use the actual
scalarized reward A" r in the Q loss. While this algorithmic difference appears seemingly subtle,
this design makes a huge difference in the performance. Below we show an ablation study that
compares MORL-FB with our Q loss (denoted as “Original”’) and MORL-FB with the auxiliary
loss using pseudo reward in FB (denoted as “Pseudo Q Loss™). The results are summarized in Ta-
ble[T6] and Fig.[I2] This shows that the auxiliary loss of FB cannot be directly applied and needs
to be adapted properly in the context of MORL. Note that we use the term “auxiliary” since the
original FB is directly built on the measure loss and hence the Q loss is auxiliary for learning FB
representation, rather than being unimportant for MORL.

Table 16: Performance of MORL-FB with and without measure loss.

Environments Metrics MORL-FB MORL-FB MORL-FB
(w/o PG-Explore) (pseudo q loss) (Ours)

Ant3d UT(x 103) 1.45 £ 0.02 1.27 £0.16 3.93 +0.04

HV(x 10'1) 1.25 £ 0.02 1.91 £ 0.02 3.85 + 0.01

C.2.4 EXPERIMENTS ON MEASURE LOSS

Q-loss is surely important in our method as it guides our representation to learn the reward function
used in the environment. On the other hand, both the preference-guided exploration and the measure
loss are also essential to the success of MORL-FB based on Figure 12| and an additional ablation
study on the measure loss shown below.

Table 17: Performance of MORL-FB with and without measure loss.

Environments Metrics MORL-FB MORL-FB MORL-FB
(w/o measure loss)  (w/o q loss) (Ours)

Ant3d UT(x 10%) 1.37 £ 0.28 -1.53 £ 0.00 3.93 + 0.04

HV(x 10'1) 2.74 £+ 0.02 0.00 £ 0.00 3.85+ 0.01
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Figure 12: Evaluation of MORL-FB and its ablated versions across different environments. The
results highlight the importance of preference-guided sampling and the auxiliary Q-loss for MORL
performance.

C.3 PERFORMANCE COMPARISON OF MORL-FB AND BASELINES ON DISCRETE CONTROL
TASKS

Figure |1;§| shows the performance of all the methods in UT, HV, and ED for discrete control tasks.
Regarding ED, for each baseline algorithm ALG, we report ED(ALG, MORL-FB) to show the pair-
wise comparison. We can observate that MORL-FB consistently achieves competitive or superior
performance across all three metrics on the discrete control tasks Deep Sea Treasure and Fruit Tree
Navigation.

Deep Sea Treasure Fruit Tree Navigation

= e ————————

I
6 _ 4 -

0.0 0.0
= PD-MORL MORL/D SFOLs - Optimal
N EQL PCN B MORL-FB (Ours)

Figure 13: Competitive Results of MORL-FB on Discrete Control Tasks. We evaluate MORL-
FB and several benchmark MORL algorithms on classic discrete control tasks in MO-Gymnasium.
Performance is measured using UT, HV and ED. MORL-FB demonstrates competitive results
against specialized discrete MORL algorithms.
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C.4 PERFORMANCE COMPARISON OF MORL-FB UNDER STATE-ACTION-BASED REWARDS
AND STATE-BASED REWARDS

In this paper, we primarily focus on state-based rewards. However, as the original FB supports both
state-based (Touati et al.l[2023)) and state-action-based rewards (Touati & Ollivier,[2021), MORL-FB
can also be extended to state-action-based rewards by replacing B(s) with B(s, a). Since some MO
MuJoCo rewards depend on both states and actions, we compare MORL-FB and the extended one.
As shown in the Figure [T4] the state-action-based variant yields slight performance improvements
on several tasks.

Walker2d Hopper3d Ant3d
2000 5000 3000
1500
uTn? 2000
1000 1000
500 1000
0 0 0
le7 lell lell
4 1.00 4
Hyt 3 0.75 3
2 0.50 2
1 0.25 1
0 0.00 0

EE state-action based WM state based

Figure 14: Evaluation of MORL-FB with different reward function representations. This figure
presents the performance of MORL-FB when reward functions depend on states only (i.e., R(s))
versus state-action pairs (i.e., R(s,a)).

C.5 PERFORMANCE COMPARISON OF MORL-FB UNDER STOCHASTIC REWARDS

As vanilla FB naturally handles stochastic rewards, MORL-FB inherits this capability. To further
demonstrate this, we evaluated MORL-FB under stochastic rewards by adding zero-mean Gaussian
noise AV (0, o2), similar to prior work (Romoff et al.l 2018} Hu et al.l 2022). The result is shown in

Figure[15]
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Figure 15: Evaluation of MORL-FB under stochastic reward. This figure assesses the perfor-
mance of MORL-FB in environments featuring stochastic reward functions.
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C.6 PERFORMANCE COMPARISON OF MORL-FB WITH NONLINEAR SCALARIZATION

While we focus on linear scalarization in this paper, MORL-FB can be readily extended to nonlinear
scalarization schemes by replacing r ' A with fy () when sampling z for preference-guided explo-
ration and when computing Q loss, where f)(r) is the general scalarization function. This is feasible
since the original FB is designed to handle any scalar reward function, and MORL-FB inherits this
property from FB and can also handle nonlinear scalarization. To demonstrate this generalizability,
we further evaluate MORL-FB on Halfcheetah2d by training under smooth Tchebycheff scalariza-

tion as f(r) = ulog (Z:’;l exp (W) ), where \; = is the i-th entry of preference vector,

(4 is the smoothing parameter and set to 0.1, and r,.. is set to [2.0, 0.0] across training (Lin et al.,
2024;|Q1u et al.; [2024). We see that MORL-FB still achieves comparably strong performance in HV
and UT under nonlinear scalarization.

Table 18: Performance of MORL-FB with Smooth Tchebycheff scalarization.

Environments Metrics MORL-FB MORL-FB
(linear scalarization)  (Smooth Tchebycheff scalarization)

UT(x 10%) 7.69 + 0.08 6.33 +0.02

HalfCheetah2d g 0y 1.24 4 0.00 1.00 £ 0.01

C.7 SAMPLE EFFICIENCY OF MORL-FB

We demonstrate the sample efficiency of MORL-FB by evaluating its performance at an intermedi-
ate stage of 1.5M training steps. Notably, as shown in Figure [[6] MORL-FB achieves superior HV
and UT scores across most tasks compared to baseline methods trained for a full 3M steps. This
indicates that MORL-FB can attain high performance with significantly fewer environment interac-
tions. Further evidence, presented in Figure|17|and Figure corroborates that MORL-FB reaches
proficient performance levels with reduced training data.

C.8 CROSS-OBJECTIVE TRANSFER CAPABILITY OF MORL-FB

To investigate how well MORL-FB handles transfer across different numbers of objectives, we con-
ducted an empirical study on Hopper across different objective dimensions. We analyze the follow-
ing cases:

* Hopper2d: Moving forward speed on x-axis, Control cost of the action

* Hopper3d: Moving forward speed on x-axis, Jumping height on z-axis, Control cost of the
action

* Hopper4d: Moving forward speed on x-axis, Jumping height on z-axis, Jumping up speed
on z-axis, Control cost of the action

Table [I9) summarizes the quantitative results presented visually in Figure[7] MORL-FB consistently
outperforms FB across all configurations in terms of utility and hypervolume.

C.9 RFRL AS A SOURCE OF AUXILIARY TASKS

During training, the z vectors computed for each preference A are diverse, covering both CCS and
non-CCS policies. Learning from non-CCS policies serves as auxiliary tasks. From Figure [I9] we
find that the return vectors achieved by those z-induced polices at the 1.5 million training step span
both non-CCS and CCS regions.
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Figure 16: Performance of MORL-FB on continuous control tasks. We evaluate MORL-FB
(1.5M training steps) against several benchmark MORL algorithms (3M training steps) on diverse
continuous control tasks from MO-Gymnasium. Utilizing key metrics, these results demonstrate
that MORL-FB outperforms baselines, achieving superior HV and UT across most tasks despite
significantly fewer training steps.
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Figure 17: Learning curves for MORL-FB
and benchmark algorithms on Ant3d. This
figure presents the learning curves in terms of
Hypervolume (HV) for MORL-FB and sev-
eral benchmark MORL algorithms evaluated on
Ant3d.

Figure 18: Learning curves for MORL-FB
and benchmark algorithms on Ant3d. This
figure presents the learning curves in terms of
Utility (UT) for MORL-FB and several bench-
mark MORL algorithms evaluated on Ant3d.

C.10 COMPARISON OF PARETO FRONTS

To evaluate the sample efficiency of MORL-FB, we conduct experiments on 2-objective MuJoCo
tasks with a whole range of 21 preference vectors ([0.0, 1.0], [0.05, 0.95], [0.1, 0.9], -, [1.0, 0.0]).
As a comparison baseline, we consider SORL which trains a separate policy for each individual
preference. Each single-object SAC (SOSAC) model requires 3M steps, resulting in a total training
budget of 63M steps for all 21 preferences. By contrast, MORL-FB only uses 3M steps in total to
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Table 19: Zero-shot cross-objective transfer from Hopper2d to Hopper3d and Hopper4d using
vanilla FB and MORL-FB: This figure presents the results demonstrating effective transfer by

MORL-FB, supporting the efficacy of its proposed enhancements.

Environments Metrics FB MORL-FB

UT(x 10%)  0.0240.00 1.77 & 0.00

2D to 3D HV(x 109 0.40 +£0.00 7.81+ 0.06
ED 0.07 +0.03 -

UT(x 10%)  0.06+0.00 1.59 & 0.00

2D to 4D HV(x 10'3) 0.05+0.00 7.78+0.10
ED 0.05 + 0.01 -
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Figure 19: Return vectors (Moving Speed vs. Energy Cost) achieved at the initial, intermediate,
and final training stages in Walker2d with preference [0.7, 0.3]: The scatter plot, particularly at
1.5M steps, highlights the diverse policies beyond the CCS policy, supporting that RFRL serves as
auxiliary tasks beneficial for MORL.

learn policies that generalize across the entire preference set. Figure [20[ shows the return vectors
attained by MORL-FB and the collection of 21 SOSAC models on the Walker2d task. MORL-FB
achieves comparable or even superior return vectors with only 1/21 of the samples, demonstrating
its strong sample efficiency and generalization ability across diverse preference vectors.
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Figure 20: Return vectors (Moving Speed vs. Energy Cost) achieved under 21 different preference
vectors [0, 1], [0.05,0.95],. .., [0.95,0.05], [1, 0] across different methods. Each scatter cloud corre-
sponds to the learned policies under a specific preference, illustrating how MORL methods adapt to
diverse trade-offs between objectives.
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C.11 ROBUSTNESS UNDER WORST-CASE PREFERENCES

Beyond average performance metrics, it is crucial to assess the robustness of multi-objective rein-
forcement learning (MORL) algorithms under unfavorable preference settings. In practice, poli-
cies deployed in dynamic environments may encounter user preferences that significantly diverge
from those seen during training. To capture this aspect, we evaluate each method under worst-case
preferences using the Conditional Value-at-Risk (CVaR). Following the risk-sensitive reinforcement
learning formulation of [Tamar et al.|(2015)), we compute CVaR@0.1 as the mean of the lowest 10%
scalarized returns. Specifically, for each algorithm we uniformly sample 500 preference vectors,
apply linear scalarization to obtain utility values, sort the results, and average the worst 10%. This
quantifies the expected return conditioned on being in the lowest a-quantile:

$(0) =E°[R| R < va(9))], (11)

Table 20| reports CVaR @0.1 across HalfCheetah2d and Walker2d. MORL-FB achieves the highest
CVaR in both environments, significantly outperforming prior baselines. These results indicate
that MORL-FB not only excels on mean metrics but also demonstrates superior robustness against
adverse preferences, avoiding catastrophic failures more effectively than existing methods.

Table 20: CVaR@0.1 performance across HalfCheetah2d and Walker2d. Higher is better.

Algorithm HalfCheetah2d Walker2d
PD-MORL 242591 284.89
Q-Pensieve 6275.89 1516.20
CAPQL 4874.64 1297.40
PGMORL 2630.02 1113.49
MORL/D 407.66 40.47
PCN -0.11 98.28
SFOLS 1390.73 402.19
GPI-LS 3884.67 1546.96
GPI-PD 3999.36 276.74
MORL-FB (Ours) 7123.87 2304.02

C.12 COMPUTATIONAL COST ANALYSIS

To provide a fair and comprehensive comparison of computational efficiency, we evaluated all meth-
ods under the same hardware environment. Each algorithm was trained for 100K environment steps
on a workstation equipped with a single NVIDIA RTX 4090 GPU, an Intel Core i7-13700K CPU,
and 64 GB of system memory. Table 21| reports the total wall-clock time required by each method,
ensuring a fair comparison of time and resource usage across methods. Compared to strong base-
lines such as PD-MORL, Q-Pensieve, and GPI-LS, FB-MORL maintains a reasonable training time.
While some methods require higher computational costs, our approach strikes a good balance be-
tween performance and efficiency.

C.13 DETAILED EXPERIMENTAL RESULTS OF SECTION[4]

In this part, we will provide the table we use on plotting the bar chart on Section 4]

The results in Tables[22]to[25]correspond to the visualizations shown in Figure[2} Figure[d] Figure[12]
and Figure 13| respectively.
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Table 21: Wall-clock time comparison (100K steps).

Algorithm Wall-Clock Time (seconds)
PD-MORL 1166
CAPQL 3369
MORL/D 793
SFOLS 550
Q-Pensieve 12960
PGMORL 4237
PCN 4445
GPI-LS 3611
GPI-PD 5237
MORL-FB (Ours) 1874

Table 22: Performance of MORL-FB and benchmark algorithms in discrete MORL environments.

Environments Metrics PD-MORL Envelope PCN MORL/D SFOLS MORL-FB  Optimal
(w/i interpolator) (Ours)
UT 0.52 £+ 0.00 6.53+£0.00 6.12+095 388+026 5.65+095 643+0.10 6.89
Deep Sea Treasure HV(x10?) 9.33 £0.00 9914+000 871+£149 563+041 846=+0.01 9.9240.00 9.92
ED 0.69 £ 0.00 0.77£0.00 0.81£0.01 0.15£0.10 0.25=+0.00 - -
uT 5.03 £ 0.00 5.07£0.00 5.00£0.02 4.19+0.03 4.77+0.01 5.01+0.01 5.08
Fruit Tree Navigation HV(x10%) 1.25 £ 0.00 1.16 £0.00 1.01 £0.06 0.18+0.05 0.87+0.01 1.16+0.01 1.25
ED 0.76 £ 0.01 095£0.00 0.72£0.03 0.0l£0.01 0.08=+0.01 - -

Table 23: Performance of MORL-FB, PD-MORL, and Q-Pensieve under constrained preference
training.

Environments Metrics PD-MORL Q-Pensieve =~ MORL-FB

UT(x 103)  1.054+0.02 1.72+0.01 2.26 + 0.01
Hopper3d HV(x 10'1)  0.61+0.01 0.88+001 116+ 0.01

ED 0.01 £0.00 0.11 £0.00 -

UT(x 10%) 1.69+0.04 049 +0.02 3.11+0.24

Ant3d HV(x 101) 218 4£0.03 0.51£0.00 3.17 £ 0.05
ED 022+0.02 0.26 £ 0.04 -

UT(x 10%) -0.044+0.00 4.5140.38 8.1940.03
Humanoid2d ~ HV(x 107)  0.06 +0.00 1.514+0.04 1.83+0.01
ED 0.00 £0.00 0.40 +0.05 -

Table 24: Performance comparison of MORL-FB and its ablated versions across environments.
This table evaluates MORL-FB against variants lacking preference-guided exploration or the Q-loss
component, showing their performance across different environments.

Environments Metrics MORL-FB MORL-FB MORL-FB
(w/o preference-guided exploration)  (w/o q loss)

Hopper3d UT(x 10%) 2.03 +£0.42 033 +£0.07 2.36 = 0.00
pp HV(x 10'1) 0.91 + 0.02 044 £0.02 115+ 0.01
Ant3d UT(x 103) 1.23 £ 0.03 -1.01 £0.01 3.43+0.22
HV(x 10') 1.47 £ 0.03 0.06 = 0.00 4.18 £+ 0.04

Humanoid2d UT(x 10%) 2.38 +0.30 -1434+0.14 8.13 + 0.01
HV(x 107) 1.78 & 0.00 096 +0.00 1.75 £ 0.02
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We also evaluated the probability of improvement (POI) between MORL-FB and the benchmark
algorithms suggested by [Agarwal et al (2021) in Figure [21] POI quantifies the likelihood that one
algorithm will outperform another. The results demonstrate that MORL-FB consistently achieves
superior performance compared to baselines.

Additionally, we assessed the performance of training with constraint preferences using the method
from [Agarwal et al] (2021)), presented in Figures 22)and 23]

Algorithm X Algorithm Y
GPI-PD | MORL-FB (Ours)
GPI-LS | MORL-FB (Ours)

FB I MORL-FB (Ours)
SFOLS I MORL-FB (Ours)
PCN I MORL-FB (Ours)
MORL/D | MORL-FB (Ours)
PGMORL 1 MORL-FB (Ours)
CAPQL = | MORL-FB (Ours)
Q-Pensieve i MORL-FB (Ours)
PD-MORL m MORL-FB (Ours)

0.6 0.7 0.8 0.9 1.0

P(X <Y)

Figure 21: Probability of Improvement (POI) of MORL-FB against benchmark algorithms.
This figure illustrates the POI of MORL-FB relative to various benchmark MORL algorithms.

Median IQM Mean
MORL-FB (Ours) N il m
Q-Pensieve I I I
PD-MORL N il u

04 06 08 1.0 04 0.6 0.8 04 06 08 1.0
Normalized Weighted Reward

Figure 22: Medium, IQM, and Mean performance of MORL-FB and benchmarks trained with
small preference sets. This figure displays the Median, Interquartile Mean (IQM), and Mean per-
formance for MORL-FB and other benchmark algorithms, trained with only a small set of preference
vectors.

Algorithm X Algorithm Y
Q-Pensieve MORL-FB (Ours)
PD-MORL MORL-FB (Ours)

0.5 0.6 0.7 0.8 09 1.0
P(X <)

Figure 23: Probability of Improvement (POI) of MORL-FB under constrained preference
training. This figure illustrates the POI of MORL-FB relative to other benchmark algorithms, all
trained with specific constraint sets of preference vectors.
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D RELATED WORK ON REWARD-FREE REINFORCEMENT LEARNING

Among the studies in the RFRL literature, (Barreto et al.,[2017;Borsa et al.|[2019} Touati & Ollivier,
2021} Touati et al.| [2023) are the most relevant to our work. Firstly, one common reward-free set-
ting is to learn policies for all reward functions that are linear combinations of a finite set of known
features. (Barreto et al.| [2017) proposed the successor features (SF), which reflect the state-action
occupancy of a policy and can be viewed as an extension of the classic successor representation
(Dayan, [1993)). By design, SFs enable fast policy evaluation and can be followed by generalized
policy improvement to generate a well-performing policy for any reward function. Subsequently,
(Borsa et al) [2019) extended the SFs by decoupling the policy and task description for better rep-
resentational flexibility. That said, one known limitation of SFs and its variants is the need for a
set of pre-defined features, which can be difficult to construct in practice. To address the above
issue, (Touati & Ollivier, [2021) proposed a low-rank model termed the forward-backward (FB)
representations, which capture the state-action occupancy of the optimal policies by learning the re-
quired features directly from data. The FB framework has been implemented and validated for both
reward-free discrete control (Touati & Ollivier, 2021)) and continuous control (Touati et al., [2023)).

RFRL can also achieve provably efficient exploration without using any reward information, in both
tabular settings (Jin et al., [2020; |Kaufmann et al., 2021; Ménard et al., 2021; [Wu et al., 2022)) and
under function approximation (Qiu et al.,[2021; Wagenmaker et al.,|2022; Wang et al.,2020; Zanette
et al.,|2020; |Zhang et al.l |2021)). Inspired by the RFRL literature, we propose to rethink MORL via
RFRL and adapt the FB method to boost the sample efficiency and generalization in MORL.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were employed exclusively for language editing and polishing of
the manuscript. They were not used for designing methods, conducting experiments, or analyzing
results.
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