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Abstract

With the rapid advancement of Generative AI001
technology, Multimodal Large Language Mod-002
els(MLLMs) have the potential to act as AI soft-003
ware engineers capable of executing complex004
web application development. Considering that005
the model requires a confluence of multidimen-006
sional sub-capabilities to address the challenges007
of various development phases, constructing a008
multi-view evaluation framework is crucial for009
accurately guiding the enhancement of develop-010
ment efficiency. However, existing benchmarks011
usually fail to provide an assessment of sub-012
capabilities and focus solely on webpage gener-013
ation outcomes. In this work, we draw inspira-014
tion from the principles of software engineering015
and further propose WebUIBench, a benchmark016
systematically designed to evaluate MLLMs017
in four key areas: WebUI Perception, HTML018
Programming, WebUI-HTML Understanding,019
and WebUI-to-Code. WebUIBench comprises020
21K high-quality question-answer pairs derived021
from over 0.7K real-world websites. The ex-022
tensive evaluation of 29 mainstream MLLMs023
uncovers the skill characteristics and various024
weakness that models encountered during the025
development process.026

1 Introduction027

The emergence of Large Language Models(LLMs)028

has rapidly reshaped the landscape of software en-029

gineering. AI code generation (Chen et al., 2024a;030

Shin and Nam, 2021; Dehaerne et al., 2022) evolves031

from assisting developers to independently com-032

pleting the entire development lifecycle (i.e., AI033

software engineer). Automatic website develop-034

ment is a challenging and widely discussed multi-035

modal code generation scenario(Si et al., 2024; Yun036

et al., 2024; Beltramelli, 2018): Multimodal Large037

Language Models(MLLMs) are required to gener-038

ate front-end code projects based on user-provided039

WebUI images (WebUI-to-Code).040
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Figure 1: Evaluation taxonomy of WebUIBench.

Recent works(Si et al., 2024; Yun et al., 2024; 041

Beltramelli, 2018) have evaluated MLLMs and 042

reached a consensus that MLLMs struggle to gen- 043

erate complex websites, revealing a significant 044

gap between solutions and practical applications. 045

Therefore, it is essential to identify the challenges 046

across various development stages and evaluate the 047

corresponding sub-capabilities of models. How- 048

ever, current benchmarks(Guo et al., 2024; Si et al., 049

2024) typically focus on assessing the output qual- 050

ity of generated website (e.g., webpage elements 051

and layout) and mostly lack evaluation for sub- 052

capabilities. To address this issue, (Yun et al., 2024) 053

propose webpage understanding benchmark, but 054

they are restricted to only one type of sub-capability 055

and limited to the dataset quality annotated by 056

LLMs. Inspired by the main activities of software 057

engineering(Biolchini et al., 2005), we initially pro- 058

pose a taxonomy for the capability evaluation of 059

sub-capability as depicted in Figure 1. 060

Our core idea is to align the evaluation criteria of 061
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Question:
Please locate the object
element with the text
content of the [Business]

A. <img> and <input>

C. <input> and <button>
B. <img> and <button>

D. None of the above

Question: Please select the HTML tag that appears 
in the screenshot of the webpage

Question:
Please provide the text
in the red box in this
screenshot of the
webpage?

Question:
Please provide the color
of the text [Herboren] in
RGB format?

Choice：

Question: Please select the font style of the text 
[Herboren]

A. Normal      B. ItalicChoice:

Corrupted Code：

(i).<h1>Getest. Geperfectioneerd</h2>
(ii).<div style=height:50px>…</ div >
(iii).<img src=“rick.jpg”></img>

Question：There is a syntax error in the following 
HTML code.  Please correct it

Code：

Question：Please add the attribute height “160px“ 
and width “120px” to <span>

Correct or Unrelated 
Code：

<div class=“”>
<img src=“”/>

</div>

Question: 
Please check whether the front-end code snippet 
matches a certain part of the webpage screenshot

Question:
Divide the image evenly 
into 16 regions…Please give 
the area number of the text  
[Prodotti]

A . 
Choice:

B.  Corrupted Code B
C.  Corrupted Code C
D.  Corrupted Code D

Please select the HTML code snippet that can 
accurately describe a certain part of screenshot

Question: 

Answer: [50,150,65,165]

Answer：

Answer：

<span style="float:right; height:160px;
width:120px">2024-1-8</span>

Answer: “Jeff Bridgforth A front-end developer…”

WebPage

Answer: Yes/No 

Page Slice

You are an expert in 
webpage development,
…
Please adhere to the 
following guidelines:
…
Output Requirements:

Prompt:Answer: [9,10]

T1. Element   Classification

T2. Attribute Recognition 

T3. Visual Grounding in Webpage

T4. OCR in Webpage

T5. Code Error Correction

T6. Code Function Editing

T7. Webpage-HTML Matching

T8. Webpage-HTML Retrieval

T9. WebUI-to-Code

Answer: rgb(10,121,78)

<span style="float:right">2024-1-8</span>

(i).<h1>Getest. Geperfectioneerd</h1>
(ii).<div style=“height:50px”>…</ div >
(iii).<img src=“rick.jpg” />

<div class=“”>
<img src=“”/>

</div>

Figure 2: Task examples in the WebUI benchmark, from the WebUI Perception, HTML Programming, and
WebUI-HTML Understanding and WebUI-to-Code task.

models’ capabilities with the task requirements of062

software engineering. To this end, we propose the063

following sub-capability evaluation dimensions: (i)064

WebUI Perception: WebUI images serve as vi-065

sual carriers of development requirements. The066

fundamental skill of the model is to accurately per-067

ceive the visual semantic information in the web-068

page, including both text and images. (ii) HTML069

Programming: During the software construction070

phase, the model’s knowledge reservoir and pro-071

gramming skills in front-end code are essential for072

assisting or substituting developers for efficient073

development. and (iii) WebUI-HTML Under-074

standing: Post-software development, code testing075

and adjustments are necessary to ensure require-076

ment accuracy. This necessitates the model’s ability077

to perform cross-modality reasoning between de-078

sign images and code functionalities. Furthermore,079

we draw from current leading MLLMs evaluation080

benchmarks(Liu et al., 2025; Li et al., 2023; Yue081

et al., 2024; Li et al., 2024) to design multiple sub-082

tasks for each evaluation dimension, tailored to the083

characteristics of web data. In summary, our main084

contributions are three-fold:085

• Construction of WebUIBench Dataset: The086

raw data is collected from 5 categories of fre- 087

quently used real-world websites, including 088

719 complete webpage screenshots, source 089

code and fine-grained information of all page 090

elements. Based on this, WebUIBench con- 091

sists of 2,488 webpage slices and 21,793 092

question-answer pairs across 9 sub-tasks. 093

• Evaluation of Mainstream MLLMs: The eval- 094

uation process is conducted in 29 mainstream 095

MLLMs, including 22 open-source models 096

such as the InternVL2.5 series and the Qwen2- 097

VL series with parameters ranging from 2B 098

to 78B, and 7 closed-source MLLMs, such 099

as GPT-4o, Gemini-1.5 Pro, and Claude-3.5- 100

Sonnet. 101

• Analysis of Challenges: The primary conclu- 102

sion is that most MLLMs are not capable of 103

performing the complete front-end software 104

development process as effectively as humans. 105

The observed positive correlation between 106

sub-capabilities and WebUI-to-Code perfor- 107

mance validates our evaluation approach. It 108

also reveals that the primary challenge for cur- 109

rent MLLMs is to enhance and balance sub- 110

capabilities across different dimensions. 111
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2 Taxonomy of Evaluation112

Inspired by Web Application Development, our113

benchmark evaluates WebUI-to-Code(Task9) ca-114

pability, and three essential sub-capabilities: We-115

bUI Perception, HTML Programming, and WebUI-116

HTML Understanding. For WebUI-to-Code, we117

provide two types of webpage: full webpage and118

webpage slice. For sub-capability evaluation, we119

designed various sub-tasks as follows:120

2.1 WebUI Perception121

Inspiration: The WebUI design is a visual rep-
resentation of Needs Analysis. WebUI Percep-
tion helps developers accurately grasp the require-
ments.

122

Task1. Element Classification. This task eval-123

uates the model’s capability to identify elements124

within webpage screenshots. The model must as-125

certain the presence of specific element types or126

combinations by fully understanding the screen-127

shot.128

Task2. Attribute Recognition. This task assesses129

the model’s ability to discern detailed visual at-130

tributes of webpage elements, including text and131

background colors, font styles, and border styles.132

Task3. Visual Grounding in Webpage. This task133

assess the model’s capability to spatially locate el-134

ements on a webpage. We developed two levels135

of granularity for visual grounding tasks: (i) At a136

coarse granularity, after evenly dividing the web137

page into a grid, the model identifies the grid re-138

gion number of the specified element; (ii) At a139

fine granularity, the model accurately returns the140

coordinates of the element’s bounding box.141

Task4. OCR in Webpage. This task tests the142

model’s proficiency in extracting text from web-143

page screenshots. The model is required to detect144

and extract text content from a designated area145

framed by a red bounding box.146

2.2 HTML Programming147

Inspiration: The coding skills(e.g., HTML Pro-
gramming) of developers ensure efficiency and
stability throughout the Software Construction
lifecycle.

148

Task5. Code Error Correction. This task assesses149

the model’s ability to correct syntax errors in front-150

end code. The model needs to identify errors in151

code snippets and return corrected versions.152

Task6. Code Function Editing. This task eval- 153

uates the model’s capability to implement static 154

webpage functionalities through code. The model 155

must edit and adjust code snippets according to the 156

provided natural language instructions. 157

2.3 WebUI-HTML Understanding 158

Inspiration: Software Debugging aims at ensur-
ing consistency between the HTML code and the
WebUI, reducing functional deficiencies through
cross-modality understanding.

159

Task7. Webpage-HTML Matching. The model 160

determines whether the provided webpage screen- 161

shot and code snippet are correctly matched. 162

Task8. Webpage-HTML Retrieval. The model 163

selects the appropriate code snippet that corre- 164

sponds to the given webpage screenshot from a 165

selection of multiple snippets. 166

3 Dataset 167

3.1 Raw Data Collection 168

WebUIBench consists of 5 categories of websites 169

commonly visited by users: enterprise portals, 170

background management systems, personal blogs, 171

news sites, and e-commerce platforms. Firstly, we 172

gather 1K websites (0.2K websites for each cate- 173

gory) from the Internet. By using browser exten- 174

sion tools and manual collection, we collect the 175

source HTML code and screenshot of these web- 176

sites. Additionally, we extract detailed information 177

of webpage elements, including tag categories, text 178

content, CSS and spatial locations. 179

Quality Control. The incompletely or incorrectly 180

loaded website are firstly reviewed and removed 181

by human annotators . For excessively long pages, 182

often found in news sites and e-commerce plat- 183

forms categories due to repetitive elements, we 184

develop a page simplification algorithm to refactor 185

source HTML code. The algorithm can streamline 186

webpage elements and shorten page length while 187

ensuring the quality and diversity of elements. De- 188

tailed information about the algorithm is provided 189

in the Appendix A.3. 190

3.2 Question and Answer Pairs Collection 191

Users usually browse websites by scrolling up and 192

down, similar to viewing through a "sliding win- 193

dow." Inspired by this observation, webpage slice 194

is designed as the fundamental image data for con- 195

structing dataset. We segment the screenshot of 196

3



Statistic Number

Total Website - HTML Code Samples 719
Total Question - Answer Samples 21793
Total Website Types 5
Total Task Types 9

Webpage Screenshots
⋄ Full page 719
⋄ Slice page 2488

Screenshot Resolution
⋄ Maximal 1800×6802
⋄ Minimal 1800×386
⋄ Average ≈1800×1235

Tokens of Question Captions
⋄ Maximal 3582
⋄ Minimal 42
⋄ Average ≈287

Average slices per site 3.46
Average QA samples per slice 10.68

Table 1: Key statistics of WebUIBench.

webpage into slices of varying sizes based on the197

page layout and browser window size, ensuring198

each slice is relatively independent and semanti-199

cally complete. The detailed segmentation algo-200

rithm is introduced in the Appendix A.3. While201

collecting sliced screenshots, we also save the web-202

page element information within the slices and cap-203

ture the corresponding code snippets to support the204

next step of the annotation process.205

Automatic Labeling. We first design QA tem-206

plates for each task mentioned in Section 2, in-207

cluding question caption, options and answers. To208

enhance the diversity and challenge of the evalu-209

ation data, the QA templates for each task can be210

transformed into various forms based on the de-211

signed strategies (as shown in Appendix A.4). By212

retrieving element information and code snippets,213

QA templates are automatically filled as the com-214

plete evaluation samples. To ensure the standards215

and quality of the dataset, automatic labeling is216

conducted in multiple batches. Each task within a217

batch undergoes sampling inspection, and the gen-218

eration process will be optimized until all sampled219

data pass the inspection.220

3.3 Dataset Statistics221

For webpage data collection, our dataset consists of222

719 full webpage and 2488 webpage slices from 5223

categories, covering a variety of resolution modes.224

We open-source the screenshot (.png files), source225

HTML code (.html files), and element information226

(.json files) for these webpage. Based on this, We-227

bUIBench includes 21,793 question-answer pairs,228
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Figure 3: Question-Answer distribution of WebUIBench

with an average of 10.68 question-answer pairs per 229

webpage screenshot. Table 1 shows key statistics 230

of dataset and Figure 3 shows the question-answer 231

pairs distribution across different evaluation dimen- 232

sions and tasks. 233

4 Metric 234

Objective Question Scoring. For multiple-choice 235

tasks, we employ accuracy as the scoring metric. 236

For open-ended tasks such as OCR, the score is 237

given based on the text similarity between the gen- 238

erated string and the ground-truth string(character- 239

level Sørensen-Dice similarity). It is also important 240

to note that in code correction and code editing 241

tasks, the clarity of the questions and prompts en- 242

sures unambiguous answers. Therefore, we also 243

score these tasks by calculating the string similarity 244

between the generated HTML code and the stan- 245

dard answer. Additionally, for tasks involving the 246

identification of element color attributes, we use the 247

CIEDE2000 color difference formula for scoring, 248

following (Luo et al., 2001). 249

WebUI-to-Code Task Scoring. Evaluation is ap- 250

proached from two levels of granularity: 251

Coarse-Grained Evaluation: This method involves 252

calculating the visual similarity between the orig- 253

inal webpage screenshot and the generated web- 254

page screenshot to assess the overall visual quality. 255

We utilize the visual pre-training backbone(e.g., 256

CLIP(Radford et al., 2021)) to extract feature vec- 257

tors and compute the cosine similarity as a measure 258

of visual similarity. 259
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Screenshot DOM Tree

② Tag,	Id,	Class

③ Text,	CSS,	BBox

Simplified DOM Tree

① HTML	Code

DOM Tree Simplification

Sketch

Elements	Contexture:	
TagName,		Id,	Text
BBox:[x1,y1,x2,y2]

CSS:	color,	size, weight

Visual 
Encoder
(e.g., CLIP)

Hungarian
Matching
Algorithm

Matched Elements:

Rules

Filter and keep     visual elements Layout-Level Evaluation

Element-Level Evaluation

𝑌

𝑌′

𝑌 𝑌′ ( ,   ):

𝐒𝐜𝐨𝐫𝐞

𝑇

𝑇′

Score:
𝑻 " 𝑻′

Figure 4: Schematic diagram of fine-grained WebUI-to-Code task evaluation process.

Fine-Grained Evaluation: We separate the fine-260

grained evaluation into element-level and layout-261

level assessments as shown in Figure 4. The pro-262

cess includes: (i) Simplifying and restructuring the263

DOM tree of the webpage to preserve visual el-264

ements; (ii) Conducting evaluations separately at265

both the element and layout levels. The specific266

evaluation details are as follows:267

• DOM Tree Simplification: We parse the origi-268

nal DOM tree to extract all elements related to269

visual presentation, including images, text, in-270

put fields, buttons, and areas with background271

colors. This results in a filtered set of web-272

page elements R = {r1, r2, . . . , rm}. Based273

on the data preparation outlined in Section 3.1,274

we gather corresponding information for each275

element in the set.276

• Element-Level Evaluation: Given the sets277

of elements for the real and generated web-278

pages, R = {r1, r2, . . . , rm} and G =279

{g1, g2, . . . , gn}, we construct a cost matrix280

based on the similarity of the text content of281

the elements, as referenced in (Si et al., 2024).282

The Hungarian algorithm is then used to find283

the optimal matching of elements. We evalu-284

ate similarity metrics for successfully matched285

elements from the real and generated web-286

pages, includingtext content, font color and287

background color.288

• Layout-Level Evaluation: To maximize the289

decoupling of element-level and layout-level290

evaluations, we first remove content and style291

attributes of elements from the original web-292

page screenshot, preserving only size and spa-293

tial location information. Servel color blocks294

are used to distinguish elements of various tag295

categories, resulting in a sketch image of the 296

webpage, as shown in Figure 4. We then use 297

visual pre-training backbone to extract visual 298

features from this sketch image, quantifying 299

the webpage layout information. Finally, we 300

evaluate the effectiveness of layout generation 301

by calculating the cosine similarity between 302

the visual features of the real and generated 303

webpage layouts. 304

5 Experiments 305

5.1 Models 306

We select both the latest and top-performing 307

MLLMs for evaluation, including closed-source 308

models: GPT-4o (Hurst et al., 2024), GPT-4o-mini, 309

Gemini-1.5-Pro-002(Team et al., 2024), Claude- 310

3.5-Sonnet(Anthropic), GLM-4V(GLM et al., 311

2024), Yi-Vision(Young et al., 2024) and Step- 312

1.5v(ste); open-source models: InternVL2.5 se- 313

ries(Chen et al., 2024b), InternVL2 series, Qwen2- 314

VL series(Wang et al., 2024), Ovis-Gemma2 se- 315

ries(Lu et al., 2024), Phi-Vision series(Abdin 316

et al., 2024), NVLM-D-72B(Dai et al., 2024) and 317

MiniCPM-V-2.6(Yao et al., 2024). For open-source 318

models, all parameter sizes within the same series 319

are included in the evaluation process, ranging from 320

the smallest model at 2 billion parameters to the 321

largest at 78 billion parameters. 322

5.2 Main Results 323
As illustrated in Table 2, we report the performance 324

of all models across 9 tasks, with mean statistics 325

calculated across various evaluation dimensions. 326

To further provide a fine-grained evaluation and 327

insights into the models’ capabilities, we conduct a 328

detailed analysis of both quantitative statistics and 329

qualitative examples below. 330
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Table 2: Evalutaion results of different MLLMs on the WebUIBench testset. Bold entries represent the best perfor-
mance in each category and the underline entries represent the second-best performance. Task name: EC=Element
Classification, AP=Attribute Perception, VG=Visual Grounding, CEC=Code Error Correcting, CFE=Code Function
Editing, WHM=WebUI-HTML Matching, WHR=WebUI-HTML Retrieval, W2C=WebUI-to-Code.

Model Size EC OCR AP VG Avg. CEC CFE Avg. WHM WHR Avg. W2C
Closed Source Model
GPT-4o - 83.3 79.1 79.8 44.4 57.3 91.8 90.4 91.1 65.7 41.9 53.8 82.0
GPT-4o-mini - 42.4 72.9 70.8 38.9 45.0 92.0 90.7 91.4 50.1 46.4 48.2 74.9
Cluad-3.5-Sonnet - 78.9 77.3 80.7 42.9 55.9 88.6 86.9 87.8 73.7 43.6 58.7 80.2
Gemini-1.5-pro - 63.9 76.8 70.3 26.1 47.4 87.7 84.8 86.2 65.0 47.0 56.0 80.0
Yi-Vision - 59.2 37.7 68.9 28.5 38.9 84.3 81.5 82.9 46.3 48.9 47.6 77.0
GLM-4v - 62.4 62.7 62.6 29.4 43.5 53.3 32.3 42.8 48.4 65.0 56.7 72.0
Step-1.5v-mini - 62.1 49.4 57.1 17.6 46.5 86.6 84.9 85.7 44.8 53.8 49.3 67.9
Open Source Model
Qwen2-VL 2B 28.2 49.6 54.4 39.9 34.4 16.2 15.6 15.9 24.7 29.8 27.2 62.1
InternVL2 2B 46.8 34.5 49.4 29.8 32.1 16.9 16.2 16.5 28.2 39.1 33.6 55.9
InternVL2.5 2B 43.8 45.5 41.6 37.8 33.7 61.9 56.5 59.2 31.0 58.7 44.8 55.9
Ovis1.6-Llama3.2 3B 64.8 45.4 51.4 38.6 40.0 35.6 50.8 43.2 18.5 37.4 27.9 65.9
InternVL2 4B 56.7 47.4 57.3 39.7 40.2 83.2 78.4 80.8 43.6 60.3 51.9 63.4
InternVL2.5 4B 56.1 50.6 55.8 36.3 39.8 92.1 86.9 89.5 71.7 58.6 65.2 63.6

Qwen2-VL 7B 78.3 76.1 67.3 16.1 47.6 41.9 69.9 55.9 55.9 36.2 46.1 65.8
InternVL2 8B 32.4 54.8 59.2 40.9 37.4 75.6 72.4 74.0 57.9 62.9 60.4 70.7
InternVL2.5 8B 26.0 47.5 60.2 42.4 35.3 83.8 84.1 83.9 75.4 62.9 69.1 71.9
MiniCPM-V-2.6 8B 49.9 54.7 54.5 23.3 36.5 66.2 62.3 64.2 21.6 34.7 28.1 70.4
Phi-3-vision 8B 62.9 16.4 57.3 40.5 35.5 58.1 44.5 51.3 25.7 36.7 31.2 56.0
Phi-3.5-vision 8B 12.2 3.8 53.7 29.4 19.8 67.9 45.2 56.6 25.4 35.4 30.4 53.5
Ovis1.6-Gemma2 9B 57.5 51.0 70.4 21.1 40.0 65.3 85.9 75.6 42.2 45.3 43.8 69.8

InternVL2 26B 31.1 65.0 65.4 35.3 39.4 80.8 82.3 81.6 52.7 55.0 53.8 67.6
InternVL2.5 26B 65.9 57.1 67.9 53.6 49.1 91.5 89.9 90.7 80.3 64.2 72.2 75.3
Ovsi1.6-Gemma2 27B 42.8 42.9 46.1 18.9 30.2 89.9 88.9 89.4 52.7 42.5 47.6 74.0
InternVL2.5 38B 36.1 55.9 49.5 40.5 36.5 92.4 90.5 91.5 89.7 65.9 77.9 74.6
InternVL2 40B 50.8 66.1 61.6 29.7 41.8 76.7 73.1 74.9 65.7 60.9 63.3 74.3

Qwen2-VL 72B 71.1 83.4 78.9 24.5 51.6 59.5 64.7 62.1 74.7 49.8 62.2 77.3
NVLM-D 72B 81.5 14.4 63.9 57.7 43.5 30.7 25.7 28.2 66.0 44.9 55.5 62.3
InternVL2 76B 42.3 71.3 66.0 39.3 43.8 83.5 86.1 84.8 61.9 57.8 59.9 74.9
InternVL2.5 78B 41.6 62.0 73.8 43.5 44.2 92.5 88.9 90.7 83.7 59.7 71.7 75.7

5.2.1 Analysis of Capability Characteristics331

The sub-capability assessment involves the results332

of WebUI Perception, HTML Programming, and333

WebUI-HTML Understanding (i.e., from Task1 to334

Task8)335

MLLMs exhibit personalized development ca-336

pability advantages. For instance, Qwen2-VL337

series models generally performs better on We-338

bUI Perception dimensions, indicating proficiency339

in addressing challenges from the visual modal-340

ity. Conversely, InternVL2.5 series demonstrates a341

more pronounced advantage in HTML program-342

ming tasks. Overall, GPT-4o exhibits a more343

comprehensive capability, yet remains weaker in344

WebUI-HTML Understanding tasks compared to345

the Claude-3.5-sonnet. This phenomenon indicates346

that our proposed evaluation taxonomy can uncover347

finer-grained differences between models, which is348

beneficial for leveraging and enhancing personal-349

ized capabilities.350

Limitations of MLLMs in visual grounding task 351

on Webpage. A common weakness exhibited 352

by most MLLMs is their difficulty in perform- 353

ing visual grounding tasks, with predicting bound- 354

ing boxes being more challenging than predicting 355

grid numbers. Figure 5 shows a qualitative exam- 356

ple where GPT-4o and InternVL2.5-78B can par- 357

tially predict the area number of button locations 358

correctly. However, the prediction of bounding 359

boxes by both models completely deviated from 360

the groundtruth. We attribute this phenomenon 361

to the current MLLMs’ lack of pixel-level under- 362

standing(Peng et al., 2024), necessitating more fine- 363

grained annotation and training with webpage im- 364

ages. 365

MLLMs are poor at WebUI-HTML Under- 366

standing. Recalling results in Table 2, MLLMs 367

(e.g., parameters<40B) perform a random guess- 368

ing (i.e., score ≤ 50%) in Webpage-HTML Match- 369

ing task, and performance in Webpage-HTML Re- 370
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Answer:
Grid Number: [8,12]
Bounding Box: 
[1396,591,1619,629]

Question: Please give the area number and locate the object 
element with the text content of the [View All News >]

Bounding Box：
[890, 480, 1060, 520] Grid Number: [8]

Bounding Box：
[773, 490, 875, 527] Area Number: [8]

InternVL2.5-78BGPT-4o

Figure 5: Visual grounding task examples (GPT-4o and InternVL2.5-78B).
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Figure 6: Results of grid number prediction (coarse-
grained visual grounding)
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Figure 7: Results of bounding box prediction (fine-
grained visual grounding)

trieval tasks is also relatively lower compared to371

single-modality sub-tasks (e.g., HTML Program-372

ming task). We hypothesize that this capability373

deficiencies stems from the increased information374

density in cross-modality reasoning scenarios and a375

lack of high-quality WebUI-HTML matching train-376

ing data.377

5.2.2 Results for WebUI-to-Code Task378

The more results of element-level and layout-level379

evaluation are reported in Appendix.380

Positive correlations between WebUI-to-Code381

performance and personalized sub-capability.382

As shown in Figure 8, the positive correlation in-383

dicates that our evaluation taxonomy effectively384

reveals the model’s WebUI-to-Code capabilities385

across different sub-capability dimensions. We386

can initially use this phenomenon to analyze and387

explain the performance gap. For example, the388

low competitiveness of NVLM-D-72B among 70B+389

models may be due to its deficiency in HTML pro-390

gramming capabilities (i.e, CEC Score is 30.7%391

and CFE Score is 25.7%). It validates our idea of392

evaluating sub-capabilities according to software393

engineering principles.394

Small MLLMs face increasing inference cost in395

HTML generation. HTML typically describes396

webpage content in long text form, posing chal-397

Table 3: The results of the instruction-following failure
rate and code compilation success rate for the small
MLLMs.

Model size ♯Samples Accuracy

Instruction-Following Evaluation (↓)
InternVL2 4B 49 2.39%
InternVL2.5 4B 71 3.46%
InternVL2 2B 811 3.96%
Qwen2-VL 2B 1,085 5.17%
InternVL2.5 2B 1,393 6.81%
Ovis1.6-Llama3.2 3B 2,895 14.14%

HTML Code Compilation (↑)
Ovis1.6-Llama3.2 3B 823 62.37%
InternVL2 4B 504 38.23%
InternVL2.5 4B 247 18.74%
InternVL2.5 2B 239 18.13%
Qwen2-VL 2B 155 11.76%
InternVL2 2B 53 4.02%

lenges to the model’s inference process. As shown 398

in Table 3, although the outputs from the smaller 399

models generally passed the instruction-following 400

tests, the code content within the output often failed 401

to compile successfully. We notice that small mod- 402

els tend to output repetitive content or incomplete 403

code, affecting the proper closure of HTML tags. 404

It hinders their ability to perform generation tasks 405

well, despite having decent performance in some 406

sub-capabilities. 407
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Figure 8: Positive correlations between WebUI-to-Code performance and sub-capability performance.

Groundtruth QwenVL2-72B GPT-4o

Figure 9: Examples of generated webpage by Qwen2-VL-72B and GPT4o on complex webpage and slices.

Visualization for qualitative examples. As408

shown in Figure 9, we present the generation re-409

sults of GPT-4o and QwenVL2-72B on complex410

webpages. By observing and comparing visual dif-411

ferences between generated webpage screenshots412

and WebUI images, we observe some interesting413

phenomena: (i)MLLMs demonstrates the ability414

to recognize vertical layouts of pages but struggles415

to identify and generate horizontal layouts. (ii)416

MLLMs can count elements effectively, yet per-417

forms poorly in generating the shapes and sizes418

of these elements. (iii) As the content of the web-419

page increases, these deficiencies become more420

pronounced.421

5.3 Discussions of Solutions422

In the front-end software development process, en-423

gineers usually construct the page layout first and424

then fill in the element information based on the425

completed layout. However, it seems that MLLMs426

internally couple the generation processes of both.427

Although the generation process is a black box,428

the similar rankings of MLLMs regarding element-429

level and layout-level scores may support this ob-430

servations. Intuitively, element-level and layout-431

level information represent two types of patterns:432

local fine-grained features and global spatial fea-433

tures. Therefore, a reasonable hypothesis is that 434

generating element and layout features simultane- 435

ously may not fully leverage the model’s capabili- 436

ties. 437

The above and discussions may suggest a future 438

solution: decoupling webpage lay out and element 439

content generation into two steps, using methods 440

like multimodal chain-of-thought(Wei et al., 2022) 441

to incrementally generate webpages. 442

6 Conclusion 443

In this study, we introduce WebUIBench, a large- 444

scale and comprehensive benchmark designed to 445

evaluate the WebUI-to-Code capabilities of Mul- 446

timodal Large Language Models (MLLMs). We- 447

bUIBench comprises over 21K question-answer 448

pairs derived from more than 0.7K real-world web- 449

sites, encompassing 9 distinct subtasks. We con- 450

ducted extensive experiments on 7 state-of-the- 451

art closed-source and 22 prominent open-source 452

MLLMs. Our key findings highlight the models’ 453

deficiencies in webpage generation tasks across 454

various dimensions, including cross-modality rea- 455

soning, element localization, and webpage layout 456

generation. This benchmark provides critical in- 457

sights and guidance for future research aimed at 458

improving webpage generation performance. 459
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Limitations460

WebUIBench currently has the following limita-461

tions: (i) Imbalanced Data Distribution Across Sub-462

tasks: After manual and algorithmic filtering, some463

evaluation dimensions have only a few question-464

answer pairs remaining (e.g., the evaluation data465

for font-style accounts for only 0.67%). In future466

work, we plan to address this by collecting new467

website data targeted at these missing categories.468

(ii) Lack of Mobile Webpage Evaluation Datasets:469

We have not yet constructed evaluation datasets for470

mobile platforms (e.g., smartphones). Considering471

that mobile web development is a prevalent task in472

software engineering, we plan to supplement our473

current data to include mobile evaluation datasets474

and results. (iii) Absence of Page Functionality475

Interaction Evaluation: In practical development,476

both static page and dynamic interaction function-477

alities need to be considered. In future work, it will478

also be important to evaluate MLLMs in generating479

interactive functionality code (e.g., JavaScript).480

References481

step-1.5v-mini.482

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed483
Awadallah, Ammar Ahmad Awan, Nguyen Bach,484
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat485
Behl, et al. 2024. Phi-3 technical report: A highly ca-486
pable language model locally on your phone. arXiv487
preprint arXiv:2404.14219.488

Anthropic. The claude 3 model family: Opus, sonnet,489
haiku.490

Tony Beltramelli. 2018. pix2code: Generating code491
from a graphical user interface screenshot. In492
Proceedings of the ACM SIGCHI symposium on493
engineering interactive computing systems, pages 1–494
6.495

Jorge Biolchini, Paula Gomes Mian, Ana Can-496
dida Cruz Natali, and Guilherme Horta Travas-497
sos. 2005. Systematic review in software engi-498
neering. System engineering and computer science499
department COPPE/UFRJ, Technical Report ES,500
679(05):45.501

Liguo Chen, Qi Guo, Hongrui Jia, Zhengran Zeng, Xin502
Wang, Yijiang Xu, Jian Wu, Yidong Wang, Qing503
Gao, Jindong Wang, et al. 2024a. A survey on evalu-504
ating large language models in code generation tasks.505
arXiv preprint arXiv:2408.16498.506

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu,507
Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye,508
Hao Tian, Zhaoyang Liu, et al. 2024b. Expanding509
performance boundaries of open-source multimodal510

models with model, data, and test-time scaling. arXiv 511
preprint arXiv:2412.05271. 512

Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuolin Yang, 513
Zihan Liu, Jon Barker, Tuomas Rintamaki, Moham- 514
mad Shoeybi, Bryan Catanzaro, and Wei Ping. 2024. 515
Nvlm: Open frontier-class multimodal llms. arXiv 516
preprint. 517

Enrique Dehaerne, Bappaditya Dey, Sandip Halder, Ste- 518
fan De Gendt, and Wannes Meert. 2022. Code gener- 519
ation using machine learning: A systematic review. 520
Ieee Access, 10:82434–82455. 521

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 522
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu 523
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family 524
of large language models from glm-130b to glm-4 all 525
tools. arXiv preprint arXiv:2406.12793. 526

Hongcheng Guo, Wei Zhang, Junhao Chen, Yaonan 527
Gu, Jian Yang, Junjia Du, Binyuan Hui, Tianyu Liu, 528
Jianxin Ma, Chang Zhou, et al. 2024. Iw-bench: 529
Evaluating large multimodal models for converting 530
image-to-web. arXiv preprint arXiv:2409.18980. 531

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 532
Perelman, Aditya Ramesh, Aidan Clark, AJ Os- 533
trow, Akila Welihinda, Alan Hayes, Alec Radford, 534
et al. 2024. Gpt-4o system card. arXiv preprint 535
arXiv:2410.21276. 536

Hugo Laurençon, Léo Tronchon, and Victor Sanh. 2024. 537
Unlocking the conversion of web screenshots into 538
html code with the websight dataset. arXiv preprint 539
arXiv:2403.09029. 540

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexi- 541
ang Hu, Fangyu Liu, Julian Martin Eisenschlos, Ur- 542
vashi Khandelwal, Peter Shaw, Ming-Wei Chang, 543
and Kristina Toutanova. 2023. Pix2struct: Screen- 544
shot parsing as pretraining for visual language under- 545
standing. In International Conference on Machine 546
Learning, pages 18893–18912. PMLR. 547

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix- 548
iao Ge, and Ying Shan. 2023. Seed-bench: Bench- 549
marking multimodal llms with generative compre- 550
hension. arXiv preprint arXiv:2307.16125. 551

Lin Li, Guikun Chen, Hanrong Shi, Jun Xiao, and 552
Long Chen. 2024. A survey on multimodal bench- 553
marks: In the era of large ai models. arXiv preprint 554
arXiv:2409.18142. 555

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, 556
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi 557
Wang, Conghui He, Ziwei Liu, et al. 2025. Mm- 558
bench: Is your multi-modal model an all-around 559
player? In European conference on computer vision, 560
pages 216–233. Springer. 561

Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Wei- 562
hua Luo, Kaifu Zhang, and Han-Jia Ye. 2024. Ovis: 563
Structural embedding alignment for multimodal large 564
language model. arXiv:2405.20797. 565

9

https://platform.stepfun.com/docs/llm/text
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499


M Ronnier Luo, Guihua Cui, and Bryan Rigg. 2001.566
The development of the cie 2000 colour-difference567
formula: Ciede2000. Color Research & Application:568
Endorsed by Inter-Society Color Council, The569
Colour Group (Great Britain), Canadian Society for570
Color, Color Science Association of Japan, Dutch571
Society for the Study of Color, The Swedish Colour572
Centre Foundation, Colour Society of Australia,573
Centre Français de la Couleur, 26(5):340–350.574

Tuan Anh Nguyen and Christoph Csallner. 2015. Re-575
verse engineering mobile application user inter-576
faces with remaui (t). In 2015 30th IEEE/ACM577
International Conference on Automated Software578
Engineering (ASE), pages 248–259. IEEE.579

Wujian Peng, Lingchen Meng, Yitong Chen, Yiweng580
Xie, Yang Liu, Tao Gui, Hang Xu, Xipeng Qiu, Zux-581
uan Wu, and Yu-Gang Jiang. 2024. Inst-it: Boost-582
ing multimodal instance understanding via explicit583
visual prompt instruction tuning. arXiv preprint584
arXiv:2412.03565.585

Tony Beltramelli Pix2code. Generating code from a586
graphical user interface screenshot [electronic re-587
source]. arXiv preprint arXiv:1705.07962.588

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya589
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-590
try, Amanda Askell, Pamela Mishkin, Jack Clark,591
et al. 2021. Learning transferable visual models592
from natural language supervision. In International593
conference on machine learning, pages 8748–8763.594
PMLR.595

Jiho Shin and Jaechang Nam. 2021. A survey596
of automatic code generation from natural lan-597
guage. Journal of Information Processing Systems,598
17(3):537–555.599

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo600
Liu, and Diyi Yang. 2024. Design2code: How far are601
we from automating front-end engineering? arXiv602
preprint arXiv:2403.03163.603

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan604
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,605
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.606
2024. Gemini 1.5: Unlocking multimodal under-607
standing across millions of tokens of context. arXiv608
preprint arXiv:2403.05530.609

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-610
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin611
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei612
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,613
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024.614
Qwen2-vl: Enhancing vision-language model’s per-615
ception of the world at any resolution. Preprint,616
arXiv:2409.12191.617

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten618
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,619
et al. 2022. Chain-of-thought prompting elicits rea-620
soning in large language models. Advances in neural621
information processing systems, 35:24824–24837.622

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, 623
Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, 624
Weilin Zhao, Zhihui He, et al. 2024. Minicpm-v: 625
A gpt-4v level mllm on your phone. arXiv preprint 626
arXiv:2408.01800. 627

Alex Young, Bei Chen, Chao Li, Chengen Huang, 628
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng 629
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi: 630
Open foundation models by 01. ai. arXiv preprint 631
arXiv:2403.04652. 632

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, 633
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu 634
Jiang, Weiming Ren, Yuxuan Sun, et al. 2024. 635
Mmmu: A massive multi-discipline multimodal un- 636
derstanding and reasoning benchmark for expert 637
agi. In Proceedings of the IEEE/CVF Conference 638
on Computer Vision and Pattern Recognition, pages 639
9556–9567. 640

Sukmin Yun, Haokun Lin, Rusiru Thushara, Moham- 641
mad Qazim Bhat, Yongxin Wang, Zutao Jiang, 642
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo 643
Li, et al. 2024. Web2code: A large-scale webpage- 644
to-code dataset and evaluation framework for multi- 645
modal llms. arXiv preprint arXiv:2406.20098. 646

10

https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191


A Appendix647

A.1 Related Work648

Before the advent of Large Language Mod-649

els(LLMs), a series of works(Beltramelli, 2018;650

Lee et al., 2023; Nguyen and Csallner, 2015;651

Pix2code) have already begun exploring how to652

convert webpage screenshots into HTML code.653

With the development of Multimodel Large Lan-654

guage Models(MLLMs), this field has seen the655

emergence of several works aimed at evaluating656

and addressing webpage code generation issues:657

WebSight(Laurençon et al., 2024) introduced a658

large-scale synthetic dataset to train models in659

the code generation domain, but did not pro-660

vide an evaluation dataset or methodology. De-661

sign2Code(Si et al., 2024) was the first to systemat-662

ically evaluate both open-source and closed-source663

MLLMs using real webpage data. Web2Code(Yun664

et al., 2024) proposed an evaluation task for web-665

page understanding, expanding previous evaluation666

frameworks and introducing a high-quality code667

instruction dataset. IWBench(Guo et al., 2024) pre-668

sented an evaluation method focused on webpage669

layout and improved generation algorithms using670

CoT.671

Table 4: Comparison of WebUIBench with previous
works

Benchmark Source ♯Size Sub-cap.

Websight Synthetic 823K ✗
Pixel2Code Synthetic 1.7K ✗
Web2Code Synthetic 884.7k ✓

Design2Code Real-World 484 ✗
IWBench Real-World 1.2K ✗
WebUIBench(Ours) Real-World 21K ✓

A.2 Examples for Different Tasks672

As shown in Figure 10 to 16 , we provide specific673

examples for each evaluation task under the three674

major capability dimensions to illustrate the sample675

dataset.676

A.3 Data Collection677

Webpage Simplification Algorithm: In the col-678

lected dataset of raw web pages, some pages are679

overly long, particularly those from news or e-680

commerce sites. These pages surpass the maximum681

input length of current multimodal large models,682

creating challenges for subsequent evaluations. Ad-683

ditionally, these pages contain numerous redundant684

and duplicate elements. To address this, we de- 685

veloped a web page simplification algorithm that 686

analyzes the DOM tree structure to identify and 687

remove redundant nodes, thereby facilitating more 688

effective evaluations. The specific process of the 689

web page simplification algorithm is shown in Alg 690

19. 691

Webpage Segmentation Algorithm: The web 692

page segmentation algorithm is designed to over- 693

come the input length limitations of large models. 694

By dividing web pages into multiple slices, we can 695

incrementally process and analyze web content, en- 696

suring each slice is manageable by the model. This 697

approach not only enhances the model’s processing 698

efficiency but also improves evaluation accuracy. 699

The process of the web page segmentation algo- 700

rithm is shown in Alg 20. 701

A.4 Automatic Labeling Strategy 702

Task 1: Element Classification We first use the 703

front-end code to determine whether the following 704

three types of tags and their combinations exist on 705

the web page: <input />, <button />, <img />. We 706

then construct them into correct options, such as 707

B. <img /> and <input />. At the same time, we 708

construct error interference options by permuting 709

and combining elements that do not exist on the 710

page; for example: A. <img /> and <button />, C. 711

<input /> and <button />, D. None of the above. 712

Task 2: Attribute Perception To prevent inter- 713

ference in the testing process from elements with 714

identical text content, we initially selected web 715

page elements with unique text. Using the element 716

IDs, we extracted the following four types of style 717

content from the CSS file to create question-answer 718

pairs. 719

• background-color We construct questions 720

and correct answers based on the RGB color 721

format requirements, such as rgb(19,25,36). 722

• color We construct questions and correct an- 723

swers based on the RGB color format require- 724

ments, such as rgb(19,25,36). 725

• font-style We construct the following 726

multiple-choice questions: A. Italic, B. 727

Oblique. 728

• border-radius We construct the following 729

multiple-choice questions: A. Rounded cor- 730

ners, B. Square corners. 731
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Figure 10: Samples of Element Classification.

Figure 11: Samples of Attribute Perception.

Figure 12: Samples of OCR in the Webpage.

Figure 13: Samples of Visual Grounding(fine granularity).
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Figure 14: Samples of Visual Grounding(coarse granularity).

Figure 15: Samples of Code Error Correction.

Figure 16: Samples of Code Function Editing.
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Task 3: Visual Grounding in the Webpage To732

prevent interference in the testing process from ele-733

ments with identical text content, we first selected734

web page elements with unique text content. Next,735

we retrieved the spatial position information of736

these elements based on their IDs: [x1, y1, x2, y2].737

Using this spatial information, we constructed two738

types of visual grounding tasks. For the grid local-739

ization task, we divided the webpage screenshot740

into a 4x4 grid and automatically calculated the741

grid numbers occupied by the elements based on742

their coordinates.743

Task4: OCR in the Webpage To prevent inter-744

ference in the testing process from elements with745

identical text content, we first selected web page746

elements with unique text. Next, we sorted all text747

by length and chose short, medium, and long texts748

to construct question-answer pairs. Finally, using749

the elements’ coordinate information, we drew red750

borders on the corresponding webpage screenshots751

to guide the model in performing OCR tasks.752

Task 5: Code Error Correction To construct753

correction samples, we designed various code cor-754

ruption methods based on real web element code755

to ensure diversity in error types, comprehensively756

covering common front-end code errors. The spe-757

cific methods are as follows:758

• Missing Closing Tag. Description: Missing759

a closing tag, resulting in incomplete web ele-760

ments. Method: Delete the closing tag of real761

web elements to generate error samples.762

• Incorrect Character Escaping. Description:763

Certain characters need escaping; otherwise,764

they interfere with HTML parsing. Method:765

Insert random special symbols such as &, <, >766

into element text to create escaping errors.767

• Tag Spelling Error. Description: Tag name768

spelling error, such as writing <p> as <p1>.769

Method: Randomly modify the end tag by770

adding erroneous characters.771

• Attribute Syntax Error. Description: At-772

tribute values not enclosed in quotes, causing773

syntax errors. Method: Remove quotes from774

page element attribute values.775

• Attribute Spelling Error. Description: At-776

tribute name spelling error, such as writing777

class as clbss, possibly causing style loss.778

Method: Replace some attribute names of ele- 779

ments with misspelled versions. 780

• Erroneous Addition of Tags. Description: 781

Adding a closing tag to tags that do not require 782

one (e.g., <img />, <input />). Method: Add 783

erroneous "closing tags" to these tag types. 784

For each real web element, one of the above 785

methods is randomly selected with equal probabil- 786

ity to corrupt the code, producing erroneous ele- 787

ment code, with the original web code serving as 788

ground truth. This approach generates a large and 789

diverse set of correction samples, aiding in a com- 790

prehensive evaluation of MLLM’s ability to correct 791

various front-end code errors. 792

Task 6: Code Function Editing. Similarly, 793

based on real web elements, we construct code edit- 794

ing instructions and edited web element code. To 795

cover various common code editing scenarios, we 796

have also designed multiple editing methods. The 797

specific editing methods are described as follows: 798

• Modify Element Attributes. (i) Randomly 799

select an existing attribute of an element to 800

modify, such as class, id, href, etc, and(ii) 801

Generate random values for the selected at- 802

tribute and replace it. 803

• Modify Element Text. Uniformly modify the 804

text content of elements (if any) to a place- 805

holder: Replace the first text child node of 806

the element (if any) with "This is a text place- 807

holder." 808

• Add or Modify Element Style. Modify or 809

add style attributes of elements, such as height 810

and background-color: If the attribute exists, 811

modify its value; otherwise, append a new 812

style definition in the style attribute. 813

• Add or Delete Child Nodes. (i) Randomly 814

delete a child node (if any) or (ii) Insert a new 815

child node into the element, randomly set the 816

tag and attributes of the child node, and set its 817

text content to "this is a new node." 818

For each real web element, one of the above 819

editing methods is randomly selected with equal 820

probability to edit the original code, resulting in 821

edited code (as ground truth) and specific editing 822

methods (as editing instructions for MLLM). This 823

approach generates a large and diverse set of code 824
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Table 5: Evalutaion results of WebUI-to-Code at element and layout level. Dimensions name: CCSR=Code Compile
Success Rate, TS=Text Similarity, CS=Color Similarity, BCS=Background Color Similarity, CGE=Coarse-Grained
Evaluation

Model Size CCSR TS CS BCS Layout CGE
Closed Source Model
GPT-4o - 95.8 73.6 72.1 81.1 89.2 81.7
GPT-4o-mini - 99.0 59.8 53.3 66.7 86.4 76.8
Cluad-3.5-Sonnet - 85.2 72.9 70.4 79.6 88.7 81.1
Gemini-1.5-pro - 96.7 73.7 67.9 80.5 87.8 78.8
Yi-Vision - 96.1 61.4 61.1 72.8 86.5 78.4
GLM-4v - 77.5 58.9 55.6 68.4 85.5 74.8
Step-1.5v-mini - 62.3 51.4 59.1 73.5 85.5 75.4
Open Source Model
Qwen2-VL 2B 11.8 51.8 54.2 79.7 83.8 68.0
InternVL2 2B 4.0 48.5 29.7 60.3 80.9 67.0
InternVL2.5 2B 18.1 47.9 39.3 55.9 84.0 62.7
Ovis1.6-Llama3.2 3B 62.4 57.5 45.7 67.5 83.2 68.6
InternVL2 4B 38.2 56.6 47.1 64.9 83.2 68.6
InternVL2.5 4B 18.7 50.8 46.6 64.5 84.7 74.2

Qwen2-VL 7B 47.3 54.1 49.2 64.3 84.6 71.8
InternVL2 8B 81.5 62.8 51.3 70.7 84.1 71.2
InternVL2.5 8B 95.3 58.8 49.7 63.5 84.3 73.4
MiniCPM-V-2.6 8B 90.9 58.0 46.6 64.7 85.0 71.9
Phi-3-vision 8B 60.5 23.7 29.8 41.8 82.1 64.5
Phi-3.5-vision 8B 53.6 21.7 27.3 38.6 81.1 62.5
Ovis1.6-Gemma2 9B 60.3 58.5 52.5 69.2 85.8 74.4

InternVL2 26B 75.0 57.7 48.3 64.0 84.3 69.4
InternVL2.5 26B 91.6 58.9 63.5 69.1 84.9 76.9
Ovsi1.6-Gemma2 27B 80.8 62.7 58.4 72.4 85.7 76.1
InternVL2.5 38B 86.6 59.2 57.9 72.7 87.3 76.5
InternVL2 40B 84.6 67.5 57.7 76.7 85.9 74.1

Qwen2-VL 72B 83.7 69.5 61.5 74.8 88.2 79.2
NVLM-D 72B 23.7 52.8 45.8 70.1 83.9 69.4
InternVL2 76B 94.9 63.3 55.7 71.7 86.6 75.3
InternVL2.5 78B 85.4 65.6 59.8 74.5 86.9 77.0

editing samples, aiding in a comprehensive evalu-825

ation of MLLM’s ability to modify web element826

code based on diverse editing instructions.827

Task 7: Webpage-HTML Matching We first828

matched the corresponding HTML code snippets829

using the ID set of all elements in the webpage830

slices. Next, we randomly chose, with equal prob-831

ability, whether to alter the correct code snippets.832

For the modification, we selected the code of an833

element from another slice of the same webpage to834

replace one element’s code in the correct snippet.835

Task 8: Webpage-HTML Retrieval We first836

matched the corresponding HTML code using the837

ID set of all elements in the webpage slices and838

used it as the correct option. For the incorrect839

options, we randomly selected elements and their840

corresponding code snippets from other slices on841

the same website, replacing parts of the correct842

option’s code at different levels. We chose to re-843

place 1, 2, or 3 elements to construct three incorrect844

options. 845

A.5 More Results 846

We show more detailed experimental results of all 847

models at the element level and layout level in Ta- 848

ble 5. At the element level, we supplement the eval- 849

uation results at different fine-grained dimensions, 850

including text content, font color and background 851

color. 852

Figure 17 shows the generation effects of more 853

models on webpage slices and full webpages. We 854

selected the top-2 models of open source and closed 855

source models for display. It can be seen that as the 856

complexity of web page content increases, the gen- 857

eration effect of the model gradually deteriorates. 858
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Algorithm 1: Simplify DOM Tree
Input: Original DOM tree T ;similarity threshold δ
Output: Simplified DOM tree T ′

1 begin
2 Initialize T ′ as a copy of T ;
3 Group child nodes by TagName;
4 foreach group of child nodes do
5 foreach pair of nodes (n1, n2) in the group do
6 Split ClassName of n1 and n2 into list S1 and S2;
7 Calculate Dice similarity: Dice← 2×|S1∩S2|

|S1|+|S2|
8 if Dice similarity δ then
9 Group n1 and n2 together;

10 end
11 end
12 if group size ≤ 5 or all nodes have similar heights then
13 Retain all nodes in the group;
14 end
15 else
16 Sort nodes by bottom height in ascending order and retain the top 50%;
17 end
18 end
19 end
20 return Simplified DOM tree T ′

Algorithm 2: Webpage Slices Generation
Input: Webpage Screenshots, slice height Hs; minimum slice height Hmin; webpage height Hpage

1 ; Element coordination set S ← {[x11, y11, x12, y12], ...[xn1 , yn1 , xn2 , yn2 ]}
Output: List of webpage slices

2 begin
3 Initialize slice top boundary Ht ← 0 and slice bottom boundary Hb ← Hs;
4 while Hb < Hpage do
5 Filter the elements which y2 > Hb and y1 < Hb;
6 ymax ← calculate the maximum value of set y2;
7 if Hpage − ymax ≤ Hmin then
8 ymax ← Hpage;
9 end

10 Retrieve element IDs and save webpage slice between Ht and ymax;
11 Ht ← ymax;
12 Hb ← ymax +Hs;
13 if Hb > Hpage then
14 Retrieve element IDs and save webpage slice between Ht and Hpage;
15 break;
16 end
17 end
18 return All webpage slices, element IDs;
19 end
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Groundtruth QwenVL2-72B GPT-4oClaude-SonnetInternVL2.5-78B

Figure 17: Comparison of webpage generation effects by different models on complex webpages and slices.

17


	Introduction
	Taxonomy of Evaluation
	WebUI Perception
	HTML Programming
	WebUI-HTML Understanding

	Dataset
	Raw Data Collection
	Question and Answer Pairs Collection
	Dataset Statistics

	Metric
	Experiments
	Models
	Main Results
	Analysis of Capability Characteristics 
	Results for WebUI-to-Code Task

	Discussions of Solutions

	Conclusion
	Appendix
	Related Work
	Examples for Different Tasks
	Data Collection
	Automatic Labeling Strategy
	More Results


