Under review as a conference paper at ICLR 2026

OPERATOR LEARNING WITH DOMAIN DECOMPOSITION
FOR GEOMETRY GENERALIZATION IN PDE SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural operators have become increasingly popular in solving partial differential
equations (PDEs) due to their superior capability to capture intricate mappings
between function spaces over complex domains. However, the data-hungry nature
of operator learning inevitably poses a bottleneck for their widespread applications.
At the core of the challenge lies the absence of transferability of neural operators
to new geometries. To tackle this issue, we propose operator learning with domain
decomposition, a local-to-global framework to solve PDEs on arbitrary geometries.
Under this framework, we devise an iterative scheme Schwarz Neural Inference
(SNI). This scheme allows for partitioning of the problem domain into smaller
subdomains, on which local problems can be solved with neural operators, and
stitching local solutions to construct a global solution. Additionally, we provide a
theoretical analysis of the convergence rate and error bound. We conduct extensive
experiments on several representative linear and nonlinear PDEs with diverse
boundary conditions and achieve remarkable geometry generalization compared
to alternative methods. These analysis and experiments demonstrate the proposed
framework’s potential in addressing challenges related to geometry generalization
and data efficiency.

1 INTRODUCTION

Partial differential equation (PDE) solving is of paramount importance in comprehending natural
phenomena, optimizing engineering systems, and enabling multidisciplinary applications (Evans)
2022)). The computational cost associated with traditional PDE solvers (Liu and Quek} 2013;|Lu et al.|
2019)) has prompted the exploration of learning-based methods as potential alternatives to overcome
these limitations. Neural operators (Li et al.,|2020bj [2023};|2024; [Liu et al., 2023} |[Hao et al.| 2023)),
as an extension of traditional neural networks, aim to learn mappings between the functional depen-
dencies of PDEs and their corresponding solution spaces. They offer highly accurate approximations
to classical numerical PDE solvers while significantly improving computational efficiency. Despite
its success, operator learning, as a data-driven approach, encounters the inherent ‘chicken-and-egg’
problem, revealing an interdependence between operator learning and the availability of data. This
dilemma arises from the challenge of simultaneously addressing the inefficiency of classical solvers
and acquiring an ample amount of data for neural operator training.

Existing works in alleviating the above challenges explore symmetries of PDEs. Lie point symmetry
data augmentation (LPSDA) (Brandstetter et al., [2022)) generates potentially infinitely many new
solutions of PDE from existing solution by exploiting symmetries of differential operator defining the
PDE. Subsequent work (Mialon et al.,[2023)) applies LPSDA for self-supervised learning. However,
LPSDA only partially alleviate the problem in data efficiency and the problem of how to quickly
generalize to new geometry is untouched. While existing neural operators have shown capabilities in
handling diverse geometries through approaches such as geometry parametrization (Li et al., 2023)
or coordinate representation (Hao et al.,[2023)), they lack the ability to generalize to entirely novel
geometries that differ significantly from those present in the training data distribution. The inability
to quickly adapt neural operators to unseen geometries without further generating new data hinders
the applicability of neural operator learning to real-world problems in industry.

To tackle this challenge, a natural idea is to break down a domain into some basic shapes where
neural operator can generalize well. Domain decomposition methods (DDMs) (Toselli and Widlund,

Under review as a conference paper at ICLR 2026

2004; Mathew! 2008)) provide the suitable tool for this purpose. Related efforts such as Mao et al.
(2024)) have combined operator learning with DDMs on uniform grids to accelerate classical methods.
In contrast, our work aims to extend this paradigm to arbitrary geometries through a local-to-global
framework. This framework consists of three parts: (1) Training data generation: creation of random
basic shapes and imposition of appropriate boundary conditions on these shapes. This generated
data serves as the training set for the neural operator in our framework. (2) Local operator learning:
neural operator training to learn solutions on basic shapes. Data augmentation based on symmetries
of PDE:s is utilized to enable the neural operator to capture the intricate details and variations within
these shapes. (3) Schwarz neural inference (SNI): a three-step algorithm for inference. Firstly, the
computational domain is partitioned into smaller subdomains. Then, the learned operator is applied
within each subdomain to obtain the local solution. Finally, an iterative process of stitching and
updating the global solution is performed using additive Schwarz methods.

Our Contributions. We summarize our contributions below:

* We introduce a local-to-global framework that integrates operator learning with domain
decomposition methods as an attempt in tackling the geometry generalization challenge in
operator learning.

* We design a novel data generation scheme that leverages random shape generation and
symmetries of PDEs to train local neural operators for solving PDEs on basic shapes.

* We propose an iterative inference algorithm, SNI, built upon a trained local neural operator
to obtain solutions on arbitrary geometries. We theoretically analyze the convergence and
the error bound of the algorithm for a wide range of elliptic PDEs. Through comprehensive
experiments, we empirically validate the effectiveness of our framework on generalizing to
new geometries for both linear and nonlinear PDEs.

2 PROBLEM FORMULATION AND PRELIMINARIES

In this section, we provide an introduction to the problem formulation and essential background on
domain decomposition methods, which will be utilized throughout the entirety of the paper.

2.1 PROBLEM FORMULATION
Our primary focus is on stationary problems of PDEs defined in the following form:
L(u)=f in Q
U =uUp on FD

%:g on I'y

ey

where L is a partial differential operator and I'p U I'y = 99 denotes Dirichlet and Neumann
boundary, respectively. We assume all the domains 2 are bounded orientable manifolds embedded
in some ambient Euclidean space R™ (L1 et al., [2023)). Later we will extend our method to handle

We consider situations where geometry of domain ;¢ at inference time is decoupled from that of
Qurain 10 training time, i.e., {2ir does not have to fall in or resemble training geometries and can be of
arbitrary shapes. For implementation we will mainly focus on 2 C R2.

2.2 DOMAIN DECOMPOSITION METHODS

Domain decomposition methods (DDMs) solve Eq. [T|by decomposing domain into subdomains and
iteratively solve a coupled system of equations on each subdomain. An overlapping decomposition of
Q is a collection of open subregions {Qk}szl, Qp CQfork=1,..., K such that Ule Qp = Q.
We denote V' and {V;,}< | to be finite element space associated with domain and {Q } X ;. We
can define restriction operators {Ry, : V — Vi, }_ restricting functions on Q to {Qx} | and
extension operators {R], : Vi, — V< | extending functions on {2}/ | to 2 by zero.

Under review as a conference paper at ICLR 2026

(a) Training

luti
Boundary Dirichet boundary :::': o
condition Neomarn bordy | €

itz
EE-A)

PR]

o,
o0
o
o

Neural operator

<hape generation boundary value problems Tralning samples Augmented samples

(b) Schwarz Neural Inference (SNI)

Neural
Operator

20,

8 3
S
e

ocal solution:

subdomains local solutions.
Iterative Scheme

Extension
update local artificial boundary condition
u® o y+1) 0 x| « global solution Stitching

non-overlapping subdomains
—— overlapping subdomains M
——extention with d=1 y . e o 5
Q inference domain L W Mty Tl globalsolution
T 'y Dirichlet and Neumann boundary R) i
1, Z: non-overlapping subgraphs
LL extended subgraphs
2.9, subdomains Global solution: 4,("**

Figure 1: An illustration of Operator Learning with Domain Decomposition Framework. (a) During
training stage, the goal is to ensure that the neural operator can effectively model the local solution
operator on various building blocks of shapes. These building blocks are selected and generated based
on specific criteria, allowing for a more efficient and targeted learning process. Proper boundary
conditions are then imposed to generate local solutions which serve as training data for neural
operator. (b) During inference, for an arbitrary given domain, an automated decomposition algorithm
is employed to decompose the domain into subdomains. By leveraging the trained local operator
and Schwarz Neural Inference (SNI), global solution can be obtained by stitching local solutions on
subdomains.

In the subsequent discussion, we revisit the idea of additive Schwarz method (ASM) in DDMs for
overlapping decomposition. The additive Schwarz-Richardson iteration (Mathew, 2008) has the
following form:

K
u"tt =" 7 Z [RIwi*! — RIRju™| 2
k=1

where 0 < 7 < % is a hyperparameter controlling the convergence rate, and w,?“ is the solution of

the following equation:

E(w}?+1) = O in Qk;
U);;H_l =up on I, NTp

n+1 3)
a% =g on 00, NI'y
n

witt =u™ on 90, NQ

We denote the local operator Sy, : (u™,up, g) — wZ‘H. Note that the first two boundary conditions
in Eq. [3]is the boundary condition on the global boundary part of 9€2;, and is not updated during
iteration. The last boundary condition is along the artificial boundary created by decomposition and
the value is updated through iteration. Hence {Sk}szl can be considered as a single-input operator
when the global boundary condition and decomposition are determined. This iterative process can be
shown to converge for FEMs under mild assumption on properties of equation and decomposition.
Please refer to Appendix [A]for more details.

Under review as a conference paper at ICLR 2026

3 OPERATOR LEARNING WITH DOMAIN DECOMPOSITION

In order to solve PDE on arbitrary geometry with neural operator, a natural idea is to decompose
domain into a prescribed family of building blocks (basic shapes) since it is not feasible to explicitly
consider arbitrary shapes during training stage. For that purpose, we propose to train a neural operator
to solve local problems on basic shapes and stitch local solutions together to get a global solution.
An illustration of the proposed framework is presented in Figure|l} A detailed implementation will
be discussed in the following subsections.

3.1 TRAINING DATA GENERATION

Data generation serves the purpose of operator learning, which fundamentally aims to approximate
the local solution operator G : P x H — U. Here, P denotes the space of basic shapes, H represents
boundary conditions and other input functions, I/ represents the solution space. Next we will delve
into a comprehensive examination of how P and H are determined separately.

Choice of basic shapes. The selection of basic shapes cannot be arbitrary due to the requirement
of ensuring the neural operator’s capability in solving local problems across a wide range of shapes.
To address this issue, we need to specify a probability space (P, 1) where 1 denotes the probability
distribution over P. Moreover, two necessary criteria should be set forth for basic shape generation:
(1) sampling feasibility: it should be tractable to sample from p and solve boundary value problems
on shapes in P. (2) complete coverage: basic shapes in P should be flexible to cover any shape of
domain.

For implementation, we focus on 2 C R2. We propose to use the space P4(n) of simple poly-
gons with at most n vertices (i.e. planar polygon without self-intersection and holes) uniformly
bounded by a compact region in R?. Simple polygons are Lipschitz domains with straightforward
sampling method (Auery and Heldz, 2019) and flexible enough to constitute any discretized planar
domain (Preparata and Shamos, [2012). We note, however, that this is not the only choice of these
basic shapes. We could equally use convex polygons, star-shaped polygons, etc. as long as the two
aforementioned criteria are satisfied.

Imposing boundary conditions. The imposition of boundary conditions presents two complications:
(1) Types of boundary conditions. Neumann boundary conditions in Eq. [I| will inevitably result
in mixed boundary conditions in local subdomains. To generate solutions with mixed boundary
conditions, we randomly divide the boundary of a basic shape into two connected components,
representing the Dirichlet and Neumann boundaries, respectively. During inference, we have to
carefully set hyperparameters for decomposition to make sure boundary of subdomains have at
most two connected components for Dirichlet and Neumann boundaries. (2) Functional range of
boundary conditions. In general, the inference process for subdomains will encounter arbitrary ranges
in boundary conditions. However, it is practically infeasible to train the neural operator to handle
unbounded boundary values. Instead, we generate random functions with values normalized within a
bounded range for both boundary conditions and other input functions such as coefficient fields and
source terms. We will handle this complication with symmetries of PDEs during inference.

3.2 LocAL OPERATOR LEARNING

We now train a neural operator G' to approximate the mapping G. Our focus is not on design of
neural operators, but on ensuring that the neural operator can solve local problems accurately.

Choice of neural operator architecture. Our framework is orthogonal to the choice of neural
operator architecture as long as the architecture can accommodate flexible input/output formats and
possesses sufficient expressive power to solve local problem with randomly varying domain and
input functions. For implementation, we adopt GNOT (Hao et al.,|2023)) which is a highly flexible
transformer-based neural operator. We note that, however, training neural operator on highly varying
geometries presents challenges to both design of architectures and training schemes.

Data augmentation. To enhance the generalization capabilities of the neural operator, Lie point
symmetry data augmentation (LPSDA) (Brandstetter et al.,[2022)) can be naturally applied to local
solutions during training. Examples of such transformations are rotation and scaling. It is crucial
to appropriately extend these transformations to boundary conditions and other input functions,

Under review as a conference paper at ICLR 2026

Algorithm 1

Input: Domain €2; Global Boundary Condition B; Other input functions H; Number of Subdomains
K; Depth of Extension d; Local Operator G f, Step Size 7; Convergence Criterion C';
Output: Global Solution wu;
1: Apply METIS and extension to get overlapping decomposition {{2;} £ 1, Obtain restriction

operators { Ry, }#_, and extension operators { R} }/*_,;

2: Initialize the global solution u?;

3: while convergence criterion C' not satisfied do

4: update local boundary condition {B}'}X | by global boundary condition B and last-step
global solution u";

S obtain the preprocessing {7}, }%_, and postprocessing transformations {7} }5*_;;

6: inference on each subdomain usmg local operator: w"Jrl Tk oGl oTy (Q, BY);

7: extend local solution: w" ! = Zk:l R + (I — Rl Ry)u™;

8: update global solution: u"*! = (1 — 7K)u" + Tw"*1;

9: n=n+1;

10: end while

11: return u";

taking into account the symmetries inherent in the PDEs. Please refer to Appendix [E|for a detailed
discussion.

3.3 SCHWARZ NEURAL INFERENCE

Inspired by additive Schwarz method, we introduce a similar iterative algorithm called Schwarz
Neural Inference (SNI), which is outlined in Algorithm (1| In the subsequent discussion, we will
explore several important considerations.

Decomposition into overlapping subdomains. In general, there is no natural methods to decompose
an arbitrary domain into desired shapes, and here we adopt the common practice in DDM litera-
ture (Mathew! 2008). We assume there exists a pre-defined triangulation 7, (2) of the domain 2,
and a graph can be constructed to represent the connectivity of this triangulation. A graph partition
algorithm such as METIS (Karypis and Kumar, |1997) is then employed to partition this graph into
K non-overlapping connected subgraphs with index sets Z;,...,Zx. To achieve an overlapping
decomposition, each subgraph is then extended iteratively by including neighboring vertices for d
iterations. This process generates index sets Z1, . . . , Zx that, together with the original mesh, form an
overlapping decomposition denoted as {Qk}le. An intuitive illustration of this process is depicted
in Figure

For implementation, partition number K and extension depth d are hyperparameters that should be
carefully set to ensure that the resulting subdomains resemble shapes in P.

Normalization. During inference on an arbitrary decomposed subdomain, the range of geometry
and boundary conditions may differ from that of the generated training data. We thus leverage the
symmetry properties of PDEs to handle this mismatch. More specifically, we can directly apply
transformations 7" : P x H — P x ‘H such as spatial translation and scaling laws to transform
a local problem outside our training range - geometry or function values - into the training range.
Note that the transformations have to be extended to any coefficient fields or source term if they
are also involved in the symmetry. After neural operator inference, the resulting solution function
will be transformed back by a proper inverse transformation 7' : &/ — U. We implement these
transformations as preprocessing and postprocessing steps in the inference pipeline.

Time Complexity. Suppose the single inference time of local operator and the number of iterations
are denoted as b and V. Let v, e, K denote the number of vertices, edges and subdomains respectively.
Our Algorithm] consists of two main parts: mesh partition using the METIS algorithm, the time
complexity of which is approximately O(v + e + K log K') (Karypis and Kumarj [1997); iterative
scheme using the additive Schwarz method with a time complexity roughly O(bK N). Therefore, the

Under review as a conference paper at ICLR 2026

overall time complexity of our algorithm can be approximated as O(v + e + K log K + bKN)ﬂ

While providing an exact time complexity analysis for
FEM can be challenging due to the complexity and variability of different problem setups, it is worth
noting that FEM is generally considered to be computationally demanding.

3.4 THEORETICAL RESULTS

Here we provide a theoretical analysis of our proposed algorithm by stating the following result:

Theorem 1. Assume the operator L in Eq. |l|is self-adjoint and coercive elliptic partial differential
operator (Mathew, 2008)). Let u and u denote the solution obtained by classical additive Schwarz
method given Eq. and SNI in Algorithml|l| respectively, with the same initial condition u® = @°.
Assume || Ty, 0 GT o Ty, (-) — Sk(+) ||< e for all k, and if the classical algorithm converges, then we
have:

e Convergence: SNI converges to a fixed point;

* Error bound: there exists a constant ¢’ (depending on c) such that || 4" — u™ ||< ¢'.

The theorem suggests that if our learned local operator maintains a uniform error bound, the algorithm
converges and exhibits a minimal approximation error. See Appendix [C|for a proof. This result relies
on the assumption on operator £. In general, such convergence is not guaranteed and we empirically
validate the effectiveness of our framework for nonlinear differential equation through experiment.

4 EXPERIMENTS

In this section, we perform comprehensive experiments to showcase the effectiveness of our method
on various challenging datasets.

4.1 EXPERIMENTAL SETUP

Datasets. To demonstrate the scalability and superiority of our method, we construct several
datasets on multiple PDEs. We also extend our framework to a time-dependent problem, heat
conduction. To aggregate training sets, we generate random simple polygons bounded by the unit
square [—0.5,0.5]? C R%. Boundary/initial conditions and coefficient functions are piecewise linear
functions determined by random values within [0, 1]. For each of the following problems, we test on
datasets based on three different domains A, B and C shown in Figure 2| Details of these datasets are
given in Appendix

» Laplace2d-Dirichlet: Laplace equation in 2d with pure Dirichlet boundary condition on

various shapes.

» Laplace2d-Mixed: Laplace equation in 2d with mixed Dirichlet and Neumann boundary
condition on various shapes.

'With neural operators implementing linear transformers, e.g., GNOT applied in this work, b = O(%).

Figure 2: Tllustration of experiment domain A, B, C from left to right respectively.

Under review as a conference paper at ICLR 2026

Equation | Domain | GNOT(%) SNI(%)
A 2242 2.24+0.6
Laplace2d-Dirichlet B 2242 2.1£04
C 2843 2.1£0.9
A 10.74+0.8 64
Laplace2d-Mixed B 10.7+0.8 T£1
C 38+6 6+1
A 161 8+2
Darcy2d B 63£3 812
C 167+8 5.41+0.6
A 11.5£0.6 5.3+0.2
Heat2d B 30+10 11£2
C 20+10 5.8£0.3
A 2242 2.0+£04
NonlinearLaplace2d B 2612 22404
C 2842 2.24+0.5

Table 1: Main results. The [5 relative errors along with standard deviation over different random
boundary/initial conditions on three domains are reported.

* Darcy2d: Darcy flow in 2d with coefficient field a(z), source term f(z) and pure Dirichlet
boundary condition on various shapes.

* Heat2d: Time-dependent heat equation in 2d with a coefficient « for thermal diffusivity,
initial condition and time-varying pure Dirichlet boundary condition on various shapes.

* NonlinearLaplace2d: A nonlinear Laplace equation in 2d with pure Dirichlet boundary
condition on various shapes.

Baseline. Our baseline is a direct inference of the trained neural operator on domains shifted and
scaled to [—0.5,0.5] with boundary/initial conditions and coefficient functions adjusted accordingly.

Evaluation Protocol. The evaluation metric we utilize is the mean [; relative error. See Appendix
for details.

4.2 MAIN RESULTS AND ANALYSIS

The main results for all datasets are shown in Table [IL More details and hyperparameters are
summarized in Appendix [H.2]due to limited space. Based on these results, we have the following
observations.

Stationary Problems. First, we find that our method performs significantly better on all stationary
problems compared with baseline. On all domains, we reduce prediction error by 34.8%-96.8%. The

802 s §03
[(7 ()
w | 002 o — val
> > 202 —4— SNI
©0.1 © ©
o 0.1 P01 GNOT
- - -
0.0 0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 '8.0 0.5 1.0 1.5 2.0
Training set size x104 Training set size x104 Training set size x104
(a) Lap2d-D domain A (b) Lap2d-D domain B (c) Lap2d-D domain C

Figure 3: Comparison between the [, relative errors from SNI (blue), GNOT direct inference (orange)
and validation (red) on Laplace2d-Dirichlet upon three domains (A, B and C) with different numbers
of training samples. The results of SNI and GNOT direct inference are presented based on 100
inferences with different boundary conditions. The best validation errors during training are also
provided as a reference.

Under review as a conference paper at ICLR 2026

10 part 109 tau = 0.01
sos | parts 508 5 au = 0.
E \ 20 parts th 50.75 (tau = 0.02
0 0.6 —— 30 parts o 0.6 ¢ N\ —— tau=0.03
S04 - —— 40 parts S04 '%050 \D N — tau =0.04
° NN —— 50 parts v]
~§02 -\ \\\\\\ §0.2 025
\¥ \}
0.0 — 0.0 0.00!
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Nubmer of iterations Nubmer of iterations Nubmer of iterations
(a)d=2,7=0.04, varying K (b) K =20, 7 = 0.04, varyingd (c) K = 20,d = 2, varying 7

Figure 4: Comparison between convergence rate of SNI on Laplace2d-Dirichlet domain A.

excellent performance shows the effectiveness of our framework in dealing with arbitrary geometries
unseen during training. In particular, our framework usually leads by a larger margin on more
complicated domain, due to the fact that simple polygons used in the training data fail to adequately
resemble the complex testing domains. Solutions on multiply connected domains usually exhibit
characteristics that are not present on simple domains.

Second, we find that the the performance of our method is consistent across various geometries
during inference. On all types of PDEs in our datasets, the difference in prediction error over various
geometries is within 3.25%, showing the ability to solve PDE with consistent accuracy on various
geometries with a single trained neural operator. This also provides evidence for our theoretical
result in Theorem [I] where we show that the SNI ensure the convergence to an approximation of the
ground-truth solution with error bound determined by the generalization error of the neural operator.

Third, we find that complexity of the PDE together with types of boundary condition affect the
generalizability of the neural operator in solving local problems and thus also the accuracy of our
method. For simple problem such as Laplace2d-Dirichlet, our method achieve a 59.8% lower error
compared to other problems. For Laplace2d-Mixed, neural operator struggles to capture subtlety in
presence of both Dirichlet and Neumann boundaries. The complexity of Darcy2d lies in the need to
capture changes in coefficient and source term in addition to geometry and boundary condition. We
argue that having a strong neural operator that can generalize well on all basic shapes and boundary
conditions is necessary for our framework to work with reasonable accuracy.

Time-dependent Problems. There is a natural way to extend our framework to time-dependent
problems (L1 and Cail [2015)) where a space-time decomposition is constructed by taking the product
of a spatial decomposition and a temporal decomposition. We train a neural operator that can predict
heat conduction on multiple time steps and the same SNI is applied during inference on this 3d
problem. Our framework works well on this problem and reduce prediction error by 54.1%-74.2%.
This demonstrates the potential of our framework to handle time-dependent problems. We refer to
Appendix |D| for detailed implementation.

Data Efficiency. The exploration results on data efficiency of SNI are shown in Figure 3] implying
the following observations: (1) At all abundances of data, the /5 relative errors of SNI are significantly
lower than those of GNOT direct inferences; (2) Errors of SNI are comparable to or even lower
than validation errors at large data volumes. (3) SNI requires much smaller datasets to achieve
comparable results to GNOT direct inference. Overall, these results demonstrate that SNI has
substantial advantages in terms of data efficiency. Our proposed framework possesses remarkable
ability to extract more insights from limited data and scale more effectively as data volumes increase.
More supplementary results are provided in Appendix [H.4]

4.3 ABLATION EXPERIMENTS

Hyperparameter Exploration. The number of partitions (K), the depth of extension (d) and step
size (7) are the key main hyperparameters that can affect the performance of SNI. Based on the
results presented in Figure[d] the factors analyzed have no significant impact on the accuracy of our
algorithm, but they do influence the convergence rate. Specifically, increasing the number of partitions
leads to a smaller [, relative error but slower convergence. Once the partition number surpasses 20,
the algorithm’s final performances become comparable. Regarding the depth of extension, it does not
affect the performance on the tested domains. The convergence curves for depth of extension 1, 2, 4,

Under review as a conference paper at ICLR 2026

and 8 are nearly identical. When it comes to 7, a larger value results in faster convergence. However,
it is important to note that there exists a maximum limit 1/K beyond which 7 cannot be set.

Data Augmentation Exploration. To explore the effects of data augmentation, we compare the
performances of models trained with different degrees of data augmentation for Laplace2d-Dirichlet
demonstrated in Table 2} For models trained without data augmentation, the variation of performances
on different domains is large, ranging from 2.8% to 4.4%. Specifically, it reports a 4.4 + 1.6% Iy
relative error on domain A, while this error can be reduced to 1.9 4 0.4% with a rotation+[0.8, 1]
scaling augmentation. While rotation can generally be beneficial, the effectiveness of scaling can
sometimes be limited or even detrimental. Hence, it is important to apply data augmentation with
caution and consider its suitability for different types of PDEs.

Choice of neural operator architecture. To explore the choice of neural operator architecture in our
framework, we train a Geo-FNO (Li et al.,[2023) on Laplace2d-Dirichlet and apply SNI for inference
on domains A, B and C to get I relative error of 9 & 3%, 13 4+ 1% and 13 £ 3%. This result is
comparable to that achieved by SNI with GNOT and demonstrates that our proposed framework
works with various choices of neural operator architecture. However, an error gap does exists between
SNI with GNOT and Geo-FNO due to variations in their generalizability. This is also reflected in their
respective best validation errors, as detailed in Appendix Supplementary results on Darcy2d are
also provided there.

5 RELATED WORK

Operator Learning. The idea of operator learning is first introduced in|Lu et al.|(2019). This work
proposes a notable architecture called DeepONet, which employs a branch network for processing
input functions and a trunk network for handling query points. Adopting the trunk-branch architecture
and utilizing the attention mechanism, [Hao et al.[(2023)) develops GNOT to handle irregular mesh,
multiple input functions, and different input data types. The high accuracy and versatility makes
GNOT the benchmark in our work. In the other direction, Fourier neural operator (FNO) (Li et al.,
2020b) leverages the Fast Fourier Transform (FFT) to learn operators in the spectral domain, and
achieves a favorable trade-off between cost and accuracy. Variants of FNO are proposed to reduce
computational cost (FFNO in|Tran et al.[(2021)), handle irregular mesh (Geo-FNO in [Li et al.| (2023))),
and improve expressivity (UFNO in|Wen et al.| (2022)).

Methods to Deal with Complex Geometry. Several approaches have been proposed to tackle the
challenge of complex geometry and save the process efforts in operator learning. One encoder-process-
decoder framework called CORAL (Serrano et al.,|2023) is able to encode a complex geometry into
a lower dimensional representation to save the computational efforts and solve different types of
problems. In (Wu et al., [2024), one mechanism called physics attention is proposed to aggregate
complex input geometry and functions into several physics-aware tokens to reduce the number of
tokens to deal with. AROMA (Serrano et al.,[2024) introduces a diffusion refiner in latent space to
solve temporal problems with complex geometries.

Domain Decomposition Methods Applied in Deep Learning. In general, the integration of deep
learning and DDMs can be categorized into two groups (Heinlein et al., 2021} [Klawonn et al.|
2024). The first category involves using deep learning techniques to improve the convergence
properties or computational efficiency of DDMs. For instance, Mao et al.|(2024) proposes to combine
operator learning with DDMs on uniform grids in order to accelerate traditional DDMs. Several

[Validation(%) Domain A(%) Domain B(%) Domain C(%)

No Data Aug 3.79 4+2 3.0+0.6 3+1
Rotation Only 2.50 2.2+0.6 2.1+04 2.1+0.9
[0.2, 1] 5.31 4+1 3.4+0.5 3.4+0.4
Rotation + Scale | [0.5, 1] 3.62 2.7+0.5 3.7+0.6 3.24+0.6
[0.8, 1] 2.86 1.8+£0.4 3.3£0.7 2.84£0.8

Table 2: Comparison between models trained with different data augmentations for Laplace2d-
Dirichlet.

Under review as a conference paper at ICLR 2026

methods (Heinlein et al., 20205 2019) have also been proposed to reduce the computational cost
in adaptive FETI-DP solvers by incorporating deep neural networks while ensuring the robustness
and convergence behavior. The second category is centered around the substitution of subdomain
solvers in DDMs with neural networks. There have been multiple endeavors to employ PINNs

or Deep Ritz methods as alternatives to subdomain solvers or discretization techniques in
traditional DDMs (Li et al.,[2020a}; 2019} Jiao et al.| 2021). These approaches leverage the universal
approximation capabilities of neural networks to represent solutions of PDEs, subject to specific
assumptions regarding the activation function and other factors.

Data Augmentation Techniques in Operator Learning. Different types of data augmentations
are proposed to improve the generalization capabilities in operator learning. A Lie point symmetry
framework is introduced in Brandstetter et al.|(2022)), which quantitatively derives a comprehensive
set of data transformations, to reduce the sample complexity. Motivated by this approach, Mialon et al.
(2023)) learn general-purpose representations of PDEs from heterogeneous data by implementing joint
embedding methods for self-supervised learning. An alternative research approach (Fanaskov et al.|
2023)) introduces a computationally efficient augmentation strategy that relies on general covariance
and straightforward random coordinate transformations. In general, applying data augmentation
techniques for PDE operator learning can be challenging due to the unique nature of PDE theory.

6 CONCLUSION AND FUTURE WORKS

We presented a local-to-global framework based on DDMs to address the geometry generalization and
data efficiency issue in operator learning. Our framework includes a novel data generation scheme
and an iterative inference algorithm SNI. Additionally, we provided a theoretical analysis of the
convergence and error bound of the algorithm. We conducted extensive experiments to demonstrate
the effectiveness of our framework and validate our theoretical result. For future works, the rich
literature of DDMs when combined with operator learning provides many potential directions to
handle higher-dimensional problems, non-overlapping decomposition and more challenging types of
equations.

REPRODUCIBILITY STATEMENT

Detailed descriptions of the experimental setup, task definitions, and evaluation metrics are provided
in sectiondand Appendix [H]| Source code is attached in the submission.

REFERENCES
Auery, T. and Heldz, M. (2019). Rpg - a software package for the generation of random polygons.

Baratta, I. A., Dean, J. P., Dokken, J. S., Habera, M., Hale, J. S., Richardson, C. N., Rognes, M. E.,
Scroggs, M. W., Sime, N., and Wells, G. N. (2023). DOLFINx: the next generation FEniCS
problem solving environment. preprint.

Brandstetter, J., Welling, M., and Worrall, D. E. (2022). Lie point symmetry data augmentation for
neural pde solvers. In International Conference on Machine Learning, pages 2241-2256. PMLR.

Evans, L. C. (2022). Partial differential equations, volume 19. American Mathematical Society.

Fanaskov, V., Yu, T., Rudikov, A., and Oseledets, I. (2023). General covariance data augmentation
for neural pde solvers. arXiv preprint arXiv:2301.12730.

Gander, M. J. et al. (2008). Schwarz methods over the course of time. Electron. Trans. Numer. Anal,
31(5):228-255.

Geuzaine, C. and Remacle, J.-F. (2008). Gmsh: a three-dimensional finite element mesh generator
with built-in pre-and post-processing facilities.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S., Cheng, Z., Song, J., and Zhu, J. (2023).
Gnot: A general neural operator transformer for operator learning. In International Conference on
Machine Learning, pages 12556-12569. PMLR.

10

Under review as a conference paper at ICLR 2026

Heinlein, A., Klawonn, A., Lanser, M., and Weber, J. (2019). Machine learning in adaptive domain
decomposition methods—predicting the geometric location of constraints. SIAM Journal on
Scientific Computing, 41(6):A3887-A3912.

Heinlein, A., Klawonn, A., Lanser, M., and Weber, J. (2020). Machine Learning in Adaptive
FETI-DP-A Comparison of Smart and Random Training Data. Springer.

Heinlein, A., Klawonn, A., Lanser, M., and Weber, J. (2021). Combining machine learning and
domain decomposition methods for the solution of partial differential equations—a review. GAMM-
Mitteilungen, 44(1):¢202100001.

Jagtap, A. D. and Karniadakis, G. E. (2020). Extended physics-informed neural networks (xpinns):
A generalized space-time domain decomposition based deep learning framework for nonlinear
partial differential equations. Communications in Computational Physics, 28(5):2002-2041.

Jiao, A., He, H., Ranade, R., Pathak, J., and Lu, L. (2021). One-shot learning for solution operators
of partial differential equations. arXiv preprint arXiv:2104.05512.

Karypis, G. and Kumar, V. (1997). Metis: A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices.

Klawonn, A., Lanser, M., and Weber, J. (2024). Machine learning and domain decomposition
methods-a survey. Computational Science and Engineering, 1(1):2.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar,
A. (2023). Neural operator: Learning maps between function spaces with applications to pdes.
Journal of Machine Learning Research, 24(89):1-97.

Langtangen, H. P. and Logg, A. (2017). Solving PDEs in python: the FEniCS tutorial I. Springer
Nature.

Li, K., Tang, K., Wu, T., and Liao, Q. (2019). D3m: A deep domain decomposition method for partial
differential equations. /EEE Access, 8:5283-5294.

Li, S. and Cai, X.-C. (2015). Convergence analysis of two-level space-time additive schwarz method
for parabolic equations. SIAM Journal on Numerical Analysis, 53(6):2727-2751.

Li, W., Xiang, X., and Xu, Y. (2020a). Deep domain decomposition method: Elliptic problems. In
Mathematical and Scientific Machine Learning, pages 269-286. PMLR.

Li, Z., Huang, D. Z., Liu, B., and Anandkumar, A. (2023). Fourier neural operator with learned
deformations for pdes on general geometries. Journal of Machine Learning Research, 24(388):1—
26.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar,
A. (2020b). Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895.

Li, Z., Kovachki, N., Choy, C., Li, B., Kossaifi, J., Otta, S., Nabian, M. A., Stadler, M., Hundt, C.,
Azizzadenesheli, K., et al. (2024). Geometry-informed neural operator for large-scale 3d pdes.
Advances in Neural Information Processing Systems, 36.

Liu, G.-R. and Quek, S. S. (2013). The finite element method: a practical course. Butterworth-
Heinemann.

Liu, S., Hao, Z., Ying, C., Su, H., Cheng, Z., and Zhu, J. (2023). Nuno: A general framework
for learning parametric pdes with non-uniform data. In International Conference on Machine
Learning, pages 21658-21671. PMLR.

Lu, L., Jin, P, and Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for identifying

differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193.

11

Under review as a conference paper at ICLR 2026

Mao, C., Lupoiu, R., Dai, T., Chen, M., and Fan, J. A. (2024). Towards general neural surrogate
solvers with specialized neural accelerators. In Proceedings of the 41st International Conference
on Machine Learning, ICML’24. JMLR.org.

Mathew, T. P. (2008). Domain decomposition methods for the numerical solution of partial differential
equations. Springer.

Mialon, G., Garrido, Q., Lawrence, H., Rehman, D., LeCun, Y., and Kiani, B. (2023). Self-supervised
learning with lie symmetries for partial differential equations. Advances in Neural Information
Processing Systems, 36:28973-29004.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. (2020). Learning mesh-based
simulation with graph networks. In International conference on learning representations.

Preparata, F. P. and Shamos, M. L. (2012). Computational geometry: an introduction. Springer
Science & Business Media.

Richardson, L. F. (1911). Ix. the approximate arithmetical solution by finite differences of physical
problems involving differential equations, with an application to the stresses in a masonry dam.
Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, 210(459-470):307-357.

Scroggs, M. W., Baratta, I. A, Richardson, C. N., and Wells, G. N. (2022a). Basix: a runtime finite
element basis evaluation library. Journal of Open Source Software, 7(73):3982.

Scroggs, M. W., Dokken, J. S., Richardson, C. N., and Wells, G. N. (2022b). Construction of arbitrary
order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes. ACM
Transactions on Mathematical Software, 48(2):18:1-18:23.

Serrano, L., Le Boudec, L., Kassai Koupai, A., Wang, T. X., Yin, Y., Vittaut, J.-N., and Gallinari, P.
(2023). Operator learning with neural fields: Tackling pdes on general geometries. Advances in
Neural Information Processing Systems, 36:70581-70611.

Serrano, L., Wang, T. X., Le Naour, E., Vittaut, J.-N., and Gallinari, P. (2024). Aroma: Preserving
spatial structure for latent pde modeling with local neural fields. Advances in Neural Information
Processing Systems, 37:13489-13521.

Shukla, K., Jagtap, A. D., and Karniadakis, G. E. (2021). Parallel physics-informed neural networks
via domain decomposition. Journal of Computational Physics, 447:110683.

Toselli, A. and Widlund, O. (2004). Domain decomposition methods-algorithms and theory, vol-
ume 34. Springer Science & Business Media.

Tran, A., Mathews, A., Xie, L., and Ong, C. S. (2021). Factorized fourier neural operators. arXiv
preprint arXiv:2111.13802.

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., and Benson, S. M. (2022). U-fno—an
enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances in
Water Resources, 163:104180.

Wu, H., Luo, H., Wang, H., Wang, J., and Long, M. (2024). Transolver: A fast transformer solver for
pdes on general geometries. arXiv preprint arXiv:2402.02366.

12

Under review as a conference paper at ICLR 2026

A BACKGROUND ON DOMAIN DECOMPOSITION

Domain decomposition is a widely used technique in computational science and engineering that
enables the efficient solution of large-scale problems by dividing the computational domain into
smaller subdomains. This approach is particularly beneficial when dealing with complex problems that
cannot be solved using a single computational resource. The main idea behind domain decomposition
is to break down a large computational domain into smaller, more manageable subdomains. These
subdomains can be arranged in a variety of ways, such as overlapping or non-overlapping, depending
on the specific problem and the desired computational approach.

In this work, we decompose our domain into subdomains and adopt the hybrid formulation of Eq.[T]
following [Mathew| (2008], Section 1.1). A decomposition of) is a collection of open subregions
(U}, % C Qfork = 1,..., K such that i, Q) = Q. This decomposition is referred
to as non-overlapping if in addition, £2; N Q; = @ for any ¢ # j. Alternatively, an overlapping

decomposition is one satisfying Ukl,il Qp, = Q. Typically, a non-overlapping decomposition is one
where subdomains do not intersect with each other in the interior while an overlapping decomposition
constructed in practice has overlapping neighboring subdomains.

Given a decomposition of €2, a hybrid formulation of Eq.[I]is a coupled system of local PDEs on
subdomains €, equivalent to Eq. |1|satisfying two requirements. First, the restriction uy () of the
solution u(x) of Eq. [I|to each domain €2, must solve the local PDE, thus ensures that the hybrid
formulation is consistent with the original problem in Eq.[I] Second, the hybrid formulation must be
well posed as a coupled system of PDEs in the sense of |[Evans|(2022), i.e. its solution must exist, be
unique and depend continuously on given input function and boundary/initial conditions. Intuitively,
a hybrid formulation consists of a local problem posed on each subdomain and matching conditions
that couples the local problems.

In this work we focus on the earliest and most elementary formulation termed Schwarz hybrid
formulation (Mathew, |2008|, Section 1.2) based on overlapping decomposition and is applicable to
a wide class of self-adjoint and coercive elliptic equations. Given an overlapping decomposition,
0%, can be decomposed into two disjoint parts. One (possibly empty) part I', = 0 N 02 is
located in the boundary of €2 and the global boundary condition should be imposed. The other part
By, = 09, N2 is a nonempty artificial boundary from the overlapping decomposition and a Dirichlet
boundary condition from the coupling of local problems is imposed.

We refer to Mathew| (2008) for a strict definition. As an illustrative example, assume we have an
overlapping decomposition with X = 2 and consider as the original problem Laplace equation with
mixed Dirichlet and Neumann boundary conditions. The following coupled system of two local
PDE:s is a Schwarz hybrid formulation of the original problem and solving the original equation is
equivalent to solving this coupled system.

Au1 =0 in Ql AUQ =0 in QQ
U, = u2|391 on 001 NN Uy = U1|aQ2 on 025NN
U1 = Up on 691 ﬂFD and U2 = UD on 8QQQFD
0 0
ﬂ:g on 021 NIy &:g on 0 NIy
on on

Based on the Schwarz hybrid formulation, there are various iterative schemes with different paral-
lelism and convergence rate. In the subsequent discussion, our focus is primarily on introducing the
additive Schwarz methods (ASM). The ASM is a highly parallel algorithm (Mathew) 2008) in solving
the coupled system from Schwarz hybrid formulation. We briefly introduce ASM with finite element
methods and refer to|Gander et al.| (2008) and |[Mathew| (2008) for details.

Assume that under weak formulation of Eq.[I|and finite element space V', Eq.[I|has the form Au = f
where A is the stiffness matrix. Given an overlapping decomposition {€2;};* ; compatible with the
finite element space on €2, we have V' = Zli{:l Vi as sum of local finite element subspaces V. on €0
and we can define local stiffness matrices Ay, : Vi, — Vi, restriction operators { Ry }&_| restricting
V to V}, and extension operators {R,E}szl extending Vj, to V by zeros extension. We then define
operators P, : V — V by P, = RZA,:leA. Additive Schwarz operator is then defined as the

13

Under review as a conference paper at ICLR 2026

sum Py = Zszl Py. This operator can be show to be self-adjoint and coercive and we have the
following equivalence.
K
Au=f < Pau=)Y RIA'Rpf)
k=1

We note that the right hand side of Eq. []is a preconditioned version of the left hand side. The
Richardson iteration for this preconditioned problem has the following form.

K
u Tl ="+ TZ RZA,:le(f — Au™) 5)
k=1

In the composite operator R;A;le, the operator R, first restrict a function to €y, A;l solve
the local problem and R} extend the local solution to 2. This iterative process can be shown to
converge by estimating bound on condition number of P,q under mild assumptions on equation and
decomposition.

B REVISIT ON OPERATOR LEARNING

The goal of operator learning is to learn a mapping G : A — U between two infinitely dimensional
spaces (Kovachki et al.,[2023). When applied to PDEs, I/ is the solution space of a PDE and A is the
space of functions that determine a unique solution of a PDE. Examples of A are coefficient functions
or boundary/initial conditions that defines the PDE and parameters that determine the geometry of
domain.

In our study, we decompose any domain into subdomains each of which lives in a distinguished class
of basic shapes P. We assume all shapes in P have Lipschitz boundary and are uniformly bounded,
i.e., they are all bounded by a ball D C R™. We are interested in solving boundary value problems in
Eq.[I]in any domain © € P with any appropriate boundary condition. We thus separate geometry
and boundary conditions from other inputs and represent the input function space of the operator
as A = P x H¥(D) x H where H¥(D) is the Sobolev space W*2(D). The space P x H*(D)
represents the geometry of the domain together with boundary/initial conditions, # represents any
other input functions such as coefficient function field or source term in the PDE. The neural operator
thus approximates the following mapping. Note that in the case of time dependent problem, the space
HP*(D) represents the space of initial condition together with time varying boundary condition and
the solution space U/ represents a time series up to some time span. The solution operator G thus has
the following form.

G:PxHFD)xH—-U (6)

For learning the operator, we assume P, H*(D) and H are probability spaces and thus we can sample
observations from A. In practice, we randomly sample geometry from P and random boundary
conditions are imposed, then a solution is generated from a numerical solver to get solutions. It is
important to highlight that, unlike the usual setting for neural operators, there is significant variation
in the shape of input domains.

C PROOF OF THEOREMII

Theorem. Assume the operator L in Eq.|l|is self-adjoint and coercive elliptic partial differential

operator (Mathew, |2008)). Let v and U denote the solution obtained by traditional additive Schwarz

method given by Eq. and SNI in Algorithm respectively, with the same initial condition u® = @°.

Assume || Ty 0 Gt o Ty () — Sk (-) ||< ¢ where Sy, is the local solution operator for Eq. for all k,
and if the traditional algorithm converges, then we have:

» Convergence: SNI converges to a fixed point;

* Error bound: there exists a constant ¢’ (depending on c) such that | 0" — u™ ||< ¢

14

Under review as a conference paper at ICLR 2026

Proof. (1) Recall that the iterative rules of traditional and neural Schwarz inference are given by:

K
w' = " 4 TZ [R;Sk(un) — RZRku”]
k=1

-)
it =@ 1y [RIG)@") - R
k=1

where G}; denotes T}, o Gt o T},. By simple calculation, we first express the operator Sy, explicitly by

introducing finite element space under weak formulation: Sy, : u™ +— A,:le(f— Au™) + Riu™.
Hence the convergence of traditional Schwarz algorithm implies p(I — TM A) < 1 where M =

Zszl R] fl,;le, and p(-) denotes the spectral radius. Hence we have

K
Wt = (I — rMA)I" + rMf+7Y RLGH(A") — Sp(a™))
k=1

Since 7M f is a constant term and || é,i() = Sk(*) ||< ¢, by random fixed point theorem, the neural
algorithm converges to a random fixed point.

(2) Subtraction of Eq.[7] gives:

K K
[a"t —um | = (= 7Y RERM)@" — ™) — 7Y RI(Gl(@") — Sk(u"))H
k;(l kgl)
= ||T =7 > RIRM)@" —u™) = 7y " RY(GL(@") — Sp(@") + Sp(a") - Sk(“n))H
k=1 k=1

K
< (I—7MA) [—u"| + 7Y R] Hé,i(an) — Su(@)
k=1

It is easy to see that 7 Zle R} HC;); (a™) — Sp(u™)|| < Ttc where ¢ denotes the maximal number

1-p"
1—p
Ttc

d = 7= completes the proof. O

of overlapping subdomains. Let p = p(I — 7MA) < 1, we have ||a" — u"|| < Ttc. Taking

If we apply matrix form of neural operator, namely, the neural operator aims to approximate
{A; '}/ | and assume, then we can have the following result:

Corollary 1. Consider the exact operator A;l and inexact neural operator fl,;l, k=1,--- K. Let

u™ and u" represent the solutions updated by A,:,l and fl,;l respectively at the n-th step, where the
updating rule is given by Eq.[5|with T = 1 and both sharing the same initialization. Suppose that

| At — At < e fork=1,--- K, and p(I — MA) < 1, where M = Zszl RIA; Ry, then

we have:
e Convergence: the algorithm converges to a fixed point;
* Error bound: there exists a constant ¢y (c) such that || @™ — u™ ||< Al
* Condition number: k(M A) < min(t(K + 1), 1 4+ maxy %)

where t, K, Hy, and d denote the maximal number of overlapping subdomains, the number of
subdomains, the diameter of k-th subdomain, and the number of extensions, respectively.

Note that the condition p(I — M A) < 1 is generally challenging to satisfy. To address this issue, we

employ the Richardson iteration trick (Richardson,|[1911)) in order to ensure the convergence of the
proposed algorithm (Algorithm [T)).

15

Under review as a conference paper at ICLR 2026

D TIME-DEPENDENT PROBLEMS.

We consider the time-dependent PDE with the following form:
u — Lu=f in Qx[0,T]
u(z,t) = up(x,t) on 0N x [0,T] (8)
u(z,0) = ug(x) on x {0}

where L is again self-adjoint and coercive elliptic operator. The additive Schwarz method can
be naturally extended to a space-time additive Schwarz method (Li and Cail 2015) by consider-
ing a decomposition of the space-time domain 2 x [0, 7] by taking the product of overlapping
decomposition of 2 and [0, T'] respectively. The space-time domain decomposition has the form
Q; x [tj—1 — dp,t; + 7] where 7 is the temporal depth and represent overlap in time domain.
Once such a decomposition is constructed, the same additive Schwarz method can be applied to
the space-time decomposition to get a global solution on the space-time domain, allowing parallel
iteration in both space and time domain. Local problems for the above decomposition are again of
the form in Eq.[§]

In our implementation on heat equation, we discretize the time domain with a fixed time step ¢, fix a
rollout length of k and train a neural operator to map initial and boundary conditions to time series
for the k steps at t = 0, ¢5,--- , (k — 1)ts. More precisely, the neural operator is trained to map up
and ug to time series of the form u(x,0), u(x,ts),- - ,u(x, (k — 1)ts).

E SYMMETRIES OF PDES

The symmetry group of a general partial differential operator L refers to a set of transformations
that map a solution to another solution, forming a mathematical group. Lie point symmetry is a
subgroup of the symmetry group that has a Lie group structure and acts on functions pointwise as
transformations on coordinates and function values (Brandstetter et al., [2022). In this work, we will
in addition be concerned with not just a single operator £, but a family of operators depending on
various coefficient fields (e.g., Darcy flow) and various boundary/initial conditions. Symmetries
have to be properly extended to these input functions so that a solution with an input function is
transformed to another solution with a different input function.

Leveraging these symmetries allows for the generation of an infinite number of new solutions based
on a given solution. The idea of utilizing these symmetries as a data augmentation technique for
operator learning was initially introduced in |Brandstetter et al.| (2022). However, we apply these data
augmentation to solutions on basic shapes in training local operator and this usage of symmetries
echos a point mentioned in [Brandstetter et al.| (2022, Section 3.2) where the authors point out that
these data augmentation can be applied on local patches of solutions instead of the solution on the
entire domain.

There is another direct usage of symmetries in our framework. Instead of incorporating symmetries
as a form of data augmentation in training time, one can directly apply transformations to input
and output of a neural operator during inference time. We implement these transformations as
preprocessing and postprocessing steps in the inference pipeline. We summarize the symmetries of
each PDE applied in our implementation in Table[3] Normalizations applied as preprocessing and
postprocessing for each of the equations are summarized in Table [6]

F TiIME COMPLEXITY

F.1 EMPIRICAL TIME COMPLEXITY

We provide empirical results on runtime for our main results. We discuss how better initialization can
accelerate the whole iterative process in the next point.

We first provide empirical runtime on a single sample for each stationary problem and each domain
reported in our main result. We use the following metrics:

* Time to convergence (TTC).

16

Under review as a conference paper at ICLR 2026

Equation [Lap2d-D Lap2d-M Darcy2d Heat2d NonLap2d
Spatial
ghift (z1,22) = (21 + t1,22 + t2)
Rscf)tzttlizln (x1,22) = (x1co86 — xosinf, zq sinh + x5 cos)
(x1,22) — (sx1, sT2)
2z
Spatial u — s uu : i;; uu j Z
Scali _ D D 0 0 _
caling uUp —_>>suD a(2) = a(2) PO
9 f@) = flo) e sa
Value u—u+t
Shift up — up +1 _
U — SU
SVail.le up — Sup -
o - 9 — 59 - Uy — SUg -

Table 3: Symmetries of various PDEs applied in our implementation.

* Time to 15/10/5% relative 5 error following the practice inMao et al.[(2024).

Equations | Domains [TTC(s) TT15%(s) TT10%(s) TT5%(s)
Laplace2d-Dirichlet A 100 40 50 70
Laplace2d-Dirichlet B 269 107 137 194
Laplace2d-Dirichlet C 28 8 11 17

Laplace2d-Mixed A 162 82 103 137
Laplace2d-Mixed B 714 511 620 -
Laplace2d-Mixed C 68 43 52 -

Darcy2d A 84 37 54 -

Darcy2d B 247 144 176 -

Darcy2d C 26 12 15 -

Table 4: Empirical runtime for different equations and domains

Factors that affect the runtime are:

1. Type of equations. We observe that Laplace2d-Mixed takes longer on all domains. We
also observe that the existence of Neumann boundary condition leads to a larger range of
function values for the solution of Laplace2d-Mixed. This leads to more iterations steps

required to reach convergence.

2. Number of subdomains K and step size 7. In the above table, domain B takes longer for all
equations because it has 40 subdomains compared to 20 for A and C. A large number of
subdomains leads to more time consumption for an iteration. We illustrated how choice of 7

affects the number of iterations to convergence in section 4.3 of our paper.

3. Local operator architecture. While GNOT gets better results in accuracy, a drawback of

transformer-based methods is that they are usually slower than FNO (Hao et al., [2023)).

4. Initialization. This is discussed in the next point.

We note that our implementation is not optimized to fully parallelize the iterative process; for example,
the normalization process is not parallelized in our implementation.

Numerical solvers are very fast in generating solutions for the domains we tested on and we do not
expect our approach to be faster than these highly optimized numerical solvers on these (still) simple

domains.

However, DDMs are a conventional approach implemented in commercial software designed to solve

17

Under review as a conference paper at ICLR 2026

PDEs on large-scale and complicated domains. We replace the local FEM solver in DDMs by a
data-driven neural operator and thus expect our approach to show superiority when the problem
domain is large and complicated.

F.2 ACCELERATION THROUGH BETTER INITIALIZATION

We discuss how to accelerate the iterative process by starting with a better initialization. In the original
implementation, we always start with a zero solution in the interior of the domain. To accelerate
the process, we initialize with solutions from GNOT direct inference and find that it considerably
saves our time. We report the time consumption on Laplace2d-Dirichlet using the same metrics as
the previous table. The only difference is in initialization.

Equations | Domains [TTC(s) TT15%(s) TT10%(s) TT5%(s)
Laplace2d-Dirichlet A 28 8 11 17
Laplace2d-Dirichlet B 70 3 6 21
Laplace2d-Dirichlet C 20 1 2 7

Table 5: Runtime results with improved initialization for Laplace2d-Dirichlet equations

However, coming up with a better initialization is not trivial and can be an interesting future work.

G DISCUSSIONS

Message passing in DDMs. In our framework, we solve a coupled system of local problems by
an iterative algorithm SNI. Through iteratively solving local problems based on boundary values
from the last iteration and thus from neighboring subdomains, SNI is essentially performing message
passing between subdomains. This message passing operation may be implemented in other forms,
e.g., through a graph neural network.

Higher-dimensional PDEs. Our framework can be extended to higher-dimensional cases as long as
basic shapes and corresponding solutions can be properly generated. For 3-d problems, one potential
selection of basic shapes is the class of polytopes.

Other formulations of DDMs. Schwarz hybrid formulation discussed in this work is one of the most
elementary formulation in DDMs. There are many other more advanced DDMs (Mathew, 2008]).
Steklov-Poincaré framework is based on non-overlapping decomposition and transmission condition
as coupling condition for local problems. Langrange multiplier framework leads to the well-known
FETI method and is also based on non-overlapping decomposition.

Other types of PDEs. The additive Schwarz method in classical DDMs works for self-adjoint and
coercive elliptic equations. Non-self-adjoint elliptic equations, parabolic equations, saddle-point
problems and non-linear equations requires separate treatment. Addressing these cases presents
challenges in both training the local operator and designing the iterative algorithm.

Future Works. Based on the above discussion, there are many potential directions for future works.
First, it would be interesting to implement this framework using a message-passing framework instead
of an iterative algorithm to accelerate the convergence. Second, extending our framework to address
higher-dimensional problems is important, particularly since industrial problems often involve 3-d
simulation. Third, more advanced DDMs such as Neumann-Neumann, BDDC and FETI (Mathew,
2008) may also be explored. Lastly, other types of PDEs such as saddle point problems and non-linear
equations such as Navier-Stokes equation is out of the scope of our current work, and present unique
challenge. Tackling these challenges requires not only expertise on operator learning, but also deep
understanding of PDEs themselves. We speculate that it would be fruitful to combine rich literatures
of DDMs with operator learning.

18

Under review as a conference paper at ICLR 2026

H EXPERIMENTS

H.1 DATASETS

Here we introduce more details of our datasets in both training and testing stage. For training data, we
generate random simple polygons with 3 < n < 12 vertices within [—0.5,0.5]? and create uniform
mesh using Gmsh (Geuzaine and Remacle, |2008). We prepare a separate dataset for validation
during training. For testing data, we generate the three domains depicted in Figure 2] together with
mesh using the Gmsh UI. We argue that the complexity of geometric domains is fundamentally
determined by their underlying topological and geometrical properties. Based on this intuition, we
considered three domains of increasing complexity for evaluation: (1) Domain A: This domain is
simply connected, representing the simplest class of geometries; (2) Domain B: This domain has
two holes and is multiply connected, indicating a higher level of complexity compared to the simply
connected Domain A; (3) Domain C: This domain has one hole with corners, further increasing the
geometrical complexity compared to the previous two domains. Through a systematical evaluation
across this spectrum of domains, from the simple geometry to more intricate multiply connected
domains with holes and corners, we believe the results provide a comprehensive understanding of our
framework’s capabilities.

Once the geometries and meshes are created, we specify boundary/initial conditions for various
equations and domains and generate solutions using FEniCSx (Baratta et al., 2023} [Scroggs et al.,
2022ab)), a popular open-source platform for solving PDEs with the finite element method (FEM).
We adopt Lagrange element of order 1 (linear element) as our finite element space in generating
boundary/initial conditions and solutions. Next we give details on how these boundary/initial
conditions and solutions are generated for each type of PDEs. We also summarize these details in
Table [Z]and[8

Laplace2d-Dirichlet. Laplace equation in 2d with pure Dirichlet boundary condition. The governing
equation is

Au=0 in Q
u=up on Of.

©))

For both training and testing data, we specify piecewise linear Dirichlet boundary condition with
randomly generated values within [0, 1] on boundary nodes.

Laplace2d-Mixed. Laplace equation in 2d with mixed Dirichlet and Neumann boundary condition
on 0N = I'p U 'y. The governing equation is

T'p
I'n

Figure 5: Illustration of mixed Dirichlet and Neumann boundaries for domain A, B, C in Laplace2d-
Mixed.

19

Under review as a conference paper at ICLR 2026

Au=0 in Q

U =Up on FD (10)
@ = on I
on 7 N

For training data, 20% of the data have pure Dirichlet condition and the generation process is the
same as in Laplace2d-Dirichlet. The rest 80% of the training data have mixed boundary condition
with non-empty connected Neumann boundary and Neumann boundary is randomly specified to
be less than half of the entire boundary. Then a random number r is sampled from U]0.5, 1] to
specify functional range for Dirichlet and Neumann boundaries as described next. Among data
with non-empty Neumann boundary, 50% have up € [0,r] and g € [0, 1] and the other 50% have
up € [0,1] and g € [0, 7].

For testing data, Dirichlet and Neumann boundary is specified for each of the domain A,B and C as

shown in Figure[5] Boundary conditions up and g are both piecewise linear with randomly generated
values within [0, 1].

Darcy2d. Darcy flow in 2d with coefficient field a(x), source term f(z) and pure Dirichlet boundary
condition. The governing equation is

—V(a(z)Vu)=f in Q
u=up on Of.

QY

For training data, Dirichlet boundary condition is specified with a random range » € [0.3, 1] and
boundary values are generated as up € [0, r]. The coefficient function a(x) and source term f(z)
are specified as piecewise linear functions with randomly generated values within [0, 1] on nodes.

For testing data, Dirichlet boundary condition, coefficient function and source term are all piecewise
linear functions with randomly generated values within [0, 1].

Heat2d. Time-dependent equation of heat conduction in 2d with coefficient o denoting the thermal
diffusivity, time-varying boundary condition and initial condition. The governing equation is

%;L = aAu in Q x [0,7]
w(z,t) = up(z,t) on 92 x [0,T] (12)
u(x,0) = ug(x) on) x {0}.

For training data, we discretize the time domain with a fixed time step ¢; = 0.01, generate piecewise
linear initials and time-varying boundary conditions with values randomly generated within [0, 1]. «
is a random number within [0.8, 1]. We adopt the backward Euler method (Langtangen and Logg|
2017) and generate a time series of 10 time steps. During training we separate these 10 time steps
into 2 time series of 5 times steps and training the neural operator to predict 5 time steps.

For testing data, we fix o = 1. Initial condition is piecewise linear with values randomly generated
within [0, 1]. Boundary condition is specified to be constant over time and varied randomly within
[0, 1] across boundary nodes. We also adopt the backward Euler method and generate a time series of
50 time steps.

NonlinearLaplace2d. A nonlinear Laplace equation in 2d with pure Dirichlet boundary condition
following an example in Langtangen and Logg| (2017). The governing equation is

V- (u*+1)Vu)=0 in Q

13
w=up on 0. (13)

For both training and testing data, we specify piecewise linear Dirichlet boundary condition with
randomly generated values within [0, 1] on boundary nodes.

20

Under review as a conference paper at ICLR 2026

H.2 EVALUATION PROTOCOL AND HYPERPARAMETERS.

Evaluation Protocol. The evaluation metric we utilize is the mean 5 relative error. Let u;, u} €
R™ represent the ground truth solution and predicted solution for the i-th sample, respectively.
Considering a dataset of size D, the mean [5 relative error is computed as follows:

Z | =i "

[i |2

Hyperparameters. All experimental hyperparameters used in the paper are listed in Table[6] For
data generation, the number of vertices of simple polygons are uniformly chosen between 3 to 12.
And a x b in configurations denotes the generation of b shapes, each having a distinct boundary/initial
conditions. For investigating data efficiency issue, we only vary the number of various shapes b
while keeping the number of random input functions per shape a constant. For boundary condition
imposition, we summarize the details in Table[7]and [§]

Computing Resource. We run our experiments on 1 Tesla V100 GPU.

[Lap2d-D| Lap2d-M [Darcy2d | Heat2d [NonlinearLap2d

Polygon [3,12]
Training -y 5000/ 20x2000 | 10x4000 | 50x 1600 10x 2000
Data Configuration
Generation| . "andation 145, 550| 20x200 | 10x250 | 50x240 105 2000
Configuration
Testing 100 100 100 10 100
Configuration
GNOT 1 expert and 3 layers of width 128
Optimization Adam
Learning rate cycle learning rate strategy with 0.001
Operator Epoch 500 1000 500 200 500
Learning Rot.+ Rot.+
Data Aug. Rot. Sca. [0.8.1] No Sca. [0.8.1] Rot.
Time steps -) —
Partition K 20 20x16 20
Depth d 2
ATemp. Depth o1 - 1 -
Step size T 0.04 0.002125 0.04
Spa. Shift+Scale [Spa. Shift+|Spa. Shift+Scale .
Pre/Post-pro. | vy ShifteScale | Scale |Val. Shift+Scale| P SPift
Partition K 40 40x16 40
Depth d 2
Inference B Temp. Depth o1 - 1 -
(SNI) Step size T 0.024 0.0014625 0.024
Spa. Shift+Scale [Spa. Shift+|Spa. Shift+Scale .
Pre/Post-pro. | i ShifteScale | Scale |Val. ShiftScale| OP*SPift
Partition K 20 20x 16 [20
Depth d 2
C Temp. Depth o1 - 1 -
Step size T 0.04 0.002125 0.04
Spa. Shift+Scale [Spa. Shift+|Spa. Shift+Scale .
Pre/Post-pro. | i ShifteScale | Scale |Val. Shift+Scale| P Shift

Table 6: Key hyperparameters of main experiments. Configuration under Data Generation is specified
as (number of random input functions per shape) x (number of various shapes). Partition K for
Heat2d is specified as (number of spatial partition) x (number of temporal partition).

21

Under review as a conference paper at ICLR 2026

PDE Description

Lap2d-D range of boundary condition: U0, 1]

20% pure Dirichlet condition: range UT0, 1]
40% mixed boundary condition with I, /92 ~ U|0.5, 1]
Lap2d-M range of Dirichlet: U0, r] where r ~ U[0.5, 1], range of Neumann:U [0, 1]
40% mixed boundary condition with I'p /02 ~ U[0.5, 1]
range of Dirichlet: U[0, 1], range of Neumann: U|0, | where r ~ U[0.5, 1]

range of boundary conditions: U|0, r| where r ~ U[0.3, 1],
Darcy2d range of a(x) and f: UJ0, 1]

Heat2d range of initial/boundary condition: U[0, 1], a ~ U[0.8, 1]

NonlinearLap2d range of boundary condition: U0, 1]

Table 7: Details of boundary/initial condition and input function generation in training data.

PDE Description
Lap2d-D range of boundary condition: U0, 1]
Lap2d-M ['p and 'y as in Figure[5

range of Dirichlet: U0, I], range of Neumann: U0, 1]
range of boundary conditions: U]0, 1]

Darcy2d range of a(z) and f(z): U0, 1]
a=1
Heat2d range of boundary/initial condition: U0, 1]

boundary condition do not vary with time
NonlinearLap2d range of boundary condition: U|0, 1]

Table 8: Details of boundary/initial condition and input function generation in testing data.

Figure 6:

H.4 OTHER SUPPLEMENTARY RESULTS.

Data Efficiency. The results for data efficiency on Laplace2d-Mixed and Darcy2d are shown in
Figure|8| The average performance of SNI is better than GNOT on all of three domains, while the
margins between the two methods on domains A and B are not statistically significant due to the high
variance in the /5 relative errors of SNI on these two domains. GNOT struggles in the generalization
to domain C, while SNI can still handle it with a good performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 7: Visualization of decomposed domains A, B and C.

0.4
s 5 03 50.6 — — val |
L : ==

o 004 s
202 \\\\ 202 2 fﬁ\\\ —+— GNOT
—— £ N
£ SO = N
0.0 - — —0.0
0 2 3 4 0 2 3 2 0 2 3 z
Training set size x104 Training set size x10% Training set size x104
(a) Lap2d-M domain A (b) Lap2d-M domain B (c) Lap2d-M domain C
_ _ T 4.5
5 L 520 \ 5 e val
$°A ®15 330 i —+= sNni |
: £ | £\ — Eawr
So2 \\\ 1 555 | Sa1sp ¥ T
3 S — R 3
0. 2 3 3 00 p) 3 4 0 2 3 7z
Training set size x104 Training set size x10% Training set size x104
(d) Darcy2d domain A (e) Darcy2d domain B (f) Darcy2d domain C

Figure 8: Comparison between the [5 relative errors from SNI (blue), GNOT direct inference (orange)
and validation (red) on Laplace2d-Mixed and Darcy2d upon three domains (A, B and C) with different
numbers of training samples.

Irregular and More Complicated Domain: Dolphin-shape Domain. We provide the result of
Laplace2d-Dirichlet on a dolphin-shape domain in Table] which has more complex boundary. The
mesh and decomposed domain is illustrated in Figure[] We can see that on this irregular and more
complicated domain, the SNI with GNOT still gets reasonably good result. The error is relatively
higher than that of simpler domains in Table[I] This error gap can be caused by the gap between
training and testing shape distribution.

Figure 9: Visualization of dolphin-shape domain.

23

Under review as a conference paper at ICLR 2026

Equation | Domain | SNI with GNOT (%)
. Dolphin 4.5+ 09
Laplace2d-Dirichlet Disk 21405

Table 9: Laplace2d-Dirichlet on dolphin-shape and disk domains.

Equation | Domain | valgnor SNI with GNOT valgeo.rnvo SNI with Geo-FNO
A 2.240.6 943
Laplace2d-Dirichlet B 2.5 2.1+0.4 5.6 1441
C 2.1£0.9 1242
A 9+2 1142
Darcy2d B 3.8 842 6.4 15.7+0.9
C 5.440.6 2042

Table 10: SNI with GNOT or Geo-FNO as different choices of local operator for Laplace2d-Dirichlet
and Darcy2d. Validation errors are provided for reference.

Simple Domain: Disk. We provide the result of Laplace2d-Dirichlet on a simple disk domain in
Table[0] This result is comparable to these in Table[T]

Comparison with Graph-based Neural Networks (GNN). We provide the result of direct inference
with MeshGraphNets [2020). We train the GNN on our Laplace2d training data and
evaluate it on the domains A. We get a relative [5 error of 11.5%. We find that GNN does provide
better generalization across different domains compared to GNOT and it can be potentially used to
accelerate our iterative algorithm in our future work.

Choice of neural operator architecture. We provide results of SNI with Geo-FNO (2023)
on Laplace2d-Dirichlet and Darcy2d in Table[T0}

Solution and Error Visualization. We provide visualization for stationary problems in Section
] We visualize ground-truth solution from testing data, absolute error from SNI and GNOT direct
inference in Figure[I0] [TT]and[T2] We also provide the error visualization in Figure [[Aalong with the
decomposed domain to understand where the error is located.

24

Under review as a conference paper at ICLR 2026

I BROADER IMPACTS

First, the proposed framework holds the potential to serve as an alternative to conventional PDE
solving tools. Through its ability to address challenges related to geometry-generalization and data
efficiency, the framework offers advantages that can significantly improve the efficiency of PDE
solving. This improvement can have a positive impact on various industries, including engineering,
physics, and finance, where PDEs are extensively employed for modeling and simulation purposes.

Second, the proposed three-level hierarchy for PDE generalization provides researchers with valuable
directions for future exploration in neural operator research. This hierarchical structure offers a
framework to systematically address the challenges associated with generalizing neural operators to
new geometries and PDEs. By considering these three levels, researchers can focus on developing
techniques and methodologies that improve the adaptability, flexibility, and scalability of neural oper-
ators. Furthermore, current operator learning methods in the neural operator field are predominantly
driven by data and do not adequately consider the underlying PDE information. In our research, we
introduce domain decomposition into the neural operator domain to tackle the issue of geometric
generalization, incorporating traditional PDE approaches. This research direction presents significant
potential for further investigation.

0040

07
08
075 0035 o075
05
050 0030 050
o6 05
0025
000 000
0020 o4
04 — 025
03
oo 0015 050
— 075 02
0 0010
~ %5 odo o5 1o 15 z0

0005

o

os
.
o7
os
0s
0
os
- 02
; o1
P S S

Figure 10: Visualization of test dataset of Laplace2d-Dirichlet on domain A, B and C. The three
columns from left to right display the ground-truth solution, absolute error from SNI and GNOT
direct inference.

25

Under review as a conference paper at ICLR 2026

010

& 008
X 006
004

002

o5 o0 05 10 15 20

035

030

025

020

015

010

005

- 2 13 2 4

\ 4 15 005 0s
-a : . -
» 20
[7

Figure 11: Visualization of test dataset of Laplace2d-Mixed on domain A, B and C. The three
columns from left to right display the ground-truth solution, absolute error from SNI and GNOT
direct inference.

4

o

L

Figure 12: Visualization of test dataset of Darcy2d on domain A, B and C. The three columns from
left to right display the ground-truth solution, absolute error from SNI and GNOT direct inference.

26

Under review as a conference paper at ICLR 2026

07
05
05
04
03
02
s oo os 1o 15 20
08
005 4
07
004 05
2
05
003
o 04
002 03
-2
02
001
- o1
- -2 o 2 a

Figure 13: Visualization of test dataset of NonlinearPoisson2d on domain A, B and C. The three
columns from left to right display the ground-truth solution, absolute error from SNI and GNOT
direct inference.

Domain Decomposition Model Error

) 0 0.06
0.05
0.04
0.03
0.02
0.01
-4 -2 4 2 4
x

Figure 14: Visualization of error distribution together with decomposed domain for Laplace2d-
Dirichlet on domain B.

27

	Introduction
	Problem Formulation and Preliminaries
	Problem formulation
	Domain decomposition methods

	Operator Learning with Domain Decomposition
	Training Data Generation
	Local Operator Learning
	Schwarz Neural Inference
	Theoretical Results

	Experiments
	Experimental Setup
	Main Results and Analysis
	Ablation Experiments

	Related Work
	Conclusion and Future Works
	Background on Domain Decomposition
	Revisit on Operator Learning
	Proof of Theorem 1
	Time-Dependent Problems.
	Symmetries of PDEs
	Time Complexity
	Empirical Time Complexity
	Acceleration through Better Initialization

	Discussions
	Experiments
	Datasets
	Evaluation Protocol and Hyperparameters.
	Visualization of Basic Shapes and Domain Decomposition.
	Other Supplementary Results.

	Broader Impacts

