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Abstract

Retrieval-augmented generation (RAG) en-001
hances Large Language Models (LLMs) with002
relevant and up-to-date knowledge, improv-003
ing their ability to answer knowledge-intensive004
questions. It has been shown to enhance both005
generation quality and trustworthiness. While006
numerous works have focused on improving007
retrieval, generation, and evaluation, the role of008
reward models in reinforcement learning for op-009
timizing RAG remains underexplored. In this010
paper, we introduce RAG-Reward, a frame-011
work designed to develop reward models to012
enable hallucination-free, comprehensive, reli-013
able, and efficient RAG. We define four key met-014
rics to assess generation quality and develop an015
automated benchmarking pipeline to evaluate016
the outputs of multiple LLMs across a variety017
of RAG scenarios. Using RAG-Reward, we018
train reward models and apply reinforcement019
learning with human feedback (RLHF) to im-020
prove LLMs’ effectiveness in RAG. Experimen-021
tal results demonstrate that our reward model022
achieves state-of-the-art performance in auto-023
matic benchmarking and aligns closely with024
human evaluations. Furthermore, the improved025
generation quality of the trained policy model026
highlights the feasibility and efficiency of using027
RLHF to enhance RAG outputs 1 .028

1 Introduction029

Retrieval-augmented generation (RAG) has been030

widely adopted in research and real-world applica-031

tions on domain-specific or knowledge-intensive032

tasks (Gao et al., 2024; Fan et al., 2024; Yu et al.,033

2023). By leveraging up-to-date external knowl-034

edge, Large Language Models (LLMs) can incor-035

porate relevant information during text generation,036

significantly mitigating hallucination issues (Zhang037

et al., 2023b; Peng et al., 2023) and ensuring higher038

answer quality (Lewis et al., 2020).039

1The dataset will be made publicly available upon publica-
tion.

However, many open-source LLMs are not yet 040

fully optimized for use in RAG scenarios. Sim- 041

ply applying RAG to these models often leads to 042

suboptimal outcomes. For example, even with ac- 043

cess to external knowledge, these LLMs may still 044

generate misinformation (Niu et al., 2024), which 045

can be especially problematic given the timeliness 046

of the generated content. While many LLMs ex- 047

cel in conversational tasks, they often struggle in 048

information-intensive scenarios, where both trust- 049

worthiness and efficiency are paramount (Wang 050

et al., 2024). Therefore, a solution that can pro- 051

vide effective supervision and evaluation of RAG 052

systems is needed. 053

Fortunately, significant progress has been made 054

in evaluating the quality of LLM-generated content 055

these days. Unlike many previous benchmark data 056

sets that are created to assess the overall quality of 057

generations (Yang et al., 2018; Kwiatkowski et al., 058

2019), recent studies suggest that the construction 059

of evaluation data sets tailored to specific domains 060

or scenarios with detailed criteria (Zhu et al., 2024; 061

Friel et al., 2024) can lead to improved in-domain 062

performance. (Friel et al., 2025) shows the feasibil- 063

ity to build such a preference dataset that reflects 064

the RAG quality based on multiple key metrics 065

carefully selected and defined by human experts. 066

At the same time, reward modeling has recently 067

emerged as a widely adopted strategy to align text 068

generation with human values by learning prefer- 069

ence signals from human-annotated high-quality 070

data (Ouyang et al., 2022; Lambert et al., 2024). 071

Multiple well-crafted datasets have demonstrated 072

the value of reward models and high-quality prefer- 073

ence datasets. For example, HH-RLHF (Bai et al., 074

2022a) evaluates the helpfulness and harmlessness 075

of the language, PRM800K (Lightman et al., 2023) 076

assesses the stepwise correctness during mathemat- 077

ical reasoning. And (Song et al., 2024a) develop 078

hallucination detection models using RAG-Truth 079

(Niu et al., 2024) dataset, and achieves hallucina- 080

1



Figure 1: An overview of our data labeling method and our experiments based on the preference data in RAG
Scenario. We use o3-mini as the judge to evaluate the quality of the generation from multiple models. We then train
the reward models and use them for Reinforcement Learning.

tion reduction in RAG output.081

While human annotation has proven to be ef-082

fective in evaluating the quality of the generated083

responses and constructing datasets, it is both ex-084

pensive and time-consuming. These challenges085

have led researchers to explore reliable annotation086

strategies that leverage the capabilities of LLMs.087

Previous studies have demonstrated the feasibility088

of using LLMs to assess response quality and build089

robust reward models (Tan et al., 2024). For in-090

stance, Bai et al. (2022b) introduced Constitution091

AI, which uses LLMs to guide the generation of092

fine-tuning data and provide preference pairs for093

reinforcement learning.094

Additionally, LLMs can be guided by human-095

defined criteria and examples to generate prefer-096

ence scores tailored to specific requirements(Sun097

et al., 2023, 2024). For example, Cui et al.098

(2024) introduced Ultra-Feedback, a framework099

that leverages GPT-4 to assign scores based on100

attributes such as helpfulness, truthfulness, hon-101

esty, and instruction-following ability. LLMs have102

also shown their effectiveness in providing feed-103

back across various reasoning tasks, including cod-104

ing and solving mathematical problems (Weyssow105

et al., 2024; Yuan et al., 2024).106

Inspired by these works, we developed RAG-107

Reward, a framework designed to create reward108

models that enable hallucination-free, comprehen-109

sive, reliable, and efficient RAG. The framework110

leverages the capabilities of LLMs to evaluate111

RAG responses across diverse domains, train re-112

ward models, and enhance RAG response quality113

through RLHF. Figure 1 provides an overview of114

our framework.115

Several related works have explored various as-116

pects of this approach, such as using reward models117

to measure the relevance of queries and passages118

(Nguyen et al., 2024), improving trustworthiness 119

of RAG using DPO (Song et al., 2024b), leverag- 120

ing LLM to build RAG benchmark dataset (Friel 121

et al., 2025), and comparing efficiency of various 122

LLMs serving as RAG reward models (Jin et al., 123

2024). However, to the best of our knowledge, this 124

is the first attempt to optimize RAG with reward 125

modeling and RLHF pipeline. 126

Specifically, we select datasets from domains of 127

Question-Answering, Data-to-Text, and Summa- 128

rization. First, we sample diverse responses from 129

a pool of 12 open-source and proprietary LLMs, 130

including GPT-4 and the Llama-3 series. For each 131

prompt in the datasets, we randomly select 2 LLMs 132

to generate responses. Next, we use o3-mini as the 133

judge to compare them based on four key metrics 134

carefully selected by the human experts: hallucina- 135

tion, comprehensiveness, verbosity, and attribution. 136

This enables us to construct preference pairs, con- 137

sisting of a chosen response and a rejected one, 138

based on the weighted selection across 4 metrics. 139

Overall, we collect 35K high-quality training sam- 140

ples for the reward model training. Evaluations 141

demonstrate that our reward model achieves over 142

80% accuracy on the held-out test set. Addition- 143

ally, we develop a policy model using the RAFT 144

algorithm (Dong et al., 2023), leading to notable 145

performance improvements. Our key contributions 146

are summarized as follows: 147

• We introduce a reward modeling method for the 148

RAG scenario to assess generation quality. Ad- 149

ditionally, we release a high-quality dataset of 150

35K preference annotations to support future re- 151

search. 152

• We define a comprehensive set of metrics that 153

effectively evaluate RAG quality and guide the 154

dataset construction process. 155

• We conducted extensive experiments to evalu- 156
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ate our reward model, train a policy model, and157

demonstrate the effectiveness of our approach in158

enhancing RAG performance.159

2 Related Work160

2.1 Reward Modeling for Alignment and161

Reinforcement Learning162

Training reward models have become a widely used163

approach to align language models with human164

preference (Ouyang et al., 2022). The alignment165

can enhance various aspects of LLM performance,166

such as increasing their trustworthiness and help-167

fulness (Bai et al., 2022a; Wang et al., 2023; Cui168

et al., 2024), or improving their problem-solving169

abilities (Dai et al., 2024; Yuan et al., 2024; Zhang170

et al., 2024a). The reward signal can be trained as171

a discriminative model to generate a scalar value172

(Bradley and Terry, 1952), or directly generated as173

critics from language models (Zhang et al., 2024b;174

Zheng et al., 2023). Many high-quality datasets175

for reward modeling have been introduced, such176

as HH-RLHF (Bai et al., 2022a), Ultra-Feedback177

(Cui et al., 2024), Code-UltraFeedback (Weyssow178

et al., 2024), Ultra-Interact (Yuan et al., 2024), and179

PKU-SafeRLHF (Ji et al., 2024), which could be180

either labeled by human or by powerful LLMs.181

Reinforcement Learning from human feedback182

(RLHF) is a widely used strategy to enhance pol-183

icy models after the reward model is developed184

(Kaufmann et al., 2024). RLHF plays a critical185

role in aligning LLMs with human values and186

achieving improved performance (Christiano et al.,187

2023). Proximal Policy Optimization (PPO) is188

a commonly used algorithm for alignment tasks189

to enhance the policy models (Schulman et al.,190

2017), although it is computationally intensive.191

Consequently, several alternative, more efficient192

algorithms have been proposed, such as Direct193

Preference Optimization (DPO) (Rafailov et al.,194

2024), Kahneman-Tversky Optimization (KTO)195

(Ethayarajh et al., 2024), Group Relative Policy196

Optimization (Shao et al., 2024), and Rejection197

Sampling Fine-tuning (RAFT) (Dong et al., 2023).198

These approaches have also been widely adopted199

in state-of-the-art models like Llama-3 (Grattafiori200

et al., 2024), and Qwen-2 (Yang et al., 2024a).201

Concurrently, the work introduced in Jin et al.202

(2024) utilizes existing reward models to evaluate203

Question-Answering tasks in RAG scenarios with204

fine-grained metrics, highlighting the limitation of205

the general reward models. It also shows the fea-206

sibility of constructing RAG scenario data using 207

Large Language Models. Our work is built upon 208

these existing works to train the RAG-specific re- 209

ward model and use it for alignment training. 210

2.2 Large Language Models and Retrieval 211

Augmented Generation 212

Retrieval-Augmented Generation (RAG) has 213

proven to be an effective method for enhancing 214

language models with real-world knowledge to ad- 215

dress a wide range of tasks, thereby improving the 216

accuracy and credibility of the generated output 217

(Lewis et al., 2021). In the era of LLMs, which 218

possess a strong ability to understand and utilize 219

in-context information, RAG can significantly en- 220

hance their capabilities (Fan et al., 2024; Gao et al., 221

2024). RAG addresses common challenges of 222

LLMs, such as hallucinations and outdated knowl- 223

edge, by grounding their outputs in external knowl- 224

edge bases (Peng et al., 2023; Li et al., 2024). RAG- 225

based LLMs can be trained to effectively adapt and 226

integrate retrieved information (Schick et al., 2023; 227

Shao et al., 2023), or use training-free methods that 228

directly insert the retrieved context into the prompt 229

(Ram et al., 2023). These LLMs have been widely 230

adopted in real-world applications. For instance, re- 231

trievers are integrated into LLM-based chatbots to 232

increase the helpfulness and trustworthiness of the 233

conversations (Komeili et al., 2021). RAG-based 234

models have also been deployed as domain-specific 235

experts, such as finance (Zhang et al., 2023a) and 236

medicine (Xiong et al., 2024). 237

In this project, we are the first to systematically 238

construct RAG-scenario preference datasets and 239

develop reward models, paving the way for evaluat- 240

ing and enhancing the generation quality of LLMs 241

within the RAG framework. 242

3 Dataset Construction 243

We construct our dataset based on existing RAG 244

datasets to ensure its relevance and applicability. To 245

reflect the diverse use cases of RAG scenarios, we 246

include three common types: Question Answering, 247

Data-to-Text and Summarization. Specifically, we 248

use WebGLM (Liu et al., 2023), Yelp (Yelp, 2021), 249

and XSum (Narayan et al., 2018) as experimental 250

datasets, each dataset corresponding to one of the 251

three RAG scenarios. 252

For the WebGLM dataset, LLMs are tasked with 253

reasoning over web-retrieved reference data to an- 254

swer real-world questions, generating concise re- 255
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Figure 2: An illustration of our data annotation method.
Given a sample and two responses, we prompt o3-mini
to provide a judgment based on each metric separately.
We then aggregate the results and construct the pairs.

sponses in a few sentences. For the Yelp dataset,256

our experiments focus on data from the restaurant257

category, represented in JSON format. Each sam-258

ple includes information such as a restaurant’s loca-259

tion and ambiance. Based on the structured JSON260

input, LLMs generate descriptive text about the261

restaurant. The XSum dataset contains diverse ar-262

ticles from the British Broadcasting Corporation263

(BBC), with models tasked with summarizing these264

articles. These three datasets cover a broad range265

of circumstances, ensuring that the reward model266

trained on them can significantly improve the de-267

velopment and evaluation of RAG systems. Table 1268

presents the number of data samples used in our269

experiments. And examples of these data sets are270

presented in Table 2.271

When evaluating the quality of the responses, we272

consider the following metrics:273

Hallucination: The models should generate re-274

sponses strictly based on the context provided,275

without introducing information not grounded in276

the retrieval context. If the retrieval context contra-277

dicts the model’s parametric knowledge, the model278

should adhere to the retrieval reference, ensuring279

that the response is accurate and contextually rele-280

vant.281

Dataset Number of Samples
Training Dev Testing

WebGLM 11000 1000 500
Yelp 12000 1000 500

XSum 12000 1000 500

Table 1: The number of preference pairs that we con-
struct from the 3 datasets in our experiments.

Comprehensiveness: The response should fully 282

utilize the context provided by the retrieved content 283

and address all aspects of the instruction. This re- 284

quires the model to extract and integrate all relevant 285

information from the retrieval context to ensure the 286

response is thorough and complete. 287

Verbosity: While the response should be detailed 288

and comprehensive, it should also be concise, rel- 289

evant, and straight to the point. Striking the right 290

balance between detail and brevity is essential to 291

providing informative answers without overwhelm- 292

ing the user. 293

Attribution: This metric is specifically applied 294

to the WebGLM-QA dataset to ensure the genera- 295

tions are trustworthy and verifiable. The response 296

should explicitly refer to the context retrieved to 297

improve credibility and allow users to trace infor- 298

mation sources. 299

3.1 Dataset Sampling 300

We utilize a combination of open source instruc- 301

tion models, the GPT-3.5 (Brown et al., 2020) and 302

GPT-4 (OpenAI et al., 2024) series to generate 303

data, ensuring diversity and inclusion of both high- 304

quality and relatively low-quality responses. The 305

open-source models consist of various sizes of the 306

instruction-tuned versions of Llama-3, Llama-3.1, 307

Llama-3.2 (Grattafiori et al., 2024), Llama-2 (Tou- 308

vron et al., 2023), Qwen-2 (Yang et al., 2024a), 309

InternLM-2 (Cai et al., 2024), and Mistral (Jiang 310

et al., 2023). 311

In total, we include 12 candidate models for gen- 312

eration. For each question and its corresponding 313

reference in the dataset, we randomly select two 314

models’ generations to form preference pair. 315

3.2 Dataset Labeling 316

We use o3-mini (OpenAI, 2025) to label the data. 317

An illustration of our labeling methods is shown in 318

Figure 2. Given a question and a pair of responses 319

from different models, we prompt o3-mini to com- 320

pare and select the preferred response. 321
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Dataset Data Example

WebGLM (Liu et al., 2023)

Question: Why are different tiers (regular < mid < premium)
of gas’ prices almost always 10 cents different?
References: [The gap between premium and regular gas has...,
According to national averages, the price...]
Answer: The 10 cent difference between the different tiers
of gas prices is likely due to a convention...
Our Prompt: Answer the following question: {question}
Your response should be based on the following passages: {passages}
When you respond, you should refer to the source of information...

Yelp (Yelp, 2021)

[ Name: The Green Pheasant
Address: 215 1st Ave S
City: Nashville
State: TN
Attributes:{ HappyHour: True,
DogsAllowed: False,
... } ]
Our Prompt: Write an overview about the following business
based only on the provided structured data in the JSON format...

XSum (Narayan et al., 2018)

Document: The full cost of damage in Newton Stewart, one
of the areas worst affected, is still being assessed. Repair
work is ongoing in Hawick and many roads...
Summary: Clean-up operations are continuing across the
Scottish Borders and Dumfries and Galloway after...
Our Prompt: Summarize the following document:
{document}...

Table 2: Illustration and statistics of the original datasets and the prompts used to construct the preference data. For
WebGLM, LLMs will generate responses based on the reference. For Yelp, LLMs will convert the JSON data into a
descriptive overview. For XSum, LLMs will summarize the given document.

Specifically, we ask o3-mini to compare the re-322

sponses based on the four metrics outlined earlier,323

assessing them individually. In the prompt, we324

explicitly ask o3-mini to put heavier weights on325

hallucination and comprehensiveness metrics, as326

they are crucial to the answer quality, while the327

other two mainly improves the readability. After328

the o3-mini has made the individual judgments on329

the 4 metrics, it will generate an overall preference330

for the pair data based on the judgments above.331

We may end up getting a preferred answer with332

no hallucination but a bit verbose. And this ap-333

proach acknowledges real-world scenarios where334

responses are rarely perfect, and trade-offs are of-335

ten necessary.336

4 Dataset Evaluation337

4.1 Self Evaluation338

In this subsection, we evaluate the consistency of339

the evaluations provided by o3-mini, a key metric340

Figure 3: An illustration of our self-evaluation method.
For a sample of the constructed data pairs, we provide
o3-mini with the previous judgment, and ask it to re-
evaluate the comparison result.

5



WebGLM Yelp XSum Avg
Consist. 97.9 98.8 95.2 97.3

Table 3: The consistency rate for the self-evaluation
of the constructed dataset. We measure whether the
o3-mini agrees with the comparison results previously
made.

commonly used to demonstrate the reliability of341

the annotations. To objectively assess the quality of342

our constructed dataset, we design a self-evaluation343

method that measures the consistency of o3-mini’s344

responses. An illustration of this method is shown345

in Figure 3. Specifically, for each prompt, a chosen346

response, and a rejected response in the dataset, we347

prompt o3-mini to revisit its previous comparison348

result and verify whether it maintains its original349

judgment. We define the consistency rate as the350

proportion of samples where the evaluation results351

remain unchanged across both assessments. In this352

experiment, we randomly select 1,000 samples for353

re-evaluation.354

The results of this experiment are presented in355

Table 3. We observe a very high consistency rate356

across the three tasks and the overall consistency357

rate exceeds 97%. The results demonstrate that358

o3-mini produces stable and consistent labels for359

most of the data according to well-defined criteria,360

and reflects the quality of the dataset.361

WebGLM Yelp XSum Avg
Consist. 0.79 0.80 0.83 0.81

Table 4: The consistency rate between human evaluation
and the o3-mini labeled dataset.

4.2 Human Evaluation362

We also performed human evaluations to assess363

the alignment of AI annotations with human pref-364

erences. Specifically, we randomly select 100365

samples with paired responses from each dataset366

and ask the annotators to evaluate using the same367

pipeline described in Section 3.2 and illustrated368

in Figure 2. Annotators compare the responses369

based on each metric and determine the preference370

pair. We calculate the agreement ratio between the371

human annotators and o3-mini in the preference372

pairs, and the results are shown in Table 4. We373

observe an overall agreement rate of 81%, with374

consistent agreement across the three tasks. This375

metric is comparable to the figures reported in (Jin376

et al., 2024), where RAG is evaluated based on377

helpfulness and harmlessness criteria. These re- 378

sults highlight proprietary LLMs’ ability to effec- 379

tively capture human preferences in assessing RAG 380

response quality. 381

5 Limitation of Existing Reward Models 382

In this section, we evaluate several existing reward 383

models in our test set. We select models from 384

RewardBench (Lambert et al., 2024) known for 385

their strong performance in assessing aspects such 386

as helpfulness, safety, and reasoning. We examine 387

their performance on diverse RAG scenarios using 388

our curated test set (Table 1), and demonstrate their 389

limitation of the evaluation on RAG domains. 390

The experiment results are shown in Table 5. 391

While many of the listed reward models achieve 392

accuracy higher than 90% in evaluating chat, safety, 393

and reasoning tasks, their overall accuracy in RAG 394

scenarios is below 80%. This underscores a sig- 395

nificant gap between mainstream reward models 396

and the unique requirements of RAG tasks. We 397

also observe inconsistent performance across tasks 398

for the reward models, with better results on Data- 399

to-Text and Summarization tasks (e.g. the Yelp 400

dataset and the XSum dataset) compared to the QA 401

task (WebGLM dataset), suggesting that current 402

reward models are not uniformly capable across 403

different RAG scenarios. Interestingly, several re- 404

ward models that achieve state-of-the-art (SOTA) 405

performance in reasoning and safety evaluations, 406

as shown on the leaderboard2, do not perform well 407

on RAG tasks. For example, models like URM- 408

LLaMa-3.1-8B (Lou et al., 2024) and Skywork- 409

Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024) un- 410

derperform in the RAG domain. 411

In contrast, UltraRM-13b (Cui et al., 2024), 412

which performs suboptimally in reasoning and 413

safety evaluations but excels in assessing helpful- 414

ness and instruction-following, achieves the top 415

accuracy on RAG tasks. This suggests that re- 416

ward models trained primarily on reasoning tasks 417

may not generalize effectively to evaluating RAG- 418

specific generations. Most of the existing reward 419

models could not excel in expressing the prefer- 420

ence in RAG scenarios. Domain-specific training 421

data are therefore essential to address this gap and 422

improve RAG performance evaluation. 423

2https://huggingface.co/spaces/allenai/
reward-bench
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Models WebGLM Yelp XSum Average
UltraRM-13b (Cui et al., 2024) 71.0 77.4 79.2 75.9

llama-3-tulu-2-8b-uf-mean-rm (Ivison et al., 2024) 71.0 76.2 78.8 75.3
internlm2-7b-reward (Cai et al., 2024) 72.0 73.0 80.4 75.1

Eurus-RM-7b (Yuan et al., 2024) 71.8 74.4 77.8 74.7
FsfairX-LLaMA3-RM-v0.1 (Dong et al., 2024) 71.6 72.4 77.8 73.9
Llama-3-OffsetBias-RM-8B (Park et al., 2024) 70.0 70.4 76.6 72.3

URM-LLaMa-3.1-8B (Lou et al., 2024) 66.8 70.2 76.0 71.0
QRM-Llama3.1-8B-v2 (Dorka, 2024) 68.4 68.0 74.6 70.3

GRM-Llama3.2-3B-rewardmodel-ft (Yang et al., 2024b) 64.6 71.6 73.4 69.9
Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024) 64.8 68.6 72.8 68.7

Table 5: The evaluation results of the existing reward models on the 3 tasks. They achieve SOTA performance on
chatting, safety, and reasoning evaluation, but do not excel in RAG tasks.

6 Experiments424

We conduct both reward model training and re-425

inforcement learning using our RAG-Reward426

dataset. In total, 35K preference pairs are used for427

reward modeling (see Table 1). Additionally, we428

create a 3K-sample development set for sampling429

and learning during RLHF training. To evaluate430

the performance of the policy and reward models,431

a held-out test set of 1.5K samples is used.432

WebGLM Yelp XSum Average
Acc. 81.4 87.6 84.0 84.3

Table 6: The evaluation results of the reward model on
the 3 tasks. The accuracy is calculated as the propor-
tion of test samples where the reward model assigns a
higher score to the chosen response than to the rejected
response.

6.1 Reward Modeling433

We adopt the common approach to train the434

Bradley-Terry reward model (Bradley and Terry,435

1952; Ouyang et al., 2022) to learn the reward sig-436

nal from the preference data. Specifically, we use437

Llama-3.1-8B-Instruct (Grattafiori et al., 2024) as438

the base model for training. We train the reward439

model with a learning rate of 2e−6, a global batch440

size of 64, a max length of 4096, and an epoch of 1441

on 4 H100-80G GPUs.442

During the test stage, each test sample contains a443

chosen response and a rejected response. The accu-444

racy is calculated as the proportion of test samples445

in which the reward model assigns a higher score to446

the chosen response than to the rejected one. The447

detailed results are shown in Table 6. We observe448

a high accuracy of 84.3% for the reward model,449

Mistral-7B-v0.1 Llama-3.2-3B
WebGLM 64.2 62.6

Yelp 77.8 75.0
Xsum 65.6 64.0

Average 69.2 67.2

Table 7: The RLHF results on the 3 tasks. The win rate
is calculated as the proportion of test samples where the
reward model assigns a higher score to the response
generated by the post-trained policy model.

demonstrating its effectiveness in aligning with the 450

intended criteria. Compared to the strong reward 451

models in Table 5, our model achieves the highest 452

accuracy, highlighting the advantage of leveraging 453

RAG-specific reward data. 454

Furthermore, we observe a consistent accuracy 455

across the 3 tasks, indicating that the reward model 456

could jointly learn the preference signal from di- 457

verse tasks and domains. Notably, the reward 458

model achieves the highest accuracy on the Data-to- 459

Text task, while its performance is relatively lower 460

on the Question-Answering task. This difference 461

suggests that comparing structured data with text 462

data is easier for the reward model, while evaluat- 463

ing the quality of a long-form QA poses a greater 464

challenge. This observation aligns with our intu- 465

ition and expectations. 466

6.2 Preference Alignment 467

We adopt the RAFT algorithm (Dong et al., 2023) 468

to perform the preference alignment. RAFT utilizes 469

the reward model to select the response with the 470

highest reward score from N candidate responses, 471

and then fine-tunes the policy model on this se- 472

lected set of responses. 473
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Mistral-7B-v0.1 Llama-3.2-3B
WebGLM 61.2 60.0

Yelp 80.2 73.6
XSum 63.8 63.2

Average 68.4 65.6

Table 8: The RLHF results on the 3 tasks. The win rate
is calculated as the proportion of test samples where
the o3-mini prefers the response generated by the post-
trained policy model.

We set N = 16 in our experiments. We use474

Llama-3.2-3B-Instruct (Grattafiori et al., 2024) and475

Mistral-7B-Instruct-v0.1 (Jiang et al., 2023) as ini-476

tial policy models for sampling, followed by RAFT477

training. Both Mistral and Llama models are fine-478

tuned with a learning rate of 5e−6, an epoch of 1, a479

packing length of 4096, and a global batch size of480

16, using the axolotl package3.481

To measure the improvement brought by align-482

ment training, we first sample responses from our483

held-out test set using both the initial models and484

the post-trained policy models. Thus, for each485

prompt, we have paired responses from the two486

models. These pairs are then evaluated using the487

reward model, and we calculate the proportion of488

cases where the responses from the post-trained489

models are preferred. Furthermore, we ask o3-mini490

to compare the pairs based on the criteria intro-491

duced in Section 3. For both metrics, a baseline of492

50% indicates no improvement in the policy mod-493

els. The calculated scores are referred to as the win494

rate against the initial model.495

The experiment results are shown in Table 7 and496

Table 8. We observe a clear improvement in the pol-497

icy models after a single iteration of RAFT. Both498

the reward model and o3-mini agree that genera-499

tions align more closely with the RAG metrics, as500

the average win rate is significantly above 50%.501

These results highlight the effectiveness of our502

dataset and the reward model. The ratings across503

the 3 tasks from the reward model is very similar to504

the ratings from o3-mini, showing that our reward505

model learns the rationale of rating from o3-mini.506

However, we also observe some imbalance in507

learning for the policy model across tasks. As508

shown in the tables, there are differences in the509

win rate across 3 tasks differences. Specifically, the510

win rate for Yelp could reach 80% while the other511

2 are only above 60%, even though they are trained512

3https://github.com/axolotl-ai-cloud/axolotl

on the same number of samples for each task. The 513

comparison reveals that the difficulties are different 514

across RAG scenarios. 515

WebGLM Yelp XSum Average
Human 62.0 70.0 66.0 66.0

Table 9: The human evaluation results of the policy
model (Mistral) after RAFT on 3 tasks. The agreement
is calculated as the proportion of test samples where the
generation after RAFT is preferred by humans.

6.3 Human Evaluation 516

To further validate the improvement of the policy 517

model, we leverage human evaluation of the gen- 518

erations from it. Specifically, we select the model 519

which trained from Mistral-7B-Instruct with one 520

iteration of RAFT, and the Mistral itself as the 521

reference. We adopt the same evaluation strategy 522

introduced in Section 6.2 and replace the reward 523

model and o3-mini with human annotators. Due to 524

the expense, we select 50 samples of each dataset 525

for human labeling. From Table 9, we observe an 526

agreement far above 50%, indicating the effiveness 527

of the RAFT training to improve the policy model 528

on RAG domains. Compared with the results from 529

the reward model and o3-mini, we discover the 530

same trend across 3 tasks, which further shows the 531

alignment of our dataset with humans. 532

7 Conclusion 533

In this paper, we introduce RAG-Reward, a high- 534

quality preference dataset designed for Retrieval- 535

Augmented Generation (RAG). Our dataset is gen- 536

erated through a novel automated AI annotation 537

pipeline, leveraging both open-source and propri- 538

etary models to enhance generalization and versa- 539

tility. To ensure fair and reliable evaluations, we 540

use o3-mini to assess generation quality based on 541

four key metrics carefully selected by human ex- 542

perts. The dataset spans multiple domains, includ- 543

ing Question Answering, Data-to-Text, and Sum- 544

marization, resulting in a large-scale and diverse 545

benchmark. The experimental results show strong 546

alignment with human evaluations, demonstrating 547

the effectiveness of RAG-Reward in reward mod- 548

eling and reinforcement learning. These findings 549

highlight the potential of our dataset to advance 550

both the evaluation and generation of RAG sys- 551

tems. To foster further research, we will publicly 552

release the dataset to the community. 553
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8 Limitations554

In this paper, we constructed a large-scale, high-555

quality dataset tailored for RAG scenarios and556

demonstrated the effectiveness of our proposed557

pipeline through RLHF experiments. However, due558

to computational constraints, we did not conduct559

large-scale RLHF training or implement more com-560

plex algorithms such as PPO. Future work could561

explore training larger reward models and incor-562

porating iterative-DPO or PPO to further enhance563

performance in RAG domains.564
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