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ABSTRACT

In this work, we present Multi-Level Contrastive Learning for Dense Prediction
Task (MCL), an efficient self-supervised method to learn region-level feature rep-
resentation for dense prediction tasks. This approach is motivated by the three
key factors in detection: localization, scale consistency and recognition. Consid-
ering the above factors, we design a novel pretext task, which explicitly encodes
absolute position and scale information simultaneously by assembling multi-scale
images in a montage manner to mimic multi-object scenario. Unlike the existing
image-level self-supervised methods, our method constructs a multi-level con-
trastive loss by considering each sub-region of the montage image as a singleton
to learn a regional semantic representation for translation and scale consistency,
while reducing the pre-training epochs to the same as supervised pre-training. Ex-
tensive experiments show that MCL consistently outperforms the recent state-of-
the-art methods on various datasets with significant margins. In particular, MCL
obtains 42.5 APbb and 38.3 APmk on COCO with the 1x schedule and surpasses
MoCo by 4.0 APbb and 3.1 APmk, when using Mask R-CNN with an R50-FPN
backbone pre-trained with 100 epochs. In addition, we further explore the align-
ment between pretext task and downstream tasks. We extend our pretext task to su-
pervised pre-training, which achieves a similar performance with self-supervised
learning, demonstrating the importance of the alignment between pretext task and
downstream tasks.

1 INTRODUCTION

A generic large-scale supervised pre-training is a critical auxiliary task for computer vision commu-
nity to progress, like ImageNet(Deng et al., 2009) pre-training, which has been confirmed by many
works (Erhan et al., 2010; He et al., 2019; 2017; Lin et al., 2017; Qiao et al., 2021; Ren et al., 2015;
Sohn et al., 2020). Downstream tasks benefit from initializing the model with pre-trained weights,
for faster convergence and better generality. Recently, many advances are driven by instance dis-
crimination tasks based on self-supervised learning (SSL), without relying on semantic annotations.
They achieve the state-of-the-art results on the challenging ImageNet dataset under the k-NN and
linear probing evaluation policy. Despite their advanced performance on classification tasks, some
recent works (Pinheiro et al., 2020; Wang et al., 2021; Wei et al., 2021; Xie et al., 2021b; Yang
et al., 2021) observe that these methods share a common fundamental weakness: The image-level
representation learning doesn’t transfer well to dense prediction tasks, such as object detection and
instance segmentation. Furthermore, the success of state-of-the-art methods (Caron et al., 2020;
Chen et al., 2020a; Grill et al., 2020; He et al., 2020; Hénaff et al., 2021) requires several times more
training epochs than the supervised pre-training counterpart.

Different from ImageNet classification task, whose scale of objects varies in a small range, most
object detection datasets have a large scale variation across object instances. Besides, the bounding
boxes are required to be located precisely. Therefore, an ideal detector is supposed to be scale
consistent to object instances and encode position information precisely. Pixel-level SSL methods
(Liu et al., 2020; Wang et al., 2021) considers the spatial structure information as shown in Fig. 1(a).
The pretext tasks treat each pixel in an image as a single instance and encourage the model to
distinguish each pixel from others within the image. Unfortunately, the matching rule of positive
pixel pair is based on the transportation cost of feature distance, which does not guarantee a precise
and stable feature target assignment. Object-level SSL methods (Hénaff et al., 2021; Wei et al., 2021)
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Figure 1: (a) Pixel-level methods match positive feature pair based on the transportation cost of feature distance,
which does not guarantee precise assignment. (b) Object-level methods obtain localization by off-the-shelf al-
gorithms, whose predictions are low-quality on non-object-centric dataset. (c) Our method learns regional
representation for precise localization, scale consistency among multi-scale crops and semantic global repre-
sentations. MCL aligns the feature map with the image region among multi-scale views.

focus on the proposals from some off-the-shelf algorithms, such as Selective Search (Uijlings et al.,
2013) and Multiscale Combinatorial Grouping (Arbeláez et al., 2014), as illustrated in Fig. 1(b).
However, the predicted bounding box and segmentation mask are not accurate enough when they’re
pre-trained on the non-object-centric dataset, such as COCO. The low-quality pseudo-labels yield
an inferior result for dense prediction tasks due to the localization noise.

Motivated by the above observations, we propose a novel high-efficient self-supervised learning
framework for dense prediction tasks, called Multi-Level Contrastive Learning (MCL). MCL learns
regional representation for translation, scale and semantic consistency among mutli-scale regions
and global representations. Besides, MCL achieves state-of-the-art transfer performance on the
downstream tasks while reducing the training epochs significantly. We design a montage manner
to assemble multi-scale images into non-overlapping grid for mimicking multi-object scenario. The
montage assembly explicitly encodes the position and scale information of images. A single-level
feature has limited capacity to represent objects with large scale variance. Therefore, we adopt a
scale-aware positive target assignment strategy on different levels of the feature pyramid, which
produces a multi-scale feature representation with strong semantic information. MCL treats each
component image in the montage image as an independent instance and accurately extracts features
from different pyramid levels for contrastive objective, according to the image coordinates, which
bridges the gap between the pretext task and the downstream task. For a further investigation of
the alignment between pre-trained model and finetuned model, we extend our pretext task to super-
vised pre-training, which achieves similar performance with self-supervised pre-training. This result
breaks the empirical conclusion that SSL methods outperform their supervised counterparts in the
downstream tasks (Caron et al., 2020; Chen et al., 2020a;b; Grill et al., 2020; He et al., 2021; 2020;
Purushwalkam & Gupta, 2020; Tian et al., 2020; Yang et al., 2021) and demonstrates the importance
of task alignment.

To evaluate the effect of MCL, we conduct extensive experiments on benchmarks for various dense
prediction tasks. We demonstrate that MCL achieves state-of-the-art transfer performance from the
representation learned on ImageNet and COCO dataset, while significantly reducing the training
epochs, matching the supervised pre-training counterpart on ImageNet. MCL pre-trained on Ima-
geNet with 100 epochs obtains 42.5 APbb and 38.3 APmk on COCO with the standard 1x schedule
(Wu et al., 2019) and surpasses MoCo by 4.0 APbb and 3.1 APmk, using Mask R-CNN with an
R50-FPN backbone. MCL pre-trained on the unlabeled COCO dataset achieves 41.8 APbb and 37.7
APmk, showing that MCL benefits from the multi-level pretext task design rather than the dataset
bias (Purushwalkam & Gupta, 2020).

Our contributions are listed as follows: (1) An efficient self-supervised method, Multi-level Con-
trastive Learning, is designed to align the pretext task with the dense prediction task, improving scale
invariance and localization precision. (2) Montage assembly is introduced in the self-supervised
learning field for the first time to construct a montage image, mimicking multi-scale multi-object
scenarios. (3) Our method achieves state-of-the-art transfer performance on the dense prediction
downstream tasks, such as detection, segmentation, and pose estimation while reducing the pre-
training cost to 100 ImageNet epochs.

2 RELATED WORK

Instance contrastive learning. Instance-level contrastive learning considers each image as a sin-
gleton, only one sample in a class (Bojanowski & Joulin, 2017), which considers two augmented
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views of the same image as positive to be pulled closer, and all other images negative to be pushed
further apart. MemoryBank (Wu et al., 2018) stores previously-computed representation in a mem-
ory bank to compare instances based on noise contrastive estimation. MoCo (He et al., 2020) uses a
momentum encoder to store representation in a temporal manner, allowing the dictionary to be large.
SimCLR (Chen et al., 2020a;b) shows that memory bank is not necessary when the mini-batch size
is large enough. SwAV (Caron et al., 2020) clusters the data while enforcing consistency between
cluster assignments. Besides, SwAV adopts multi-crop data augmentation, which uses a mix of
views with different resolutions in place of two full-resolution views. BYOL (Grill et al., 2020)
and SimSiam (Chen et al., 2020a) explore directly maximizing the similarity between two views
of one image without negative pairs. Despite the success of instance-level contrastive learning on
ImageNet linear probing, instance-wise contrastive learning does not encode position information
explicitly, treating all regions equally. In contrast, MCL views each subimage in the montage image
as a singleton to explicitly encode image localization with high fidelity.

Dense Representation Learning. Dense representation learning predicts at the pixel level, com-
pared with the instance contrastive learning. Recently, some self-supervised learning methods that
learn at pixel level representation are proposed. ULDVR(Pinheiro et al., 2020) learns pixel-wise rep-
resentation by forcing local features to remain constant over different view conditions. DCL(Wang
et al., 2021) optimizes a pairwise contrastive similarity loss at the pixel level between two views
of input images by the Hungarian matching strategy. Self-EMD(Liu et al., 2020) shares a similar
basic idea, but updates the matching strategy to Earth Mover’s distance(Rubner et al., 2000). Pix-
Pro (Xie et al., 2021b) matches the feature pixels by a hand-crafted decision rule. These matching
strategies only implicitly map the localization in feature maps to the euclidean coordinate in the
input image, but do not guarantee a precise feature target assignment. Different from the pixel-level
label assignment, MCL assigns a positive sample by matching the image regions with different sizes
in the montage image on multi-level feature maps. A scale-aware assignment strategy ensures the
precision localization of each feature point.

Object-Level Representation Learning. Both single-stage detector and two-stage detector attend
to a manageable number of candidate object regions and evaluate convolutional networks on each
region. The regions of interest have a rectangular shape and come in different sizes. RoIAlign (He
et al., 2017) is proposed to extract the features of particular regions on the convolutional feature
maps. Following Fast-RCNN (Girshick, 2015), SoCo (Wei et al., 2021) selects the proposal bound-
ing boxes generated from Selective Search (Uijlings et al., 2013) and applies RoIAlign to extract ob-
ject features by constructing multiple augmented views, which is used for contrastive loss. DetCon
(Hénaff et al., 2021) identifies object-based regions with the off-the-shelf approximate segmentation
algorithms (Arbeláez et al., 2014; Felzenszwalb & Huttenlocher, 2004) to produce a semantic mask.
The contrastive detection objective then pulls together pooled feature vectors from the same mask
and pushes apart features from different masks and different images. Whereas, the segmentation
mask and bounding box predicted by the off-the-shelf methods are not accurate enough, incurring
pseudo-label noise, which leads to an inferior result on the non-object-centric dataset. In contrast,
MCL constructs montage images and precisely annotates the localization of each component image.
As a result, MCL maintains a high transfer performance when pre-trained on the COCO dataset.

3 METHOD

Our goal is to learn regional semantic representation and scale consistency without supervision
while keeping a reasonable training epoch. Typically, instance-level SSL methods (He et al., 2020;
Misra & Maaten, 2020) learn occlusion-invariant representations (Purushwalkam & Gupta, 2020).
In this section, we show that the idea of instance discrimination can be applied at the region level
for learning visual representations that generalize well on dense prediction tasks. As illustrated in
Fig. 2, MCL constructs multiple augmented views in different sizes and produces a multi-scale fea-
ture representation in which a contrastive loss is applied across the levels. The montage assembly
guarantees the precision of pseudo bounding box label, which explicitly encodes the absolute po-
sition information. To enhance localization representation learning, we further introduce positional
embedding, injected into the stem feature. To align the pretext task and downstream tasks, all the
network modules in the downstream model are pre-trained to get a well-initialized representation
ability. We also extend our pretext task to supervised pre-training, whose details can be found in
Appendix. A.
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Figure 2: Overview of our method. This figure illustrates MCL with a model, whose FPN contains 3 levels.
The image batch X is processed via the same augmentation pipeline with different random seeds. The images
are downsampled by a factor of 2 and shuffled to construct montage input. The subfigures are multi-scale
and precisely localized. The Positional Embedding is injected into the stem feature by addition operation.
Stem feature is the feature map whose stride is 4. For ResNet-50, the stem feature is the feature map after
the first max-pooling module. The feature pyramid is further ROI-pooled according to the subfigure location.
Contrastive learning is performed on multi-level features to learn semantic regional representations via scale
consistency regularization. More details of Multi-Level Contrastive Loss can be found in Fig. 3. The target
network is not optimized by gradient and updated by the online network in EMA manner.

3.1 MONTAGE ASSEMBLY

Algorithm 1 Montage Pseudo Code

# s: the level of downsampling ratio
# x: the input images batch with shape of (B, C, H,

W)
ratio = pow(2, s)
x_aug = aug(x) # data augmentation
x_aug_ds = interpolate(x_aug, scale_factor = 1. /

ratio)
x_aug_ds = shuffle(x_aug_ds)
B_ds = B / ratio / ratio
H_ds, W_ds = H / ratio, W / ratio
x_aug_ds = x_aug_ds.reshape(B_ds, ratio, ratio, C,

H_ds, W_ds)
x_aug_ds = x_aug_ds.permute(0, 3, 1, 4, 2, 5)
x_aug_ds = x_aug_ds.reshape(B, C, H, W)

The photomontage is the process and
the result of making a composite pho-
tograph by cutting, gluing, rearrang-
ing and overlapping two or more pho-
tographs into a new image. An inter-
esting observation is that montage as-
sembles images in different scales at
the specific locations, therefore, mon-
tage assembly explicitly encodes the
position and scale information. The
image batch X is processed via the
same augmentation pipeline with dif-
ferent random seeds. Towards han-
dling the large scale variation, the resized images are downsampled to 1

2s original size. The s ranges
from {0, 1, 2, ..., S−1}, which also matches the level of feature maps in FPN. For encoding position
and scale information, all the downsampled images with the same downsampling ratio are randomly
combined to construct the montage image and all the new montage images have aligned shape with
the original augmented images. The pseudo code is provided in Alg. 1 for clarity.

3.2 MULTI-LEVEL CONTRASTIVE LEARNING

Detectors with FPN assign anchor boxes of scale within a range to a specific pyramid level. Fol-
lowing this basic idea, we propose to extract features from FPN according to the downsampling
ratio. Concretely, we assign the images with downsampling ratio of 2s to P5−s for a 3-level FPN
architecture, where we denote the final feature set of FPN as {P3, P4, P5} from the finest resolution
map to the coarsest resolution map. Similar to the RoI pooling operator, we map the rectangular
window of the component images onto the FPN features. The dense prediction head is attached to
further process the feature. As for the non-FPN framework, whose final features are single-level, we
construct a feature pyramid by interpolating the final feature to the specific sizes.

The augmented views are encoded by two encoders, online network fθ and target network fθ′ , where
the target network is implemented as an exponential moving average (EMA) of the online network.
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Figure 3: Details of Multi-Level Contrastive Loss. ui and vi are extracted from the i-th level feature pyramid.
The arrow means to set the corresponding target feature as the positive sample and the other target features at
the same level as negative samples.

The online network is attached with a projector gθ and a predictor hθ, while the target network is
only appended with a projector gθ′ . In summary, we represent each view pair as normalized latent
features usi and vsi , where

usi = hθ ◦ gθ ◦ fθ(Isi), vsi = gθ′ ◦ fθ′ (I
′

si). (1)

We adopt the contrastive loss function in the form of InfoNCE (Van den Oord et al., 2018):

Lu = −log
exp(u · v+/τ))

exp(u · v+/τ) +
∑

v− exp(u · v−/τ)
, (2)

where the subscript of latents are omitted for simplicity, v+ is the target network’s output on the
same subimage as u and the set {v−} is composed of target network’s outputs from other subimages.
τ is a temperature hyper-parameter (Touvron et al., 2021) for l2-normalized latent features. As the
number of latent features is sufficiently large, we use the negative samples co-existing in the same
batch, following (Bachman et al., 2019; Chen et al., 2020a; Hjelm et al., 2018; Ye et al., 2019).
Besides, we adopt a symmetric loss (Caron et al., 2020; Chen & He, 2021; Grill et al., 2020):
L = Lu + Lv.

3.3 MULTI-LEVEL CONTRASTIVE LOSS

Multi-scale samples are generated in the montage stage, so we propose a series of modes to construct
the final loss. Specifically, we design four matching strategies for assigning both the positive and
the negative samples to the online features. As shown in Fig. 3, (a) All the images in different
sizes target the view in the largest shape, (b) Each image level aims to pull close features from the
counterpart level, (c) Latent features match the features from the adjacent levels, and (d) A dense
connection is applied to all levels, treating all image resolution equally. The empirical study and
comparison are provided in Sec.4.3.

3.4 POSITIONAL EMBEDDING

Zero padding allows CNNs to encode absolute position information implicitly. However, dense
prediction tasks require the precise localization of targets. Therefore, we introduce three positional
embeddings: Learnable Positional Embedding (LPE), Cartesian Spatial Grid (CSG) and Sinusoidal
Positional Embedding (SPE), to enhance localization representation learning. The details can be
found in Appendix. A.

4 EXPERIMENTS

In this section, we perform a series of experiments to evaluate our pre-training mechanism on dense
prediction tasks, e.g., COCO (Lin et al., 2014) detection, instance segmentation, pose estimation,
Cityscapes segmentation (Cordts et al., 2016) and LVIS (Gupta et al., 2019) long tail object detection
and segmentation.

4.1 PRE-TRAINING SETUP

We pre-train MCL on ImageNet-1K (Deng et al., 2009) and COCO (Lin et al., 2014) dataset with
LARS (You et al., 2017) optimizer and a batch size of 4096. All the models are pre-trained by
default for 100 epochs on the ImageNet training set (about 1.28 million images). The training cost
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Table 1: Comparison with state-of-the-art methods
on COCO val set. All the models are pre-trained on
COCO dataset and finetuned with Mask-RCNN fol-
lowing 1x schedule (Wu et al., 2019).

Methods APbb APbb
50 APbb

75

Supervised 38.9 59.6 42.7

BYOL Grill et al. (2020) 39.3(+0.4) 59.0(-0.6) 42.8(+0.1)

DenseCL Wang et al. (2021) 39.8(+0.9) 59.7(+0.1) 43.3(+0.6)

Self-EMD Liu et al. (2020) 40.4(+1.3) 61.1(+1.5) 43.7(+1.0)

SoCo Wei et al. (2021) 40.6(+1.5) 61.1(+1.5) 44.4(+1.7)

MCL 41.8(+2.9) 62.1(+2.5) 45.8(+3.1)

Methods APmk APmk
50 APmk

75

Supervised 35.4 56.5 38.1

BYOL Grill et al. (2020) - - -
DenseCL Wang et al. (2021) 35.8(+0.4) 56.6(+0.1) 38.6(+0.5)

Self-EMD Liu et al. (2020) - - -
SoCo Wei et al. (2021) 36.4(+1.0) 58.1(+1.6) 38.1(+0.0)

MCL 37.7(+2.3) 59.3(+2.8) 40.5(+2.4)

Table 2: Results on COCO for RetinaNet. All the
models are pre-trained on ImageNet and finetuned on
COCO with 1x schedule. MCL outperforms all the
other state-of-the-art methods.

Methods Epoch APbb APbb
50 APbb

75

Rand Init - 24.5 39.0 25.7
Supervised 90 37.4 56.5 39.7

InsDis Wu et al. (2018) 200 35.5 54.1 38.2
PIRL Misra & Maaten (2020) 200 35.7 54.2 38.4
MoCo He et al. (2020) 200 36.3 55.0 39.0
MoCo v2 He et al. (2020) 200 37.2 56.2 39.6
InfoMin Tian et al. (2020) 200 38.1 57.3 40.9
SwAV Caron et al. (2020) 400 36.5 56.4 38.8

PixPro Xie et al. (2021b) 100 37.9 56.7 40.5
SoCo Wei et al. (2021) 100 38.2 57.4 40.9
InsLoc Yang et al. (2021) 200 36.4 55.3 39.0
DenseCL Wang et al. (2021) 200 37.6 56.3 40.3

MCL 100 39.1 58.5 41.8

Table 3: Comparison with SOTA methods on COCO by using Mask R-CNN. All the detectors are evaluated on
COCO val 2017 set. “-” means that the results are missing in the source paper. MCL outperforms all the other
SOTA SSL methods while significantly reducing the training epochs.

Methods Epoch 1× Schedule 2× Schedule
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand Init - 31.0 49.5 33.2 28.5 46.8 30.4 38.4 57.5 42.0 34.7 54.8 37.2
Supervised 90 38.9 59.6 42.7 35.4 56.5 38.1 41.3 61.3 45.0 37.3 58.3 40.3

MoCo He et al. (2020) 200 38.5 58.9 42.0 35.1 55.9 37.7 40.8 61.6 44.7 36.9 58.4 39.7
MoCo v2 Chen et al. (2020c) 200 40.4 60.2 44.2 36.4 57.2 38.9 41.7 61.6 45.6 37.6 58.7 40.5
InfoMin Tian et al. (2020) 200 40.6 60.6 44.6 36.7 57.7 39.4 42.5 62.7 46.8 38.4 59.7 41.4
BYOL Grill et al. (2020) 300 40.4 61.6 44.1 37.2 58.8 39.8 42.3 62.6 46.2 38.3 59.6 41.1
SwAV Caron et al. (2020) 400 - - - - - - 42.3 62.8 46.3 38.2 60.0 41.0

SoCo Wei et al. (2021) 100 42.3 62.5 46.5 37.6 59.1 40.5 43.2 63.3 47.3 38.8 60.6 41.9
DCL Wang et al. (2021) 200 40.3 59.9 44.3 36.4 57.0 39.2 41.2 61.9 45.1 37.3 58.9 40.1
ReSim Xiao et al. (2021) 200 39.8 60.2 43.5 36.0 57.1 38.6 41.4 61.9 45.4 37.5 59.1 40.3
DetCon Hénaff et al. (2021) 300 42.0 - - 37.8 - - - - - - - -
PixPro Xie et al. (2021b) 400 41.4 61.6 45.4 - - - - - - - - -

MCL 100 42.5 62.8 46.9 38.2 59.8 41.2 43.4 63.6 47.5 39.1 60.8 41.9

is comparable with supervised pre-training. For non-object-centric datasets, models are optimized
for 530 epochs on the COCO training set and unlabeled set (about 241 thousand images) to match
the training iteration on ImageNet. We employ the same data augmentation pipeline of BYOL
(Grill et al., 2020), which is composed of random crop augmentation, random horizontal flip, color
distortion, Gaussian blur, grayscaling and the solarization operation. All the component images are
augmented separately with different random seeds but share an augmentation pipeline. The learning
rate is linearly warmed up at the first 10 epochs and cosine annealed during the remaining epochs.
The learning rate is set based on the batch size: lr = 1.0×BatchSize/256 and the weight decay is
set to 1e−5. The weights of the target network are updated with a momentum coefficient m, starting
from 0.99 and increased to 1 in the cosine scheduler same as (Chen et al., 2021; Grill et al., 2020).

4.2 DOWNSTREAM TASKS

Pre-training on Non-object-centric Dataset. ImageNet is an object-centric dataset, which intro-
duces dataset biases into pre-training and costs more efforts to collect than non-iconic images. As
indicated in Tab. 1 and Tab. 3, most of the SOTA methods yield an inferior result when pre-trained
on the COCO dataset, compared with the results on ImageNet dataset. MCL still obtains a large
improvement, 1.4 APbb/1.3 APmk over the previous SOTA method, SoCo (Wei et al., 2021). This
result demonstrates that MCL is robust to dataset and benefits mainly from the scale-invariance and
precise localization representation rather than the dataset bias. Besides, the results manifest that
pixel-level SSL methods and object-level methods fail in the non-iconic scenario.

COCO Object Detection and Instance Segmentation. Object detection and instance segmentation
require simultaneous object location and classification while handling large variance of object size.
We adopt Mask-RCNN (He et al., 2017) and RetinaNet (Lin et al., 2017) with ResNet-50 FPN
backbone as detectors to evaluate the models pre-trained on ImageNet and COCO dataset.
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Table 4: Semi-Supervised one-stage detection fine-tuned on COCO 1%, 5% and 10% data. All methods except
MCL are pre-trained 200 epochs on ImageNet. MCL is per-trained for 100 epochs.

Methods 1% Data 5% Data 10% Data
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Rand Init 1.4 3.5 1.0 3.6 7.4 3.0 3.7 7.5 3.2
Supervised 8.2 16.2 7.2 16.5 30.3 15.9 19.6 34.5 19.7
MoCoHe et al. (2020) 7.0(-1.2) 13.5(-2.7) 6.5(-0.7) 15.0(-1.5) 27.0(-3.3) 14.9(-1.0) 18.2(-1.4) 31.6(-2.9) 18.4(-1.3)

MoCo v2Chen et al. (2020c) 8.4(+0.2) 15.8(-0.4) 8.0(+0.8) 16.8(+0.3) 29.6(-0.7) 16.8(+0.9) 20.0(+0.4) 34.3(-0.2) 20.2(+0.5)

DetCoXie et al. (2021a) 9.9(+1.7) 19.3(+3.1) 9.1(+1.9) 18.7(+2.2) 32.9(+2.6) 18.7(+2.8) 21.9(+2.3) 37.6(+3.1) 22.3(+2.6)

MCL 12.1(+3.9) 22.6(+6.4) 11.6(+4.4) 20.7(+4.2) 35.6(+5.3) 21.2(+5.3) 23.8(+4.2) 39.6(+5.1) 24.2(+4.5)

Table 5: Transfer Learning on LVIS dataset using Mask R-CNN with R50-FPN trained for 180k iterations.
MCL significantly improves the performance on rare categories by 4.3 APbb/4.3 APmk. APr, APc and APf are
the average precision of rare, common and frequent categories, respectively.

Methods APbb APbb
50 APbb

75 APbb
r APbb

c APbb
f APmk APmk

50 APmk
75 APmk

r APmk
c APmk

f

Supervised 23.9 37.2 25.5 10.2 21.8 32.2 23.1 35.4 24.3 11.1 21.6 30.1
MCL 26.2 40.7 28.4 14.5 23.4 34.0 25.5 38.5 27.1 15.4 23.9 31.6

As shown in Tab. 3, MCL outperforms the state-of-the-art (SOTA) unsupervised pre-training meth-
ods on the COCO 1x and 2x schedules with only 100 training epochs, achieving 42.5 APbb/38.2
APmk and 43.4 APbb/39.1 APmk on the 1x and 2x schedule, respectively. Our method surpasses the
supervised counterpart by 3.6 APbb and 2.8 APmk on 1x schedule, showing that MCL accelerates the
model converging on the downstream tasks. To verify the extendability of MCL, we conduct experi-
ments on RetinaNet (Lin et al., 2017), which is a representative single-stage detector. We follow the
standard COCO 1x schedule and include SyncBN in the backbone and FPN for a fair comparison.
Tab. 2 shows that MCL exceeds the supervised baseline by 1.7 APbb.

Finetune in Low Data Regime. One of the purposes of pre-training is to improve the target task
performance in a low data regime. Therefore, we conduct experiments on a mini version of the
COCO dataset. Specifically, we randomly sample 1, 5 and 10% of COCO training data as the
labeled dataset. To avoid overfitting, we finetune the detectors with 12k iterations. Other settings
are the same as COCO 1x schedule. Tab. 4 indicates that MCL has strong generalization than other
methods and outperform the supervised counterparts by about 4 AP. This result shows that MCL can
be extended to semi-supervised learning for object detection as a consistency regularization.

Transfer Learning on LVIS Dataset. Compared with COCO, LVIS v1 dataset (Gupta et al., 2019)
is more challenging due to the long tail distribution, which contains 1203 categories. To demonstrate
the effectiveness and generality of our method, we finetune a Mask R-CNN model and follow the
standard LVIS v1 1x training schedule, which is twice COCO detection training iterations. Tab. 5
shows that MCL significantly improves the performance on rare categories by 4.3 APbb/4.3 APmk,
which is much larger than the improvement of common and frequent categories.

Cityscapes and COCO KeyPoint Dataset. To evaluate our method on other downstream tasks, we
choose Cityscapes and COCO Keypoint dataset. Cityscapes is a dataset for autonomous driving in
urban streets. We follow MoCo (He et al., 2020) to evaluate on instance segmentation with Mask
R-CNN and to evaluate on semantic segmentation with Semantic FPN. For the COCO Keypoint
dataset, we attach the standard keypoint head on Mask R-CNN. As shown in Tab. 6, MCL achieves
35.7 APmk on Cityscapes instance segmentation task, 76.1 mIoU on semantic segmentation task and
66.5 APkp on COCO Keypoint task. The superior results show that MCL is also suitable for other
dense prediction tasks besides the detection task.

Supervised Pre-training on Transformer and CNN with MCL pretext task. It seems like a
foregone conclusion that self-supervised pre-training surpasses the supervised counterpart on down-
stream tasks. However, we find that MCL pretext task facilitates the finetuning of supervised pre-
training. For a fair comparison, we pre-train models with the same epochs as the normal supervised
learning. Concretely, ResNet-50 (He et al., 2016) is trained with 100 epochs and Swin-T (Liu et al.,
2021) is trained with 300 epochs. The other hyperparameters keep unchanged. The evaluation is
still based on COCO 1x training schedule. Mask R-CNN with Swin-T is finetuned with MMDetec-
tion (Chen et al., 2019). Tab. 7 shows that MCL outperforms 3.2 APbb/2.4 APmk over supervised
counterpart for ResNet-50. The results also demonstrates that MCL pretext task is effective for the
state-of-the-art Swin-Transformer architecture, surpassing the baseline by 0.8 APbb/0.7 APmk.
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Table 6: Results of Mask R-CNN and Semantic FPN on COCO Keypoint and Cityscapes dataset. The results
demonstrate that MCL is available for other dense prediction tasks besides detection task.

Methods Keypoint Cityscapes
APbb APbb

50 APbb
75 APkp APkp

50 APkp
75 mIoU APmk APmk

50

Supervised 57.5 84.0 63.0 65.6 87.0 71.3 72.9 31.8 58.5
SoCo Wei et al. (2021) 58.0 (+0.5) 84.3(+0.3) 64.2(+1.2) 65.9(+0.3) 87.0(+0.0) 71.8(+0.5) 74.5(+1.6) 34.7(+2.9) 63.0(+4.5)

MCL 58.4(+0.9) 84.7(+0.7) 64.2(+1.2) 66.5(+0.9) 87.3(+0.3) 72.8(+1.5) 76.1(+3.2) 35.7(+3.9) 63.9(+5.4)

Table 7: Results on COCO dataset using Mask R-CNN with supervised pre-training. The results show that
MCL can be extended to Swin-Transformer backbone. All the backbones are pre-trained for the same epochs.
Vanilla means to pre-train model in a standard supervised manner.

Methods ResNet-50 Swin-T
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Vanilla 38.9 59.6 42.7 35.4 56.6 38.1 43.9 65.3 48.5 39.6 62.3 42.5
MCL 42.1 62.6 45.9 37.8 59.5 40.6 44.7 66.0 49.0 40.3 62.8 43.4

4.3 ABLATION STUDY

Montage Downsampling Level. Feature pyramid network is a default component in the most main-
stream detectors and our method is based on montage assembly over the multi-level downsampled
images and feature pyramid. So we investigate the effect of the object scale variance. The first line
in Tab. 8a is the result of MoCo v3 pre-trained by 100 epochs on COCO 2017 val set. The per-
formance is improved as more downsampled rates are included, which means that object detectors
benefit from scale-invariant representation. By the comparison between the penultimate and the last
line in Tab. 8a, we find that the representation of fine-grained objects is important for the COCO
object detection dataset, in which about 41% of objects are small.

Multi-Level Contrastive Loss. As shown in Fig. 3, we propose a series of meaningful positive
pair matching strategies. The loss indicators in Tab. 8b are same as those in Fig. 3. We find that
setting the images with the largest resolution as positive pair samples leads to the best result. This
result is reasonable because a higher resolution typically yields a better representation. The reason
why b loss mode is inferior can be that the supervision from the counterpart level lacks semantic
information for the small component images. The result of c loss mode is slightly better than b mode
due to the feature matching across levels. d loss mode yields a lower result than c. We conjecture
that the representation from the low-resolution image is inferior to the high-resolution image.

Positional Embedding. Tab. 8c examines the importance of positional embedding and evaluates the
quality of each type. We pre-train the model with positional embedding injected but finetune detec-
tors without positional embedding for a fair comparison. SPE achieves the best result, surpassing the
baseline by 0.5 APbb/0.5 APmk. The performance of CSG is almost equivalent to SPE, meaning that
the hand-crafted positional embeddings contain sufficient absolute position information to boost the
localization ability. LPE introduces additional learnable parameters but yields a lower performance
than baseline. The learnable parameters are crucial for the features learned by the backbone.

Weight Decay. Weight norm is an important factor in the alignment between pre-training and fine-
tuning. We empirically demonstrate this conclusion by modifying the weight decay hyperparameter,
which influences the weight norm of the converged model. Typically, the weight decay is set to 1e−6

for LARS optimizer, which is widely adopted in unsupervised pre-training works (Caron et al., 2020;
Chen et al., 2020a; 2021; Grill et al., 2020). We set the weight decay from 1.5e−6 to 1e−5 to eval-
uate the effect. The results in Tab. 8d show that a large weight decay leads to a superior result.
To explicitly verify the conclusion, we simply divide the non-normalization layer parameters by a
fixed number to downscale the weight norm. The results show that reducing the weight norm of a
model pre-trained with a small weight decay leads to a non-negligible improvement. Normalization
techniques exist in many mainstream models (Dosovitskiy et al., 2020; He et al., 2016; Huang et al.,
2017; Liu et al., 2021; Tolstikhin et al., 2021; Sandler et al., 2018; Wu & He, 2018), which makes
output resilient to the parameter scale, we take Batch Normalization (Ioffe & Szegedy, 2015) for
example: BN(Wx) = BN((αW )x), and we can show that: ∂BN((αW )x)

∂αW = 1
α · ∂BN(Wx)

∂W , where
α is a positive scalar. In the case that α < 1, the gradient of parameter W is magnified. Following
the SGD update rule, the model weight of t + 1 step is Wt+1 = Wt − η 1

α
∂BN(Wx)

∂W , where η is
the learning rate. Suppose that the learning rate is suitable and the weight is well-initialized, the
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Table 8: Ablation studies on COCO for the proposed MCL method. All the models are trained on ImageNet
dataset for 100 epochs. The loss indicators in (b) are same as those in Fig. 3. Div in (d) means all the non-
normalization layer parameters are divided by a fixed number. In (e), B means that only the backbone is
pre-trained, F indicates FPN neck and H is the detection head. The results are reported with Mask R-CNN in
all tables except (f), in which the results of RetinaNet are provided.

(a) Study on Downsampling Level.

Level APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

1 40.7 60.9 44.6 36.8 58.0 39.8
2 41.4 61.6 45.4 37.3 58.6 39.9
3 41.8 61.7 45.5 37.6 58.8 40.2
4 42.5 62.8 46.9 38.2 59.8 41.2

(b) Study on Multi-Level Loss.

Loss APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

a 42.5 62.8 46.9 38.2 59.8 41.2
b 41.8 61.8 45.7 37.4 58.8 40.2
c 42.0 62.2 46.0 37.8 59.2 40.8
d 41.0 61.5 44.6 37.1 58.6 40.0

(c) Study on Position Embedding.

PE APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

None 42.0 62.3 46.3 37.7 59.5 40.5
LPE 39.4 59.5 42.4 34.4 55.9 36.7
CSG 42.2 62.3 46.3 37.8 59.3 40.8
SPE 42.5 62.8 46.9 38.2 59.8 41.2

(d) Study on Weight Decay.

Weight Decay APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

1.5e-6 41.7 62.2 45.9 37.8 59.3 40.6
1.5e-6 Div 1.5 41.8 62.3 45.9 37.8 59.3 40.6
1.5e-6 Div 2 42.2 62.4 46.4 37.8 59.4 40.6
5e-6 42.3 62.6 46.7 38.0 59.7 40.8
1e-5 42.5 62.8 46.9 38.2 59.8 41.2

(e) Study on Architecture Alignment.

Arch. APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

B 41.1 61.3 45.4 37.2 58.6 39.9
B+F 41.5 61.6 45.5 37.4 58.6 40.1
B+F+H 42.5 62.8 46.9 38.2 59.8 41.2

(f) Study on Training Epoch.

Epoch APbb APbb
50 APbb

75 APbb
s APbb

m APbb
l

100 39.1 58.5 41.8 26.5 43.7 47.3
200 39.5 59.2 42.7 25.8 44.2 47.9
400 39.9 59.8 42.7 26.7 44.4 48.3

relatively small weight norm leads to a faster convergence, compared with the large model weight.
This observation also supports the conclusion of (Erhan et al., 2010) that unsupervised pre-training,
serving as a strong regularization, guides the learning towards basins of attraction of minima that
support better generalization from the training data set.

Architecture Alignment. We ablate each architecture component step by step to verify the impor-
tance of alignment of the downstream and pre-train model architecture. Tab. 8e reports the studies,
in which the baseline achieves 41.1 APbb / 37.2 APmk. FPN neck further improves the performance
to 41.5 APbb / 37.4 APmk and Detection Head finally improves the result to 42.5 APbb / 38.2 APmk.
Pre-training detection head leads to additional gain for Mask R-CNN, while MCL also outperforms
other state-of-the-art methods on RetinaNet, which has a different detection head and FPN architec-
ture from Mask R-CNN. This phenomenon demonstrates that MCL is robust to model architecture.

Training Epochs. Self-supervised learning typically benefits from long training epochs. Following
this empirical conclusion, we extend the training epochs to 200 epochs and 400 epochs on the
ImageNet dataset. We finetune the pre-trained model using RetinaNet with the standard 1x COCO
schedule. Pre-trained for 200 epochs, MCL improves the detection result to 39.5 AP. Another 200
training epochs increase the performance by 0.4 AP, which means that a long training schedule
further improves the performance.

5 CONCLUSION

In this work, we introduce a novel self-supervised framework based on multi-level contrastive learn-
ing. Our method learns regional representation for precise localization, scale consistency among
multi-scale crops and semantic global representations. The montage assembly explicitly encodes
absolute position and scale information. Multi-level contrastive learning aligns the feature map
with the image region and regularizes the scale consistency. Positional embedding further enhances
the localization capability without introducing additional parameters and computational cost during
finetuning. Besides, we empirically explore the alignment between pre-training and finetuning by
investigating the interactions of weight norm and pretext task with transfer performance. Our ex-
periment results demonstrate the state-of-the-art transfer performance on various dense prediction
tasks. The success of applying our pretext task in a supervised learning scenario proves the impor-
tance of task alignment. A further fine-grain representation learning under our framework may lead
to a promising result.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmen-
tation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 5356–5364, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4918–4927, 2019.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

Olivier J Hénaff, Skanda Koppula, Jean-Baptiste Alayrac, Aaron van den Oord, Oriol Vinyals, and
João Carreira. Efficient visual pretraining with contrastive detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10086–10096, 2021.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:1808.06670, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Songtao Liu, Zeming Li, and Jian Sun. Self-emd: Self-supervised object detection without imagenet.
arXiv preprint arXiv:2011.13677, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representa-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6707–6717, 2020.

11



Under review as a conference paper at ICLR 2023

Pedro O Pinheiro, Amjad Almahairi, Ryan Y Benmalek, Florian Golemo, and Aaron Courville.
Unsupervised learning of dense visual representations. arXiv preprint arXiv:2011.05499, 2020.

Senthil Purushwalkam and Abhinav Gupta. Demystifying contrastive self-supervised learning: In-
variances, augmentations and dataset biases. Advances in Neural Information Processing Systems,
33:3407–3418, 2020.

Limeng Qiao, Yuxuan Zhao, Zhiyuan Li, Xi Qiu, Jianan Wu, and Chi Zhang. Defrcn: Decou-
pled faster r-cnn for few-shot object detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8681–8690, 2021.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28:
91–99, 2015.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. International journal of computer vision, 40(2):99–121, 2000.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Kihyuk Sohn, Zizhao Zhang, Chun-Liang Li, Han Zhang, Chen-Yu Lee, and Tomas Pfister. A simple
semi-supervised learning framework for object detection. arXiv preprint arXiv:2005.04757, 2020.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? Advances in Neural Information Processing
Systems, 33:6827–6839, 2020.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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Figure 4: Overview of MCL applied in the supervised scenario. All the input images are augmented via the
same pipeline with different seeds. The input images are downsampled and assembled at different levels. The
ground truths are assembled in the same order as the montage images. The multi-level cross-entropy loss is
applied to optimize the model.

A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

Multi-Level Contrastive Loss. As described in Sec. 3.1, the images are downsampled according to
the level index and assembled in a montage manner. The numbers of montage image in level i is B

2i ,
where i starts from 0 to S − 1 and B is the batch size. Therefore, the montage assembly increases
the computational cost marginally and the upper bounder is twice the baseline batch size. Since the
highest resolution images typically yield the best semantic representation and the empirical result
in Sec. 4.3, the first level contrastive loss (on the highest resolution images) is important to the
representation learning. As a consequence, we assign different loss weight to each level, 1

2(i+1) for
the i-th level. The detection head is a shared 4 CONV head without fc layer across levels, which are
not loaded in the RetinaNet detector. We attach a global average pooling layer on the detection head
to aggregate the features because averaging implicitly encourages a high response region. Both the
projection head and prediction head are 2-layer MLPs whose hidden layer dimension is 2048. The
final linear layer has a 256-dimension output and a final BN layer is attached to the projection head
to accelerate the convergence.

Multi-Level Supervised Learning. We extend MCL to the supervised learning scenario to demon-
strate the importance of the alignment between the pretext task and downstream tasks. As illustrated
in Fig. 4, we generate S augmented views for the model, which are downsampled to 1

2s original size.
We set s as the level index, which starts from 0 to S − 1. Different from self-supervised learning,
we simply adopt the same optimizer as the normal setting, SGD optimizer for ResNet and AdamW
optimizer for Swin-Transformer.

Positional Embedding. Learnable Positional Embedding. The stem block outputs feature maps
with a shape of (C, H, W). We set up an x-axis and y-axis Learnable Positional Embedding (LPE)
table, which contains H or W learnable C

2 -dimension vectors separately. The embeddings in the
tables are selected according to cartesian coordinates and concatenated together. Cartesian Spatial
Grid. To remove the additional parameters, Cartesian Spatial Grid (CSG) is introduced as a coor-
dinate indicator. The absolute coordinates are applied with linear scaling of both coordinate values
to make them fall in the range [−1, 1]. The transformation between locations is [2δx/H, 2δy/W ],
where δx and δy are the offsets in the unnormalized space. As the feature maps are 2-dimension,
we repeat the tensor along the channel dimension and fuse the positional embedding by addition
operation rather than concatenation, which requires extra channels instantiated and mismatches the
downstream model. Sinusoidal Positional Embedding. Motivated by (Carion et al., 2020; Vaswani
et al., 2017), Sinusoidal Positional Embedding (SPE) contains the relative and absolute position in-
formation. Similar to LPE, we concatenate the embeddings in two dimensions and each position is
encoded by sine and cosine function of different frequencies:

PE(pos,2i) = sin(ωi · pos), PE(pos,2i+1) = cos(ωi · pos), (3)
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Table 9: Results of the long training schedule for RetinaNet finetuned on COCO with 90k, 180k, and 540k.
MCL not only accelerates the convergence but also improves the final performance.

Methods Epoch 1x schedule 2x schedule 6x schedule
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Supervised 90 37.4 56.6 39.7 38.8 58.7 41.2 39.2 58.6 42.1
MoCo v2 800 37.9(+0.5) 57.1(+0.5) 40.4(+0.7) 39.8(+1.0) 59.3(+0.6) 42.8(+1.6) 40.2(+1.0) 59.9(+1.3) 43.1(+1.0)

MCL 400 39.9(+2.5) 59.8(+3.2) 42.7(+3.0) 41.2(+2.4) 61.1(+2.4) 44.0(+2.8) 41.4(+2.2) 61.1(+2.5) 44.5(+2.4)
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Figure 5: Instance Size Distribution. For the COCO
dataset, all the images are resized to (1333, 800)
shape. For the ImageNet dataset, all the images are
resized to 224× 224 to calculate the statistics.
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Figure 6: Score Distance Distribution. The APbb gain of
MCL over the supervised counterpart. MCL performs bet-
ter than the baseline at a higher IoU threshold, indicating
that the MCL features have better localization capability.

where ωi = 1/100002i/d and d is half of the feature channel dimension. The transformation between
locations is only related to the position offsets:[

sin(ωip)
cos(ωip)

]
=

[
cos(ωiδ) sin(ωiδ)
−sin(ωiδ) cos(ωiδ)

]
·
[
sin(ωiq)
cos(ωiq)

]
, (4)

where δ = p− q indicates the position offset. Different from CSG, SPE keeps a consistent transfor-
mation distance when extending to large scale feature maps.

A.2 DISCUSSION

As discussed in Sec. 1, the scale of objects varies in a small range for ImageNet classification model,
whereas the scale variation of MS-COCO dataset (Lin et al., 2014) is large across object instances
for detectors. As shown in Fig. 5, the standard variance of the scale of instances in MS-COCO is
188.4, while that of ImageNet is 56.7. Typically, a high IoU means a high precision of prediction.
Fig. 6 shows that MCL performs better than baseline at a high IoU threshold, which demonstrates
that localization capability benefits from explicit position information.

A.3 ADDITIONAL RESULTS

Long Finetuning Schedule. The experiments in Sec. 4 mainly follow the 1x and 2x schedule,
which are not long enough for detectors to be fully converged. We extend the training schedule to
6x schedule, i.e. 540k iterations. Tab. 9 shows that MCL pre-trained with 400 epochs achieves 41.2
APbb as 2x schedule is applied. MCL with 6x schedule still surpasses the supervised counterpart and
MoCo v2 pre-trained with 800 epochs. These results prove that pre-training not only accelerates the
convergence but also improves the final performance.

Mask R-CNN with C4 on COCO. As described in Sec. 3.1, MCL is compatible with the non-FPN
framework. We construct a feature pyramid by interpolating the single-level feature to the specific
sizes. The results in Tab. 10 show that MCL achieves SOTA results while significantly reducing the
training epochs. Our method achieves a superior result with a 1x schedule and benefits from a long
finetune schedule, i.e. 2x COCO schedule. We believe that the reason that MCL yields an inferior
result on Mask R-CNN C4, compared with Mask R-CNN FPN, is that Mask R-CNN C4 has a lower
performance on small object detection.
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Table 10: Comparison with SOTA methods on COCO by using Mask R-CNN with R50-C4. All the detectors
are evaluated on COCO val 2017 set. “-” means that the results are missing in the source paper. MCL achieves
SOTA results while significantly reducing the training epochs.

Methods Epoch 1× Schedule 2× Schedule
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand Init - 26.4 44.0 27.8 29.3 46.9 30.8 35.6 54.6 38.2 31.4 51.5 33.5
Supervised 90 38.2 58.2 41.2 33.3 54.7 35.2 40.0 59.9 43.1 34.7 56.5 36.9

MoCo He et al. (2020) 200 38.5 58.3 41.6 33.6 54.8 35.6 40.7 60.5 44.1 35.4 57.3 37.6
SimCLR Chen et al. (2020a) 200 - - - - - - 39.6 59.1 42.9 34.6 55.9 37.1
MoCo v2 Chen et al. (2020c) 800 39.3 58.9 42.5 34.3 55.7 36.5 41.2 60.9 44.6 35.8 57.7 38.2
InfoMin Tian et al. (2020) 200 39.0 58.5 42.0 34.1 55.2 36.3 41.3 61.2 45.0 36.0 57.9 38.3
BYOL Grill et al. (2020) 300 - - - - - - 40.3 60.5 43.9 35.1 56.8 37.3
SwAV Caron et al. (2020) 400 - - - - - - 39.6 60.1 42.9 34.7 56.6 36.6
SimSiam Chen & He (2021) 200 39.2 59.3 42.1 34.4 56.0 36.7 - - - - - -
PixPro Xie et al. (2021b) 400 40.5 59.8 44.0 - - - - - - - - -
SoCo Wei et al. (2021) 100 40.4 60.4 43.7 34.9 56.8 37.0 41.1 61.0 44.4 35.6 57.5 38.0
MCL 100 40.0 60.3 43.2 34.7 56.7 36.7 41.7 61.7 45.4 36.1 58.1 38.5

Table 11: Comparison with state-of-the-art self-supervised learning methods on ImageNet-1K linear evalu-
ation with the ResNet-50 backbone. Table (a) demonstrates that MCL outperforms SoCo, a state-of-the-art
self-supervised pre-training for object detection. Table (b) shows that it is a trade-off between the performance
of the upstream task and downstream tasks.

(a) Self-supervised learning for dense prediction.

Methods Epoch Top-1 Top-5

SoCo (C4) 100 59.7 82.8
SoCo (C4) 400 62.6 84.6
SoCo (FPN) 100 53.0 77.5
SoCo (FPN) 400 54.2 79.5
SoCo* (FPN) 400 53.9 79.2

MCL 100 69.9 88.9
MCL 400 71.5 89.9

(b) Self-supervised learning for classification.

Methods Epoch Top-1 Top-5

Supervised 90 76.5 -
MoCo He et al. (2020) 200 60.6 -
SimCLR Chen et al. (2020a) 1000 69.3 89.0
MoCo v2 Chen et al. (2020c) 800 71.1 -
InfoMin Tian et al. (2020) 800 73.0 91.1
BYOL Grill et al. (2020) 1000 74.3 91.6
SwAV Caron et al. (2020) 800 75.3 -
SimSiam Chen & He (2021) 800 71.3 -

Linear Evaluation on ImageNet-1K. MCL learns global semantic representation besides scale
consistency and regional localization. We present the ImageNet-1K linear evaluation results for
reference. Following the common setting (Caron et al., 2020; Grill et al., 2020; He et al., 2020),
data augmentation contains random crop with resize of 224 × 224 pixels and random flip. Only
the backbone network parameters are loaded and frozen. The classification head is trained for 100
epochs, using an SGD optimizer with a momentum of 0.9 and a batch size of 256. The learning rate
starts with 10 and the weight decay is 0. In the test phase, the data augmentation is a center crop from
a resized 256 × 256 image. Tab. 11 shows that MCL surpasses SoCo on ImageNet linear evaluation,
learning a semantic global representation. Compared with the self-supervised learning methods for
image classification, MCL outperforms them on dense prediction tasks, while underperforms some
of them on the linear evaluation. This phenomenon shows that the improvement on upstream task
does not guarantee a better transfer performance on downstream tasks, due to the task misalignment.
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