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Abstract

We introduce a new type of query mechanism for collecting human feedback, called
the perceptual adjustment query (PAQ). Being both informative and cognitively
lightweight, the PAQ adopts an inverted measurement scheme, and combines advan-
tages from both cardinal and ordinal queries. We showcase the PAQ in the metric
learning problem, where we collect PAQ measurements to learn an unknown Maha-
lanobis distance. This gives rise to a high-dimensional, low-rank matrix estimation
problem to which standard matrix estimators cannot be applied. Consequently,
we develop a two-stage estimator for metric learning from PAQs, and provide
sample complexity guarantees for this estimator. We present numerical simulations
demonstrating the performance of the estimator and its notable properties.

1 Introduction

Should we query cardinal or ordinal data from people? This question arises in a broad range of appli-
cations, such as in conducting surveys [1–3], grading assignments [4, 5], evaluating employees [6],
and comparing or rating products [7, 8], to name a few. Cardinal data are numerical scores. For
example, teachers score writing assignments in the range of 0-100, and survey respondents express
their agreement with a statement on a scale of 1 to 7. Ordinal data are relations between items, such
as pairwise comparisons (choosing the better item in a pair) and rankings (ordering all or a subset of
items). There is no free lunch, and both cardinal and ordinal queries have pros and cons.

On the one hand, collecting ordinal data is typically more efficient in terms of worker time and
cognitive load [9], and surprisingly often matches or exceeds the accuracy of cardinal data [1, 9]. The
information contained in ordinal queries, however, is fundamentally limited and lacks expressiveness.
For example, pairwise comparisons elicit binary responses where two items are compared against
each other, but the absolute placement of these items with respect to the entire pool is lost. On the
other hand, cardinal data are more expressive [10]. For example, assigning two items scores of 1 and
2 conveys a very different message from assigning them scores of 9 and 10, or 1 and 10, although
all yield the same pairwise comparison outcome. However, the expressiveness of cardinal data
often comes at the cost of miscalibration: Prior work has shown that different people have different
scales [11], and even a single person’s scale can drift over time (e.g., [12, 13]). These inter-person
and intra-person discrepancies make it challenging to interpret and aggregate raw scores effectively.

The goal of this paper is to study whether one can combine the advantages of cardinal and ordinal
queries to achieve the best of both worlds. Specifically, we pose the research question:
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Figure 1: The user interface for perceptual adjustment query (PAQ) for preference learning (top) and
similarity learning (bottom).

Can we develop a new paradigm for human data elicitation that is expressive,
accurate, and cognitively lightweight?

Towards this goal, we extract key features of both cardinal and ordinal queries, and we propose a new
type of query scheme that we term the perceptual adjustment query (PAQ). As a thought experiment,
consider the task of learning an individual’s preferences between modes of transport. The query can
take the following forms:

• Ordinal: Do you prefer a $2 bus ride that takes 40 minutes or a $25 taxi that takes 10 minutes?
• Cardinal: On a scale of 0 to 1, how much do you value a $2 bus ride that takes 40 minutes?
• Proposed approach: To reach the same level of preference for a $2 bus trip that takes 40 minutes,

a taxi that takes 10 minutes would cost $x.

A user interface for the proposed approach is shown in Figure 1 (top). We present the user a reference
item (a $2 bus ride that takes 40 minutes) and a sliding bar representing the number of dollars (x)
for the 10-minute taxi cost. As the user adjusts the slider, the value of x starts with 0 and gradually
increases on a continuous scale. The user is instructed to place the slider at a point where they
equally prefer a $2 bus ride and a taxi ride of x dollars.2 The PAQ thus combines ordinal and cardinal
elicitation in an intuitive fashion: We obtain ordinal information by asking the user to make cognitive
judgments in a relative sense by comparing items, and cardinal information can be extracted from the
location of the slider. The ordinal reasoning endows the query with accuracy and efficiency, while
the cardinal output enables a more expressive response. Moreover, this cardinal output mitigates
miscalibration, because instead of asking the user to rate on a subjective and ambiguous notion (i.e.,
preference), we provide the user a reference object (i.e., the $2 bus ride) to anchor their rating scale.

Beyond combining the strengths of cardinal and ordinal queries, PAQs have additional advantages
that are well illustrated with the example in Figure 1 (bottom). First, PAQs provide users with
the context of a specific (continuous) dimension along which items vary. For example, consider a
pairwise comparison between the reference item and the “yellow apple ” selected in Figure 1. They
have similar shapes, but different colors. If these two items are shown to the user in isolation, the
user lacks context to judge whether they should be considered similar or dissimilar. In contrast, the
full spectrum provided in PAQs tells the user that the similarity judgment is apples vs. pears. The
access to such context improves self-consistency in user responses [14]. Second, PAQs provide “hard
examples” by design and thus enable effective learning. Consider Figure 1 (bottom): Items on the left
of the spectrum are apples (clearly similar to the reference), and items on the right are pears (clearly
dissimilar to the reference), and only a small subset of items in the middle appear ambiguous. PAQs
collect information precisely about “confusing" items in this ambiguous region. On the other hand, if
ordinal queries are constructed by selecting uniformly at random from the items shown, an item in
the ambiguous region will rarely be presented to the user.

2The ordinal component is crucial in our proposed perceptual adjustment query— we provide a reference
item and instruct people to make a relational judgment of the target item compared to the reference item. Hence,
the perceptual adjustment query is distinct from sliding survey questions that elicit purely cardinal responses.
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The advantages of PAQs makes their deployment appealing in a variety of problem settings. For
example, practitioners may deploy PAQs to learn human preferences, like in the taxi and bus example
in Figure 1 or more complex settings such as housing preferences, where multiple features (price,
square footage, proximity to employment etc.) vary as the slider is moved. PAQs can also be used
to learn models for human perception, such as characterizing the extent of color blindness for a
given user. One can present a user with red-green color blindness a sequence of colors that slowly
transitions between red and green, and ask them to drag the slider until they perceive a difference in
colors. An extended discussion of applications is provided in the full version of this paper on arXiv.
In this paper, we focus on learning metrics to characterize human perception. In this problem, items
are represented by points in a (possibly high-dimensional) space, and the goal is to learn a distance
metric such that a smaller distance between a pair of items means that they are semantically and
perceptually closer, and vice versa. Figure 1 (bottom) presents a PAQ for collecting similarity data
for metric learning, where the user is instructed to place the slider at the precise point where the
object appears to transition from being similar to dissimilar. To construct a sequence of images as
shown in Figure 1 (bottom), one can traverse a path in the latent space of a generative model — given
a latent feature vector, the generative model synthesizes a corresponding image.

1.1 Do PAQs improve upon ordinal queries? A simulation vignette

Consider the problem of Mahalanobis metric learning, which forms the focus of this paper. In this
setting, items are represented as points in the vector space Rd, which is in turn endowed with a
Mahalanobis metric parametrized by a symmetric positive semidefinite matrix Σ⋆ ∈ Rd×d. The
(dis-)similarity of two items is determined by their distance under the metric: The larger the (squared)
distance ∥x− x′∥2Σ⋆ = (x− x′)⊤Σ⋆(x− x′) between two items x and x′ is, the more dissimilar
the items are. We are particularly interested in the setting in which Σ⋆ is low-rank. Established
approaches in metric learning use ordinal queries, such as pairwise comparisons (“Are items x and
x′ similar?”) [15–18], triplet comparisons [19] (“Which of the two items x1 and x2 is closer to
reference item x0?”), and ranking−k queries (“Given a reference item x0, rank the set of items
x1, . . . ,xk in terms of similarity to x0”) [14].

We compare the performance of such queries against PAQs in a toy metric learning setup. In particular,
we choose a random low-rank matrix Σ⋆ in dimension 50 with rank 10 (see Appendix B for our
precise construction) and use the models and state-of-the-art algorithms of [19, 14] to produce
pairwise, triplet, and ranking-k queries and estimate the low-rank metric. In addition to these ordinal
queries, we simulate PAQ responses under the model presented in Section 2 and use our algorithm
(see Section 3) for estimation. To simplify the example, all query responses are generated in a
noiseless fashion—for example, the triplet comparison always returns the closer item to the reference.
We present our results in Figure 2, which illustrates a significant gap in information richness between
PAQs and a variety of ordinal queries. The number of PAQ responses needed to attain a reasonable
normalized error is dramatically lower than those of typical ordinal queries, illustrating that PAQs
can greatly improve upon the performance of existing ordinal queries for metric learning. The rest of
our paper explores this opportunity: It aims to make the deployment of PAQs theoretically grounded
by designing provable methodology for learning a low-rank metric from PAQ responses.

1.2 Our contributions and organization

In addition to introducing the perceptual adjustment query (PAQ), we demonstrate its applicability
to metric learning under a Mahalanobis metric. We first present a mathematical formulation of this
estimation problem in Section 2. We then show that the sliding bar response can be viewed as an
inverted measurement of the metric matrix that we want to estimate, which allows us to restate
our problem as that of estimating a low-rank matrix from a specific type of trace measurement
(Section 3). However, our PAQ formulation differs from classical matrix estimation due to two
technical challenges: (a) the sensing matrices and noise are correlated, and (b) the sensing matrices
are heavy-tailed. As a result, standard matrix estimation algorithms give rise to biased estimators.
We propose a query procedure and an estimator that overcome these two challenges, and we prove
statistical error bounds on the estimation error (Section 4). The unconventional nature of the sensing
model and estimator causes unexpected behaviors in our error bounds; in Section 5, we present
simulations verifying that these behaviors also appear in practice.
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Figure 2: Performance of noiseless
PAQs and various ordinal queries for
low-rank metric learning. We plot the
mean and standard error of the mean
(shaded regions, not visible) of the nor-
malized estimation error over 10 trials.

Figure 3: The perceptual adjustment query. Given a ref-
erence item x and a query vector a, a continuous path
of items is formed {x + γa : γ ∈ [0,∞)}. Then, a
user is asked to pick the first item along this path that is
dissimilar to the reference item, denoted by x+ γa.

1.3 Related work

We discuss related work on metric learning and the statistical techniques that we use.

Metric learning. As discussed in Section 1.1, prior work in metric learning [20] considers a wide
variety of ordinal queries. PAQ can be viewed as extending a discrete set of items presented to users
to a continuous spectrum, which is natural when one uses a generative model such as a GAN [21, 22].
However, the goal of tuple queries is to rank the items, whereas in PAQ the ranking is provided by the
feature space and we ask people to identify a transition point (similar vs. dissimilar) in this ranking.

Statistical techniques. In our theoretical results, we apply techniques from the high-dimensional
statistics literature. Our theoretical formulation (presented in Section 3) resembles the problem of
low-rank matrix estimation from trace measurements (e.g., [23–28]; see [29] for a more complete
overview), and, in particular, when the sensing matrix is of rank one [30–33]. However, as discussed
in Section 3, our model presents two important distinctions from prior literature. In our case, the
sensing matrices are both heavy-tailed and correlated with the measurement noise. The heavy-tailed
matrices violate the assumptions of much prior work that relies on sub-Gaussian or sub-exponential
assumptions on the sensing matrices. Prior work has attempted to address the challenge of heavy tails
with methods such as robust loss functions [34, 35] or the “median-of-means” approach [36–38]. We
draw particular inspiration from Fan et al. [39], which considers truncation to control heavy-tailed
behavior for a variety of problems. However, in the low-rank matrix estimation setting, Fan et al. [39]
only analyze the case of heavy-tailed noise under a sub-Gaussian design, meaning their methodology
and results are not applicable to our problem setting.

2 Model

In this section, we present our model for the perceptual adjustment query (PAQ) in the context of its
application to metric learning.

2.1 Mahalanobis metric learning

We consider a d-dimensional feature space where each item is represented by a point in Rd. The
distance metric model for human similarity perception posits that there is a metric on Rd that
measures how dissimilar items are perceived to be. A recent line of work [40, 41] has modeled
the distance metric as a Mahalanobis metric. If Σ⋆ ∈ Rd×d is a symmetric positive semidefinite
(PSD) matrix, the squared Mahalanobis distance with respect to Σ⋆ between items x and x′ ∈ Rd is
∥x− x′∥2Σ⋆ := (x− x′)⊤Σ⋆(x− x′). The distance represents the extent of dissimilarity between
items x and x′: If we further have a perceptual boundary value y > 0, this model posits that items
x,x′ are perceived as similar if ∥x − x′∥2Σ⋆ < y and dissimilar if ∥x − x′∥2Σ⋆ ≥ y. We adopt a
high-dimensional framework and, following [19, 41], assume that the matrix Σ⋆ is low-rank.

Note that if the goal is to predict whether two items are similar or dissimilar via computing the relation
∥x− x′∥2Σ⋆ ≷ y, then this problem is scale-invariant, in the sense that two items are predicted as
similar (or dissimilar) according to (Σ⋆, y), if and only if they are predicted as similar (or dissimilar)
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according to (cscaleΣ
⋆, cscaley) for any scaling factor cscale > 0. We are thus interested in finding the

equivalence class of solutions {(cscaleΣ⋆, cscaley) : cscale > 0}. Therefore, in practice, one can set y
to be any positive scalar and then estimate the corresponding Σ⋆. Indeed, our theoretical error bounds
on ∥Σ̂−Σ⋆∥F exhibit a natural scale-equivariant property (see Section 4, Scale Equivariance).

2.2 The perceptual adjustment query (PAQ)

We assume that every point in our feature space Rd corresponds to some item. Recall from Figure 1
that a PAQ collects similarity data between a pair of items, where a reference item is fixed, and a
spectrum of target items is generated from a one-dimensional path in the feature space. Denote the
reference item by x ∈ Rd. The target items can be generated by any path in Rd, but, for simplicity,
we consider straight lines. For any vector a ∈ Rd, we construct the line {x+ γa : γ ∈ [0,∞)}. We
call this vector a the query vector. As shown in Figure 3, the user moves the slider from left to right,
and the value of γ increases proportionally to the distance traversed by the slider. Note that the value
γ is dimensionless.

The user is instructed to stop the slider at the transition point where the target item transitions from
being similar to dissimilar with the reference item. According to our model, this transition point
occurs when the Σ⋆-Mahalanobis distance between the target item and the reference item is y. The
(noiseless) transition point, denoted by γ⋆, satisfies the equation

y = ∥x− (x+ γ⋆a)∥2Σ⋆ = γ2
⋆a

⊤Σ⋆a. (1)

Note that the ideal PAQ response γ⋆ does not depend on the specific reference item x but rather only
on the query direction a and the (unknown) metric matrix Σ⋆. When querying users with PAQs, the
practitioner has control over how the query vectors a are selected, which we discuss in Section 3.2.

2.3 Noise model

We model the noise in human responses as follows: In the PAQ response (1), we replace the boundary
value y by y + η, where η ∈ R represents noise. Thus the user provides a noisy response γ whose
value satisfies γ2a⊤Σ⋆a = y + η. Substituting in (1), we have γ2 = γ2

⋆ + η
a⊤Σ⋆a

. This model
captures qualitatively how we would expect the variance of γ due to noise to scale. To see why, recall
that γ is proportional to the distance traversed by the slider in the user interface Figure 1 (bottom).
If a⊤Σ⋆a is large, then the semantic meaning of the item changes rapidly as the user moves the
slider, and the slider will stop at a position that is close to the true transition point. On the other
hand, if a⊤Σ⋆a is small, then the item changes slowly as the user moves the slider. It is then hard to
determine where exactly the transition occurs, so the slider may stop in a larger interval around the
transition point.

3 Methodology

In this section, we formally present the statistical estimation problem for metric learning from noisy
PAQ data, and we develop our algorithm for estimating the true metric matrix Σ⋆.

3.1 Statistical estimation

Assume we collect N PAQ responses, using N query vectors {ai}Ni=1 that we select3. Denote the
noise associated with these queries by random variables η1, . . . , ηN ∈ R. We obtain PAQ responses,
denoted by γ1, . . . , γN , that satisfy

γ2
i a

⊤
i Σ

⋆ai = y + ηi, i = 1, . . . , N. (2)

We assume the noise variable η is independent4of the query a, has zero mean and variance ν2η , and is
bounded, with −y ≤ η ≤ η↑ for some constant η↑ ≥ 0. Note that we must have η + y ≥ 0 since
γ2 ≥ 0; in addition, we place an upper bound η↑ on the noise.

3In what follows, we use the terms “responses”/“measurements” interchangeably for γ, and the terms “query
vector”/“sensing vector” interchangeably for a.

4This could be relaxed by placing conditions on the conditional distributions of η given a (and even the
reference point x), but we omit this for simplicity.
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Given the query directions {ai}Ni=1 and the PAQ responses {γi}Ni=1, we want to estimate the matrix
Σ⋆. We first rewrite our measurement model as follows: Recall that the matrix inner product is
denoted by ⟨A,B⟩ := tr

(
A⊤B

)
for any two matrices A and B of compatible dimension. Then

from (2), we write

γ2 =
y + η

a⊤Σ⋆a
. (3)

Plugging (3) once more into (2), we have

y + η = ⟨Ainv,Σ⋆⟩,

where

Ainv := γ2aa⊤ =
y + η

a⊤Σ⋆a
aa⊤. (4)

Hence, our problem resembles trace regression, and, in particular, low-rank matrix estimation from
rank-one measurements (because the matrix Ainv has rank 1) [31, 30, 32, 33]. We call Ainv the
sensing matrix, and a the sensing vector. Classical trace regression assumes that we make (noisy)
observations of the form y = ⟨A,Σ⋆⟩+ ϵ where A is fixed before we make the measurement; in our
problem, the sensing matrix Ainv depends on our observed response γ and associated sensing vector
a. Hence, the process of obtaining a PAQ response can be viewed as an inversion of the standard trace
measurement process. The inverse nature of our problem makes estimator design more challenging,
as we discuss in the following section.

3.2 Algorithm

As our first attempt at a procedure to estimate Σ⋆, we follow the literature [24, 33] and consider
randomly sampling i.i.d. vectors ai ∼ N (0, Id). We then use standard least-squares estimation of
Σ⋆. Since we expect Σ⋆ to be low-rank, we add nuclear-norm regularization to promote low rank. In
particular, we solve the following program:

min
Σ⪰0

1

N

N∑
i=1

(
y − ⟨Ainv

i ,Σ⟩
)2

+ λN∥Σ∥∗, (5)

where λN > 0 is a regularization parameter. This is a convex semidefinite program and can be solved
with standard off-the-shelf solvers. However, the inverted form of our measurement model creates
two critical issues when naïvely using (5):

• Bias of standard matrix estimators due to dependence. Note that the sensing matrix (4) depends
on the noise η. Quantitatively, we have E

[
ηAinv

]
̸= 0 (see Appendix D.1). Standard trace

regression analyses require that this quantity be zero, typically assuming (at least) that η is zero-
mean conditioned on the sensing matrix A. The failure of this to hold in our case introduces a bias
that does not decrease with the sample size N .

• Heavy-tailed sensing matrix. The factor 1
a⊤Σ⋆a

in Ainv (see Equation (4)) makes Ainv heavy-
tailed in general. When a is Gaussian, the term 1

a⊤Σ⋆a
is an inverse weighted chi-square random

variable, whose higher-order moments are infinite (and the number of finite moments depends on
the rank of Σ⋆). This makes error analysis more difficult, as standard analyses require the sensing
matrix A to concentrate well (e.g., be sub-exponential).

To overcome these challenges, we make two key modifications to the procedure (5).

Step 1: Bias reduction via averaging. First, we want to mitigate the bias due to the dependence
between the sensing matrix Ainv and the noise η. The bias term E

[
ηAinv

]
scales proportionally to

E [η(y + η)] = E
[
η2
]
. Therefore, to reduce this bias in the least-squares estimator (5), we need to

reduce the noise variance. We reduce the effective noise variance (and hence the bias) by averaging
i.i.d. samples. Operationally, instead of obtaining N measurements from N distinct sensing vectors
{ai}Ni=1, we draw n sensing vectors {ai}ni=1, and collect m measurements, denoted by {γ(j)

i }mj=1 ,
corresponding to each sensing vector ai. We refer to n as the number of (distinct) sensing vectors.
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Algorithm 1 Inverted measurement sensing, averaging, and truncation.
Input: number of total measurements N , averaging parameter m (that divides N ), truncation
threshold τ , measurement value y

1: Compute the number of sensing vectors n = N
m

2: for i = 1 to n do
3: Draw sensing vector ai from standard multivariate normal distribution
4: Obtain m PAQ measurements (γ(1)

i )2, . . . , (γ
(m)
i )2 with ai and y.

5: Bias elimination via averaging: compute averaged response γ̄2
i = 1

m

∑m
j=1(γ

(j)
i )2.

6: Heavy tail mitigation via truncation: compute truncated response γ̃2
i = γ̄2

i ∧ τ.
7: end for

Output: truncated responses γ̃2
1 , . . . γ̃

2
n

To keep the total number of measurements constant, we set n = N
m , where the value of m is specified

later. For each sensing vector ai, we compute the empirical mean of the m measurements:

γ̄2
i :=

1

m

m∑
j=1

(γ
(j)
i )2 =

1

m

m∑
j=1

y + η
(j)
i

a⊤
i Σ

⋆ai
=

y + η̄i
a⊤
i Σ

⋆ai
, (6)

where we define the average noise by η̄i :=
1
m

∑m
j=1 η

(j)
i . This averaging operation reduces the

effective noise variance from var(ηi) = ν2η to var(η̄i) =
ν2
η

m . If n is small, we may have large error
due to an insufficient number of query vectors ai. On the other hand, a small m leads to a large bias.
Therefore, we set the value of m carefully to balance these two effects. This is studied theoretically
in Section 4 and demonstrated empirically in Section 5.

Step 2: Heavy tail mitigation via truncation. Next, we need to control the heavy-tailed behavior
introduced by the 1

a⊤Σ⋆a
term in the sensing matrix Ainv. Note that the sample averaging procedure

(6) does not mitigate this problem. We adopt the approach in [39] and truncate the observations.
Specifically, we truncate the averaged measurements γ̄2

i to γ̃2 := γ̄2 ∧ τ , where τ > 0 is a truncation
threshold that we specify later. We then construct the truncated sensing matrices

Ãi = γ̃2
i aia

⊤
i =

(
y + η̄i
a⊤
i Σ

⋆ai
∧ τ

)
aia

⊤
i , i = 1, . . . , n. (7)

While truncation mitigates heavy-tailed behavior, it also introduces additional bias in our estimate.
The truncation threshold τ therefore gives us another tradeoff, and in our analysis to follow, we
carefully set the value of τ to balance the effects of heavy-tailedness and bias.

Final algorithm. Before presenting our final optimization program, we summarize our assumptions
and sensing model below.

Assumption 1. The noise values ηi are i.i.d copies of the random variable η, which is independent
of the random sensing vector a. The random noise is (1) zero-mean: E [η] = 0, and (2) bounded:
There exists a positive constant η↑ such that −y ≤ η ≤ η↑ with probability 1.

We choose the sensing vector distribution to be the standard multivariate normal distribution and
collect, average, and truncate N PAQ responses following Algorithm 1. This process yields n
truncated responses γ̃2

1 , . . . γ̃
2
n. We then use these truncated responses to form the averaged and

truncated matrices {Ãi}ni=1, which we substitute into the original least-squares problem (5). To
estimate Σ⋆, we solve

Σ̂ ∈ argmin
Σ⪰0

1

n

n∑
i=1

(
y − ⟨Ãi,Σ⟩

)2
+ λn∥Σ∥∗, (8)

where, again, λn is a regularization parameter that we specify later.

Practical considerations. In the averaging step, we collect m measurements for each sensing
vector ai. These measurements could be collected from m different users. Furthermore, recall from
Section 2.2 that the measurements do not depend on the reference item x. As a result, one may
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also collect multiple responses from the same user by presenting the same query vector ai with
different reference items. In addition, recall from Section 2.1 that user responses are scale-invariant.
Practitioners are hence free to set the boundary y to be any positive value of their choice without loss
of generality, and the noise η scales accordingly with y. The user interface does not depend on the
value of y.

4 Theoretical results

We now present our main theoretical result, which is a finite-sample error bound for estimating
a low-rank metric from inverted measurements with the nuclear norm regularized estimator (8).
Our error bound is generally stated, and depends on the averaging parameter m and the truncation
threshold τ . Recall that ν2η denotes the variance of η. We define the quantities y↑ := y + η↑ and
µy = y + median(η). We further denote by σ1 ≥ · · · ≥ σr > 0 the non-zero singular values of Σ⋆.

Theorem 1. Suppose Σ⋆ is rank r, with r > 8. Assume that we choose the sensing vector distribution
the be the standard multivariate normal distribution, that Assumption 1 holds on the noise, and that
we collect, average, and truncate measurements following Algorithm 1. Further, assume that the
truncation threshold τ satisfies τ ≥ µy

tr(Σ⋆) . Then there are positive constants c, C,C1, and C2, such
that if the regularization parameter and the number of sensing vectors satisfy

λn ≥ C1

[
y↑

(
y↑

σrr

√
d

n
+

d

n
τ +

(
y↑

σrr

)2
1

τ

)
+

1

σrr

ν2η
m

]
and n ≥ C2rd, (9)

then any solution Σ̂ to the optimization program (8) satisfies

∥Σ̂−Σ⋆∥F ≤ C

(
tr (Σ⋆)

µy

)2 √
rλn (10)

with probability at least 1− 4e−d − e−cn.

The proof of Theorem 1 is presented in Appendix E. The two sources of bias discussed in Section 3.2
appear in the expression (9) for the regularization parameter λn (and consequently in the error
bound (10)). The term scaling as 1/τ corresponds to the bias induced by truncation, and decreases
as the truncation gets milder (i.e., as the threshold τ gets larger). The term scaling as ν2η/m
corresponds to the bias arising from dependence between the noise and sensing matrix. As discussed
in Section 3.2, in this model, m-averaging results in a bias that scales like 1/m. Given the dependence
of the estimation error bound on the parameters m and τ , we carefully set these parameters to obtain a
tight bound as a function of the number of total measurements N = mn. These choices for m and τ ,
along with the final estimation error, are presented in the following corollary, proved in Appendix F.

Corollary 1. Recall that N = mn. Assume that the conditions of Theorem 1 hold, and set the
values of the constants (c, C,C1, C2) according to Theorem 1. Suppose that the number of total
measurements satisfies

N ≥

{
2C

3/2
2

ν2η
(y↑)2

r
3/2d

}
∨

{
C2rd

}
. (11)

Set the averaging parameter m and truncation threshold τ to be

m =

⌈(
ν2η

(y↑)2

)2/3(
N

d

)1/3
⌉

and τ =
y↑

σrr

√
N

md
, (12)

and set λn equal to its lower bound in (9). With probability at least 1− 4e−d − e−cN/m, we have:

(a) If
ν2
η

(y↑)2
>
√

d
N , then any solution Σ̂ to the optimization program (8) satisfies

∥Σ̂−Σ⋆∥F ≤ C ′ σ
2
1

σr

(y↑)4/3(ν2η)
1/3

µ2
y

r
3/2

(
d

N

)1/3

. (13)
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(b) If
ν2
η

(y↑)2
≤
√

d
N , then any solution Σ̂ to the optimization program (8) satisfies

∥Σ̂−Σ⋆∥F ≤ C ′ σ
2
1

σr

(
y↑

µy

)2

r
3/2

(
d

N

)1/2

. (14)

In both cases, C ′ = 3C · C1.

A few comments are warranted about our error bounds (13) and (14):

Error rates and noise regimes. Under the standard trace measurement model, it is known that if
the measurement matrices are i.i.d. according to some sub-Gaussian distribution and the number
of measurements satisfies N ≳ rd, then nuclear norm regularized estimators achieve an error that

scales like
√

rd
N (e.g., [24, 25]). Such a result is also known to be minimax optimal [25]. Allowing

heavier-tailed assumptions on the sensing matrices, such as sub-exponential [32, 42] or bounded
fourth moment [39], typically results in additional log d factors but does not impact the exponent
1/2 in the error rate. However, a crucial assumption in these results is that E

[
ηAinv

]
= 0, and thus

there is no bias due to measurement noise. Our inverted measurement sensing matrix is not only
heavy-tailed but also leads to bias (see Lemma 1 in Appendix D.1). Nevertheless, we are able to
reduce the bias and trade it for variance, ensuring consistent estimation in all regimes.

In Corollary 1, there are two distinct cases for error rate which correspond to two different noise
regimes induced by the quantity ν2

η/(y↑)2, which captures the noise level in our measurements. In
particular, the two cases in Corollary 1 correspond to two regimes with distinct bias behavior:

(a) High-noise regime: In this setting, the bias due to measurement noise is non-negligible. As a
result, we employ averaging with large m, which results in the rate scaling as (d/N)1/3.

(b) Low-noise regime: In this setting, the measurement noise bias is dominated by the variance, and
thus has negligible impact on the estimation error. As a result, we are able to achieve a rate of
order (d/N)1/2, which is consistent with established results for low-rank matrix estimation.

Sample complexity. Since the degrees of freedom in a rank-r matrix of size d× d is of order rd, one
expects that the minimum number of measurements to identify a rank-r matrix is of order rd. This
is reflected in Theorem 1, which assumes that the number of distinct sensing vectors {ai} satisfies
n ≳ rd. In the high-noise regime, from (12) in Corollary 1, we have that m scales like (N/d)1/3.
Thus, the total number of measurements is N = mn ≳ (N/d)1/3 · rd ≳ N 1/3d2/3r, and hence
N ≳ r3/2d. Given that the rank is assumed to be relatively small compared to the dimension, the
extra factor of

√
r is a relatively small price to pay to obtain consistent estimation. In the low-noise

regime, it can be verified that m = 1 in (12) due to the low-noise condition ν2
η/(y↑)2 ≤

√
d/N . No

averaging is needed, and we only require N = n ≳ rd.

Dependence on rank. When compared to standard results, Corollary 1 differs in its dependence
on rank. First, the matrix Σ⋆ is assumed to have rank r > 8. This prevents the term 1

a⊤Σ⋆a
from

making the sensing matrices so heavy-tailed that even truncation does not help. We empirically show
that the assumption of r > 8 is necessary in Section 5. Second, there is an additional factor of r in
our rate for both noise regimes. To interpret this, note that if Σ⋆ has non-zero singular values in a
fixed range, then E

[
a⊤Σ⋆a

]
= tr (Σ⋆) ≈ r. Since the “magnitude" of the sensing matrix Ainv is

inversely proportional to a⊤Σ⋆a, increasing r decreases the magnitude of Ainv and thus also (for a
fixed noise level) the signal-to-noise ratio.

Scale equivariance. As discussed in Section 2.1, the metric learning from PAQs problem aims to
find an equivalence class {(cscaleΣ, cscaley) : cscale > 0}, and the ground-truth Σ⋆ is defined with
respect to a particular choice of y. Accordingly, our error bounds are scale-equivariant: If we instead
replaced y with cscaley, the bounds (13) and (14) would scale linearly in cscale. This fact is precisely
verified in Appendix C and relies on the fact that the noise also scales appropriately in cscale. Thus
practitioners may simply set y to be any positive number.

9



(a) (b) (c)

Figure 4: Simulations quantifying the effect of dimension d, rank r, and averaging parameter m on
estimation error. Shaded areas correspond to standard error of the mean but sometimes not visible.

5 Numerical simulations

In this section, we provide numerical simulations investigating the effects of the various problem and
estimation parameters. For all results, we report the normalized estimation error ∥Σ̂−Σ⋆∥F /∥Σ⋆∥F
averaged over 20 trials. Shaded areas (sometimes not visible) represent standard error of the mean. For
all experiments, we follow [19] and generate the ground-truth metric matrix as Σ⋆ = d√

r
UU⊤, where

U ∈ Rd×r is a randomly generated matrix with orthonormal columns. The noise η is sampled from
a uniform distribution on [−η↑, η↑] (where η↑ ≤ y). We set the regularization parameter, truncation
threshold, and averaging parameter in a manner consistent with our theoretical results (see Eqs. (9)
and (12)), cross-validating to choose the constant factors. We solve the optimization problem using
cvxpy [43, 44]. Code for all simulations is provided at https://github.com/austinxu87/paq.

Effects of dimension and rank. Our first set of experiments characterizes the effects of dimension d
and matrix rank r. For all experiments, unless we are sweeping a specific parameter, we set y = 200,
d = 50, r = 15, and η↑ = 10. Fig. 4a shows the performance for varying values of d plotted against
the normalized sample size N/d. For all dimensions d, the error decays to zero as the total number of
measurements N increases. Furthermore, the error curves are well-aligned when the sample size is
normalized by d with fixed r, empirically aligning with Corollary 1. Fig. 4b shows the performance
for varying values of rank r. Recall that for our theoretical results we assume r > 8 to ensure that
the quadratic term a⊤Σ⋆a in the denominator of our sensing matrices does not lead to excessively
heavy-tailed behavior. When r > 8, the number of measurements required for the same estimation
error increases as the rank increases. A clear phase transition occurs at r = 8. The error still decreases
with N for r ≤ 8, but at a markedly slower rate than when r > 8. This empirically demonstrates that
when r ≤ 8, the sensing matrix tails are too heavy to be mitigated by truncation.

Effect of averaging parameter m. Equation (12) suggests that the averaging parameter m should
scale proportionally to (N/d)1/3. To test this, we set y = 200, d = 50, r = 9, and η↑ = 200. We
vary values of m for different choices of the (N, d) pair, as shown in Fig. 4c. The empirically optimal
choice of m is observed to be the same when N/d is fixed, regardless of the particular choices of
N or d (the green and red curves overlap, and the blue and orange curves overlap). Moreover, the
optimal m is smaller when N/d = 400 compared to when N/d = 1000.

6 Discussion

In this paper we introduced the perceptual adjustment query, a cognitively lightweight way to obtain
expressive responses from humans. We specifically investigate using PAQs for human perceptual
similarity learning. We use a Mahalanobis distance-based model for human similarity perception
and use PAQs to estimate the unknown metric. Using random measurements to learn an unknown
Mahalanobis metric gives rise to the new inverted measurement scheme for high dimensional low rank
matrix estimation which violates commonly held assumptions for existing estimators. We developed
a two-stage estimator and provide corresponding sample complexity guarantees. This work opens up
many interesting lines of future work in inverted measurements. One key direction is to characterize
their fundamental limits with information-theoretic lower bounds.

10

https://github.com/austinxu87/paq


Acknowledgments

AX was supported by National Science Foundation grant CCF-2107455. JW was supported by
the Ronald J. and Carol T. Beerman President’s Postdoctoral Fellowship and the Algorithms and
Randomness Center Postdoctoral Fellowship at Georgia Tech. MD was supported by National
Science Foundation grants CCF-2107455, IIS-2212182, and DMS-2134037. AP was supported in
part by the National Science Foundation grants CCF-2107455 and DMS-2210734, and by research
awards/gifts from Adobe, Amazon and Mathworks.

References
[1] William L. Rankin and Joel W. Grube. A comparison of ranking and rating procedures for value

system measurement. European Journal of Social Psychology, 10(3):233–246, 1980.

[2] Anne-Wil Harzing, Joyce Baldueza, Wilhelm Barner-Rasmussen, Cordula Barzantny, Anne
Canabal, Anabella Davila, Alvaro Espejo, Rita Ferreira, Axele Giroud, Kathrin Koester, Yung-
Kuei Liang, Audra Mockaitis, Michael J. Morley, Barbara Myloni, Joseph O.T. Odusanya,
Sharon Leiba O’Sullivan, Ananda Kumar Palaniappan, Paulo Prochno, Srabani Roy Choudhury,
Ayse Saka-Helmhout, Sununta Siengthai, Linda Viswat, Ayda Uzuncarsili Soydas, and Lena
Zander. Rating versus ranking: What is the best way to reduce response and language bias in
cross-national research? International Business Review, 18(4):417–432, 2009. ISSN 0969-5931.

[3] Georgios N. Yannakakis and John Hallam. Ranking vs. preference: A comparative study of
self-reporting. In Sidney D’Mello, Arthur Graesser, Björn Schuller, and Jean-Claude Martin,
editors, Affective Computing and Intelligent Interaction, pages 437–446, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg. ISBN 978-3-642-24600-5.

[4] Nihar B. Shah, Joseph K Bradley, Abhay Parekh, Martin Wainwright, and Kannan Ramchandran.
A case for ordinal peer-evaluation in MOOCs. In NIPS Workshop on Data Driven Education,
2013.

[5] Karthik Raman and Thorsten Joachims. Methods for ordinal peer grading. In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
volume 20, 2014.

[6] Richard D. Goffin and James M. Olson. Is it all relative? Comparative judgments and the
possible improvement of self-ratings and ratings of others. Perspectives on Psychological
Science, 6(1):48–60, 2011.

[7] William Barnett. The modern theory of consumer behavior: Ordinal or cardinal? The Quarterly
Journal of Austrian Economics, 6(1):41–65, 2003.

[8] Richard Batley. On ordinal utility, cardinal utility and random utility. Theory and Decision, 64:
37–63, 2008.

[9] Nihar B. Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchandran,
and Martin J. Wainwright. Estimation from pairwise comparisons: Sharp minimax bounds with
topology dependence. Journal of Machine Learning Research, 17(58):1–47, 2016.

[10] Jingyan Wang and Nihar B. Shah. Your 2 is my 1, your 3 is my 9: Handling arbitrary
miscalibrations in ratings. In Proceedings of the 18th International Conference on Autonomous
Agents and Multiagent Systems, 2019.

[11] Dale Griffin and Lyle Brenner. Perspectives on Probability Judgment Calibration, chapter 9.
Wiley-Blackwell, 2008. ISBN 9780470752937.

[12] Polina Harik, Brian Clauser, Irina Grabovsky, Ronald Nungester, David Swanson, and Ratna
Nandakumar. An examination of rater drift within a generalizability theory framework. Journal
of Educational Measurement, 46:43–58, 2009.

[13] Carol M. Myford and Edward W. Wolfe. Monitoring rater performance over time: A framework
for detecting differential accuracy and differential scale category use. Journal of Educational
Measurement, 46(4):371–389, 2009.

11



[14] Gregory Canal, Stefano Fenu, and Christopher Rozell. Active ordinal querying for tuplewise
similarity learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
2020.

[15] Yiming Ying, Kaizhu Huang, and Colin Campbell. Sparse metric learning via smooth optimiza-
tion. Advances in Neural Information Processing Systems, 22, 2009.

[16] Wei Bian and Dacheng Tao. Constrained empirical risk minimization framework for distance
metric learning. IEEE Transactions on Neural Networks and Learning Systems, 23(8):1194–
1205, 2012.

[17] Zheng-Chu Guo and Yiming Ying. Guaranteed classification via regularized similarity learning.
Neural Computation, 26(3):497–522, 2014.

[18] Aurélien Bellet and Amaury Habrard. Robustness and generalization for metric learning.
Neurocomputing, 151:259–267, 2015.

[19] Blake Mason, Lalit Jain, and Robert Nowak. Learning low-dimensional metrics. In Advances
in Neural Information Processing Systems, volume 30, 2017.

[20] Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric Learning. Springer Nature, 2022.

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural
Information Processing Systems (NeurIPS), 27, 2014.

[22] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 8110–8119, 2020.

[23] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

[24] Sahand Negahban and Martin J Wainwright. Estimation of (near) low-rank matrices with noise
and high-dimensional scaling. The Annals of Statistics, 39(2):1069–1097, 2011.

[25] A Tsybakov and A Rohde. Estimation of high-dimensional low-rank matrices. The Annals of
Statistics, 39(2):887–930, 2011.

[26] Emmanuel J Candes and Yaniv Plan. Tight oracle inequalities for low-rank matrix recovery
from a minimal number of noisy random measurements. IEEE Transactions on Information
Theory, 57(4):2342–2359, 2011.

[27] Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin Yu. A unified
framework for high-dimensional analysis of M -estimators with decomposable regularizers.
Statistical Science, 27(4):538–557, 2012.

[28] T Tony Cai and Anru Zhang. Sparse representation of a polytope and recovery of sparse signals
and low-rank matrices. IEEE Transactions on Information Theory, 60(1):122–132, 2013.

[29] Mark A Davenport and Justin Romberg. An overview of low-rank matrix recovery from
incomplete observations. IEEE Journal of Selected Topics in Signal Processing, 10(4):608–622,
2016.

[30] Yuxin Chen, Yuejie Chi, and Andrea J Goldsmith. Exact and stable covariance estimation from
quadratic sampling via convex programming. IEEE Transactions on Information Theory, 61(7):
4034–4059, 2015.

[31] T Tony Cai and Anru Zhang. ROP: Matrix recovery via rank-one projections. The Annals of
Statistics, 43(1):102–138, 2015.

[32] Richard Kueng, Holger Rauhut, and Ulrich Terstiege. Low rank matrix recovery from rank one
measurements. Applied and Computational Harmonic Analysis, 42(1):88–116, 2017.

12



[33] Andrew D McRae, Justin Romberg, and Mark A Davenport. Optimal convex lifted sparse phase
retrieval and PCA with an atomic matrix norm regularizer. IEEE Transactions on Information
Theory, 69(3):1866–1882, 2022.

[34] Po-Ling Loh. Statistical consistency and asymptotic normality for high-dimensional robust
M -estimators. The Annals of Statistics, 45(2):866–896, 2017. doi: 10.1214/16-AOS1471.

[35] Jianqing Fan, Quefeng Li, and Yuyan Wang. Estimation of high dimensional mean regression
in the absence of symmetry and light tail assumptions. Journal of the Royal Statistical Society
Series B, Statistical methodology, 79(1):247–265, 2016.
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A Broader impacts and limitations

In this section, we discuss the broader impacts and limitations of our work.

A.1 Broader impacts

Automated systems that use human feedback are being used in an increasing number of contexts,
spanning everything from predicting user preferences to finetuning language models. It is important
to ensure that such systems are as accurate as possible; this naturally requires humans to respond in an
accurate and consistent manner. Using the perceptual adjustment query to collect data in such settings
could lead to more expressive responses without heavy cognitive burdens on users. Furthermore,
providing a user the additional context of a continuous spectrum of items may result in more self-
consistent responses. The downstream effects of collecting more expressive and self-consistent
human responses could lead to improved models or entirely new paradigms of model development
for a myriad of problem settings. With these advantages come associated risks as well. Due to how
expressive the responses to PAQs are, the effects of adversarial responses may be magnified. That is,
if an adversary purposely chooses to respond in an antagonistic manner, models trained with PAQs
may be trained poorly or in opposition to the stated goal. Mitigating such effects likely requires a
holistic approach from both the query design and robust model design perspectives.

A.2 Limitations

From a data collection perspective, the perceptual adjustment query requires access to a continuous
space where each point corresponds to an item. In many applications, assuming access to this
continuous space is reasonable. For example, if we use PAQs to characterize color blindness, then a
natural continuous space is the RGB color space. In general, we situate our data collection within
the latent space of a generative model, such as a GAN. While GANs are capable of producing
extremely high fidelity images, these images are not always free of semantically meaningful artifacts.
Our query design and modeling assumptions do not explicitly consider the case where a portion of
the continuous spectrum of items may be corrupted. Furthermore, because our work is an initial
exploration into low-rank matrix estimation from inverted measurements, we have not considered
scenarios such as unbounded noise or heavier-tailed sensing vectors, and we have not established
information-theoretic lower bounds for the inverted measurement paradigm. We hope that further
exploration of the inverted measurement paradigm will lead to a rich line of follow-up work.

B Simulation details

In this section, we provide details for the simulation results presented in Figure 2. For our experiments,
we adopt a normalized version of the setup of [30] and form the metric Σ⋆ by Σ⋆ = LL⊤/∥LL⊤∥F ,
where L is a 50× 10 matrix with i.i.d. Gaussian entries. We sweep the number of query responses
N , estimate the metric with Σ̂, and report the normalized estimation error ∥Σ⋆ − Σ̂∥F /∥Σ⋆∥F
averaged over 10 independent trials. For each query response, items are drawn i.i.d. from a standard
multivariate normal distribution, similar to [45].

Pairwise comparison setup. For pairwise comparisons, we use value of y = 10 to denote the
squared distance at which items become dissimilar, following our distance-based model for human
perception (see Section 2.1). For the i-th pairwise comparisons, we draw two items x

(i)
1 ,x

(i)
2

i.i.d. from a standard multivariate normal distribution. We record the pairwise comparison outcome
ϵi ∈ {−1,+1} as ϵi = sign(∥x(i)

1 −x
(i)
2 ∥2Σ⋆ −y). To estimate the metric from pairwise comparisons,

we utilize a nuclear-norm regularized hinge loss and solve the following optimization problem:

Σ̂PC ∈ argmin
Σ⪰0

1

N

N∑
i=1

max{0, y − ϵi∥x(i)
1 − x

(i)
2 ∥2Σ}+ λPC∥Σ∥∗.

Triplet setup. For the i-th triplet, we draw three items x
(i)
1 ,x

(i)
2 ,x

(i)
3 i.i.d. from a standard

multivariate normal distribution and record the outcome ϵi ∈ {−1,+1} as ϵi = sign(∥x(i)
1 −
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x
(i)
2 ∥2Σ⋆ −∥x(i)

1 −x
(i)
3 ∥2Σ⋆). To estimate the metric from triplet responses, we follow [19] and utilize

a nuclear-norm regularized hinge loss and solve the following optimization problem:

Σ̂T ∈ argmin
Σ⪰0

1

N

N∑
i=1

max
{
0, 1− ϵi

(
∥x(i)

1 − x
(i)
2 ∥2Σ − ∥x(i)

1 − x
(i)
3 ∥2Σ

)}
+ λT∥Σ∥∗.

Ranking-k query setup. For the i-th ranking query with a reference item x0 and k items x1, . . . ,xk

to be ranked, we draw all items i.i.d. from a standard multivariate normal distribution. For each
item xk, we compute the squared distance ∥x0 − xk∥2Σ⋆ . To determine the ranking of items, we
sort the items based on this squared distance. To estimate the metric, we follow the approach of [14]
and decompose the full ranking into its constituent triplets. A ranking consisting of k items can
equivalently be decomposed into k(k− 1)/2 triplet responses. To estimate the metric, we decompose
each ranking query and use the triplet estimator presented above with regularization parameter λR to
obtain estimate Σ̂R-k.

PAQ setup. For the i-th PAQ response, we draw the reference item xi and query vector ai

i.i.d. from the standard multivariate normal distribution. We then receive a scaling γ2
i satisfying

γ2
i = y/a⊤

i Σ
⋆ai, with y = 10. To perform estimation, we leverage our method presented in

Section 3. Our theoretical results indicate that the averaging parameter m should be set to 1 in
the noiseless setting. Furthermore, the truncation threshold τ is large relative to our responses
γ2
i , meaning no truncation is employed. As a result, we solve the nuclear-norm regularized trace

regression problem

Σ̂PAQ ∈ argmin
Σ⪰0

1

N

N∑
i=1

(
⟨aia

⊤
i ,Σ⟩ − y

γ2
i

)2

+ λPAQ∥Σ∥∗.

In all cases above, we solve all optimization problems with cvxpy and normalize the estimated metric
Σ̂{PC, T, R-k, PAQ} to be unit Frobenius norm to ensure consistent scaling when compared against the
true metric Σ⋆. We use a value of 0.05 for all regularization parameters λ{PC, T, R-k, PAQ} and observe
similar performance trends for other choices of regularization parameter.

C Scale equivariance

In this section, we verify the scale-equivariance of our derived theoretical bounds (13) and (14).
Specifically, we denote by Σ⋆ and Σ̂ the ground-truth and the estimated matrices corresponding to
value y. We denote by Σ⋆

c and Σ̂c the ground-truth and estimated matrices corresponding to value
cscaley for any cscale > 0. By definition, we have Σ⋆

c = cscaleΣ
⋆, and it can be verified that solving

the optimization program (8) yields Σ̂c = cscaleΣ̂. Hence, one expects the error bound to scale as
cscale. To verify this linear scaling in cscale, we confirm that the noise η scales as cscale.

Under the ground-truth metric Σ⋆, if the user responds with an item that is a distance y + η away
from the reference item, then that same item is a distance cscale(y+ η) away from the reference under
the scaled setting. As a result, the noise scales as a result of the choice of y. Therefore, the following
values in the upper bound (13) can be written as scaled versions of their corresponding “ground-truth”
values.

Noise η = cscale η⋆ Noise median µy = cscale µ
⋆
y

Noise upper bound η↑ = cscale η
↑
⋆ Boundary upper bound y↑ = cscale (y⋆ + η↑⋆)

Noise variance ν2η = c2scale ν
2
η,⋆ Singular values σk = cscale σ

⋆
k, k = 1, . . . , r

Substituting these scaled expressions into the upper bounds (13) and (14), we have

∥Σ̂c −Σ⋆
c∥F ≤ cscale C

′ (σ
⋆
1)

2

σ⋆
r

(y↑⋆)
4/3(ν2η,⋆)

1/3

(µ⋆
y)

2
r
3/2

(
d

N

)1/3
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in the high-noise regime and

∥Σ̂c −Σ⋆
c∥F ≤ cscale C

′ (σ
⋆
1)

2

σ⋆
r

(
y↑⋆
µ⋆
y

)2

r
3/2

(
d

N

)1/2

in the low-noise regime. Note that the constant C ′ is independent of cscale.

D Preliminaries and notation

In this section, we provide an overview of the key tools that are utilized in our proofs. We first
introduce notation which is used throughout our proofs.

Notation. For two real numbers a and b, let a ∧ b = min{a, b}. Given a vector x ∈ Rd, denote
∥x∥1 and ∥x∥2 as the ℓ1 and ℓ2 norm, respectively. Denote Sd−1 := {x ∈ Rd : ∥x∥2 = 1} to be the
set of vectors with unit ℓ2 norm. Given a matrix A ∈ Rd1×d2 , denote ∥A∥F , ∥A∥∗, and ∥A∥op as
the Frobenius norm, nuclear norm, and operator norm, respectively. Denote Sd×d = {A ∈ Rd×d :
A = A⊤} to be the set of symmetric d×d matrices. Denote A ⪰ 0 to mean A is symmetric positive
semi-definite. For A ⪰ 0, define the (pseudo-) inner product ⟨x,y⟩A = x⊤Ay and the associated
(pseudo-) norm ∥x∥A =

√
x⊤Ax. For matrices A,B ∈ Rd1×d2 , denote ⟨A,B⟩ = tr

(
A⊤B

)
as

the Frobenius inner product.

We use the notation f(x) ≲ g(x) to denote that there exists some universal positive constant c > 0,
such that f(x) ≤ c · g(x), and use the notation f(x) ≳ g(x) when g(x) ≲ f(x).

We define random matrices
Ā = γ̄2aa⊤ =

y + η̄

a⊤Σ⋆a
aa⊤ (15)

and

Ã = γ̃2aa⊤ =

(
y + η̄

a⊤Σ⋆a
∧ τ

)
aa⊤ (16)

as the sensing matrix formed with the m-averaged responses γ̄ and truncated responses γ̃, respectively.

D.1 Inverted measurement sensing matrices result in estimation bias

Recall from Equation (4) that the random sensing matrix Ainv takes the form

Ainv =
y + η

a⊤Σ⋆a
aa⊤.

Standard trace regression analysis assumes that for some sensing matrix A and measurement noise η,
E [ηA] = 0. Specifically, it is often typically assumed that η is zero-mean conditioned on the sensing
matrix A. The following lemma shows that for the inverted measurements, we have E[ηAinv] ̸= 0,
resulting in bias in estimation.
Lemma 1. Let Ainv be the random matrix defined in Eq. (4) and η be the measurement noise. Then

E
[
ηAinv

]
̸= 0.

The proof of Lemma 1 is provided in Appendix D.6.1. Hence, utilizing established low-rank matrix
estimators for inverted measurements results in biased estimation.

D.2 Sub-exponential random variables

Our analysis utilizes properties of sub-exponential random variables, a class of random variables with
heavier tails than the Gaussian distribution.
Lemma 2 (Moment bounds for sub-exponential random variables [46, Proposition 2.7.1(b)]). If
X is a sub-exponential random variable, then there exists some constant c (only dependent on the
distribution of the random variable X) such that for all integers p ≥ 1,

(E|X|p)
1/p ≤ cp.
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D.3 Bernstein’s inequality

In our proofs, we use Bernstein’s inequality to bound the sums of independent sub-exponential
random variables.

Lemma 3 (Bernstein’s inequality, adapted from [47, Theorem 2.10]). Let X1, . . . , Xn be independent
real-valued random variables. Assume there exist positive numbers u1 and u2 such that

E
[
X2

i

]
≤ u1 and E [|Xi|p] ≤

p!

2
u1u

p−2
2 for all integers p ≥ 2,

Then for all t > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi − E [Xi])

∣∣∣∣∣ ≥
√

2u1t

n
+

u2t

n

)
≤ 2 exp(−t).

D.4 Moments of the ratios of quadratic forms

The quadratic term a⊤Σ⋆a appears in the denominator of our sensing matrices, so we use the
following result to quantify the moments of the ratios of quadratic forms.

Lemma 4. There exists an absolute constant c > 0 such that the following is true. Let a ∼ N (0, Id),
Σ⋆ ∈ Rd×d be any PSD matrix with rank r, and U ∈ Rd×d be an arbitrary symmetric matrix.

(a) Suppose that r > 8. Then we have

E
(

1

aTΣ⋆a

)4

≤ c

σ4
rr

4
.

(b) Suppose that r > 2. Then we have

E
(

a⊤Ua

a⊤Σ⋆a

)
≤ c

σrr
∥U∥∗.

The proof of Lemma 4 is presented in Appendix D.6.2.

D.5 A fourth moment bound for γ̄2

Recall from Equation (6) that the averaged measurement γ̄2 takes the form

γ̄2
i =

1

m

m∑
j=1

y + η
(j)
i

a⊤
i Σ

⋆ai
=

y + η̄i
a⊤
i Σ

⋆ai
.

Throughout our analysis, we utilize the fact that γ̄2 has a bounded fourth moment, as characterized in
the following lemma.

Lemma 5. Assume r > 8. Then there exists a universal constant c > 0, such that

E
(
γ̄2
)4 ≤ c

(
y + η↑

σrr

)4

,

where σr is the smallest non-zero singular value of Σ⋆.

The proof of Lemma 5 is presented in Appendix D.6.3. For notational simplicity of the proofs, we

denote M = c
(

y+η↑

σrr

)4
.

D.6 Proofs of preliminary lemmas

In this section, we present proofs for preliminary lemmas from Appendices D.1, D.4, and D.5.
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D.6.1 Proof of Lemma 1

Using the independence of the noise η and the sensing vector a, and the assumption that η is zero
mean, we have

E
[
ηAinv

]
= E

[
η(y + η)

a⊤Σ⋆a
aa⊤

]
= E [η(y + η)] · E

[
1

a⊤Σ⋆a
aa⊤

]
= ν2η E

[
1

a⊤Σ⋆a
aa⊤

]
. (17)

The expectation in (17) is non-zero, because the random matrix 1
a⊤Σ⋆a

aa⊤ is symmetric positive

definite almost surely. Therefore, we have E
[
ηAinv

]
̸= 0, as desired.

D.6.2 Proof of Lemma 4

Since Σ⋆ is symmetric positive semidefinite, it be decomposed as QΣQ⊤, where Q is a square
orthonormal matrix and Σ is a diagonal matrix with non-negative entries. Multiplying a by any
square orthonormal matrix does not change its distribution. Therefore, without loss of generality, we
assume that Σ⋆ is diagonal with all non-negative diagonal entries. We first note that the moments of
the ratios in both parts of Lemma 4 exist, because by [48, Proposition 1], for non-negative integers

p and q, the quantity E (a⊤Ua)
p

(a⊤Σ⋆a)q
exists if r

2 > q. Furthermore, we use the following expression
from [48, Proposition 2]:

E
(
a⊤Ua

)p
(a⊤Σ⋆a)

q =
1

Γ(q)

∞∫
0

tq−1 · |∆t| · E
(
a⊤∆tU∆ta

)p
dt, (18)

where ∆t = (Id + 2tΣ⋆)−1/2 and |∆t| is the determinant of ∆t. To characterize the determinant
|∆t|, we note that ∆t is a diagonal matrix whose d diagonal entries are

1

(1 + 2tσ1)
1/2

, . . . ,
1

(1 + 2tσr)
1/2

, 1, . . . , 1.

Hence, the determinant is the product |∆t| =
∏r

i=1
1

(1+2tσi)
1/2

. Furthermore, this product can be
bounded as:

|∆t| ≤
1

(1 + 2tσr)
r/2

. (19)

We now prove parts (a) and (b) separately.

Part (a). Using the integral expression (18) with p = 0 and q = 4, and the upper bound (19) on the
determinant, we have

E
(

1

a⊤Σ⋆a

)4

=
1

Γ(4)

∞∫
0

t3 · |∆t|dt

≤ 1

Γ(4)

∞∫
0

t3
1

(1 + 2tσr)
r/2

dt.
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Denoting s := 1 + 2tσr, we have

E
(

1

a⊤Σ⋆a

)4

≤ 1

2Γ(4)σr

∞∫
1

(
s− 1

2σr

)3
1

sr/2
ds

≲
1

σ4
r

∞∫
1

(s− 1)3

sr/2
ds

=
1

σ4
r

∞∫
1

(
s3

sr/2
− 3

s2

sr/2
+ 3

s

sr/2
− 1

sr/2

)
ds

=
1

σ4
r

(
2

r − 8
− 6

r − 6
+

6

r − 4
− 2

r − 2

)
≤ c

σ4
rr

4
,

as desired.

Part (b). Using the integral expression (18) p = q = 1 and the upper bound (19) on the determinant,
we have

E
(

a⊤Ua

a⊤Σ⋆a

)
=

1

Γ(1)

∞∫
0

|∆t| · E
[
a⊤∆tU∆ta

]
dt

≤ 1

Γ(1)

∞∫
0

1

(1 + 2tσr)
r/2

E
[
a⊤∆tU∆ta

]
dt. (20)

We now bound the expectation term in (20). Note that for a ∼ N (0, Id), we have E
[
a⊤Ba

]
=

tr (B) for any symmetric matrix B. Therefore, we have

E
[
a⊤∆tU∆ta

]
= tr (∆tU∆t)

(i)
≤ ∥∆tU∆t∥∗
(ii)
≤ ∥U∥∗, (21)

where (i) the fact that tr (B) ≤ ∥B∥∗ for any symmetric matrix B. Furthermore, (ii) follows
from Hölder’s inequality for Schatten-p norms, where we have that ∥∆tU∆t∥∗ ≤ ∥∆t∥2op · ∥U∥∗.
Because ∆t is diagonal and the entries of ∆t are bounded between 0 and 1, we bound the operator
norm as ∥∆t∥op ≤ 1. Substituting (21) to (20), we obtain

E
(

a⊤Ua

a⊤Σ⋆a

)
≤ ∥U∥∗ ·

∞∫
0

1

(1 + 2tσr)
r/2

dt

≲
1

σrr
· ∥U∥∗,

as desired.
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D.6.3 Proof of Lemma 5

By the assumption that the noise is upper bounded by η↑, we have y + η̄ ≤ y + η↑. Therefore, we
have

E
(
γ̄2
)4

= E
(

y + η̄

a⊤Σ⋆a

)4

≤ (y + η↑)4 · E
(

1

a⊤Σ⋆a

)4

(i)
≲

(
1

σrr

)4

,

where step (i) applies part (a) of Lemma 4.

E Proof of Theorem 1

Recall that we assume we collect N measurements under the inverted measurements sensing model
presented in Algorithm 1 with standard Gaussian sensing vectors and bounded noise, mean-zero
noise (Assumption 1).

We first introduce a restricted strong convexity (RSC) condition that our proof relies on. Since the
matrix Σ⋆ is assumed to be symmetric positive semidefinite matrices and of rank r, we follow [24]
and consider a restricted set on which we analyze the behavior of the sensing matrices Ãi. We call
this set the “error set”, defined by:

E =
{
U ∈ Sd×d : ∥U∥∗ ≤ 4

√
2r∥U∥F

}
, (22)

where recall that Sd×d denotes the set of symmetric d× d matrices. We say that our shrunken sensing
matrices {Ãi}ni=1 satisfy a restricted strong convexity (RSC) condition over the error set E , if there
exists some positive constant κ > 0 such that

1

n

n∑
i=1

⟨Ãi,U⟩2 ≥ κ∥U∥2F for all U ∈ E . (23)

The following proposition shows that the estimation error, when the sensing matrices satisfy the RSC
condition and the regularization parameter is sufficiently large.
Proposition 1 ([39, Theorem 1] with q = 0). Suppose that Σ⋆ has rank r and the shrunken sensing
matrices satisfy the restricted strong convexity condition (23) with positive constant κ > 0. Then if
the regularization parameter satisfies

λn ≥ 2

∥∥∥∥∥ 1n
n∑

i=1

yÃi −
1

n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi

∥∥∥∥∥
op

, (24)

any optimal solution Σ̂ of the optimization program (8) satisfies

∥Σ̂−Σ⋆∥F ≤ 32
√
rλn

κ
.

This theorem is a special case of Theorem 1 in [39], which is in turn adapted from Theorem 1 in [24]
(see [24] or [39] for the proof). Proposition 1 is a deterministic and nonasymptotic result and provides
a roadmap for proving our desired upper bound. First, we show that the operator norm (24) can be
upper bounded with high probability, allowing us to set the regularization parameter λn accordingly.
Second, we show that the RSC condition (23) is satisfied with high probability. We begin by bounding
the operator norm (24) in the following proposition.
Proposition 2. Let y↑ = y+η↑. Suppose that Σ⋆ has rank r, with r > 8. Then there exists a positive
absolute constant C1 such that∥∥∥∥∥ 1n

n∑
i=1

yÃi −
1

n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi

∥∥∥∥∥
op

≤ C1

[
y↑

(
y↑

σrr

√
d

n
+

d

n
τ +

(
y↑

σrr

)2
1

τ

)
+

1

σrr

ν2η
m

]
(25)

with probability at least 1− 4 exp (−d).
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The proof of Proposition 2 is provided in Appendix E.1. Next, we show that the RSC condition (23)
is satisfied with high probability, as is done in the following proposition.
Proposition 3. Let µy be the median of y + η̄. Suppose that the truncation threshold τ satisfies
τ ≥ µy

tr(Σ⋆) . Then there exist positive absolute constants κL, c, and C such that if the number of
sensing vectors satisfy

n ≥ Crd

then we have

1

n

n∑
i=1

⟨Ãi,U⟩2 ≥ κL

(
µy

tr (Σ⋆)

)2

∥U∥2F (26)

simultaneously for all matrices U ∈ E with probability at least 1− exp(−cn), where E is the error
set defined in Equation (22).

The proof of Proposition 3 is provided in Appendix E.2. We now utilize the results of Propositions 1, 2
and 3 to derive our final error bound. By Proposition 2, the operator norm (24) can be upper bounded
with high probability. We set the regularization parameter λn to satisfy

λn ≥ C1

[
y↑

(
y↑

σrr

√
d

n
+

d

n
τ +

(
y↑

σrr

)2
1

τ

)
+

1

σrr

ν2η
m

]
,

where C1 is the constant in Proposition 2. Furthermore, by Proposition 3, we have that there exist
universal constant C2 > 0 such that if the number of sensing vectors satisfies n ≥ C2rd, the

RSC condition (23) holds for constant κ = κL

(
µy

tr(Σ⋆)

)2
with high probability. Taking a union

bound, we have that Proposition 2 and Proposition 3 hold simultaneously with probability at least
1− 4 exp(−d)− exp(−cn). Invoking Proposition 1, we have

∥Σ̂−Σ⋆∥F ≤ 32
√
r · λn

κL

(
µy

tr(Σ⋆)

)2
≲

(
tr (Σ⋆)

µy

)2 √
rλn

with probability at least 1− 4 exp(−d)− exp(−cn), as desired.

E.1 Proof of Proposition 2

In the proof, we decompose the operator norm
∥∥∥∥ 1
n

n∑
i=1

yÃi − 1
n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi

∥∥∥∥
op

from (25) into

individual terms and bound them separately. Recall the definitions of random matrices Ā from
Equation 15 and Ã from Equation 16.

Step 1: decompose the error into five terms. We begin by adding and subtracting multiple
quantities as follows:

1

n

n∑
i=1

yÃi −
1

n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi =

1

n

n∑
i=1

yÃi − E
[
yÃ
]
+ E

[
yÃ
]
− E

[
yĀ
]

+ E
[
yĀ
]
− E

[
⟨Ã,Σ⋆⟩Ã

]
+ E

[
⟨Ã,Σ⋆⟩Ã

]
− 1

n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi

(i)
=

1

n

n∑
i=1

yÃi − E
[
yÃ
]
+ E

[
yÃ
]
− E

[
yĀ
]

+ E
[
⟨Ā,Σ⋆⟩Ā

]
− E

[
⟨Ã,Σ⋆⟩Ã

]
− E

[
η̄Ā
]

+ E
[
⟨Ã,Σ⋆⟩Ã

]
− 1

n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi, (27)
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where step (i) is true by substituting y = ⟨Ā,Σ⋆⟩ − η̄ to the term of E
[
yĀ
]
, and the fact that the

noise term η̄ is zero-mean. By triangle inequality, we group the terms in (27) and bound the operator
norm by∥∥∥∥∥ 1n

n∑
i=1

yÃi −
1

n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi

∥∥∥∥∥
op

≤ y

∥∥∥∥∥ 1n
n∑

i=1

Ãi − E
[
Ã
]∥∥∥∥∥

op︸ ︷︷ ︸
Term 1

+ y
∥∥∥E [Ã]− E

[
Ā
]∥∥∥

op︸ ︷︷ ︸
Term 2

+
∥∥∥E [⟨Ā,Σ⋆⟩Ā

]
− E

[
⟨Ã,Σ⋆⟩Ã

]∥∥∥
op︸ ︷︷ ︸

Term 3

+

∥∥∥∥∥E [⟨Ã,Σ⋆⟩Ã
]
− 1

n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi

∥∥∥∥∥
op︸ ︷︷ ︸

Term 4

+
∥∥E [η̄Ā]∥∥

op︸ ︷︷ ︸
Term 5

. (28)

In the remaining proof, we bound the five terms in (28) individually. We first discuss the nature of
these five terms.

• Terms 1 and 4: These two terms characterize the difference between the empirical mean of
quantities involving Ã and their true expectation (see Lemma 6 and Lemma 9). In the proof,
we show that the empirical mean concentrates around the expectation with high probability,
as a function of the number of sensing vectors n.

• Terms 2 and 3: These two terms characterize the difference in expectation introduced by
truncating Ā to Ã (see Lemma 7 and Lemma 8). Hence, these two terms characterize biases
that arise from truncation. They diminish as τ → ∞, because setting τ to ∞ is equivalent
to no thresholding, and hence Ã becomes identical to Ā. Since expectations are considered,
these two terms depend on the threshold τ , but not the number of sensing vectors n or the
averaging parameter m.

• Term 5: Term 5 is a bias term that arises from the fact that the mean of the noise η
conditioned on sensing matrix Ā is non-zero. We show that this bias scales like 1

m (see
Lemma 10) in terms of the averaging parameter m.

Putting these terms together, Terms 1 and 4 depend on n, Terms 2 and 3 depend on τ , and Term 5
depends on m. In Corollary 1, we set the values of τ , n and m to balance these terms.

Step 2: bound the five terms individually. In what follows, we provide five lemmas to bound each
of the five terms individually. In the proofs of the five lemmas, we rely on an upper bound on the
fourth moment of the m-sample averaged measurements γ̄2. As shown in Lemma 5 in Appendix D.5,
for some absolute constant c, this fourth moment can be upper bounded by a quantity that we denote
M :

E[(γ̄2)4] ≤ M = c

(
y↑

σrr

)4

. (29)

We also rely heavily on the following truncation properties relating the m-sample averaged measure-
ments γ̄2 and truncated measurements γ̃2:

γ̃2
i ≤ τ (TP1)

γ̃2
i ≤ γ̄2

i (TP2)

γ̄2
i − γ̃2

i = (γ̄2
i − γ̃2

i ) · 1{γ̄2
i ≥ τ}. (TP3)

The following lemma provides a bound for Term 1.
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Lemma 6. Let Ã1, . . . , Ãn be i.i.d copies of a random matrix Ã as defined in Equation (16). There
exists an absolute constant c > 0 such that for any t > 0, we have∥∥∥∥∥ 1n

n∑
i=1

Ãi − E
[
Ãi

]∥∥∥∥∥
op

≤ c

(√
M 1/2t

n
+

τt

n

)

with probability at least 1− 2 · 9d · exp (−t).

The proof of Lemma 6 is provided in Appendix E.1.1. The next lemma provides an upper bound for
Term 2.
Lemma 7. Let Ā and Ã be the random matrices defined in Equation (15) and Equation (16),
respectively. Then there exists an absolute constant c > 0 such that∥∥∥E [Ã]− E

[
Ā
]∥∥∥

op
≤ cM 1/2

τ
.

The proof of Lemma 7 is provided in Appendix E.1.2. The following lemma provides an upper bound
for Term 3. Recall that the quantity y↑ denotes y + η↑.

Lemma 8. Let Ā and Ã be the random matrices defined in Equation (15) and Equation (16),
respectively. Then there exists an absolute constant c > 0 such that∥∥∥E [⟨Ā,Σ⋆⟩Ā

]
− E

[
⟨Ã,Σ⋆⟩Ã

]∥∥∥
op

≤ c y↑M 1/2

τ
.

The proof of Lemma 8 is provided in Appendix E.1.3. The following lemma provides an upper bound
for Term 4.
Lemma 9. Let Ã1, . . . , Ãn be i.i.d copies of a random matrix Ã defined in Equation (16). There
exists an absolute constant c > 0 such that for any t > 0, we have∥∥∥∥∥E [⟨Ã,Σ⋆⟩Ã

]
− 1

n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi

∥∥∥∥∥
op

≤ c y↑

(√
M 1/2t

n
+

τt

n

)

with probability at least 1− 2 · 9d · exp (−t).

The proof of Lemma 9 is provided in Appendix E.1.4. We note that Terms 2 and 3 are bias that result
from shrinkage, but crucially are inversely dependent on the shrinkage threshold τ . This fact allows
us to set τ so that the order of Terms 2 and 3 match the order of Terms 1 and 4.

The final lemma bounds Term 5, which is a bias that arises from the dependence of the sensing matrix
Ā on the noise η.
Lemma 10. Let Ā be the random matrix defined in Equation (15). Suppose that Σ⋆ has rank r with
r > 2. Then there exists an absolute constant c > 0 such that

E
[∥∥η̄Ā∥∥

op

]
≤ c

σrr

ν2η
m

.

The proof of Lemma 10 is provided in Appendix E.1.5. We note that the bias scales with the variance
of the m-sample averaged noise η̄, which scales inversely with m.

Step 3: combine the five terms. We set t = (log 9+1)d. Substituting the bounds from Lemmas 6–
10 back to (28) and taking a union bound, we have that with probability at least 1− 4 exp(−d),∥∥∥∥∥ 1n

n∑
i=1

yÃi −
1

n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi

∥∥∥∥∥
op

≲
(
y↑ + 1

)(√M 1/2d

n
+

d

n
τ +

M 1/2

τ

)
+

1

σrr

ν2η
m

(i)

≲ y↑

(
y↑

σrr

√
d

n
+

d

n
τ +

(
y↑

σrr

)2
1

τ

)
+

1

σrr

ν2η
m

,

where step (i) is true by substituting in the expression (29) for M .
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E.1.1 Proof of Lemma 6.

Let A 1
4
⊆ Sd−1 be a 1

4 -covering of the d-dimensional unit sphere Sd−1 := {x ∈ Rd : ∥x∥2 = 1}.
By a covering argument [46, Exercise 4.4.3], for any symmetric matrix U ∈ Sd×d, its operator norm
is bounded by ∥U∥op ≤ 2 supv∈A 1

4

∣∣v⊤Uv
∣∣. Hence, we have∥∥∥∥∥ 1n

n∑
i=1

Ãi − E
[
Ã
]∥∥∥∥∥

op

≤ 2 sup
v∈A 1

4

∣∣∣∣∣v⊤

(
1

n

n∑
i=1

Ãi − E
[
Ã
])

v

∣∣∣∣∣
= 2 sup

v∈A 1
4

∣∣∣∣∣ 1n
n∑

i=1

v⊤Ãiv − E
[
v⊤Ãv

]∣∣∣∣∣ . (30)

We invoke Bernstein’s inequality. We first show that the Bernstein condition holds. Namely, we show
that for each integer p ≥ 2, we have that for any unit vector v ∈ Rd,

E
∣∣∣v⊤Ãv

∣∣∣p ≤ p!

2
u1u

p−2
2 , (31)

where u1 = c1M
1
2 and u2 = c2τ for some universal positive constants c1 and c2. Given the Bernstein

condition (31), we then apply Bernstein’s inequality to bound (30).

Proving the Bernstein condition (31). We fix any unit vector v ∈ Rd. Since Ã = γ̃2aa⊤, we
have v⊤Ãv = γ̃2(v⊤a)2. Recall that the random vector a is distributed as a ∼ N (0, Id). Since v
is a unit vector, it follows that v⊤a ∼ N (0, 1). Denote by G ∼ N (0, 1) a standard normal random
variable. For any integer p ≥ 2, we have

E
∣∣∣v⊤Ãv

∣∣∣p = E
(
γ̃2G2

)p (i)
≤ τp−2E

[(
γ̃2
)2

G2p
]

(ii)
≤ τp−2 · E

[(
γ̄2
)2

G2p
]

(iii)
≤ τp−2

(
E
[(
γ̄2
)4] · E [G4p

])1/2

(iv)
≤ τp−2

(
M · E

[
G4p

])1/2
, (32)

where steps (i) and (ii) follow from (TP1) and (TP2), respectively; step (iii) follows from Cauchy–
Schwarz inequality; and step (iv) follows upper bounding the fourth moment of γ̄2 with the quantity
M from Equation (29).

Note that since G is standard normal, by definition G2 follows a Chi-Square distribution with 1 degree
of freedom, and hence sub-exponential. By Lemma 2 in Appendix D.2, there exists some constant
c > 0 such that we have

(
E
[
(G2)p

])1/p ≤ cp for all p ≥ 1. Hence, we have
(
E
[
G4p

])1/2p ≤ 2cp
and (

E
[
G4p

])1/2 ≤ (2cp)
p
=
(p
e

)p
· (2ec)p

(i)
< p! · (2ec)p (33)

where step (i) is true by Stirling’s inequality that for all p ≥ 1,

p! >
√

2πp
(p
e

)p
e

1
12p+1 >

(p
e

)p
.

Substituting (33) back to (32) and rearranging terms completes the proof of the Bernstein condi-
tion (31).

Applying Bernstein’s inequality to bound (30). By Bernstein’s inequality (see Lemma 3), given
condition (31), we have that for any unit vector v ∈ Rd and any t > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

v⊤Ãiv − E
[
v⊤Ãv

]∣∣∣∣∣ ≥ 2

(√
c1M

1/2t

n
+

c2τt

n

))
≤ 2 exp (−t) . (34)
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By [46, Corollary 4.2.13], the cardinality of the covering set A 1
4

is bounded above by 9d. Therefore,
taking a union bound on (34), we have

P

 sup
v∈A 1

4

∣∣∣∣∣ 1n
n∑

i=1

v⊤Ãiv − E
[
v⊤Ãv

]∣∣∣∣∣ ≥ 2

(√
c1M

1/2t

n
+

c2τt

n

) ≤ 2 · 9d · exp (−t) . (35)

Substituting in (30) to (35), for any t > 0, we have

P

∥∥∥∥∥ 1n
n∑

i=1

Ãi − E
[
Ã
]∥∥∥∥∥

op

≲

√
M 1/2t

n
+

τt

n

 ≥ 1− 2 · 9d · exp(−t),

as desired.

E.1.2 Proof of Lemma 7

By definition of the operator norm, we have∥∥∥E [Ã]− E
[
Ā
]∥∥∥

op
= sup

v∈Sd−1

∣∣∣v⊤
(
E
[
Ā
]
− E

[
Ã
])

v
∣∣∣.

We fix any v ∈ Sd−1, and bound v⊤
(
E
[
Ā
]
− E

[
Ã
])

v. Similar to the proof of Lemma 6, we note

that v⊤a ∼ N (0, 1) and denote the random variable G ∼ N (0, 1). Substituting in the expression
for sensing matrices Ā and Ã, we have∣∣∣v⊤

(
E
[
Ā
]
− E

[
Ã
])

v
∣∣∣ = ∣∣v⊤E

[
γ̄2aa⊤ − γ̃2aa⊤]v∣∣

(i)
= E

[(
γ̄2 − γ̃2

)
G2
]

(ii)
= E

[(
γ̄2 − γ̃2

)
G2 · 1{γ̄2 ≥ τ}

]
≤ E

[
γ̄2G2 · 1{γ̄2 ≥ τ}

]
(iii)
≤
(
E
[
(γ̄2G2)2

]
· E
[
1{γ̄2 ≥ τ}

] )1/2

(iv)
≤
(
E
[
|γ̄2|4

]
· E
[
|G2|4

] )1/4(
P
(
γ̄2 ≥ τ

) )1/2

, (36)

where where step (i) is true because γ̄2 ≥ γ̃2 from to (TP2), step (ii) is true due to (TP3), and
steps (iii) and (iv) follow from Cauchy–Schwarz inequality. We proceed by bounding each of the
terms in (36) separately. First, we can upper bound the fourth moment E

[
|γ̄2|4

]
by the quantity M

from Equation (29). Second, G2 is a sub-exponential random variable. By Lemma 2 in Appendix D.2,

we have that E
[
|G2|4

]1/4 ≤ c for some constant c. It remains to bound the term
(
P
(
γ̄2 ≥ τ

) )1/2

.
We have

P
(
γ̄2 ≥ τ

) (i)
≤ E |γ̄2|2

τ2

(ii)
≤
(
E |γ̄2|4

)1/2
τ2

(iii)
≤ M 1/2

τ2
,

where step (i) follows from Markov’s inequality, step (ii) follows from Cauchy–Schwarz inequality,
and step (iii) follows from the fourth moment bound on the averaged scaling γ̄2. Putting everything
together back to (36), we have ∣∣∣v⊤

(
E
[
Ā
]
− E

[
Ã
])

v
∣∣∣ ≲ M 1/2

τ

for any vector v ∈ Sd−1. Therefore,∥∥∥E [Ã]− E
[
Ā
]∥∥∥

op
≲

M 1/2

τ
,

as desired.
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E.1.3 Proof of Lemma 8

Substituting in the definitions Ā = γ̄2aa⊤ and Ã = γ̃2aa⊤, we have

⟨Ā,Σ⋆⟩Ā− ⟨Ã,Σ⋆⟩Ã =
(
γ̄4 − γ̃4

) (
a⊤Σ⋆a

)
aa⊤.

Therefore, our goal is to bound the operator norm∥∥(γ̄4 − γ̃4
) (

a⊤Σ⋆a
)
aa⊤∥∥

op
= sup

v∈Sd−1

∣∣vT
(
γ̄4 − γ̃4

) (
a⊤Σ⋆a

)
aa⊤v

∣∣.
Similar to the proof of Lemma 7, we fix any vector v ∈ Sd−1. Again, note that v⊤a ∼ N (0, 1) and
denote G ∼ N (0, 1). We have∣∣v⊤E

[(
γ̄4 − γ̃4

) (
a⊤Σ⋆a

)
aa⊤]v∣∣ (i)

= E
[(
γ̄4 − γ̃4

) (
a⊤Σ⋆a

)
G2
]

= E
[(
γ̄2 + γ̃2

) (
γ̄2 − γ̃2

) (
a⊤Σ⋆a

)
G2
]

(ii)
≤ E

[
2γ̄2

(
γ̄2 − γ̃2

) (
a⊤Σ⋆a

)
G2
]

(iii)
= 2E

[
(y + η̄)

(
γ̄2 − γ̃2

)
G2
]

(iv)
≤ 2(y + η↑)E

[(
γ̄2 − γ̃2

)
G21{γ2 ≥ τ}

]
where steps (i) and (ii) are true because γ̄2 ≥ γ̃2 from (TP2), step (iii) follows from the definition
γ̄2 = y+η̄

a⊤Σ⋆a
, and step (iv) follows from (TP3) and the definition of η↑ as the upper bound on the

noise η.

The rest of the proof follows the exact steps of the proof of Lemma 7 in Appendix E.1.2. Therefore,
we have the bound ∥∥E [(γ̄4 − γ̃4

) (
a⊤Σ⋆a

)
aa⊤]∥∥

op
≲

y↑M 1/2

τ
,

as desired.

E.1.4 Proof of Lemma 9

The proof follows the steps as in the proof of Lemma 6, and we describe the difference of the two
proofs. We again apply Bernstein’s inequality.

Proving a Bernstein condition. We prove a Bernstein condition with u1 = c1(y + η↑)2 and
u2 = c2(y + η↑)τ . Namely, for every integer p ≥ 2, we have (cf. (31) in Lemma 6)

E
[∣∣∣v⊤⟨Ã,Σ⋆⟩Ãv

∣∣∣p] ≤ p!

2
u1u

p−2
2 . (37)

To show (37), we plug in Ã = γ̃2aa⊤ and have

E
∣∣∣v⊤⟨Ã,Σ⋆⟩Ãv

∣∣∣p = E
(
γ̃2a⊤Σ⋆a

)p · ∣∣∣v⊤Ãv
∣∣∣p

(i)
≤ E

(
γ̄2a⊤Σ⋆a

)p · ∣∣∣v⊤Ãv
∣∣∣p

(ii)
= E (y + η̄)

p ·
∣∣∣v⊤Ãv

∣∣∣p
(iii)
≤ (y + η↑)p · E

∣∣∣v⊤Ãv
∣∣∣p, (38)

where step (i) follows from (TP2), step (ii) follows from the definition γ̄2 = y+η̄
a⊤Σ⋆a

, and step (iii)

follows from the definition of η↑ as the upper bound on the noise η. Substituting in (31) from

Lemma 6 to bound the term E
∣∣∣v⊤Ãv

∣∣∣p in (38) completes the proof of the Bernstein condition (37).
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Applying Bernstein’s inequality. The rest of the proof follows in the same manner as the proof of
Lemma 6 in Appendix E.1.1, with an additional factor of (y + η↑). We have∥∥∥∥∥E [⟨Ã,Σ⋆⟩Ã

]
− 1

n

n∑
i=1

⟨Ãi,Σ
⋆⟩Ãi

∥∥∥∥∥
op

≲ y↑

(√
M 1/2t

n
+

τt

n

)

with probability at least 1− 2 · 9d · exp (−t), as desired.

E.1.5 Proof of Lemma 10

Recall that by definition Ā = γ̄2aa⊤ = y+η̄
a⊤Σ⋆a

aa⊤. We have∥∥E [η̄Ā]∥∥
op

=

∥∥∥∥E [η̄(y + η̄)
aa⊤

a⊤Σ⋆a

]∥∥∥∥
op

=

∥∥∥∥E [η̄(y + η̄)] · E
[

aa⊤

a⊤Σ⋆a

]∥∥∥∥
op

=
σ2
η

m
·
∥∥∥∥E [ aa⊤

a⊤Σ⋆a

]∥∥∥∥
op

. (39)

To bound the operator norm term in (39), we apply Lemma 4(b) in Appendix D.4. For any matrix U ,
we have

E
[
a⊤Ua

a⊤Σ⋆a

]
≲

1

σrr
∥U∥∗. (40)

Note that aa⊤

a⊤Σ⋆a
is symmetric positive semidefinite, so we have∥∥∥∥E [ aa⊤

a⊤Σ⋆a

]∥∥∥∥
op

= sup
v∈Sd−1

∣∣∣∣v⊤E
[

aa⊤

a⊤Σ⋆a

]
v

∣∣∣∣
= sup

v∈Sd−1

E
[
a⊤(vv⊤)a

a⊤Σ⋆a

]
(i)
≲

1

σrr
sup

v∈Sd−1

∥vv⊤∥∗

(ii)
=

1

σrr
, (41)

where step (i) is true by substituting in (40) with U = vvT , and step (ii) is true because v is unit
norm, and hence ∥vv⊤∥∗ = 1. Substituting (41) back to (39), we have∥∥E [η̄Ā]∥∥

op
≲

1

σrr
·
ν2η
m

,

as desired.

E.2 Proof of Proposition 3

We analyze the term 1
n

n∑
i=1

⟨Ãi,U⟩2 from (26). Recall from the definition of Ã that for any i =

1, . . . , n,

Ãi = γ̃2
i aia

⊤
i =

(
y + η̄i
a⊤
i Σ

⋆ai
∧ τ

)
aia

⊤
i ,

so we have

⟨Ãi,U⟩2 =

(
y + η̄i
a⊤
i Σ

⋆ai
∧ τ

)2 (
a⊤
i Uai

)2
. (42)
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From (42), we have that for any matrix U , the term
n∑

i=1

⟨Ãi,U⟩2 is nondecreasing in τ when τ > 0.

Defining a random matrix

Ãτ ′
:=

(
y + η̄

a⊤Σ⋆a
∧ τ ′

)
aa⊤, (43)

for any τ ′ ∈ (0, τ ], we have

1

n

n∑
i=1

⟨Ãi,U⟩2 ≥ 1

n

n∑
i=1

⟨Ãτ ′

i ,U⟩2, (44)

where for every i = 1, . . . , n, matrix Ãτ ′

i is formed with the same realizations of random quantities
ai and η̄i as Ãi. The two matrices only differ in choice of truncation threshold: τ ′ instead of τ . As a

result, for the rest of the proof, we lower bound 1
n

n∑
i=1

⟨Ãτ ′

i ,U⟩2 for an appropriate choice of τ ′ to be

specified later. To proceed, we use a small-ball argument [49, 50] based on the following lemma.
Lemma 11 ([50, Proposition 5.1], adapted to our notation). Let X1, . . . ,Xn ∈ Rd×d be i.i.d. copies
of a random matrix X ∈ Rd×d. Let E ⊂ Rd×d be a subset of matrices. Let ξ > 0 and Q > 0 be
real values such that for every matrix U ∈ E, the marginal tail condition holds:

P (|⟨X,U⟩| ≥ 2ξ) ≥ Q. (45)

Define the Rademacher width as

W := E

[
sup
U∈E

1

n

n∑
i=1

εi⟨Xi,U⟩

]
,

where ε1, . . . , εn are i.i.d. Rademacher random variables independent of {Xi}i∈[n]. Then for any
t > 0, we have

inf
U∈E

(
1

n

n∑
i=1

⟨Xi,U⟩2
)1/2

≥ ξ(Q− t)− 2W.

with probability at least 1− exp
(
−nt2

2

)
.

Recall the error set E defined in Equation (22). Because the claim (26) is invariant to scaling, it
suffices to prove it for ∥U∥F = 1. Correspondingly, we define the set E as

E = E ∩ {U ∈ Rd×d : ∥U∥F = 1}
= {U ∈ Sd×d : ∥U∥F = 1, ∥U∥∗ ≤ 4

√
2r}. (46)

We invoke Lemma 11 with set E defined above, Xi = Ãτ ′

i , ξ = c1
2

(
µy

tr(Σ⋆) ∧ τ ′
)

, and Q = c2,
where µy is the median of η̄ and c1 and c2, are constants to be specified later. The rest of the proof is
comprised of two steps. We first verify that our choices for ξ and Q are valid for establishing the
marginal tail condition (45). We then bound the Rademacher width W above. The following lemma
verifies our choices for ξ and Q.
Lemma 12. Consider any τ ′ ∈ (0, τ ]. There exist absolute constants c1, c2 > 0 such that for every
U ∈ E, we have

P
(∣∣∣⟨Ãτ ′

,U⟩
∣∣∣ ≥ c1

(
µy

tr (Σ⋆)
∧ τ ′

))
≥ c2.

The proof of Lemma 12 is presented in Appendix E.2.1. We now turn to the second step of the proof,
which is bounding the Rademacher width W . The next lemma characterizes this width.

Lemma 13. Consider any τ ′ ∈ (0, τ ]. Let Ãτ ′

1 , . . . , Ãτ ′

n ∈ Rd×d be i.i.d. copies of the random
matrix Ãτ ′ ∈ Rd×d defined in Equation (43). Let E be the set defined in Equation (46). Then, there
exists some absolute constants c1 and c2 such that if n ≥ c1d, then we have

E

[
sup
U∈E

1

n

n∑
i=1

εi⟨Ãτ ′

i ,U⟩

]
≤ c2τ

′
√

rd

n
.

28



The proof of Lemma 13 is presented in Appendix E.2.2. Lemma 12 establishes the marginal tail
condition for Lemma 11, and Lemma 13 upper bounds the Rademacher width. We now invoke
Lemma 11 and substitute in the upper bound for the Rademacher width W . For some constant c4, if
n ≥ c4d, we have that with probability at least 1− exp

(
−nt2

2

)
,

inf
U∈E

(
1

n

n∑
i=1

⟨Ãi,U⟩2
)1/2

(i)
≥ inf

U∈E

(
1

n

n∑
i=1

⟨Ãτ ′

i ,U⟩2
)1/2

≥ c1
2

(
µy

tr (Σ⋆)
∧ τ ′

)
(c2 − t)− c3τ

′
√

rd

n
,

where step (i) is true due to the monotonicity property (44). We set τ ′ = µy

tr(Σ⋆) , where recall that µy

is the median of the random quantity y + η̄. By the assumption τ ≥ µy

tr(Σ⋆) , this choice of τ ′ satisfies

τ ′ ≤ τ . Setting t = c2
2 , we have that with probability at least 1− exp

(
− c22n

8

)
,

inf
U∈E

1

n

(
n∑

i=1

⟨Ãτ ′

i ,U⟩2
)1/2

≥ c1c2
4

µy

tr (Σ⋆)
− c3

µy

tr (Σ⋆)

√
rd

n
.

Recall from the definition of E (46) that ∥U∥F = 1. As a result, if n ≥ max

{(
4c3
c1c2

)2
, c4

}
rd, we

have

inf
U∈E

1

n

n∑
i=1

⟨Ãi,U⟩2 ≥
(
c1c2
4

µy

tr (Σ⋆)

)2

∥U∥2F

with probability at least 1 − exp
(
− c22n

8

)
. We conclude by setting κL =

(
c1c2
4

)2
, c =

c22
8 , and

C = max

{(
4c3
c1c2

)2
, c4

}
in Proposition 3.

E.2.1 Proof of Lemma 12

We fix any U ∈ E. Recall that µy denotes the median of y + η̄. Let G be the event that y + η̄ ≥ µy ,
which occurs with probability 1

2 . For any ξ > 0, because the averaged noise η̄ and sensing vector a
are independent, we have

P
(∣∣∣⟨Ãτ ′

,U⟩
∣∣∣ ≥ ξ

)
(i)
= P

((
y + η̄

a⊤Σ⋆a
∧ τ ′

)
·
∣∣⟨aa⊤,U⟩

∣∣ ≥ ξ

)
= P

((
y + η̄

a⊤Σ⋆a
∧ τ ′

)
·
∣∣⟨aa⊤,U⟩

∣∣ ≥ ξ

∣∣∣∣ G) · P (G)

=
1

2
P
((

y + η̄

a⊤Σ⋆a
∧ τ ′

)
·
∣∣⟨aa⊤,U⟩

∣∣ ≥ ξ

∣∣∣∣ G)
(ii)
≥ 1

2
P
((

µy

a⊤Σ⋆a
∧ τ ′

)
·
∣∣⟨aa⊤,U⟩

∣∣ ≥ ξ

)
, (47)

where step (i) is true by plugging in the definition of Ãτ ′
, and step (ii) is true by the definition of the

event G. We proceed by bounding the terms in (47) separately.

Lower bound on
∣∣⟨aa⊤,U⟩

∣∣. We use the approach from [32, Section 4.1]. By Paley-Zygmund
inequality,

P
(∣∣⟨aa⊤,U⟩

∣∣2 ≥ 1

2
E
[∣∣⟨aa⊤,U⟩

∣∣2]) ≥ 1

4

(
E
[∣∣⟨aa⊤,U⟩

∣∣2])2
E
[
|⟨aa⊤,U⟩|4

] (48)
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We now analyze the terms in (48). As noted in [32, Section 4.1], there exists some constant c1 > 0
such that for any matrix U with ∥U∥F = 1,

E
[∣∣⟨aa⊤,U⟩

∣∣2] ≥ 1 and E
[∣∣⟨aa⊤,U⟩

∣∣4] ≤ c1

(
E
[∣∣⟨aa⊤,U⟩

∣∣2])2 . (49)

Note that by the definition of the set E, every matrix U ∈ E satisfies ∥U∥F = 1. Utilizing
inequalities (48) and (49), there exists positive constant c2 > 0 such that

P
(∣∣⟨aa⊤,U⟩

∣∣ ≥ 1

2

)
≥ c2. (50)

Upper bound on a⊤Σ⋆a. By Hanson-Wright inequality [51, Theorem 1.1], there exist some
positive absolute constants c3 and c4 such that for any t > 0, we have

P
(
a⊤Σ⋆a ≤ c3

(
tr (Σ⋆) + ∥Σ⋆∥F

√
t+ ∥Σ⋆∥op t

))
≥ 1− 2 exp (−c4t) .

We set t = − 1
c4

log( c24 ) so that 2 exp (−c4t) =
c2
2 . Since Σ⋆ is symmetric positive semidefinite, we

have
∥Σ⋆∥F ≤ tr (Σ⋆)

and ∥Σ⋆∥op ≤ tr (Σ⋆)

As a result, we have that there exists some constant c5 > 0 such that

P
(
a⊤Σ⋆a ≤ c5 tr (Σ

⋆)
)
≥ 1− c2

2
. (51)

Substituting the two bounds back to (47). By a union bound of (50) and (51), we have

P
((

µy

a⊤Σ⋆a
∧ τ ′

)
·
∣∣⟨aa⊤,U⟩

∣∣ ≥ 1

2

(
µy

c5 tr (Σ⋆)
∧ τ ′

))
≥ P

(
µy

a⊤Σ⋆a
∧ τ ′ ≥ µy

c5 tr (Σ⋆)
∧ τ ′

)
+ P

(∣∣⟨aa⊤,U⟩
∣∣ ≥ 1

2

)
− 1

≥ P
(

µy

a⊤Σ⋆a
≥ µy

c5 tr (Σ⋆)

)
+ P

(∣∣⟨aa⊤,U⟩
∣∣ ≥ 1

2

)
− 1 ≥ c2

2
(52)

Combining (52) and (47), and redefining constant c2 appropriately, we have

P
(∣∣∣⟨Ãτ ′

,U⟩
∣∣∣ ≥ 1

2

(
µy

tr (Σ⋆)
∧ τ ′

))
≥ c2,

as desired.

E.2.2 Proof of Lemma 13

We begin by noting that for any matrix U ∈ E,

E

[
sup
U∈E

1

n

n∑
i=1

εi⟨Ãτ ′

i ,U⟩

]
(i)
≤ E

 sup
U∈E

∥∥∥∥∥ 1n
n∑

i=1

εiÃ
τ ′

i

∥∥∥∥∥
op

· ∥U∥∗


(ii)
≤ 4

√
2r · E

∥∥∥∥∥ 1n
n∑

i=1

εiÃ
τ ′

i

∥∥∥∥∥
op

, (53)

where step (i) follows from Hölder’s inequality, and step (ii) follows from the fact that ∥U∥∗ ≤ 4
√
2r

from the definition of the set E. It remains to bound the expectation of the operator norm in (53).
We follow the standard covering arguments in [52, Section 5.4.1], [50, Section 8.6], [32, Section
4.1], with a slight modification to accommodate the bounded term

(
y+η̄i

a⊤
i Σ⋆ai

∧ τ ′
)

that appears in

each of the matrices Ãτ ′

i . As a result, there exist universal constants c1 and c2 such that if n satisfies
n ≥ c1d, then we have

E

∥∥∥∥∥ 1n
n∑

i=1

εiÃ
τ ′

i

∥∥∥∥∥
op

 ≤ c2τ
′
√

d

n
.

We conclude by re-defining c2 appropriately.
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F Proof of Corollary 1

We proceed by considering two cases. For each case, the proof consists of two steps. We first verify
that the choices of the averaging parameter m and truncation threshold τ ,

m =

⌈( ν2η
(y↑)2

)2
N

d

1/3 ⌉
and τ =

y↑

σrr

√
N

md
, (54)

satisfy the assumptions of Theorem 1, namely n ≥ C2rd and τ ≥ µy

tr(Σ⋆) . We then invoke Theorem 1.

F.1 Case 1: high-noise regime

In this case, we have
ν2
η

(y↑)2
>
√

d
N , which means by setting m according to Equation (54), we have

m ≥ 2. As a result, the bound⌈( ν2η
(y↑)2

)2
N

d

1/3 ⌉
≤ 2

( ν2η
(y↑)2

)2
N

d

1/3

(55)

holds in the high-noise regime.

Verifying the condition on n. Recall that n = N
m . We have

n =
N

m

(i)
≥ N

2

( ν2η
(y↑)2

)2
N

d

−1/3

=
1

2

(
N2d

(
(y↑)2

ν2η

)2
)1/3

(ii)
≥

C3
2

(
(y↑)2

ν2η

)2
(

ν2η
(y↑)2

)2

r3d3

1/3

= C2rd,

where step (i) is true by plugging in the choice of m from (54) and applying the bound (55), and

step (ii) is true by substituting in the assumption N ≥ 2C
3/2
2

(
ν2
η

(y↑)2

)2
r3/2d. Thus the condition

n ≥ C2rd of Theorem 1 is satisfied.

Verifying the condition on τ . For the term
√

N
dm in the expression of τ in (54), note that, by

the previous point, N
m = n ≳ rd (with a constant that is greater than 1). Thus

√
N
dm ≥

√
r > 1.

Therefore, to verify the condition τ ≥ µy

tr(Σ⋆) , it suffices to verify that

y↑

σrr
≥ µy

tr (Σ⋆)
. (56)

By definition, we have y↑ ≥ µy. Furthermore, since Σ⋆ is symmetric positive semidefinite, its
eigenvalues are all non-negative and are identical to its singular values, and hence tr (Σ⋆) ≥ σrr,
verifying the condition (56).

Invoking Theorem 1. By setting λn to its lower bound in (9) and substituting in n = N
m and our

choice of τ from (54), we have

λn = C1

(
3
(y↑)2

σrr

√
md

N
+

ν2η
m

)
(57)
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Substituting this expression of λn to the error bound (10), then substituting in our choice of m
from (54) to (57) and defining C ′ = 3C · C1, we have

∥Σ̂−Σ⋆∥F ≤ C ′

(
tr (Σ⋆)

2

σrr

)
(y↑)4/3(ν2η)

1/3

µ2
y

√
r

(
d

N

)1/3

.

Using the fact that tr (Σ⋆) ≤ σ1r, we have

∥Σ̂−Σ⋆∥F ≤ C ′ σ
2
1

σr

(y↑)4/3(ν2η)
1/3

µ2
y

r
3/2

(
d

N

)1/3

as desired.

F.2 Case 2: low-noise regime

In this case, we have
ν2
η

(y↑)2
≤
√

d
N , which means by setting m according to Equation (54), we have

m = 1. As a result, no averaging occurs.

Verifying the condition on n. Because m = 1 in this case, we have that n = N . By assumption,
we have that N ≥ C2rd, satisfying the condition n ≥ C2rd in Theorem 1.

Verifying the condition on τ . By the same analysis as in Case 1, we have that the condition
τ ≥ µy

trΣ⋆ in Theorem 1.

Invoking Theorem 1. By setting λn to its lower bound in (9), substituting in our choice of τ
from (54) and noting m = 1, we have

λn = C1

(
3
(y↑)2

σrr

√
d

n
+

1

σrr
ν2η

)
. (58)

We define C ′ = 3C ·C1 and note that n = N under Case 2. Substituting this expression of λn in (58)

to the error bound (10), then using the fact that under Case 2, the bound ν2η ≤ (y↑)2
√

d
N holds, we

have

∥Σ̂−Σ⋆∥F ≤ C ′

(
tr (Σ⋆)

2

σrr

)(
y↑

µy

)2√
rd

N
.

Using the fact that tr (Σ⋆) ≤ σ1r, we have

∥Σ̂−Σ⋆∥F ≤ C ′ σ
2
1

σr

(
y↑

µy

)2√
r3d

N
,

as desired.
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