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Abstract

Row-local tabular models excel when labels depend only on per-row attributes.
Yet many real-life labels depend on other rows (shared values, references, group
effects). We ask when explicit cross-row structure becomes necessary. Starting
from a single table, we construct controlled row-level tasks that require existence or
counting of values, and compare (i) strong row-local learners, (ii) the same learners
with one-hop neighbor feature aggregation (NFA), and (iii) message passing on
graphs induced directly from the table. In this controlled setting, NFA yields small
and inconsistent gains over row-local baselines, suggesting that static neighbor
summaries are insufficient to recover relational dependencies. Message passing
reliably captures the required cross-row logic. These findings reveal a structural dif-
ference between tabular and graph learning and suggest that dynamic propagation,
rather than static aggregation, is key when targets depend on other rows.

1 Introduction

Most practical machine learning operates on tables: rows as examples, columns as attributes. For
years, the strongest tabular systems have been row-local pipelines: gradient-boosted trees (GBDTs)
and modern multi-layer perceptrons (MLPs) that process examples independently. Under carefully
curated i.i.d. evaluation, these models remain hard to beat: When labels are per-row functions, careful
validation and ensembling matter more than architectural novelty [McElfresh et al., 2023, Erickson
et al., 2025]. Beyond purely row-based approaches, transformer-style tabular foundation models
(e.g., TabPFN [Hollmann et al., 2025], TabICL [Qu et al., 2025]) incorporate cross-row mechanisms
through attention and in-context learning. Yet, they still do not explicitly follow typed relations or
compose multi-hop evidence, capabilities that real-world tables often demand. Indeed, real-world
tables often violate row independence. Identifiers recur across rows; attributes are shared; and correct
predictions depend on whether a value is unique, a key matches a reference, or how many rows fall
into the same group. Such dependencies distribute signals across rows, creating a latent relational
structure that strictly row-local learners cannot exploit, since they never condition on other rows.

This motivates a focused question: When does a tabular problem actually require cross-row
structure? We study this under a minimal setup: Holding a single table fixed, we switch on cross-
row dependencies only through the labels (existence, uniqueness, counting) and compare three
levels of structural access: (i) standard row-local baselines, (ii) the same baselines augmented with
precomputed one-hop neighbour feature aggregation (NFA) and (iii) shallow message passing on
a graph induced by the table (i.e., where rows become nodes and value sharing defines edges).
Additionally, the transformer-based model TabPFN serves as a non–row-local reference using inter-
row attention but without explicit graph edges.

This design lets us experimentally isolate what kinds of cross-row reasoning each architecture can ex-
press. In our controlled tasks, NFA provides limited and inconsistent gains, whereas message passing
captures the required relational logic and closes the gap entirely. Rather than a weakness, this delin-
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eates the boundary: Precomputed one-hop aggregates can help in relational data where features inter-
act, but explicit message propagation becomes essential when labels depend directly on other rows.

2 Background and Related Work

Strong row-local baselines on i.i.d. tables. On curated i.i.d. benchmarks, GBDTs and MLPs remain
the strongest tabular learners, with most leaderboard gains attributable to validation and ensembling
rather than architectural novelty [Grinsztajn et al., 2022, McElfresh et al., 2023, Salinas and Erickson,
2024]. Erickson et al. [2025] explicitly curate i.i.d. tasks and again find GBDTs and MLPs neck-and-
neck, confirming the dominance of row-local methods when examples are independent. These results
set a reference point: when labels are truly per-row, row-local models are hard to beat.

From tables to graphs. A complementary line of work shows how to turn tables into graphs,
either from a single table (with nodes as rows and links based on similarity or value-sharing) or
from a full relational database via schema edges [Fey et al., 2024, Li et al., 2025]. On top of these
graph constructions, GNNs are applied to enable message passing between related rows. Unlike
row-local models, such architectures can naturally model cross-row dependencies when the graph
is constructed to reflect shared values or relational structure. The chosen construction matters:
Cucumides and Geerts [2025] show that representing predictive attributes as nodes can change
downstream performance. Still, a formal justification of what is gained by turning a table into a graph
remains limited; our study takes a first empirical step in that direction.

Tabular methods for graph benchmarks. Recently, the graph learning community has turned its
attention towards relational data, which is natively tabular. Benchmarks such as RelBench [Robinson
et al., 2024] and GraphLand [Bazhenov et al., 2025] build graphs from relational databases, where
rows or entities become nodes and schema links define edges. Notably, Bazhenov et al. [2025] include
tabular baselines enhanced with one-hop neighborhood feature aggregation (NFA) to compare fairly
against graph models. Their results show that such NFA baselines can match graph methods on
shallow dependencies, while multi-hop or typed relations still favor message passing. We take
the complementary view: starting from a table, we progressively add graph structure to test when
message passing becomes necessary beyond one-hop added features.

Expressivity. The expressiveness of message-passing GNNs is well understood through their
connection to color refinement (and 1-WL) and fragments of first-order logic with counting [Morris
et al., 2019, Barceló et al., 2020]. This theoretical view clarifies how structure expands what can be
represented: one-hop aggregation captures local statistics such as degrees or existence, while deeper
propagation enables multi-hop and compositional reasoning.

Building on these insights, we compare row-local, NFA-augmented, and message-passing models
on a table and its graph representation. Our goal is to provide a setting that isolates—conceptually
and empirically—when and why structural information becomes necessary for tabular prediction.

3 A Conceptual Gap (Minimal Formal Check)

Row-local models use only per-row features; graph-based models condition on neighbors. This leads
to a distinct sensitivity to table extensions: if we add or remove rows, some labels (such as uniqueness
or reference existence) should change, but a strictly row-local predictor cannot react.

Let A be a set of column names and Dom a value domain. A table T ⊆ DomA is a finite set of
rows r : A → Dom, where each r assigns a value to every column in A. From T , we derive a
GT = (V,E) with (i) one node per row (V = T ), and (ii) an undirected, typed edge {r, s} ∈ E of
type c whenever r[c] = s[c] for some chosen column c ∈ A. A (binary) predictor is a function F that,
given a table T , produces per-row outputs FT : T → {0, 1}.

Definition 1 (Extension invariance). A predictor F is extension-invariant if for all tables T and rows
r ∈ T , FT (r) = F{r}(r).

That is, predictions for a row depend only on its own attributes, and not on the presence or absence of
other rows.
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Figure 1: Overview of our three experimental settings: (1) the original table T with a row-local
model, (2) T augmented with NFA, and (3) the graph GT with message passing.

Proposition 1 (Why structure helps). There exist simple binary labels, such as the uniqueness of
a value in a column, that cannot be represented by any extension-invariant predictor in a dataset-
independent way, while a single hop of message passing on GT can compute them exactly.

Let fc(r) = 1{ |{s ∈ T : s[c] = r[c]}| = 1 } denote the uniqueness label for row r in column
c. If a duplicate row s ̸= r with s[c] = r[c] is added to T , f(r) changes but FT (r) remains fixed
for any extension-invariant F . In the graph GT , rows sharing c-values are directly connected, so
fc(r) = 1{degc(GT , r) = 0}, which is computable by one-hop aggregation over GT .

This highlights the core gap: row-local predictors are extension-invariant, while message passing is
not. Our controlled tasks (uniqueness, existence, counting) probe exactly this boundary, tracing a
clear hierarchy from no structure to local cues to explicit propagation.

4 Experiments: Structure-Sensitive Tasks, Setup, and Results

We test a simple claim: does a simple structural channel change what is learnable?

Setup. We start from a table T (10k rows, 6 columns) with fixed splits and add structure in two ways.
(i) Row-local tabular baselines operate on the original features only. (ii) One-hop NFA augments
these baselines with a single round of precomputed neighbor signals. (iii) A GNN performs message
passing on GT . All models are fit on the same training split; early stopping and hyperparameter
budgets are matched within each family. The configurations are illustrated in Figure 1.

NFA and graph construction. From table T , we derive graph GT (10k nodes, ≈ 120k typed edges)
as described in Section 3. For one-hop neighbor feature aggregation (NFA), we precompute simple
summaries over each row’s neighbors in GT : for numerical attributes we add mean, min, and max
statistics; for categoricals we append per-value neighbor counts (color-refinement style). No external
data or cross-table links are introduced.

Tasks. We focus on labels that require cross-row reasoning, in contrast to i.i.d. benchmarks where
row-local methods excel. Each label is defined directly from the table and depends on how many
other rows share a pair of given attribute values, making them inherently extension sensitive.

• Uniqueness within group: a row is positive if its value in column c1 appears exactly once
within rows that share the same value in column c2,

yc(r) = 1{ |{s ∈ T : s[c1, c2] = r[c1, c2]}| = 1 }.

• Counting within group (eq): positive if its values in c1 and c2 occurs exactly k times,

yc(r) = 1{ |{s ∈ T : s[c1, c2] = r[c1, c2]}| = k }.

• Counting within group (geq): positive if its values in c1 and c2 occurs at least k times,

yc(r) = 1{ |{s ∈ T : s[c1, c2] = r[c1, c2]}| ≥ k }.

These labels require reasoning over sets of rows (they change when new duplicates or matches are
added) so they directly test extension sensitivity. To prevent leakage, all counts used to define yc(·)
are computed within each split (train/validation/test) before training or evaluation.
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Uniqueness Counting (eq, k = 3) Counting (geq, k = 3)

Model Acc ROC-AUC Acc ROC-AUC Acc ROC-AUC

RealMLP (row-local) 0.770 0.540 0.318 0.371 0.374 0.382
LightGBM (row-local) 0.774 0.514 0.506 0.485 0.498 0.500

RealMLP + NFA 0.770 0.451 0.452 0.300 0.380 0.387
LightGBM + NFA 0.778 0.529 0.536 0.452 0.420 0.487

TabPFN 0.786 0.453 0.566 0.474 0.692 0.516
MPGNN (2 L) 0.811 0.738 0.806 0.771 0.998 0.998

Table 1: Accuracy and ROC-AUC on structure-sensitive labels (mean over three seeds). Adding
one-hop NFA features yields small and inconsistent gains over row-local baselines in this controlled
setting and does not close the gap. A GNN (2 layers) reliably captures the required cross-row counts
and achieves the highest scores across tasks.

Models. RealMLP [Holzmüller et al., 2024] and LightGBM [Ke et al., 2017] are row-local (original
features only): both are state-of-the-art on i.i.d. tables [Erickson et al., 2025]. RealMLP+NFA
and LightGBM+NFA receive the same inputs augmented with one-hop signals computed on GT ,
collapsing a single aggregation hop into features. A 2-layer heterogeneous SAGE GNN [Hamilton
et al., 2017] with sum aggregation and ReLU activation runs message passing on GT . TabPFN
operates on T without added graph features; it must infer structural patterns from attention alone,
whereas the GNN is given the explicit edge structure of GT .

Results. As expected, row-local models underperform on signals that depend on other rows.
Augmenting them with one-hop NFA features produces only marginal and inconsistent changes,
often leaving ROC–AUC near chance, because although NFA gives each row its group size, turning
these counts into the exact labels requires the model to learn many separate cases across all value
groups—something that does not happen in practice. By contrast, a GNN matches or exceeds all
alternatives on every task, indicating that a few rounds of propagation suffice to realize the required
counting logic at inference time. TabPFN, despite inter-row attention and strong performance on
standard i.i.d. benchmarks, remains below the GNN on these structure-sensitive tasks, underscoring
that generic cross-row attention is not, by itself, a substitute for targeted message passing on the
induced graph. Overall, the pattern is consistent with a structural explanation: in settings where
labels hinge on set cardinalities over peers, exposing an actual neighborhood at inference time (via
message passing) is necessary; collapsing one-hop aggregates into static features is not enough here.

5 Discussion and Outlook

Causal story. This work takes a first step toward understanding when tabular prediction truly requires
cross-row structure. We formalized the limitation of row-local models: extension invariance, and
showed how controlled, structure-sensitive tasks make this gap observable and measurable. One-hop
aggregation (NFA) probes this limitation in the narrowest way, adding limited cross-row information
but not enough to recover relational logic. Message passing, in contrast, directly relaxes extension
invariance and succeeds once dependencies compose beyond a single hop. Together, these results
identify structure as a missing inductive bias rather than a side effect of model capacity or tuning.

Practical recipe. Keep standard tabular preprocessing and add a small structural layer: build a graph
from repeated values or references, try one-hop neighbor features as a simple test, and use one or
two layers of message passing if one-hop features are not enough. In many relational datasets, NFA
gives cheap gains when structure mixes with other features, but message passing works best when
labels depend on other rows. This mirrors results from GraphLand [Bazhenov et al., 2025], where
lightweight graph links help, but full propagation is needed for multi-hop reasoning.

Limitations and next steps. Our study is deliberately controlled: a first exploration rather than a
comprehensive benchmark. Future work should test real tabular datasets where extension-sensitive
dependencies arise (e.g., repeated identifiers, reference joins) and analyze robustness under noisy or
spurious edges. On the theoretical side, formalizing the expressiveness gap remains open. Clarifying
these directions will help establish a broader framework for understanding when and why structural
reasoning is necessary in tabular learning, and when simple row-local models already suffice.
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