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Abstract

Unsupervised semantic segmentation algorithms aim to iden-
tify meaningful semantic groups without annotations. Re-
cent approaches leveraging self-supervised transformers as
pre-training backbones have successfully obtained high-level
dense features that effectively express semantic coherence.
However, these methods often overlook local semantic coher-
ence and low-level features such as color and texture. We pro-
pose integrating low-level visual cues to complement high-
level visual cues derived from self-supervised pre-training
branches. Our findings indicate that low-level visual cues pro-
vide a more coherent recognition of color-texture aspects,
ensuring the continuity of spatial structures within classes.
This insight led us to develop IL2Vseg, an unsupervised
semantic segmentation method that leverages the comple-
mentation of low-level visual cues. The core of IL2Vseg is
a spatially-constrained fuzzy clustering algorithm based on
color affinities, which preserves the intra-class affinity of
spatially-adjacent and similarly-colored pixels in low-level
visual cues. Additionally, to effectively couple low-level and
high-level visual cues, we introduce a feature similarity loss
function to optimize the feature representation of fused vi-
sual cues. To further enhance consistent feature learning,
we incorporate contrast loss functions based on color invari-
ance and luminosity invariance, which improve the learn-
ing of features from different semantic categories. Extensive
experiments on multiple datasets, including COCO-Stuff-
27, Cityscapes, Potsdam, and MaSTr1325, demonstrate that
IL2Vseg achieves state-of-the-art results.

Introduction

Semantic segmentation is a crucial task in computer vision,
aiming to segment an image into different regions where
each pixel is assigned a specific semantic label. Due to its
pixel-level image segmentation, it has a wide range of appli-
cations in automated driving, medical imaging, agricultural
monitoring, environmental mapping, and other fields.
Existing supervised methods have achieved significant re-
sults, but they rely heavily on a large number of annotated
masks. Obtaining annotated data is both time-consuming
and expensive, as pixel-level annotation of images requires
substantial manpower and expertise. This reliance restricts
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Figure 1: The visualization results of the high-level visual
cues (clustered features) and low-level visual cues (pre-
trained features)

the scalability and applicability of supervised methods, es-
pecially when annotated data is scarce or unavailable. There-
fore, exploring unsupervised semantic segmentation meth-
ods offers a potential solution to these challenges.

Traditional clustering-based methods, such as k-
means(Na, Xumin, and Yong 2010) and Gaussian Mixture
Models (GMM)(Reynolds et al. 2009), are relatively simple
and easy to implement. Their principles are well understood,
and the results can be interpreted. However, these traditional
methods rely on manually created features, are sensitive
to initial conditions and hyperparameters, and may fail to
capture complex high-level semantic information in images,
leading to suboptimal segmentation results. Additionally,
clustering-based methods typically process pixels inde-
pendently, with poor consideration of spatial relationships
and contextual information, resulting in fragmented and
incoherent segmentation outcomes.

Recently, unsupervised semantic segmentation methods
based on self-supervised pre-trained visual backbones have
garnered significant attention. TransFGU(Yin et al. 2022)
was the first to acquire rich information about high-level
structured semantic concepts from large-scale visual data in
a self-supervised learning manner and use this information
as a priori to discover potential semantic categories in the
target dataset. STEGO(Hamilton et al. 2022) decomposed
the problem into learning the representation and learning the
segmentation header, using patch-level feature representa-
tions learned from a self-supervised pre-trained model, and
made substantial progress in unsupervised segmentation re-
sults. Additionally, HP, Smooseg, and EAGLE(Kim et al.



2024) further advanced the field by enhancing the semantic
cues of patch-level features and learning object-level repre-
sentations with smoothness priors and object feature consis-
tency.

However, these methods perform semantic and structural
analyses based on high-level feature information from self-
supervised pre-trained models. Despite various efforts to en-
hance semantic context consistency, the saliency of basic
constructive information, such as edges and textures, is sig-
nificantly reduced after integration with multilayered net-
work processing. This reduction leads to inconsistencies in
segmentation results in local regions, and complex objects
may be incorrectly segmented into multiple labels. There-
fore, low-level structural features and local feature informa-
tion are equally important cues for segmentation.

Taking these factors into account, we build on previous
works(Hamilton et al. 2022),(Lan et al. 2024) by employing
a fuzzy clustering branch based on color affinity and spatial
constraints to ensure the underlying constructiveness and lo-
cal consistency of the image. Specifically, our approach in-
volves two steps: (1) performing fuzzy clustering with spa-
tial constraints to capture the local consistency of neighbor-
ing pixel points and avoid noisy and isolated pixels, and (2)
computing Euclidean distances of neighboring pixels to ob-
tain the color affinity matrix using the Gaussian function to
complement the results of the first step. The obtained low-
level visual cues and high-level visual cues are then coupled
and optimized using a feature similarity function, which pro-
vides the basis for obtaining a continuous and accurate se-
mantic feature map. The visualization results of the high-
level visual cues (clustered features) and low-level visual
cues (pre-trained features) are shown in Figure 1. Addition-
ally, we ensure that the object features within and between
images remain consistent by introducing contrast loss in dif-
ferent branches.

Specifically, we make the following contributions:

* We propose using low-level visual cues to complement
high-level pre-trained features to obtain more accurate
and continuous intra-class relationships in images.

* We introduce a feature similarity loss function to further
optimize the feature representation of fused visual cues
and enhance the clustering effect of similar regions in
images.

* Through extensive experimental validation on multiple
datasets, our method achieves state-of-the-art perfor-
mance.

Related Work

Clustered Image Segmentation. Learning meaningful vi-
sual features without human annotation is a long-term goal
of computer vision. Clustering algorithms, such as fuzzy c-
means (FCM), are widely used in image processing due to
their simplicity and efficiency. However, classical FCM is
sensitive to noise and brightness, posing challenges for com-
plex image segmentation. To address these issues, FCM with
spatial distance constraints has been proposed, enhancing
segmentation by incorporating local spatial distances into
the objective function.

Several methods have been developed to improve FCM’s
performance in image segmentation(Zhang et al. 2018).
Krinidis et al.(Krinidis and Chatzis 2010) introduced fuzzy
local spatial and gray level similarity metrics to mitigate
noise sensitivity and preserve image details. Additionally,
Zhang et al.(Zhang et al. 2017) tackled homogeneity seg-
mentation and edge blurring in remote sensing images by in-
troducing a fuzzy local similarity measure. Tang et al.(Tang,
Ren, and Pedrycz 2020) combined weighted and structural
similarity metrics with luminance dependency to overcome
limitations in traditional FCM algorithms. Despite these ad-
vancements, these methods still struggle to extract high-
level abstract features and capture effective semantic infor-
mation in complex data.

Unsupervised Segmentation via Self-Supervised Pre-
training. Recent approaches leverage self-supervised fea-
ture learning for unsupervised semantic segmentation(Cho
et al. 2021; Yin et al. 2022). IIC(Ji and Vedaldi 2019) max-
imizes mutual information between related pairs for unsu-
pervised clustering, while InfoSeg(Harb and Knobelreiter
2021) enhances segmentation accuracy through a two-step
learning process. STEGO(Hamilton et al. 2022) improves
feature compactness and semantic consistency by separating
feature learning from clustering and introducing a contrast
loss function. SegSort(Hwang et al. 2019) maximizes intra-
category similarity and minimizes inter-category similarity.
Deng et al.(Deng and Luo 2023) propose a neural network-
based spectral clustering method to enhance spectral de-
composition efficiency and flexibility. Melas et al.(Melas-
Kyriazi et al. 2022) address complex scenes using a self-
supervised network for graph partitioning. HP(Seong et al.
2023) ensures local semantic consistency and enhances se-
mantic correlation through contrast learning. SmooSeg(Lan
et al. 2024) transforms segmentation into an energy min-
imization problem using a self-supervised approach. EA-
GLE(Kim et al. 2024) introduces the EiCue spectral tech-
nique and contrast loss to improve object-level semantic
encoding in visual Transformers. In contrast, our proposed
IL2Vseg complements high-level visual features with low-
level visual cues to form continuous, accurate, and compact
clusters, utilizing existing self-supervised pre-trained mod-
els.

Self-supervised learning. Self-supervised learning (SSL) is
a paradigm that leverages large amounts of unlabeled data
to learn useful representations, particularly valuable when
labeled data is scarce. SSL typically involves constructing
positive and negative sample pairs to maximize similarity
within positive pairs and minimize it within negative pairs.
MoCo(He et al. 2020) introduces a momentum encoder and
a dynamic negative sample queue to enhance training effi-
ciency. Clustering-based methods like SwAV(Caron et al.
2020) and DeepCluster(Caron et al. 2018) enhance similar-
ity between samples of the same class by performing on-
line clustering and generating pseudo-labels, respectively.
Graph-based methods such as GraphCL(Hafidi et al. 2020)
and MVGRL(Hassani and Khasahmadi 2020) combine con-
trast learning with graph neural networks to learn global
and local graph representations. DINO(Caron et al. 2021)
employs a momentum updating mechanism and a contrast
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Figure 2: Overview of the proposed IL2Vseg. IL2Vseg has two components, high-level pre-trained features and low-level visual
cues, where the low-level visual cues (f,,) consists of spatially-constrained fuzzy clustering algorithm based on colour affinities,
and the high-level visual cues consists of a self-supervised pre-trained model, where the two segmentation vectors are fused
and optimized by a feature similarity function. We also perform contrast loss computation from within-image and image will

to ensure semantic consistency..

learning strategy without negative samples, achieving strong
semantic consistency in the extracted features. In this pa-
per, we utilize a self-supervised pre-training model as an ad-
vanced feature extractor to further enhance semantic context
consistency.

Methodology
Problem setting

Given a set of unannotated images I, = [[3,...

7IB] S
RBX3><H><W

, where B denotes the number of images, and
3, H, and W represent the channel, height, and width di-
mensions, respectively, and according to the principles of
color invariance and luminosity invariance, we obtain I, =
[Ih,...,1p] € REX3XHXW The goal of unsupervised se-
mantic segmentation is to learn a labeling function f € F
that predicts the semantic labels of each pixel in each im-
age. We denote the predicted semantic mapping as ¥ =
[Yi,...,Yg] € {1,..., K}BXT>W 'where K is the num-
ber of predefined categories.

Preliminary

Pretrained Features. Firstly, for each image I, we use a
self-supervised pre-trained backbone network as an encoder,
focusing on the visual features of the last output layer, which
can be expressed as F}' = fo(I,) € REVH/EXW/8_ Gimi.
larly, the principles of color invariance and luminosity in-
variance yield FY = fp(I,) € REOH/SXW/S where f,

denotes the frozen self-supervised pre-trained model.
low-level visual cue. Although F? contains pre-trained
high-level feature mappings, low-level visual cues cannot
be effectively captured by pre-trained patterns alone. There-
fore, to further enhance the semantic features at different
levels, we propose a fuzzy clustering branch based on color
affinity to improve the coherence of features such as color
and texture. This can be expressed as:

F} = f,(bilinear(I)) € R H/&W/E ()

where f., denotes the color affinity-based fuzzy C-means
clustering algorithm.
Unsupervised segmentation. We map the high-level fea-
tures obtained from the frozen branch of the self-supervised
pre-training model to a low-dimensional embedding space
using a learnable linear projection structure, hy. This results
in F¢ = hg(F}) € RE2xH/8xW/8 Following the approach
in the literature, we compute the cosine similarity, Sy, be-
tween the dimensionality-reduced features and the global
clustering center. The result with the highest similarity in
the global clustering center is selected as the category in-
dex for the corresponding position prediction, which can be
expressed as:

F;eg — SG(FbC) E RCClSXH/8><W/S (2)

The low-level features obtained from the color affinity-
based fuzzy clustering branch are then combined with the
high-level features from the self-supervised pre-training
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Figure 3: Spatially constrained fuzzy clustering algorithm
based on colour affinity, where U denotes the affiliation ma-
trix and V denotes the clustering centre, and U and V are
continuously updated throughout the clustering process, and
finally the low-level visual segmentation vector is obtained..

branch for model optimization. An overview of the proposed
method is provided in Figure 2.

Low-level visual features

High-level pre-trained features provide semantic under-
standing but struggle with color and texture variations. Low-
level visual cues, on the other hand, capture these aspects
more coherently. Combining both can improve unsupervised
semantic segmentation. We propose using fuzzy clustering
to obtain low-level cues that complement high-level features
from self-supervised pre-trained models.

Intra-class variations make it difficult to divide low-level
cues into distinct regions, often resulting in noisy and iso-
lated pixels. To address this, we introduce a spatially con-
strained fuzzy clustering algorithm based on color affinity,
enhancing intra-class affinity of spatially adjacent and color-
similar pixels. The process is illustrated in Figure 3. Our
method involves: (1) Spatially Constrained Fuzzy Cluster-
ing, and (2) Colour Affinity for Feature Boosting.

Spatially Constrained Fuzzy Clustering. We apply bilin-
ear interpolation to the original input image to obtain the
downsampled result: 2 = bilinear(1,) € RC*H/8xW/8,
FCM clustering is performed by minimizing an objective
function, which is expressed as:

N C
JU,V) =3 (Uy)™ - dy; 3)
i=1

% Jj=1

where d;; = ||x; — v;|| is the Euclidean distance between
the ¢-th pixel and the j-th cluster center. The parameter m
is the fuzzification index, v denotes the cluster center, and
denotes the pixel data. Our affiliation matrix U is calculated
as follows:

1 1

1\ ™1 n 1 m—1
Va <dij> P (dik> @

To further capture the local consistency of neighboring
pixel points in the image, we incorporate the spatial informa-
tion matrix into the fuzzy clustering algorithm. The spatial
information matrix is defined as follows:

11
Sij = Z Z Uitk jti ®))
k=—11=—1
where S;; is the spatial information value of the (¢, j)
pixel, and U, 1, ;4 is the affiliation value of the (i +k, j+1)
pixel. The updated affiliation matrix U’ is expressed as:
Uij - Sij
S (6)
> i1 Uik - Sik
where Uj; is the updated affiliation value for the (i, j) pix-

els, and S;; is the spatial information value of the (4, j) pix-
els. The update of the clustering center v is expressed as:

N
. Zi:1(Uin)m "L
T <N 717 vm
2= (U™
where v; is the j-th clustering center, and z; is the feature

vector of the i-th pixel. The clustering probability matrix is
expressed as:

(7

Ui;

k=1 Ui

At this point, the clustering output effectively utilizes the
domain space information, resulting in smoother and more
coherent segmentation results while avoiding isolated pock-
ets. The influence of noise is reduced by the common fea-
tures of neighboring pixels, which further enhances bound-
ary detection.
Colour Affinity for Feature Boosting. To enhance the cor-
relation of similar features, we utilize the color affinity ma-
trix to analyze the relationships between different feature
vectors. First, the Euclidean distance between each pair of
normalized pixel values x; and xj, is computed as follows:

Py = (®)

djr, = |lzj — xi |2 )

Here, d;, represents the Euclidean distance between pixel
j and pixel k. Next, the color affinity is calculated using the

Gaussian function:
d?
_ jk
ajl = exp (202> (10)

where o is the standard deviation of the Gaussian func-
tion, and aj;, denotes the color affinity between pixel j and
pixel k. All elements of the resulting affinity matrix are then
concatenated to form the final color affinity matrix:

aip a2 - Qip
a21 Q22 - QA2n

A= . . . (11)
anp1  QAp2 - Gpn



Finally, the color affinity matrix and clustering results are
combined to enhance the coherence and accuracy of cluster-
ing by leveraging the color information of the image. This
approach increases the likelihood that pixels with similar
colors will be assigned to the same cluster:

Fl=A.-P (12)

Visual characteristics of the fused. As previously demon-
strated, the high-level feature vector obtained from the
self-supervised pre-training branch is mapped to a low-
dimensional space. After passing through a lightweight
segmentation header, it is represented as F,% €
RCetsxH/8xW/8  The low-level visual features, derived
from the spatially-constrained fuzzy clustering algorithm
based on color affinity, are given by F} € RCts*H /8xW/8,
Finally, the two feature vectors are weighted to obtain the
fused segmented feature vector:

be = (1 — a) . F;eg +a- Fé c RCczst/SxW/S (13)

Loss function

To effectively couple low-level and high-level visual cues,
we propose a feature similarity loss function to optimize the
feature representation of fused visual cues. Specifically, this
function enhances the spatial structure and feature continu-
ity of the fused feature vectors by combining feature similar-
ity and spatial continuity, thereby improving the clustering
effect of similar regions in the image.

L, Lreg = [(FS, FLT) (14)

The feature similarity matrix captures feature similarity,
while the pixel similarity matrix represents spatial relation-
ships. By integrating these matrices with the Gram matrix
projection, we compute L5 and the regularization term
Lyeg.

To promote smoothness within segments and preserve
discontinuities, we introduce the Smoothing Loss(Lan et al.
2024) Function Lg,,. Additionally, the Correspondence
Distillation Loss(Hamilton et al. 2022) Function L.,,., en-
hances training accuracy and semantic categories.

The final total loss function is:

Etotal - 6 - reg + Y Lfs + Esmo + Ecorr (15)

where § and  are hyperparameters ranging between
[0,1].

Experiments
Experimental Settings

Datasets. We use the COCOStuff(Caesar, Uijlings, and Fer-
rari 2018), Cityscapes(Cordts et al. 2016), Potsdam-3(Ji,
Henriques, and Vedaldi 2019), and Mastr1325(Bovcon et al.
2019) datasets. COCOStuff, derived from COCO, includes
91 object categories and is widely used for semantic seg-
mentation due to its rich scenes and detailed annotations.

Cityscapes focuses on urban environments, emphasizing ve-
hicle and street object segmentation. We merge the cate-
gories of COCOStuff and Cityscapes separately, resulting
in 27 evaluation categories. Potsdam-3 consists of high-
resolution remote sensing images with urban annotations,
while MaSTr1325 is a maritime dataset aimed at enhancing
obstacle segmentation for small coastal USVs, both evalu-
ated using three categories.

Methods

ResNet50 (He et al. 2016)
IIC (Ji and Vedaldi 2019)
MDC (Cho et al. 2021)
PiCIE (Cho et al. 2021)
PiCIE+H (Cho et al. 2021)
SlotCon (Wen et al. 2022)

MoCoV?2 (Chen et al. 2020)
+ STE(Hamilton et al. 2022) ResNet50 43.1 19.6
+ SmooSeg(Lan et al. 2024) ResNet50 524 18.8
+ ours ResNet50 54.2 20.1

DINO (Caron et al. 2021) ViT-S/8 29.6 10.8
+ TransFGU (Yin et al. 2022)  ViT-S/8 52.7 17.5
+ STE(Hamilton et al. 2022)  ViT-S/8 483 245
+ HP(Seong et al. 2023) ViT-S/8 572 24.6
+ SmooSeg(Lan et al. 2024) ViT-S/8 63.2 26.7
+ EAGLE(Kim et al. 2024) ViT-S/8 642 272
+ ours ViT-S/8 65.1 27.6

backbone Acc. mloU

ResNet50 24.6 8.9
R18+FPN 21.8 6.7
R18+FPN 32.2 9.8
R18+FPN 48.1 13.8
R18+FPN 50.0 144
ResNet50 42.4 18.3

ResNet50 252 104

Table 1: Quantitative results on the COCOStuff dataset.

Evaluation metrics. Consistent with existing methods, we
use minibatch K-means based on cosine similarity for clus-
ter segmentation. Since no real labels are used, we opti-
mize the matching relationship between the predictions and
the real semantic graph using the Hungarian matching algo-
rithm. Additionally, we apply Conditional Random Fields
(CRF)(Krihenbiihl and Koltun 2011) to post-process the
predicted results, further refining the semantic mapping. For
quantitative evaluation, we use accuracy (Acc) and mean in-
tersection over union (mlIoU) to measure the performance of
different methods.

Methods

IIC (Ji and Vedaldi 2019)
MDC (Cho et al. 2021)
PiCIE (Cho et al. 2021)

DINO(Caron et al. 2021)

+ TransFGU(Yin et al. 2022)
+ STE(Hamilton et al. 2022)
+ HP(Seong et al. 2023)

+ SmooSeg(Lan et al. 2024) ViT-S/8 81.8 19.7
+ EAGLE(Kim et al. 2024) ViT-S/8 82.8 184
+ ours ViT-S/8 83.0 20.6

backbone Acc. mloU

R18+FPN 479 64
R18+FPN 40.7 7.1
R18+FPN 655 123

VIT-S/8  40.5 13.7
ViIT-S/8 779 16.8
ViT-S/8 69.8 17.6
ViT-S/8 80.1 184

Table 2: Quantitative results on the Cityscapes dataset.
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Figure 4: Quantitative comparison of the results of the proposed IL2Vseg and other state-of-the-art methods on the COCOStuff

(left) and Cityscapes (right) datasets.

Implementation Details. We conducted our experiments
using the PyTorch 1.13 framework, running on an RTX 4090
GPU. For a fair comparison with previous works, we used
the DINO pre-trained model as our self-supervised feature
extractor fp, which was kept frozen during training. The
nonlinear projection hy consists of a linear convolution and
two MLP nonlinear layers with SiLUs to obtain more com-
pact correlated features. The cosine similarity of these com-
pact correlation features is computed with the local and
global clustering centers, respectively. The result with the
highest similarity at the global clustering center is chosen
as the category index for the corresponding positional pro-
jection. Similar to Smooseg, an exponential moving average
(EMA)(Haynes, Corns, and Venayagamoorthy 2012) is used
to update the global clustering center. We used the Adam
optimizer to optimize the nonlinear projections and local
clustering centers, with learning rates set to 1 x 10~* and
5 x 10~*, respectively, to maximize the similarity of the in-
put features of the same category to the corresponding clus-
tering center. The weights 5 and ~y are taken as 0.05 and 0.1
respectively.

Comparison with State-of-the-art Methods

We compared our proposed method with several recent un-
supervised semantic segmentation methods, both quantita-
tively and qualitatively.

backbone Acc. mloU

ViT-S/8 55.1 373
VIiT-S/8 70.8 544
ViT-S/8  82.7 71.2

Methods

DINO (Caron et al. 2021)

+ STE(Hamilton et al. 2022)
+ HP (Seong et al. 2023)

+ SmooSeg(Lan et al. 2024) VIiT-S/8 88.3 74.1
+ EAGLE(Kim et al. 2024) ViT-S/8 84.0 70.5
+ ours ViT-S/8 93.6 82.5

Table 3: Quantitative results on the MaSTr1325 Dataset.
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Figure 5: Segmentation results of IL2Vseg after using low-
level visual cues with different weights(training).

Quantitative Evaluation. We report the results for the
COCO-Stuff and Cityscapes datasets in Table 1 and Table 2.
On the COCO-Stuff dataset, using ViT-S/8 as the backbone,
both TransFGU and STEGO(STE) significantly outperform
previous methods due to the advanced features provided by
the self-supervised pre-trained model. For example, com-
pared to PiCIE, TransFGU improves accuracy (Acc) by 4.6
and mean Intersection over Union (mloU) by 3.1. Smooseg
obtains coherent semantic segments from a smoothness
prior, significantly improving the performance of unsuper-
vised semantic segmentation, with an improvement of 14.9
in Acc and 2.1 in mloU compared to STEGO. Our pro-
posed IL2Vseg outperforms all state-of-the-art methods in
terms of pixel accuracy and mloU. Compared to the base-
line STEGO, our method achieves a significant improve-
ment (+16.8 Acc, +3.3 mloU) and also yields better results
compared to Smooseg (+1.9 Acc, +0.9 mloU). This is due
to IL2Vseg’s use of low-level visual cues to complement
high-level visual cues based on self-supervised pre-trained
branches, ensuring coherent recognition of color-texture as-
pects and continuity of the spatial structure within the class.
The same trend is observed in the Cityscapes dataset. Com-



Figure 6: Segmentation results of IL2Vseg after using low-
level visual cues with different weights.

pared with Smooseg and EAGLE, our IL2Vseg achieves bet-
ter segmentation performance. It is worth noting that all sub-
sequent work based on STEGO maintains a low mloU value
because these methods achieve better class-balanced seg-
mentation results with small batch k-means, without much
attention to pixel-wise accuracy.

The quantitative results for the Mastr1325 dataset are pre-

sented in Table 3. Our method significantly outperforms
others, achieving better results than EAGLE (+9.6 ACC,
+12 mloU) and Smooseg (+5.3 ACC, +8.4 mloU). This
is because the simpler scene distribution of the Mastr1325
dataset, with large continuous areas and distinct decompo-
sitions of different regions, allows low-level visual cues to
work more effectively, resulting in more accurate and con-
tinuous semantics.
Quantitative Evaluation. Figure 4 presents a qualitative
comparison of our proposed method with other state-of-
the-art techniques. Our method demonstrates superior seg-
mentation details compared to others. Although STEGO
tends to form compact correlation features, it still pro-
duces discontinuous regions during segmentation, as ob-
served in columns 1 and 2 of the left COCO dataset and
columns 1 and 2 of the right Cityscapes dataset. Smooseg
maintains differences between segments by smoothing the
prior, but it requires further improvement in semantic map-
ping accuracy, as shown in columns 2, 5, 6, and 8. While
Smooseg achieves more continuous and complete seman-
tic segments in columns 6 and 8, the segmented categories
are often incorrect. Additionally, Smooseg sometimes re-
sults in overly complete segments, such as in column 5 of
the right Cityscapes dataset, where tree semantics are largely
mistaken for buildings. In contrast, our IL2Vseg method
achieves better results in both semantic continuity and cate-
gory accuracy.

Ablation Study

low-level visual cue. To further explore the proposed
IL2Vseg, we conducted a series of ablation experiments. To
assess the importance of using low-level visual cues for sup-
plementation, we evaluated the performance of different v
values, as shown in Figure 5. An « value of 0 indicates that
only segmentation feature vectors obtained from the self-

supervised pre-training model are used, while an « value of
1 indicates that only low-level visual cues are used as seg-
mentation feature vectors. The progression of v from 0 to 1
signifies an increasing weight of low-level visual cues. The
experimental results demonstrate that the best segmentation
performance is achieved when « is 0.5 during the training
phase, indicating that low-level visual cues effectively com-
plement the self-supervised pre-trained features. When only
low-level visual cues are used, the results are significantly
inferior to other experiments, suggesting that the deep fea-
tures extracted by self-supervised pre-training play a crucial
role in semantic coherence. Finally, we present the segmen-
tation results obtained with & = 0.5 (indicating the use of
low-level visual cues) and a = 0 (indicating no use of low-
level visual cues), as shown in Figure 6.

Lsmo Ljs Leorr Acc. mloU

n v 757 174
@ v v 81.1 196
3 v v 803 183
@ v v v 80 206

Table 4: Analysis of Loss function on the Cityscapes dataset.

Loss function. Table 4 illustrates the effect of differ-
ent loss functions on IL2Vseg. The model using all loss
functions outperforms the other methods. The smoothing
loss produces more coherent and semantically meaningful
segmentation maps, as evidenced by the Group 1 experi-
ments, which also achieve good performance using only the
smoothing loss. The feature similarity loss function effec-
tively couples low-level visual cues with high-level visual
cues. As shown in the Group 3 and Group 4 experiments,
the feature similarity loss function combines feature similar-
ity and spatial continuity to enhance the clustering results of
similar regions in an image by optimizing the feature rep-
resentation. Additionally, to further improve the accuracy
of semantic categories, we use Correspondence Distillation
Loss for the original image and the image after invariant en-
hancement.

Conclusions

We found that low-level visual cues in unsupervised seman-
tic segmentation can complement features extracted from
a self-supervised pre-trained visual backbone. These low-
level visual cues are obtained through a spatially constrained
fuzzy clustering algorithm based on color affinity. Addition-
ally, we propose a feature similarity loss function to inte-
grate the fused segmented feature cues. To enhance the ac-
curacy of semantic category features, we introduce Corre-
spondence Distillation Loss, which improves the learning of
consistency across semantic categories using color and lu-
minosity invariant transformations. Results on several public
datasets, such as COCO-Stuff and Cityscapes, indicate that
IL2Vseg achieves state-of-the-art performance.
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