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Abstract

Invariant Causal Prediction provides a framework for domain (or out-of-
distribution) generalization – predicated on the assumption of invariant causal
mechanisms that are constant across the data distributions of interest. Accordingly,
given a sufficient number of distinct training distributions, the Invariant Risk Min-
imization (IRM) objective was proposed to learn this stable structure. However,
recent work has identified the limitations of IRM when extended to data-generating
mechanisms that are different from those considered in its formulation. This work
considers a chain generative process where domain-specific exogenous factors
influence all features – but the target is free of direct domain-specific influences.
We propose a target conditioned representation independence (TCRI) constraint,
which enforces the mediative effect of the observed target with respect to the causal
chain of latent features we aim to identify. We empirically show a setting where
this approach outperforms both Empirical Risk Minimization (ERM) and IRM.

1 Introduction
Domain generalization aims to develop models that generalize to any arbitrary distribution, provided
that the distribution is structured in some expected way. A strategy that has recently received much
attention is Invariant Causal Predictions (ICP; (Peters et al., 2016)), which assumes that while some
aspects of the data distributions may vary across domains, the causal structure (or data-generating
mechanisms), are the same. One approach that follows this strategy is Invariant Risk Minimization
(IRM; (Arjovsky et al., 2019)), which proposes an objective that aims to learn a feature representation
that yields a shared optimal linear predictor across domains1. Like other works (Rosenfeld et al.,
2020), we observe settings where IRM fails to recover said predictor and propose an alternative
learning strategy in these settings. In particular, we impose a different Markov property than IRM,
motivated by the assumed chain data generating mechanism and show empirically that it leads to a
more domain-general predictor than ERM and IRM in the linear Gaussian setting.

Contributions. This work considers the chain generative process where the estimand mediates
a set of causal (predecessor) and anticausal (successor) features that are exogenously influenced
by domain-specific factors – the target, however, is free of direct domain-specific influences. We
show empirically that IRM fails under this data-generating process. Instead, we propose a target
conditioned representation independence (TCRI) constraint, which enforces the mediative effect
of the observed target on the causal chain of latent features we aim to identify. We show that
this approach outperforms both Empirical Risk Minimization (ERM) and IRM in the average and
worst-case on new test distributions.

2 Related Work
Machine learning algorithms are evaluated by their ability to generalize, i.e., generate reasonable
predictions for unseen examples. Often, learning frameworks are designed to exploit some shared

1Domain and environment are used interchangeably
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Figure 1: Graphical model depicting the structure of our data generating process - shaded nodes
indicate observed variables. X represents the observed features, Y represents observed targets, and
e represents domain influences. There is an explicit separation of domain-general (causal) Zc and
domain-specific (anticausal) Ze features, causal, and anticausal, respectively.

structure between the examples available during learning and expected examples in the wild. Thus, a
common structural assumption is that the training and testing examples are drawn independently and
from the same distribution, i.e., independent and identically distributed (iid). Given the iid assumption,
Empirical Risk Minimization (ERM; (Vapnik, 1991)) and its variants give strong generalization
guarantees and are effective in practice. Nevertheless, many practical problems are non-stationary
with respect to the train and test domain, and ERM can fail catastrophically under this setting.
To address this limitation, many works have developed theories and practices for learning under
distribution shift. Still, dealing with this task remains a challenge.

Following the ICP strategy (Peters et al., 2016), Arjovsky et al. (2019) propose an objective for
learning representations ϕ of features x which, when conditioned on, yields a distribution on targets
y that is consistent with the observed domain, that is y|ϕ(xei) ∼ yei for all domains ei. The
successors of this work impose stronger assumptions of invariance, such as on higher-order conditional
moments (Krueger et al., 2021). However, Rosenfeld et al. (2020) provides analysis of IRM for
classification and shows a generative model where the IRM objective can fail to recover the optimal
invariant predictor. They also provide the necessary conditions for IRM to work, which are difficult
to satisfy in practice.

Other works have defined domain generalization by a notion of extrapolation and find that ERM
remains optimal in the linear regime (Rosenfeld et al., 2021). However, there are many critical
problems, such as healthcare, where robustness to worst-case distribution shifts is vital. In such
settings, their notion of extrapolation only characterizes a subset of potential extrapolations.

3 Model
We consider the causal graph in Figure 1 and the equivalent structural equation model (or structural
causal model (SCM 1; (Pearl, 2010)). We assume that the observed data is drawn from a set of
Etr training domains Etr = {ei : i = 1, 2, . . . , Etr}, all generated from SCM 1, thereby fixing the
mechanisms by which the observed distribution is generated:

SCM(e) :=


z
(e)
c ∼ P

(e)
Zc
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(
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)
+ ϵ where ϵ ⊥⊥ z

(e)
c ,

z
(e)
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(
y(e)

)
+ η(e) where η(e) ⊥⊥ y(e),

(1)

where PZc is a probability distribution, and fy, fze are generative mechanisms of y and fze ,
respectively. Consequently, these mechanisms are invariant across domains, i.e., µei(y | zc) =
µ(y | zc) and µei(ze | y) = µ(ze | y)∀ei ∈ E , where E is the set of all possible domains.

Under the Markov assumption, we can immediately read off some properties of any distribution
induced by the data generating process shown in Figure 1: (i) e ⊥⊥ Y |Zc, (ii) Zc ⊥⊥ Ze |Y, e,
and (iii) Y ̸⊥⊥ e |X . We consider the asymptotic setting, thus we can avoid any finite sample
effects. It follows that a feature transformation that yields causal variables is sufficient to obtain
a domain general predictor, though it may not be the unique or globally optimal solution on a
given set of training distributions. Furthermore, as shown in Figure 1, we observe an unknown
function of the latent variables zc and ze, x = h(zc, ze). Generally, µei(y | ze) ̸= µej (y | ze) and
µei(y | zc, ze) ̸= µej (y | zc, ze) for i ̸= j, so µei(y |x) ̸= µej (y |x).
In the following sections, we will identify when invariance on the train environments implies
invariance on the test environments under these model assumptions.
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4 Feature Representations
One proposed approach to exploit this assumed generative model is Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019), which attempts to learn a mapping Φ : X 7→ H (observed feature
space to a latent feature space) from which an invariant predictor θ : H 7→ Y (latent feature space to
the target feature space) can be learned by directly optimizing the following objective:

min
Φ,θ

∑
ei∈Etr

Rei(θ ◦ Φ) + λ∥∇θRei(θ ◦ Φ)∥2,

where Re is the environment (e) dependent risk.

We empirically show that this objective does not recover an invariant predictor when the data is
generated according to SCM (1).

The IRM objective exploits one Markov property of the data generating process, namely Y ⊥⊥ e |Zc.
However, this objective alone is not enough to obtain a representation with an optimal invariant
predictor – typically because there exist invariant predictors under the training distributions that
use anticausal features and do not generalize on test distributions. We propose to enforce another
Markov property of the graph instead, Zc ⊥⊥ Ze|Y, e, which we call target conditioned representation
independence (TCRI). A representation satisfying TCRI cannot use both causal and anticausal
features because the two sets are 2d-separated by the target. Thus, enforcing this criterion restricts the
feasible solutions to representations that strictly use Zc or Ze. Based on this, we can design models
aimed at learning Zc.

We aim to learn a domain-general representation Φ, a domain-specific representation Ψ, where
Φ(X) ⊥⊥ Ψ(X) |Y ∀ei ∈ Etr. Clearly, Ψ(X) ∼ noise satisfies this property, so we also need
additional constraints on Ψ. The natural constraint is that Ψ should yield a representation on which a
non-trivial domain-specific predictor can be learned – meaning that the feature transformation by Φ
is correlated with y.

5 Method
Our proposed objective contains three terms, each related to the properties desired of the learned
representations, as follows,

L = LΦ + βLΨ + ρTCRI, (2)
where β and ρ are hyperparemeters.

We let LΦ be the average empirical risk generated by Φ, θc across training distributions, where
Φ : X 7→ HΦ, θc : HΦ 7→ Y . This term aims to learn a representation that yields a good linear
predictor on average across training distributions:

LΦ =
1

Etr

∑
ei∈Etr

Rei (θc ◦ Φ) ,

where Rei denotes the empirical risk achieved on domain ei.

We also learn a domain-specific representation Ψ, which is constrained to be (i) conditionally
independent of our (fixed) domain-general representation given the target and environment, and (ii)
amenable to a good domain-specific predictor. We save discussion of (i) for later in this section.
With respect to (ii), given a domain-specific representation, Ψ : X 7→ HΨ, we define a set of
domain-specific predictors {θei : HΨ 7→ Y : i = 1, . . . , Etr}. We enforce that Ψ maps to a feature
space from which a good domain-specific linear predictor can be learned:

LΨ =
∑

ei∈Etr

Rei (θei ◦Ψ) .

To enforce conditional independence between the invariant and variant representation, given the
outcome, we consider the Hilbert-Schmidt Independence Criterion (HSIC). We first remove the effect
of the outcome Y (ei) from both representations Φ(X(ei)) and Ψ(X(ei)) – by regressing it out for
continuous Y .

We use the V-statistic-based HSIC estimate, as an independence test on these residuals, for the TCRI
constraint (more details on HSIC can be found in Gretton et al. (2007)). For two generic random

2Random variables X,Y are said to be d-separated by Z if X ⊥⊥ Y |Z.
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Table 1: Relative ratio of mean squared error, computed as Algorithm
ERM . Unlike accuracy, the raw metrics

are uninformative, so we elect to illustrate relative performance via these ratios, using Empirical
Risk Minimization (ERM) as a baseline. Smaller ↓ is better. We compute the error for each domain
independently. Average here refers to the average error across observed domains, with respect to both
the train and test set. Worst Case similarly refers to the largest error on a single domain.

Algorithm Average Worst Case

Train Test Train Test

ERM baseline

IRM 1.08 1.24 1.92 2.16

TCRI (ours) 1.38 1.20 0.16 0.11

causal (oracle) 1.29 1.13 0.11 0.06

variables X, Y for which we want to determine independence (X ⊥⊥ Y ?), define

ĤSIC(X,Y ) =
1

n2
trace(KXX′HnKY Y ′Hn),

where KXX′ ∈ Rn×n, KY Y ′ ∈ Rn×n are Gram matrices, Ki,j
XX′ = ϕ(Xi, Xj), K

i,j
Y Y ′ = ψ(Yi, Yj),

Hn = 1
nInI

⊤
n is a centering matrix, In is the n × n dimensional identity matrix, 1n is the n-

dimensional vector whose elements are all 1, and ⊤ denotes the transpose. Alternatively, one may
use the conditional cross-covariance when appropriate (linearity and Gaussianity). For three generic
random variables X, Y Z for which we want to determine conditional independence (X ⊥⊥ Y |Z?),
define

ΣX,Y |Z = ΣXY − ΣXZΣ
−1
ZZΣY Z .

All together, the objective function (2) is given by:

min
Φ,Ψ,θc,θ1,θ2,...,θEtr

∑
ei∈Etr

[Rei (θc ◦ Φ) + βRei (θei ◦Ψ) + ρTCRIei (Φ,Ψ)] , (3)

where TCRI may be given by ĤSIC or the norm of the conditional cross-covariance.

After minimizing this objective, only the invariant representation and its predictor, θc ◦ Φ, are used
for prediction.
Remark 1. (Representations induced by TCRI) It is not clear that Φ and Ψ are distinguishable in
general. It may be possible to find Ψ, strictly using Ze, that yields a better invariant predictor than
the corresponding Φ strictly using Zc. However, we did not observe such a case in our experiments.

6 Experiments
We present results on a simulated Linear Gaussian SEM. Additional evaluation is left for an extended
version. We keep the same structure as the SCM (1) where

z(e)c ∼ N
(
0, (σ2

c )
eIdc

)
, fy(zc) = z(e)c α, fze(y) = y(e)γ

ϵ ∼ N
(
0, (σ2

ϵ )
(e)

)
, η ∼ N

(
0, (σ2

η)
(e)Ide

)
.

We generateEtr andEte environments, train and test respectively. We let h(zc, ze) be a concatenation
of the two features sets and let all functions be linear, Φ,Ψ : Rdc+de 7→ R – where dc, de are the
dimensions of the causal and anticausal latent variables respectively. We also let θc, θe : R 7→ R but
fix θc : θ(x) 7→ x to be a dummy predictor. We also use mean square error as our loss function and
the l − 1 norm of the conditional cross-covariance as the TCRI constraint.

We delineate environments via parameters (σ2
ϵ )

(ei) = ei, (σ
2
η)

(ei) = ei · Ide
, where I is identity,

and set all other model parameters to one, i.e., α = [1]dc and γ = [1]de . We let dc = de = 1,
then randomly select Etr = 2 environment parameters, etr1 , e

tr
2 ∈ [1, 3], and select Ete = 100 with

ete1 , . . . , e
te
100 ∈ [3, 20] as the testing environment parameters – 20 is arbitrarily chosen to capture the
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behavior of error w.r.t environment parameters. We choose Etr = 2 to show the limiting case of
minimal training environments and dc = de = 1 to more clearly examine the feature transformation.

We find that the general trends of relative errors shown in Table 1hold for any arbitrary selection
of train and test distributions parameters. The IRM approach outperforms both TCRI and the true
causal model on average across all observed training distributions; however, it necessarily exploits
the non-domain general feature to do this – having a higher coefficient for the anticausal dimension
compared to the others. In new environments, however, IRM yields greater error than ERM, matching
existing results, e.g., Rosenfeld et al. (2020). Our proposed TCRI constraint and the true causal
model perform best on new test distributions in both average and worst cases. In our experiments,
TCRI did not always recover the exact causal parameters; however, it consistently yielded a closer
model than IRM.

7 Conclusion and Future Work
Domain (out-of-distribution) generalization remains an essential and unsolved task, and Invariant
Causal Prediction continues to be a promising strategy to achieve this. We exploit the mediative effect
of the target on the causal and anticausal features from the assumed causal chain data-generating
mechanism and propose an objective function that enforces this property as a means to learn a feature
representation that maps to the domain-general causal features. We empirically show this method
outperforms Empirical Risk Minimization (ERM) and Invariant Risk Minimization (IRM) in the
scalar linear Gaussian SCM setting when considering average and worst-case error on new test
distributions. Our future work includes more empirical evaluation of a variety of real-world datasets.

References
Martín Arjovsky, L. Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.

ArXiv, abs/1907.02893, 2019.

A. Gretton, K. Fukumizu, C. Teo, Le Song, B. Schölkopf, and Alex Smola. A kernel statistical test of
independence. In NIPS, 2007.

David Krueger, Ethan Caballero, J. Jacobsen, A. Zhang, Jonathan Binas, Rémi Le Priol, and Aaron C.
Courville. Out-of-distribution generalization via risk extrapolation (rex). In ICML, 2021.

J. Pearl. Causal inference. In NIPS Causality: Objectives and Assessment, 2010.

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical Society. Series
B (Statistical Methodology), pages 947–1012, 2016.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. The risks of invariant risk minimization.
arXiv preprint arXiv:2010.05761, 2020.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. An online learning approach to interpola-
tion and extrapolation in domain generalization. arXiv preprint arXiv:2102.13128, 2021.

Vladimir Vapnik. Principles of risk minimization for learning theory. In NIPS, volume 91, pages
831–840, 1991.

5


	Introduction
	Related Work
	Model
	Feature Representations
	Method
	Experiments
	Conclusion and Future Work

