
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPERATOR LEARNING WITH DOMAIN DECOMPOSITION
FOR GEOMETRY GENERALIZATION IN PDE SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural operators have become increasingly popular in solving partial differential
equations (PDEs) due to their superior capability to capture intricate mappings
between function spaces over complex domains. However, the data-hungry nature
of operator learning inevitably poses a bottleneck for their widespread applications.
At the core of the challenge lies the absence of transferability of neural operators
to new geometries. To tackle this issue, we propose operator learning with domain
decomposition, a local-to-global framework to solve PDEs on arbitrary geometries.
Under this framework, we devise an iterative scheme Schwarz Neural Inference
(SNI). This scheme allows for partitioning of the problem domain into smaller
subdomains, on which local problems can be solved with neural operators, and
stitching local solutions to construct a global solution. Additionally, we provide a
theoretical analysis of the convergence rate and error bound. We conduct extensive
experiments on several representative linear and nonlinear PDEs with diverse
boundary conditions and achieve remarkable geometry generalization compared
to alternative methods. These analysis and experiments demonstrate the proposed
framework’s potential in addressing challenges related to geometry generalization
and data efficiency.

1 INTRODUCTION

Partial differential equation (PDE) solving is of paramount importance in comprehending natural
phenomena, optimizing engineering systems, and enabling multidisciplinary applications (Evans,
2022). The computational cost associated with traditional PDE solvers (Liu and Quek, 2013; Lu et al.,
2019) has prompted the exploration of learning-based methods as potential alternatives to overcome
these limitations. Neural operators (Li et al., 2020b; 2023; 2024; Liu et al., 2023; Hao et al., 2023),
as an extension of traditional neural networks, aim to learn mappings between the functional depen-
dencies of PDEs and their corresponding solution spaces. They offer highly accurate approximations
to classical numerical PDE solvers while significantly improving computational efficiency. Despite
its success, operator learning, as a data-driven approach, encounters the inherent ‘chicken-and-egg’
problem, revealing an interdependence between operator learning and the availability of data. This
dilemma arises from the challenge of simultaneously addressing the inefficiency of classical solvers
and acquiring an ample amount of data for neural operator training.

Existing works in alleviating the above challenges explore symmetries of PDEs. Lie point symmetry
data augmentation (LPSDA) (Brandstetter et al., 2022) generates potentially infinitely many new
solutions of PDE from existing solution by exploiting symmetries of differential operator defining the
PDE. Subsequent work (Mialon et al., 2023) applies LPSDA for self-supervised learning. However,
LPSDA only partially alleviate the problem in data efficiency and the problem of how to quickly
generalize to new geometry is untouched. While existing neural operators have shown capabilities in
handling diverse geometries through approaches such as geometry parametrization (Li et al., 2023)
or coordinate representation (Hao et al., 2023), they lack the ability to generalize to entirely novel
geometries that differ significantly from those present in the training data distribution. The inability
to quickly adapt neural operators to unseen geometries without further generating new data hinders
the applicability of neural operator learning to real-world problems in industry.

To tackle this challenge, a natural idea is to break down a domain into some basic shapes where
neural operator can generalize well. Domain decomposition methods (DDMs) (Toselli and Widlund,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2004; Mathew, 2008) provide the suitable tool for this purpose. Related efforts such as Mao et al.
(2024) have combined operator learning with DDMs on uniform grids to accelerate classical methods.
In contrast, our work aims to extend this paradigm to arbitrary geometries through a local-to-global
framework. This framework consists of three parts: (1) Training data generation: creation of random
basic shapes and imposition of appropriate boundary conditions on these shapes. This generated
data serves as the training set for the neural operator in our framework. (2) Local operator learning:
neural operator training to learn solutions on basic shapes. Data augmentation based on symmetries
of PDEs is utilized to enable the neural operator to capture the intricate details and variations within
these shapes. (3) Schwarz neural inference (SNI): a three-step algorithm for inference. Firstly, the
computational domain is partitioned into smaller subdomains. Then, the learned operator is applied
within each subdomain to obtain the local solution. Finally, an iterative process of stitching and
updating the global solution is performed using additive Schwarz methods.

Our Contributions. We summarize our contributions below:

• We introduce a local-to-global framework that integrates operator learning with domain
decomposition methods as an attempt in tackling the geometry generalization challenge in
operator learning.

• We design a novel data generation scheme that leverages random shape generation and
symmetries of PDEs to train local neural operators for solving PDEs on basic shapes.

• We propose an iterative inference algorithm, SNI, built upon a trained local neural operator
to obtain solutions on arbitrary geometries. We theoretically analyze the convergence and
the error bound of the algorithm for a wide range of elliptic PDEs. Through comprehensive
experiments, we empirically validate the effectiveness of our framework on generalizing to
new geometries for both linear and nonlinear PDEs.

2 PROBLEM FORMULATION AND PRELIMINARIES

In this section, we provide an introduction to the problem formulation and essential background on
domain decomposition methods, which will be utilized throughout the entirety of the paper.

2.1 PROBLEM FORMULATION

Our primary focus is on stationary problems of PDEs defined in the following form:

L(u) = f in Ω

u = uD on ΓD

∂u

∂n
= g on ΓN

(1)

where L is a partial differential operator and ΓD ∪ ΓN = ∂Ω denotes Dirichlet and Neumann
boundary, respectively. We assume all the domains Ω are bounded orientable manifolds embedded
in some ambient Euclidean space Rn (Li et al., 2023). Later we will extend our method to handle
time-dependent equations.

We consider situations where geometry of domain Ωinf at inference time is decoupled from that of
Ωtrain in training time, i.e., Ωinf does not have to fall in or resemble training geometries and can be of
arbitrary shapes. For implementation we will mainly focus on Ω ⊆ R2.

2.2 DOMAIN DECOMPOSITION METHODS

Domain decomposition methods (DDMs) solve Eq. 1 by decomposing domain into subdomains and
iteratively solve a coupled system of equations on each subdomain. An overlapping decomposition of
Ω is a collection of open subregions {Ωk}Kk=1, Ωk ⊆ Ω for k = 1, . . . ,K such that

⋃K
k=1 Ωk = Ω.

We denote V and {Vk}Kk=1 to be finite element space associated with domain Ω and {Ωk}Kk=1. We
can define restriction operators {Rk : V → Vk}Kk=1 restricting functions on Ω to {Ωk}Kk=1 and
extension operators {R⊺

k : Vk → V }Kk=1 extending functions on {Ωk}Kk=1 to Ω by zero.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Training

shape generation

Boundary
condition

boundary value problems

Solution
generation

Training samples

Data
augmentation

(optional)

Neural
operator
training

Augmented samples

Neural operator

Dirichlet boundary

Neumann boundary
Generated solution

(b) Schwarz Neural Inference (SNI)

Neural
Operator

Extension
&

Stitching

subdomains local solutions

global solution

update local artificial boundary condition

 𝒖(𝒏) → 𝒖(𝒏+𝟏)

Iterative Scheme

Global solution:

global solution

non-overlapping subdomains
overlapping subdomains
extention with d=1

non-overlapping subgraphs

extended subgraphs
subdomains

inference domain

Dirichlet and Neumann boundary

global boundary

artificial boundary

Global boundary condition:

Artificial boundary condition:

Other inputs: coefficients, source term

local solution:

local solution

Figure 1: An illustration of Operator Learning with Domain Decomposition Framework. (a) During
training stage, the goal is to ensure that the neural operator can effectively model the local solution
operator on various building blocks of shapes. These building blocks are selected and generated based
on specific criteria, allowing for a more efficient and targeted learning process. Proper boundary
conditions are then imposed to generate local solutions which serve as training data for neural
operator. (b) During inference, for an arbitrary given domain, an automated decomposition algorithm
is employed to decompose the domain into subdomains. By leveraging the trained local operator
and Schwarz Neural Inference (SNI), global solution can be obtained by stitching local solutions on
subdomains.

In the subsequent discussion, we revisit the idea of additive Schwarz method (ASM) in DDMs for
overlapping decomposition. The additive Schwarz-Richardson iteration (Mathew, 2008) has the
following form:

un+1 = un + τ

K∑
k=1

[
R⊺

kw
n+1
k −R⊺

kRku
n
]

(2)

where 0 < τ < 1
K is a hyperparameter controlling the convergence rate, and wn+1

k is the solution of
the following equation:

L(wn+1
k) = 0 in Ωk

wn+1
k = uD on ∂Ωk ∩ ΓD

∂wn+1
k

∂n
= g on ∂Ωk ∩ ΓN

wn+1
k = un on ∂Ωk ∩ Ω

(3)

We denote the local operator Sk : (un, uD, g) 7→ wn+1
k . Note that the first two boundary conditions

in Eq. 3 is the boundary condition on the global boundary part of ∂Ωk and is not updated during
iteration. The last boundary condition is along the artificial boundary created by decomposition and
the value is updated through iteration. Hence {Sk}Kk=1 can be considered as a single-input operator
when the global boundary condition and decomposition are determined. This iterative process can be
shown to converge for FEMs under mild assumption on properties of equation and decomposition.
Please refer to Appendix A for more details.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 OPERATOR LEARNING WITH DOMAIN DECOMPOSITION

In order to solve PDE on arbitrary geometry with neural operator, a natural idea is to decompose
domain into a prescribed family of building blocks (basic shapes) since it is not feasible to explicitly
consider arbitrary shapes during training stage. For that purpose, we propose to train a neural operator
to solve local problems on basic shapes and stitch local solutions together to get a global solution.
An illustration of the proposed framework is presented in Figure 1. A detailed implementation will
be discussed in the following subsections.

3.1 TRAINING DATA GENERATION

Data generation serves the purpose of operator learning, which fundamentally aims to approximate
the local solution operator G : P ×H → U . Here, P denotes the space of basic shapes, H represents
boundary conditions and other input functions, U represents the solution space. Next we will delve
into a comprehensive examination of how P and H are determined separately.

Choice of basic shapes. The selection of basic shapes cannot be arbitrary due to the requirement
of ensuring the neural operator’s capability in solving local problems across a wide range of shapes.
To address this issue, we need to specify a probability space (P, µ) where µ denotes the probability
distribution over P . Moreover, two necessary criteria should be set forth for basic shape generation:
(1) sampling feasibility: it should be tractable to sample from µ and solve boundary value problems
on shapes in P . (2) complete coverage: basic shapes in P should be flexible to cover any shape of
domain.

For implementation, we focus on Ω ⊆ R2. We propose to use the space Ps(n) of simple poly-
gons with at most n vertices (i.e. planar polygon without self-intersection and holes) uniformly
bounded by a compact region in R2. Simple polygons are Lipschitz domains with straightforward
sampling method (Auery and Heldz, 2019) and flexible enough to constitute any discretized planar
domain (Preparata and Shamos, 2012). We note, however, that this is not the only choice of these
basic shapes. We could equally use convex polygons, star-shaped polygons, etc. as long as the two
aforementioned criteria are satisfied.

Imposing boundary conditions. The imposition of boundary conditions presents two complications:
(1) Types of boundary conditions. Neumann boundary conditions in Eq. 1 will inevitably result
in mixed boundary conditions in local subdomains. To generate solutions with mixed boundary
conditions, we randomly divide the boundary of a basic shape into two connected components,
representing the Dirichlet and Neumann boundaries, respectively. During inference, we have to
carefully set hyperparameters for decomposition to make sure boundary of subdomains have at
most two connected components for Dirichlet and Neumann boundaries. (2) Functional range of
boundary conditions. In general, the inference process for subdomains will encounter arbitrary ranges
in boundary conditions. However, it is practically infeasible to train the neural operator to handle
unbounded boundary values. Instead, we generate random functions with values normalized within a
bounded range for both boundary conditions and other input functions such as coefficient fields and
source terms. We will handle this complication with symmetries of PDEs during inference.

3.2 LOCAL OPERATOR LEARNING

We now train a neural operator G† to approximate the mapping G. Our focus is not on design of
neural operators, but on ensuring that the neural operator can solve local problems accurately.

Choice of neural operator architecture. Our framework is orthogonal to the choice of neural
operator architecture as long as the architecture can accommodate flexible input/output formats and
possesses sufficient expressive power to solve local problem with randomly varying domain and
input functions. For implementation, we adopt GNOT (Hao et al., 2023) which is a highly flexible
transformer-based neural operator. We note that, however, training neural operator on highly varying
geometries presents challenges to both design of architectures and training schemes.

Data augmentation. To enhance the generalization capabilities of the neural operator, Lie point
symmetry data augmentation (LPSDA) (Brandstetter et al., 2022) can be naturally applied to local
solutions during training. Examples of such transformations are rotation and scaling. It is crucial
to appropriately extend these transformations to boundary conditions and other input functions,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Schwarz Neural Inference

Input: Domain Ω; Global Boundary Condition B; Other input functions H; Number of Subdomains
K; Depth of Extension d; Local Operator G†; Step Size τ ; Convergence Criterion C;

Output: Global Solution u;
1: Apply METIS and extension to get overlapping decomposition {Ωk}Kk=1, obtain restriction

operators {Rk}Kk=1 and extension operators {R⊺
k}Kk=1;

2: Initialize the global solution u0;
3: while convergence criterion C not satisfied do
4: update local boundary condition {Bn

k }Kk=1 by global boundary condition B and last-step
global solution un;

5: obtain the preprocessing {Tk}Kk=1 and postprocessing transformations {T̃k}Kk=1;
6: inference on each subdomain using local operator: w̃n+1

k = T̃k ◦ G† ◦ Tk(Ωk, B
n
k);

7: extend local solution: wn+1 =
∑K

k=1 R
⊺
kw̃

n+1
k + (I −R⊺

kRk)u
n;

8: update global solution: un+1 = (1− τK)un + τwn+1;
9: n = n+ 1;

10: end while
11: return un;

taking into account the symmetries inherent in the PDEs. Please refer to Appendix E for a detailed
discussion.

3.3 SCHWARZ NEURAL INFERENCE

Inspired by additive Schwarz method, we introduce a similar iterative algorithm called Schwarz
Neural Inference (SNI), which is outlined in Algorithm 1. In the subsequent discussion, we will
explore several important considerations.

Decomposition into overlapping subdomains. In general, there is no natural methods to decompose
an arbitrary domain into desired shapes, and here we adopt the common practice in DDM litera-
ture (Mathew, 2008). We assume there exists a pre-defined triangulation Th(Ω) of the domain Ω,
and a graph can be constructed to represent the connectivity of this triangulation. A graph partition
algorithm such as METIS (Karypis and Kumar, 1997) is then employed to partition this graph into
K non-overlapping connected subgraphs with index sets Ĩ1, . . . , ĨK . To achieve an overlapping
decomposition, each subgraph is then extended iteratively by including neighboring vertices for d
iterations. This process generates index sets I1, . . . , IK that, together with the original mesh, form an
overlapping decomposition denoted as {Ωk}Kk=1. An intuitive illustration of this process is depicted
in Figure 1.

For implementation, partition number K and extension depth d are hyperparameters that should be
carefully set to ensure that the resulting subdomains resemble shapes in P .

Normalization. During inference on an arbitrary decomposed subdomain, the range of geometry
and boundary conditions may differ from that of the generated training data. We thus leverage the
symmetry properties of PDEs to handle this mismatch. More specifically, we can directly apply
transformations T : P × H → P × H such as spatial translation and scaling laws to transform
a local problem outside our training range - geometry or function values - into the training range.
Note that the transformations have to be extended to any coefficient fields or source term if they
are also involved in the symmetry. After neural operator inference, the resulting solution function
will be transformed back by a proper inverse transformation T̃ : U → U . We implement these
transformations as preprocessing and postprocessing steps in the inference pipeline.

Time Complexity. Suppose the single inference time of local operator and the number of iterations
are denoted as b and N . Let v, e,K denote the number of vertices, edges and subdomains respectively.
Our Algorithm 1 consists of two main parts: mesh partition using the METIS algorithm, the time
complexity of which is approximately O(v + e +K logK) (Karypis and Kumar, 1997); iterative
scheme using the additive Schwarz method with a time complexity roughly O(bKN). Therefore, the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

overall time complexity of our algorithm can be approximated as O(v + e+K logK + bKN)1. In
practice, K may not be independent of v and e. More vertices can sometimes lead to more partitions
required depending on the property of mesh. While providing an exact time complexity analysis for
FEM can be challenging due to the complexity and variability of different problem setups, it is worth
noting that FEM is generally considered to be computationally demanding.

3.4 THEORETICAL RESULTS

Here we provide a theoretical analysis of our proposed algorithm by stating the following result:
Theorem 1. Assume the operator L in Eq. 1 is self-adjoint and coercive elliptic partial differential
operator (Mathew, 2008). Let u and ũ denote the solution obtained by classical additive Schwarz
method given Eq. 2 and SNI in Algorithm 1, respectively, with the same initial condition u0 = ũ0.
Assume ∥ T̃k ◦ G† ◦ Tk(·)− Sk(·) ∥< c for all k, and if the classical algorithm converges, then we
have:

• Convergence: SNI converges to a fixed point;

• Error bound: there exists a constant c′ (depending on c) such that ∥ ũn − un ∥< c′.

The theorem suggests that if our learned local operator maintains a uniform error bound, the algorithm
converges and exhibits a minimal approximation error. See Appendix C for a proof. This result relies
on the assumption on operator L. In general, such convergence is not guaranteed and we empirically
validate the effectiveness of our framework for nonlinear differential equation through experiment.

4 EXPERIMENTS

In this section, we perform comprehensive experiments to showcase the effectiveness of our method
on various challenging datasets.

4.1 EXPERIMENTAL SETUP

Datasets. To demonstrate the scalability and superiority of our method, we construct several
datasets on multiple PDEs. We also extend our framework to a time-dependent problem, heat
conduction. To aggregate training sets, we generate random simple polygons bounded by the unit
square [−0.5, 0.5]2 ⊂ R2. Boundary/initial conditions and coefficient functions are piecewise linear
functions determined by random values within [0, 1]. For each of the following problems, we test on
datasets based on three different domains A, B and C shown in Figure 2. Details of these datasets are
given in Appendix H.1.

• Laplace2d-Dirichlet: Laplace equation in 2d with pure Dirichlet boundary condition on
various shapes.

• Laplace2d-Mixed: Laplace equation in 2d with mixed Dirichlet and Neumann boundary
condition on various shapes.

1With neural operators implementing linear transformers, e.g., GNOT applied in this work, b = O(v
K
).

Figure 2: Illustration of experiment domain A, B, C from left to right respectively.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Equation Domain GNOT(%) SNI(%)

Laplace2d-Dirichlet
A 22±2 2.2±0.6
B 22±2 2.1±0.4
C 28±3 2.1±0.9

Laplace2d-Mixed
A 10.7±0.8 6±4
B 10.7±0.8 7±1
C 38±6 6±1

Darcy2d
A 16±1 8±2
B 63±3 8±2
C 167±8 5.4±0.6

Heat2d
A 11.5±0.6 5.3±0.2
B 30±10 11±2
C 20±10 5.8±0.3

NonlinearLaplace2d
A 22±2 2.0±0.4
B 26±2 2.2±0.4
C 28±2 2.2±0.5

Table 1: Main results. The l2 relative errors along with standard deviation over different random
boundary/initial conditions on three domains are reported.

• Darcy2d: Darcy flow in 2d with coefficient field a(x), source term f(x) and pure Dirichlet
boundary condition on various shapes.

• Heat2d: Time-dependent heat equation in 2d with a coefficient α for thermal diffusivity,
initial condition and time-varying pure Dirichlet boundary condition on various shapes.

• NonlinearLaplace2d: A nonlinear Laplace equation in 2d with pure Dirichlet boundary
condition on various shapes.

Baseline. Our baseline is a direct inference of the trained neural operator on domains shifted and
scaled to [−0.5, 0.5]2 with boundary/initial conditions and coefficient functions adjusted accordingly.

Evaluation Protocol. The evaluation metric we utilize is the mean l2 relative error. See Appendix H.2
for details.

4.2 MAIN RESULTS AND ANALYSIS

The main results for all datasets are shown in Table 1. More details and hyperparameters are
summarized in Appendix H.2 due to limited space. Based on these results, we have the following
observations.

Stationary Problems. First, we find that our method performs significantly better on all stationary
problems compared with baseline. On all domains, we reduce prediction error by 34.8%-96.8%. The

0.0 0.5 1.0 1.5 2.0
Training set size ×104

0.0

0.1

0.2

L2
 re

la
tiv

e
er

ro
r

(a) Lap2d-D domain A

0.0 0.5 1.0 1.5 2.0
Training set size ×104

0.1

0.2

L2
 re

la
tiv

e
er

ro
r

(b) Lap2d-D domain B

0.0 0.5 1.0 1.5 2.0
Training set size ×104

0.0

0.1

0.2

0.3

L2
 re

la
tiv

e
er

ro
r

Val
SNI
GNOT

(c) Lap2d-D domain C

Figure 3: Comparison between the l2 relative errors from SNI (blue), GNOT direct inference (orange)
and validation (red) on Laplace2d-Dirichlet upon three domains (A, B and C) with different numbers
of training samples. The results of SNI and GNOT direct inference are presented based on 100
inferences with different boundary conditions. The best validation errors during training are also
provided as a reference.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Nubmer of iterations

0.0

0.2

0.4

0.6

0.8

L2
 re

la
tiv

e
er

ro
r 10 parts

20 parts
30 parts
40 parts
50 parts

(a) d = 2, τ = 0.04, varying K

0 1000 2000 3000 4000 5000
Nubmer of iterations

0.0

0.2

0.4

0.6

0.8

L2
 re

la
tiv

e
er

ro
r depth 1

depth 2
depth 4
depth 8

(b) K = 20, τ = 0.04, varying d

0 1000 2000 3000 4000 5000
Nubmer of iterations

0.00

0.25

0.50

0.75

1.00

L2
 re

la
tiv

e
er

ro
r tau = 0.01

tau = 0.02
tau = 0.03
tau = 0.04

(c) K = 20, d = 2, varying τ

Figure 4: Comparison between convergence rate of SNI on Laplace2d-Dirichlet domain A.

excellent performance shows the effectiveness of our framework in dealing with arbitrary geometries
unseen during training. In particular, our framework usually leads by a larger margin on more
complicated domain, due to the fact that simple polygons used in the training data fail to adequately
resemble the complex testing domains. Solutions on multiply connected domains usually exhibit
characteristics that are not present on simple domains.

Second, we find that the the performance of our method is consistent across various geometries
during inference. On all types of PDEs in our datasets, the difference in prediction error over various
geometries is within 3.25%, showing the ability to solve PDE with consistent accuracy on various
geometries with a single trained neural operator. This also provides evidence for our theoretical
result in Theorem 1 where we show that the SNI ensure the convergence to an approximation of the
ground-truth solution with error bound determined by the generalization error of the neural operator.

Third, we find that complexity of the PDE together with types of boundary condition affect the
generalizability of the neural operator in solving local problems and thus also the accuracy of our
method. For simple problem such as Laplace2d-Dirichlet, our method achieve a 59.8% lower error
compared to other problems. For Laplace2d-Mixed, neural operator struggles to capture subtlety in
presence of both Dirichlet and Neumann boundaries. The complexity of Darcy2d lies in the need to
capture changes in coefficient and source term in addition to geometry and boundary condition. We
argue that having a strong neural operator that can generalize well on all basic shapes and boundary
conditions is necessary for our framework to work with reasonable accuracy.

Time-dependent Problems. There is a natural way to extend our framework to time-dependent
problems (Li and Cai, 2015) where a space-time decomposition is constructed by taking the product
of a spatial decomposition and a temporal decomposition. We train a neural operator that can predict
heat conduction on multiple time steps and the same SNI is applied during inference on this 3d
problem. Our framework works well on this problem and reduce prediction error by 54.1%-74.2%.
This demonstrates the potential of our framework to handle time-dependent problems. We refer to
Appendix D for detailed implementation.

Data Efficiency. The exploration results on data efficiency of SNI are shown in Figure 3, implying
the following observations: (1) At all abundances of data, the l2 relative errors of SNI are significantly
lower than those of GNOT direct inferences; (2) Errors of SNI are comparable to or even lower
than validation errors at large data volumes. (3) SNI requires much smaller datasets to achieve
comparable results to GNOT direct inference. Overall, these results demonstrate that SNI has
substantial advantages in terms of data efficiency. Our proposed framework possesses remarkable
ability to extract more insights from limited data and scale more effectively as data volumes increase.
More supplementary results are provided in Appendix H.4.

4.3 ABLATION EXPERIMENTS

Hyperparameter Exploration. The number of partitions (K), the depth of extension (d) and step
size (τ) are the key main hyperparameters that can affect the performance of SNI. Based on the
results presented in Figure 4, the factors analyzed have no significant impact on the accuracy of our
algorithm, but they do influence the convergence rate. Specifically, increasing the number of partitions
leads to a smaller l2 relative error but slower convergence. Once the partition number surpasses 20,
the algorithm’s final performances become comparable. Regarding the depth of extension, it does not
affect the performance on the tested domains. The convergence curves for depth of extension 1, 2, 4,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and 8 are nearly identical. When it comes to τ , a larger value results in faster convergence. However,
it is important to note that there exists a maximum limit 1/K beyond which τ cannot be set.

Data Augmentation Exploration. To explore the effects of data augmentation, we compare the
performances of models trained with different degrees of data augmentation for Laplace2d-Dirichlet
demonstrated in Table 2. For models trained without data augmentation, the variation of performances
on different domains is large, ranging from 2.8% to 4.4%. Specifically, it reports a 4.4 ± 1.6% l2
relative error on domain A, while this error can be reduced to 1.9± 0.4% with a rotation+[0.8, 1]
scaling augmentation. While rotation can generally be beneficial, the effectiveness of scaling can
sometimes be limited or even detrimental. Hence, it is important to apply data augmentation with
caution and consider its suitability for different types of PDEs.

Choice of neural operator architecture. To explore the choice of neural operator architecture in our
framework, we train a Geo-FNO (Li et al., 2023) on Laplace2d-Dirichlet and apply SNI for inference
on domains A, B and C to get l2 relative error of 9 ± 3%, 13 ± 1% and 13 ± 3%. This result is
comparable to that achieved by SNI with GNOT and demonstrates that our proposed framework
works with various choices of neural operator architecture. However, an error gap does exists between
SNI with GNOT and Geo-FNO due to variations in their generalizability. This is also reflected in their
respective best validation errors, as detailed in Appendix H.4. Supplementary results on Darcy2d are
also provided there.

5 RELATED WORK

Operator Learning. The idea of operator learning is first introduced in Lu et al. (2019). This work
proposes a notable architecture called DeepONet, which employs a branch network for processing
input functions and a trunk network for handling query points. Adopting the trunk-branch architecture
and utilizing the attention mechanism, Hao et al. (2023) develops GNOT to handle irregular mesh,
multiple input functions, and different input data types. The high accuracy and versatility makes
GNOT the benchmark in our work. In the other direction, Fourier neural operator (FNO) (Li et al.,
2020b) leverages the Fast Fourier Transform (FFT) to learn operators in the spectral domain, and
achieves a favorable trade-off between cost and accuracy. Variants of FNO are proposed to reduce
computational cost (FFNO in Tran et al. (2021)), handle irregular mesh (Geo-FNO in Li et al. (2023)),
and improve expressivity (UFNO in Wen et al. (2022)).

Methods to Deal with Complex Geometry. Several approaches have been proposed to tackle the
challenge of complex geometry and save the process efforts in operator learning. One encoder-process-
decoder framework called CORAL (Serrano et al., 2023) is able to encode a complex geometry into
a lower dimensional representation to save the computational efforts and solve different types of
problems. In (Wu et al., 2024), one mechanism called physics attention is proposed to aggregate
complex input geometry and functions into several physics-aware tokens to reduce the number of
tokens to deal with. AROMA (Serrano et al., 2024) introduces a diffusion refiner in latent space to
solve temporal problems with complex geometries.

Domain Decomposition Methods Applied in Deep Learning. In general, the integration of deep
learning and DDMs can be categorized into two groups (Heinlein et al., 2021; Klawonn et al.,
2024). The first category involves using deep learning techniques to improve the convergence
properties or computational efficiency of DDMs. For instance, Mao et al. (2024) proposes to combine
operator learning with DDMs on uniform grids in order to accelerate traditional DDMs. Several

Validation(%) Domain A(%) Domain B(%) Domain C(%)
No Data Aug 3.79 4±2 3.0±0.6 3±1
Rotation Only 2.50 2.2±0.6 2.1±0.4 2.1±0.9

Rotation + Scale
[0.2, 1] 5.31 4±1 3.4±0.5 3.4±0.4
[0.5, 1] 3.62 2.7±0.5 3.7±0.6 3.2±0.6
[0.8, 1] 2.86 1.8±0.4 3.3±0.7 2.8±0.8

Table 2: Comparison between models trained with different data augmentations for Laplace2d-
Dirichlet.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

methods (Heinlein et al., 2020; 2019) have also been proposed to reduce the computational cost
in adaptive FETI-DP solvers by incorporating deep neural networks while ensuring the robustness
and convergence behavior. The second category is centered around the substitution of subdomain
solvers in DDMs with neural networks. There have been multiple endeavors to employ PINNs
(XPINNs (Jagtap and Karniadakis, 2020), parallel inference with cPINNs and XPINNs (Shukla et al.,
2021)) or Deep Ritz methods as alternatives to subdomain solvers or discretization techniques in
traditional DDMs (Li et al., 2020a; 2019; Jiao et al., 2021). These approaches leverage the universal
approximation capabilities of neural networks to represent solutions of PDEs, subject to specific
assumptions regarding the activation function and other factors.

Data Augmentation Techniques in Operator Learning. Different types of data augmentations
are proposed to improve the generalization capabilities in operator learning. A Lie point symmetry
framework is introduced in Brandstetter et al. (2022), which quantitatively derives a comprehensive
set of data transformations, to reduce the sample complexity. Motivated by this approach, Mialon et al.
(2023) learn general-purpose representations of PDEs from heterogeneous data by implementing joint
embedding methods for self-supervised learning. An alternative research approach (Fanaskov et al.,
2023) introduces a computationally efficient augmentation strategy that relies on general covariance
and straightforward random coordinate transformations. In general, applying data augmentation
techniques for PDE operator learning can be challenging due to the unique nature of PDE theory.

6 CONCLUSION AND FUTURE WORKS

We presented a local-to-global framework based on DDMs to address the geometry generalization and
data efficiency issue in operator learning. Our framework includes a novel data generation scheme
and an iterative inference algorithm SNI. Additionally, we provided a theoretical analysis of the
convergence and error bound of the algorithm. We conducted extensive experiments to demonstrate
the effectiveness of our framework and validate our theoretical result. For future works, the rich
literature of DDMs when combined with operator learning provides many potential directions to
handle higher-dimensional problems, non-overlapping decomposition and more challenging types of
equations.

REPRODUCIBILITY STATEMENT

Detailed descriptions of the experimental setup, task definitions, and evaluation metrics are provided
in section 4 and Appendix H. Source code is attached in the submission.

REFERENCES

Auery, T. and Heldz, M. (2019). Rpg - a software package for the generation of random polygons.

Baratta, I. A., Dean, J. P., Dokken, J. S., Habera, M., Hale, J. S., Richardson, C. N., Rognes, M. E.,
Scroggs, M. W., Sime, N., and Wells, G. N. (2023). DOLFINx: the next generation FEniCS
problem solving environment. preprint.

Brandstetter, J., Welling, M., and Worrall, D. E. (2022). Lie point symmetry data augmentation for
neural pde solvers. In International Conference on Machine Learning, pages 2241–2256. PMLR.

Evans, L. C. (2022). Partial differential equations, volume 19. American Mathematical Society.

Fanaskov, V., Yu, T., Rudikov, A., and Oseledets, I. (2023). General covariance data augmentation
for neural pde solvers. arXiv preprint arXiv:2301.12730.

Gander, M. J. et al. (2008). Schwarz methods over the course of time. Electron. Trans. Numer. Anal,
31(5):228–255.

Geuzaine, C. and Remacle, J.-F. (2008). Gmsh: a three-dimensional finite element mesh generator
with built-in pre-and post-processing facilities.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S., Cheng, Z., Song, J., and Zhu, J. (2023).
Gnot: A general neural operator transformer for operator learning. In International Conference on
Machine Learning, pages 12556–12569. PMLR.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Heinlein, A., Klawonn, A., Lanser, M., and Weber, J. (2019). Machine learning in adaptive domain
decomposition methods—predicting the geometric location of constraints. SIAM Journal on
Scientific Computing, 41(6):A3887–A3912.

Heinlein, A., Klawonn, A., Lanser, M., and Weber, J. (2020). Machine Learning in Adaptive
FETI-DP–A Comparison of Smart and Random Training Data. Springer.

Heinlein, A., Klawonn, A., Lanser, M., and Weber, J. (2021). Combining machine learning and
domain decomposition methods for the solution of partial differential equations—a review. GAMM-
Mitteilungen, 44(1):e202100001.

Jagtap, A. D. and Karniadakis, G. E. (2020). Extended physics-informed neural networks (xpinns):
A generalized space-time domain decomposition based deep learning framework for nonlinear
partial differential equations. Communications in Computational Physics, 28(5):2002–2041.

Jiao, A., He, H., Ranade, R., Pathak, J., and Lu, L. (2021). One-shot learning for solution operators
of partial differential equations. arXiv preprint arXiv:2104.05512.

Karypis, G. and Kumar, V. (1997). Metis: A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices.

Klawonn, A., Lanser, M., and Weber, J. (2024). Machine learning and domain decomposition
methods-a survey. Computational Science and Engineering, 1(1):2.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar,
A. (2023). Neural operator: Learning maps between function spaces with applications to pdes.
Journal of Machine Learning Research, 24(89):1–97.

Langtangen, H. P. and Logg, A. (2017). Solving PDEs in python: the FEniCS tutorial I. Springer
Nature.

Li, K., Tang, K., Wu, T., and Liao, Q. (2019). D3m: A deep domain decomposition method for partial
differential equations. IEEE Access, 8:5283–5294.

Li, S. and Cai, X.-C. (2015). Convergence analysis of two-level space-time additive schwarz method
for parabolic equations. SIAM Journal on Numerical Analysis, 53(6):2727–2751.

Li, W., Xiang, X., and Xu, Y. (2020a). Deep domain decomposition method: Elliptic problems. In
Mathematical and Scientific Machine Learning, pages 269–286. PMLR.

Li, Z., Huang, D. Z., Liu, B., and Anandkumar, A. (2023). Fourier neural operator with learned
deformations for pdes on general geometries. Journal of Machine Learning Research, 24(388):1–
26.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar,
A. (2020b). Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895.

Li, Z., Kovachki, N., Choy, C., Li, B., Kossaifi, J., Otta, S., Nabian, M. A., Stadler, M., Hundt, C.,
Azizzadenesheli, K., et al. (2024). Geometry-informed neural operator for large-scale 3d pdes.
Advances in Neural Information Processing Systems, 36.

Liu, G.-R. and Quek, S. S. (2013). The finite element method: a practical course. Butterworth-
Heinemann.

Liu, S., Hao, Z., Ying, C., Su, H., Cheng, Z., and Zhu, J. (2023). Nuno: A general framework
for learning parametric pdes with non-uniform data. In International Conference on Machine
Learning, pages 21658–21671. PMLR.

Lu, L., Jin, P., and Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for identifying
differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mao, C., Lupoiu, R., Dai, T., Chen, M., and Fan, J. A. (2024). Towards general neural surrogate
solvers with specialized neural accelerators. In Proceedings of the 41st International Conference
on Machine Learning, ICML’24. JMLR.org.

Mathew, T. P. (2008). Domain decomposition methods for the numerical solution of partial differential
equations. Springer.

Mialon, G., Garrido, Q., Lawrence, H., Rehman, D., LeCun, Y., and Kiani, B. (2023). Self-supervised
learning with lie symmetries for partial differential equations. Advances in Neural Information
Processing Systems, 36:28973–29004.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. (2020). Learning mesh-based
simulation with graph networks. In International conference on learning representations.

Preparata, F. P. and Shamos, M. I. (2012). Computational geometry: an introduction. Springer
Science & Business Media.

Richardson, L. F. (1911). Ix. the approximate arithmetical solution by finite differences of physical
problems involving differential equations, with an application to the stresses in a masonry dam.
Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, 210(459-470):307–357.

Scroggs, M. W., Baratta, I. A., Richardson, C. N., and Wells, G. N. (2022a). Basix: a runtime finite
element basis evaluation library. Journal of Open Source Software, 7(73):3982.

Scroggs, M. W., Dokken, J. S., Richardson, C. N., and Wells, G. N. (2022b). Construction of arbitrary
order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes. ACM
Transactions on Mathematical Software, 48(2):18:1–18:23.

Serrano, L., Le Boudec, L., Kassaï Koupaï, A., Wang, T. X., Yin, Y., Vittaut, J.-N., and Gallinari, P.
(2023). Operator learning with neural fields: Tackling pdes on general geometries. Advances in
Neural Information Processing Systems, 36:70581–70611.

Serrano, L., Wang, T. X., Le Naour, E., Vittaut, J.-N., and Gallinari, P. (2024). Aroma: Preserving
spatial structure for latent pde modeling with local neural fields. Advances in Neural Information
Processing Systems, 37:13489–13521.

Shukla, K., Jagtap, A. D., and Karniadakis, G. E. (2021). Parallel physics-informed neural networks
via domain decomposition. Journal of Computational Physics, 447:110683.

Toselli, A. and Widlund, O. (2004). Domain decomposition methods-algorithms and theory, vol-
ume 34. Springer Science & Business Media.

Tran, A., Mathews, A., Xie, L., and Ong, C. S. (2021). Factorized fourier neural operators. arXiv
preprint arXiv:2111.13802.

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., and Benson, S. M. (2022). U-fno—an
enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances in
Water Resources, 163:104180.

Wu, H., Luo, H., Wang, H., Wang, J., and Long, M. (2024). Transolver: A fast transformer solver for
pdes on general geometries. arXiv preprint arXiv:2402.02366.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A BACKGROUND ON DOMAIN DECOMPOSITION

Domain decomposition is a widely used technique in computational science and engineering that
enables the efficient solution of large-scale problems by dividing the computational domain into
smaller subdomains. This approach is particularly beneficial when dealing with complex problems that
cannot be solved using a single computational resource. The main idea behind domain decomposition
is to break down a large computational domain into smaller, more manageable subdomains. These
subdomains can be arranged in a variety of ways, such as overlapping or non-overlapping, depending
on the specific problem and the desired computational approach.

In this work, we decompose our domain into subdomains and adopt the hybrid formulation of Eq. 1
following Mathew (2008, Section 1.1). A decomposition of Ω is a collection of open subregions
{Ωk}Kk=1, Ωk ⊆ Ω for k = 1, . . . ,K such that

⋃K
k=1 Ωk = Ω. This decomposition is referred

to as non-overlapping if in addition, Ωi ∩ Ωj = ∅ for any i ̸= j. Alternatively, an overlapping
decomposition is one satisfying

⋃K
k=1 Ωk = Ω. Typically, a non-overlapping decomposition is one

where subdomains do not intersect with each other in the interior while an overlapping decomposition
constructed in practice has overlapping neighboring subdomains.

Given a decomposition of Ω, a hybrid formulation of Eq. 1 is a coupled system of local PDEs on
subdomains Ωk equivalent to Eq. 1 satisfying two requirements. First, the restriction uk(x) of the
solution u(x) of Eq. 1 to each domain Ωk must solve the local PDE, thus ensures that the hybrid
formulation is consistent with the original problem in Eq. 1. Second, the hybrid formulation must be
well posed as a coupled system of PDEs in the sense of Evans (2022), i.e. its solution must exist, be
unique and depend continuously on given input function and boundary/initial conditions. Intuitively,
a hybrid formulation consists of a local problem posed on each subdomain and matching conditions
that couples the local problems.

In this work we focus on the earliest and most elementary formulation termed Schwarz hybrid
formulation (Mathew, 2008, Section 1.2) based on overlapping decomposition and is applicable to
a wide class of self-adjoint and coercive elliptic equations. Given an overlapping decomposition,
∂Ωk can be decomposed into two disjoint parts. One (possibly empty) part Γk = ∂Ωk ∩ ∂Ω is
located in the boundary of Ω and the global boundary condition should be imposed. The other part
Bk = ∂Ωk ∩Ω is a nonempty artificial boundary from the overlapping decomposition and a Dirichlet
boundary condition from the coupling of local problems is imposed.

We refer to Mathew (2008) for a strict definition. As an illustrative example, assume we have an
overlapping decomposition with K = 2 and consider as the original problem Laplace equation with
mixed Dirichlet and Neumann boundary conditions. The following coupled system of two local
PDEs is a Schwarz hybrid formulation of the original problem and solving the original equation is
equivalent to solving this coupled system.

∆u1 = 0 in Ω1

u1 = u2|∂Ω1
on ∂Ω1 ∩ Ω

u1 = uD on ∂Ω1 ∩ ΓD

∂u1

∂n
= g on ∂Ω1 ∩ ΓN

and

∆u2 = 0 in Ω2

u2 = u1|∂Ω2
on ∂Ω2 ∩ Ω

u2 = uD on ∂Ω2 ∩ ΓD

∂u2

∂n
= g on ∂Ω2 ∩ ΓN

Based on the Schwarz hybrid formulation, there are various iterative schemes with different paral-
lelism and convergence rate. In the subsequent discussion, our focus is primarily on introducing the
additive Schwarz methods (ASM). The ASM is a highly parallel algorithm (Mathew, 2008) in solving
the coupled system from Schwarz hybrid formulation. We briefly introduce ASM with finite element
methods and refer to Gander et al. (2008) and Mathew (2008) for details.

Assume that under weak formulation of Eq. 1 and finite element space V , Eq. 1 has the form Au = f
where A is the stiffness matrix. Given an overlapping decomposition {Ωi}Kk=1 compatible with the
finite element space on Ω, we have V =

∑K
k=1 Vk as sum of local finite element subspaces Vk on Ωk

and we can define local stiffness matrices Ak : Vk → Vk, restriction operators {Rk}Kk=1 restricting
V to Vk and extension operators {R⊺

k}Kk=1 extending Vk to V by zeros extension. We then define
operators Pk : V → V by Pk = R⊺

kA
−1
k RkA. Additive Schwarz operator is then defined as the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

sum Pad =
∑K

k=1 Pk. This operator can be show to be self-adjoint and coercive and we have the
following equivalence.

Au = f ⇐⇒ Padu =

K∑
k=1

R⊺
kA

−1
k Rkf (4)

We note that the right hand side of Eq. 4 is a preconditioned version of the left hand side. The
Richardson iteration for this preconditioned problem has the following form.

un+1 = un + τ

K∑
k=1

R⊺
kA

−1
k Rk(f −Aun) (5)

In the composite operator R⊺
kA

−1
k Rk, the operator Rk first restrict a function to Ωk, A−1

k solve
the local problem and R⊺

k extend the local solution to Ω. This iterative process can be shown to
converge by estimating bound on condition number of Pad under mild assumptions on equation and
decomposition.

B REVISIT ON OPERATOR LEARNING

The goal of operator learning is to learn a mapping G : A → U between two infinitely dimensional
spaces (Kovachki et al., 2023). When applied to PDEs, U is the solution space of a PDE and A is the
space of functions that determine a unique solution of a PDE. Examples of A are coefficient functions
or boundary/initial conditions that defines the PDE and parameters that determine the geometry of
domain.

In our study, we decompose any domain into subdomains each of which lives in a distinguished class
of basic shapes P . We assume all shapes in P have Lipschitz boundary and are uniformly bounded,
i.e., they are all bounded by a ball D ⊆ Rn. We are interested in solving boundary value problems in
Eq. 1 in any domain Ω ∈ P with any appropriate boundary condition. We thus separate geometry
and boundary conditions from other inputs and represent the input function space of the operator
as A = P × Hk(D) × H where Hk(D) is the Sobolev space W k,2(D). The space P × Hk(D)
represents the geometry of the domain together with boundary/initial conditions, H represents any
other input functions such as coefficient function field or source term in the PDE. The neural operator
thus approximates the following mapping. Note that in the case of time dependent problem, the space
Hk(D) represents the space of initial condition together with time varying boundary condition and
the solution space U represents a time series up to some time span. The solution operator G thus has
the following form.

G : P ×Hk(D)×H → U (6)

For learning the operator, we assume P , Hk(D) and H are probability spaces and thus we can sample
observations from A. In practice, we randomly sample geometry from P and random boundary
conditions are imposed, then a solution is generated from a numerical solver to get solutions. It is
important to highlight that, unlike the usual setting for neural operators, there is significant variation
in the shape of input domains.

C PROOF OF THEOREM 1

Theorem. Assume the operator L in Eq. 1 is self-adjoint and coercive elliptic partial differential
operator (Mathew, 2008). Let u and ũ denote the solution obtained by traditional additive Schwarz
method given by Eq. 5 and SNI in Algorithm 1, respectively, with the same initial condition u0 = ũ0.
Assume ∥ T̃k ◦ G† ◦ Tk(·)− Sk(·) ∥< c where Sk is the local solution operator for Eq. 3 for all k,
and if the traditional algorithm converges, then we have:

• Convergence: SNI converges to a fixed point;

• Error bound: there exists a constant c′ (depending on c) such that ∥ ũn − un ∥< c′.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. (1) Recall that the iterative rules of traditional and neural Schwarz inference are given by:

un+1 = un + τ

K∑
k=1

[R⊺
kSk(u

n)−R⊺
kRku

n]

ũn+1 = ũn + τ

K∑
k=1

[
R⊺

kG̃
†
k(ũ

n)−R⊺
kRkũ

n
] (7)

where G̃†
k denotes T̃k ◦ G† ◦ Tk. By simple calculation, we first express the operator Sk explicitly by

introducing finite element space under weak formulation: Sk : un 7→ A−1
k Rk(f − Aun) + Rku

n.
Hence the convergence of traditional Schwarz algorithm implies ρ(I − τMA) < 1 where M =∑K

k=1 R
⊺
kÃ

−1
k Rk, and ρ(·) denotes the spectral radius. Hence we have

ũn+1 = (I − τMA)ũn + τMf + τ

K∑
k=1

R⊺
k(G̃

†
k(ũ

n)− Sk(ũ
n))

Since τMf is a constant term and ∥ G̃†
k(·)− Sk(·) ∥< c, by random fixed point theorem, the neural

algorithm converges to a random fixed point.

(2) Subtraction of Eq. 7 gives:

∥∥ũn+1 − un+1
∥∥ =

∥∥∥∥∥(I − τ

K∑
k=1

R⊺
kR

k)(ũn − un)− τ

K∑
k=1

R⊺
k(G̃

†
k(ũ

n)− Sk(u
n))

∥∥∥∥∥
=

∥∥∥∥∥(I − τ

K∑
k=1

R⊺
kR

k)(ũn − un)− τ

K∑
k=1

R⊺
k(G̃

†
k(ũ

n)− Sk(ũ
n) + Sk(ũ

n)− Sk(u
n))

∥∥∥∥∥
≤ (I − τMA) ∥ũn − un∥+ τ

K∑
k=1

R⊺
k

∥∥∥G̃†
k(ũ

n)− Sk(ũ
n)
∥∥∥

It is easy to see that τ
∑K

k=1 R
⊺
k

∥∥∥G̃†
k(ũ

n)− Sk(ũ
n)
∥∥∥ ≤ τtc where t denotes the maximal number

of overlapping subdomains. Let ρ = ρ(I − τMA) < 1, we have ∥ũn − un∥ ≤ 1−ρn

1−ρ τtc. Taking
c′ = τtc

1−ρ completes the proof.

If we apply matrix form of neural operator, namely, the neural operator aims to approximate
{A−1

k }Kk=1 and assume, then we can have the following result:

Corollary 1. Consider the exact operator A−1
k and inexact neural operator Ã−1

k , k = 1, · · · ,K. Let
un and ũn represent the solutions updated by A−1

k and Ã−1
k respectively at the n-th step, where the

updating rule is given by Eq. 5 with τ = 1 and both sharing the same initialization. Suppose that
∥ A−1

k − Ã−1
k ∥< c, for k = 1, · · · ,K, and ρ(I −MA) < 1, where M =

∑K
k=1 R

⊺
kÃ

−1
k Rk, then

we have:

• Convergence: the algorithm converges to a fixed point;

• Error bound: there exists a constant c1(c) such that ∥ ũn − un ∥< c1
∥I−MA∥ ;

• Condition number: κ(MA) ≤ min(t(K + 1), 1 + maxk
Hk

d),

where t, K, Hk and d denote the maximal number of overlapping subdomains, the number of
subdomains, the diameter of k-th subdomain, and the number of extensions, respectively.

Note that the condition ρ(I −MA) < 1 is generally challenging to satisfy. To address this issue, we
employ the Richardson iteration trick (Richardson, 1911) in order to ensure the convergence of the
proposed algorithm (Algorithm 1).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D TIME-DEPENDENT PROBLEMS.

We consider the time-dependent PDE with the following form:
ut − Lu = f in Ω× [0, T]

u(x, t) = uD(x, t) on ∂Ω× [0, T]

u(x, 0) = u0(x) on Ω× {0}
(8)

where L is again self-adjoint and coercive elliptic operator. The additive Schwarz method can
be naturally extended to a space-time additive Schwarz method (Li and Cai, 2015) by consider-
ing a decomposition of the space-time domain Ω × [0, T] by taking the product of overlapping
decomposition of Ω and [0, T] respectively. The space-time domain decomposition has the form
Ωi × [tj−1 − δT , tj + δT] where δT is the temporal depth and represent overlap in time domain.
Once such a decomposition is constructed, the same additive Schwarz method can be applied to
the space-time decomposition to get a global solution on the space-time domain, allowing parallel
iteration in both space and time domain. Local problems for the above decomposition are again of
the form in Eq. 8.

In our implementation on heat equation, we discretize the time domain with a fixed time step ts, fix a
rollout length of k and train a neural operator to map initial and boundary conditions to time series
for the k steps at t = 0, ts, · · · , (k − 1)ts. More precisely, the neural operator is trained to map uD

and u0 to time series of the form u(x, 0), u(x, ts), · · · , u(x, (k − 1)ts).

E SYMMETRIES OF PDES

The symmetry group of a general partial differential operator L refers to a set of transformations
that map a solution to another solution, forming a mathematical group. Lie point symmetry is a
subgroup of the symmetry group that has a Lie group structure and acts on functions pointwise as
transformations on coordinates and function values (Brandstetter et al., 2022). In this work, we will
in addition be concerned with not just a single operator L, but a family of operators depending on
various coefficient fields (e.g., Darcy flow) and various boundary/initial conditions. Symmetries
have to be properly extended to these input functions so that a solution with an input function is
transformed to another solution with a different input function.

Leveraging these symmetries allows for the generation of an infinite number of new solutions based
on a given solution. The idea of utilizing these symmetries as a data augmentation technique for
operator learning was initially introduced in Brandstetter et al. (2022). However, we apply these data
augmentation to solutions on basic shapes in training local operator and this usage of symmetries
echos a point mentioned in Brandstetter et al. (2022, Section 3.2) where the authors point out that
these data augmentation can be applied on local patches of solutions instead of the solution on the
entire domain.

There is another direct usage of symmetries in our framework. Instead of incorporating symmetries
as a form of data augmentation in training time, one can directly apply transformations to input
and output of a neural operator during inference time. We implement these transformations as
preprocessing and postprocessing steps in the inference pipeline. We summarize the symmetries of
each PDE applied in our implementation in Table 3. Normalizations applied as preprocessing and
postprocessing for each of the equations are summarized in Table 6.

F TIME COMPLEXITY

F.1 EMPIRICAL TIME COMPLEXITY

We provide empirical results on runtime for our main results. We discuss how better initialization can
accelerate the whole iterative process in the next point.

We first provide empirical runtime on a single sample for each stationary problem and each domain
reported in our main result. We use the following metrics:

• Time to convergence (TTC).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Equation Lap2d-D Lap2d-M Darcy2d Heat2d NonLap2d
Spatial
Shift (x1, x2) → (x1 + t1, x2 + t2)

Spatial
Rotation (x1, x2) → (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ)

Spatial
Scaling

(x1, x2) → (sx1, sx2)

–
u → su

uD → suD

g → g

u → s2u
uD → s2uD

a(x) → a(x)
f(x) → f(x)

u → u
u0 → u0

uD → uD

α → s2α

–

Value
Shift

u → u+ t
uD → uD + t

–

Value
Scaling

u → su
uD → suD

–

– g → sg – u0 → su0 –

Table 3: Symmetries of various PDEs applied in our implementation.

• Time to 15/10/5% relative l2 error following the practice in Mao et al. (2024).

Equations Domains TTC(s) TT15%(s) TT10%(s) TT5%(s)
Laplace2d-Dirichlet A 100 40 50 70
Laplace2d-Dirichlet B 269 107 137 194
Laplace2d-Dirichlet C 28 8 11 17
Laplace2d-Mixed A 162 82 103 137
Laplace2d-Mixed B 714 511 620 -
Laplace2d-Mixed C 68 43 52 -

Darcy2d A 84 37 54 -
Darcy2d B 247 144 176 -
Darcy2d C 26 12 15 -

Table 4: Empirical runtime for different equations and domains

Factors that affect the runtime are:

1. Type of equations. We observe that Laplace2d-Mixed takes longer on all domains. We
also observe that the existence of Neumann boundary condition leads to a larger range of
function values for the solution of Laplace2d-Mixed. This leads to more iterations steps
required to reach convergence.

2. Number of subdomains K and step size τ . In the above table, domain B takes longer for all
equations because it has 40 subdomains compared to 20 for A and C. A large number of
subdomains leads to more time consumption for an iteration. We illustrated how choice of τ
affects the number of iterations to convergence in section 4.3 of our paper.

3. Local operator architecture. While GNOT gets better results in accuracy, a drawback of
transformer-based methods is that they are usually slower than FNO (Hao et al., 2023).

4. Initialization. This is discussed in the next point.

We note that our implementation is not optimized to fully parallelize the iterative process; for example,
the normalization process is not parallelized in our implementation.

Numerical solvers are very fast in generating solutions for the domains we tested on and we do not
expect our approach to be faster than these highly optimized numerical solvers on these (still) simple
domains. As a reference, generating a solution for Laplace2d-Dirichlet on domain A using classical
FEM solution takes 6.15e− 4 seconds and performing a GNOT inference on the same domain takes
1.26e− 2 seconds. We can see that even classical numerical solver is faster than GNOT inference.
However, DDMs are a conventional approach implemented in commercial software designed to solve

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

PDEs on large-scale and complicated domains. We replace the local FEM solver in DDMs by a
data-driven neural operator and thus expect our approach to show superiority when the problem
domain is large and complicated.

F.2 ACCELERATION THROUGH BETTER INITIALIZATION

We discuss how to accelerate the iterative process by starting with a better initialization. In the original
implementation, we always start with a zero solution in the interior of the domain. To accelerate
the process, we initialize with solutions from GNOT direct inference and find that it considerably
saves our time. We report the time consumption on Laplace2d-Dirichlet using the same metrics as
the previous table. The only difference is in initialization.

Equations Domains TTC(s) TT15%(s) TT10%(s) TT5%(s)
Laplace2d-Dirichlet A 28 8 11 17
Laplace2d-Dirichlet B 70 3 6 21
Laplace2d-Dirichlet C 20 1 2 7

Table 5: Runtime results with improved initialization for Laplace2d-Dirichlet equations

However, coming up with a better initialization is not trivial and can be an interesting future work.

G DISCUSSIONS

Message passing in DDMs. In our framework, we solve a coupled system of local problems by
an iterative algorithm SNI. Through iteratively solving local problems based on boundary values
from the last iteration and thus from neighboring subdomains, SNI is essentially performing message
passing between subdomains. This message passing operation may be implemented in other forms,
e.g., through a graph neural network.

Higher-dimensional PDEs. Our framework can be extended to higher-dimensional cases as long as
basic shapes and corresponding solutions can be properly generated. For 3-d problems, one potential
selection of basic shapes is the class of polytopes.

Other formulations of DDMs. Schwarz hybrid formulation discussed in this work is one of the most
elementary formulation in DDMs. There are many other more advanced DDMs (Mathew, 2008).
Steklov-Poincaré framework is based on non-overlapping decomposition and transmission condition
as coupling condition for local problems. Langrange multiplier framework leads to the well-known
FETI method and is also based on non-overlapping decomposition.

Other types of PDEs. The additive Schwarz method in classical DDMs works for self-adjoint and
coercive elliptic equations. Non-self-adjoint elliptic equations, parabolic equations, saddle-point
problems and non-linear equations requires separate treatment. Addressing these cases presents
challenges in both training the local operator and designing the iterative algorithm.

Future Works. Based on the above discussion, there are many potential directions for future works.
First, it would be interesting to implement this framework using a message-passing framework instead
of an iterative algorithm to accelerate the convergence. Second, extending our framework to address
higher-dimensional problems is important, particularly since industrial problems often involve 3-d
simulation. Third, more advanced DDMs such as Neumann-Neumann, BDDC and FETI (Mathew,
2008) may also be explored. Lastly, other types of PDEs such as saddle point problems and non-linear
equations such as Navier-Stokes equation is out of the scope of our current work, and present unique
challenge. Tackling these challenges requires not only expertise on operator learning, but also deep
understanding of PDEs themselves. We speculate that it would be fruitful to combine rich literatures
of DDMs with operator learning.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

H EXPERIMENTS

H.1 DATASETS

Here we introduce more details of our datasets in both training and testing stage. For training data, we
generate random simple polygons with 3 ≤ n ≤ 12 vertices within [−0.5, 0.5]2 and create uniform
mesh using Gmsh (Geuzaine and Remacle, 2008). We prepare a separate dataset for validation
during training. For testing data, we generate the three domains depicted in Figure 2 together with
mesh using the Gmsh UI. We argue that the complexity of geometric domains is fundamentally
determined by their underlying topological and geometrical properties. Based on this intuition, we
considered three domains of increasing complexity for evaluation: (1) Domain A: This domain is
simply connected, representing the simplest class of geometries; (2) Domain B: This domain has
two holes and is multiply connected, indicating a higher level of complexity compared to the simply
connected Domain A; (3) Domain C: This domain has one hole with corners, further increasing the
geometrical complexity compared to the previous two domains. Through a systematical evaluation
across this spectrum of domains, from the simple geometry to more intricate multiply connected
domains with holes and corners, we believe the results provide a comprehensive understanding of our
framework’s capabilities.

Once the geometries and meshes are created, we specify boundary/initial conditions for various
equations and domains and generate solutions using FEniCSx (Baratta et al., 2023; Scroggs et al.,
2022a;b), a popular open-source platform for solving PDEs with the finite element method (FEM).
We adopt Lagrange element of order 1 (linear element) as our finite element space in generating
boundary/initial conditions and solutions. Next we give details on how these boundary/initial
conditions and solutions are generated for each type of PDEs. We also summarize these details in
Table 7 and 8.

Laplace2d-Dirichlet. Laplace equation in 2d with pure Dirichlet boundary condition. The governing
equation is

∆u = 0 in Ω

u = uD on ∂Ω.
(9)

For both training and testing data, we specify piecewise linear Dirichlet boundary condition with
randomly generated values within [0, 1] on boundary nodes.

Laplace2d-Mixed. Laplace equation in 2d with mixed Dirichlet and Neumann boundary condition
on ∂Ω = ΓD ∪ ΓN . The governing equation is

Figure 5: Illustration of mixed Dirichlet and Neumann boundaries for domain A, B, C in Laplace2d-
Mixed.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

∆u = 0 in Ω

u = uD on ΓD

∂u

∂n
= g on ΓN .

(10)

For training data, 20% of the data have pure Dirichlet condition and the generation process is the
same as in Laplace2d-Dirichlet. The rest 80% of the training data have mixed boundary condition
with non-empty connected Neumann boundary and Neumann boundary is randomly specified to
be less than half of the entire boundary. Then a random number r is sampled from U [0.5, 1] to
specify functional range for Dirichlet and Neumann boundaries as described next. Among data
with non-empty Neumann boundary, 50% have uD ∈ [0, r] and g ∈ [0, 1] and the other 50% have
uD ∈ [0, 1] and g ∈ [0, r].

For testing data, Dirichlet and Neumann boundary is specified for each of the domain A,B and C as
shown in Figure 5. Boundary conditions uD and g are both piecewise linear with randomly generated
values within [0, 1].

Darcy2d. Darcy flow in 2d with coefficient field a(x), source term f(x) and pure Dirichlet boundary
condition. The governing equation is

−∇(a(x)∇u) = f in Ω

u = uD on ∂Ω.
(11)

For training data, Dirichlet boundary condition is specified with a random range r ∈ [0.3, 1] and
boundary values are generated as uD ∈ [0, r]. The coefficient function a(x) and source term f(x)
are specified as piecewise linear functions with randomly generated values within [0, 1] on nodes.

For testing data, Dirichlet boundary condition, coefficient function and source term are all piecewise
linear functions with randomly generated values within [0, 1].

Heat2d. Time-dependent equation of heat conduction in 2d with coefficient α denoting the thermal
diffusivity, time-varying boundary condition and initial condition. The governing equation is

∂u

∂t
= α∆u in Ω× [0, T]

u(x, t) = uD(x, t) on ∂Ω× [0, T]

u(x, 0) = u0(x) on Ω× {0}.

(12)

For training data, we discretize the time domain with a fixed time step ts = 0.01, generate piecewise
linear initials and time-varying boundary conditions with values randomly generated within [0, 1]. α
is a random number within [0.8, 1]. We adopt the backward Euler method (Langtangen and Logg,
2017) and generate a time series of 10 time steps. During training we separate these 10 time steps
into 2 time series of 5 times steps and training the neural operator to predict 5 time steps.

For testing data, we fix α = 1. Initial condition is piecewise linear with values randomly generated
within [0, 1]. Boundary condition is specified to be constant over time and varied randomly within
[0, 1] across boundary nodes. We also adopt the backward Euler method and generate a time series of
50 time steps.

NonlinearLaplace2d. A nonlinear Laplace equation in 2d with pure Dirichlet boundary condition
following an example in Langtangen and Logg (2017). The governing equation is

∇ · ((u2 + 1)∇u) = 0 in Ω

u = uD on ∂Ω.
(13)

For both training and testing data, we specify piecewise linear Dirichlet boundary condition with
randomly generated values within [0, 1] on boundary nodes.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

H.2 EVALUATION PROTOCOL AND HYPERPARAMETERS.

Evaluation Protocol. The evaluation metric we utilize is the mean l2 relative error. Let ui, u
′
i ∈

Rn represent the ground truth solution and predicted solution for the i-th sample, respectively.
Considering a dataset of size D, the mean l2 relative error is computed as follows:

ε =
1

D

D∑
i=1

∥ u′
i − ui ∥2
∥ ui ∥2

(14)

Hyperparameters. All experimental hyperparameters used in the paper are listed in Table 6. For
data generation, the number of vertices of simple polygons are uniformly chosen between 3 to 12.
And a× b in configurations denotes the generation of b shapes, each having a distinct boundary/initial
conditions. For investigating data efficiency issue, we only vary the number of various shapes b
while keeping the number of random input functions per shape a constant. For boundary condition
imposition, we summarize the details in Table 7 and 8.

Computing Resource. We run our experiments on 1 Tesla V100 GPU.

Lap2d-D Lap2d-M Darcy2d Heat2d NonlinearLap2d

Data
Generation

Polygon [3,12]
Training

Configuration 10×2000 20×2000 10×4000 50×1600 10× 2000

Validation
Configuration 10×250 20×200 10×250 50×240 10× 2000

Testing
Configuration 100 100 100 10 100

Operator
Learning

GNOT 1 expert and 3 layers of width 128
Optimization Adam
Learning rate cycle learning rate strategy with 0.001

Epoch 500 1000 500 200 500

Data Aug. Rot. Rot.+
Sca. [0.8,1] No Rot.+

Sca. [0.8,1] Rot.

Time steps – 5 –

Inference
(SNI)

A

Partition K 20 20×16 20
Depth d 2

Temp. Depth δT – 1 –
Step size τ 0.04 0.002125 0.04

Pre/Post-pro. Spa. Shift+Scale
Val. Shift+Scale

Spa. Shift+
Scale

Spa. Shift+Scale
Val. Shift+Scale Spa. Shift

B

Partition K 40 40×16 40
Depth d 2

Temp. Depth δT – 1 –
Step size τ 0.024 0.0014625 0.024

Pre/Post-pro. Spa. Shift+Scale
Val. Shift+Scale

Spa. Shift+
Scale

Spa. Shift+Scale
Val. Shift+Scale Spa.Shift

C

Partition K 20 20× 16 20
Depth d 2

Temp. Depth δT – 1 –
Step size τ 0.04 0.002125 0.04

Pre/Post-pro. Spa. Shift+Scale
Val. Shift+Scale

Spa. Shift+
Scale

Spa. Shift+Scale
Val. Shift+Scale Spa. Shift

Table 6: Key hyperparameters of main experiments. Configuration under Data Generation is specified
as (number of random input functions per shape) × (number of various shapes). Partition K for
Heat2d is specified as (number of spatial partition) × (number of temporal partition).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

PDE Description
Lap2d-D range of boundary condition: U [0, 1]

Lap2d-M

20% pure Dirichlet condition: range U [0, 1]
40% mixed boundary condition with ΓD/∂Ω ∼ U [0.5, 1]

range of Dirichlet: U [0, r] where r ∼ U [0.5, 1], range of Neumann:U [0, 1]
40% mixed boundary condition with ΓD/∂Ω ∼ U [0.5, 1]

range of Dirichlet: U [0, 1], range of Neumann: U [0, r] where r ∼ U [0.5, 1]

Darcy2d range of boundary conditions: U [0, r] where r ∼ U [0.3, 1],
range of a(x) and f : U [0, 1]

Heat2d range of initial/boundary condition: U [0, 1] , α ∼ U [0.8, 1]
NonlinearLap2d range of boundary condition: U [0, 1]

Table 7: Details of boundary/initial condition and input function generation in training data.

PDE Description
Lap2d-D range of boundary condition: U [0, 1]

Lap2d-M ΓD and ΓN as in Figure 5
range of Dirichlet: U [0, 1], range of Neumann: U [0, 1]

Darcy2d range of boundary conditions: U [0, 1]
range of a(x) and f(x): U [0, 1]

Heat2d
α = 1
range of boundary/initial condition: U [0, 1]
boundary condition do not vary with time

NonlinearLap2d range of boundary condition: U [0, 1]

Table 8: Details of boundary/initial condition and input function generation in testing data.

H.3 VISUALIZATION OF BASIC SHAPES AND DOMAIN DECOMPOSITION.

Visualization of basic shapes. We provide examples of generated basic shapes for training in Figure
6.

Figure 6: Examples of basic shapes.

Visualization of decomposed domains: A, B, and C We provide the visualization of decomposed
domains A, B, C in Figure 7. Please be noted that this is just a rough visualization in that we do not
correctly plot the overlapping part of subdomains. So this is only for an intuitive understanding of the
decomposed domain.

H.4 OTHER SUPPLEMENTARY RESULTS.

Data Efficiency. The results for data efficiency on Laplace2d-Mixed and Darcy2d are shown in
Figure 8. The average performance of SNI is better than GNOT on all of three domains, while the
margins between the two methods on domains A and B are not statistically significant due to the high
variance in the l2 relative errors of SNI on these two domains. GNOT struggles in the generalization
to domain C, while SNI can still handle it with a good performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 7: Visualization of decomposed domains A, B and C.

0 1 2 3 4
Training set size ×104

0.0

0.2

0.4

L2
 re

la
tiv

e
er

ro
r

(a) Lap2d-M domain A

0 1 2 3 4
Training set size ×104

0.1

0.2

0.3
L2

 re
la

tiv
e

er
ro

r

(b) Lap2d-M domain B

0 1 2 3 4
Training set size ×104

0.0

0.2

0.4

0.6

L2
 re

la
tiv

e
er

ro
r Val

SNI
GNOT

(c) Lap2d-M domain C

0 1 2 3 4
Training set size ×104

0.0

0.2

0.4

L2
 re

la
tiv

e
er

ro
r

(d) Darcy2d domain A

0 1 2 3 4
Training set size ×104

0.0
0.5
1.0
1.5
2.0

L2
 re

la
tiv

e
er

ro
r

(e) Darcy2d domain B

0 1 2 3 4
Training set size ×104

0.0

1.5

3.0

4.5

L2
 re

la
tiv

e
er

ro
r Val

SNI
GNOT

(f) Darcy2d domain C

Figure 8: Comparison between the l2 relative errors from SNI (blue), GNOT direct inference (orange)
and validation (red) on Laplace2d-Mixed and Darcy2d upon three domains (A, B and C) with different
numbers of training samples.

Irregular and More Complicated Domain: Dolphin-shape Domain. We provide the result of
Laplace2d-Dirichlet on a dolphin-shape domain in Table 9 which has more complex boundary. The
mesh and decomposed domain is illustrated in Figure 9. We can see that on this irregular and more
complicated domain, the SNI with GNOT still gets reasonably good result. The error is relatively
higher than that of simpler domains in Table 1. This error gap can be caused by the gap between
training and testing shape distribution.

Figure 9: Visualization of dolphin-shape domain.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Equation Domain SNI with GNOT (%)

Laplace2d-Dirichlet Dolphin 4.5± 0.9
Disk 2.1±0.5

Table 9: Laplace2d-Dirichlet on dolphin-shape and disk domains.

Equation Domain valGNOT SNI with GNOT valGeo-FNO SNI with Geo-FNO

Laplace2d-Dirichlet
A

2.5
2.2±0.6

5.6
9±3

B 2.1±0.4 14±1
C 2.1±0.9 12±2

Darcy2d
A

3.8
9±2

6.4
11±2

B 8±2 15.7±0.9
C 5.4±0.6 20±2

Table 10: SNI with GNOT or Geo-FNO as different choices of local operator for Laplace2d-Dirichlet
and Darcy2d. Validation errors are provided for reference.

Simple Domain: Disk. We provide the result of Laplace2d-Dirichlet on a simple disk domain in
Table 9. This result is comparable to these in Table 1.

Comparison with Graph-based Neural Networks (GNN). We provide the result of direct inference
with MeshGraphNets (Pfaff et al., 2020). We train the GNN on our Laplace2d training data and
evaluate it on the domains A. We get a relative l2 error of 11.5%. We find that GNN does provide
better generalization across different domains compared to GNOT and it can be potentially used to
accelerate our iterative algorithm in our future work.

Choice of neural operator architecture. We provide results of SNI with Geo-FNO Li et al. (2023)
on Laplace2d-Dirichlet and Darcy2d in Table 10.

Solution and Error Visualization. We provide visualization for stationary problems in Section
4. We visualize ground-truth solution from testing data, absolute error from SNI and GNOT direct
inference in Figure 10, 11 and 12. We also provide the error visualization in Figure 14 along with the
decomposed domain to understand where the error is located.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

I BROADER IMPACTS

First, the proposed framework holds the potential to serve as an alternative to conventional PDE
solving tools. Through its ability to address challenges related to geometry-generalization and data
efficiency, the framework offers advantages that can significantly improve the efficiency of PDE
solving. This improvement can have a positive impact on various industries, including engineering,
physics, and finance, where PDEs are extensively employed for modeling and simulation purposes.

Second, the proposed three-level hierarchy for PDE generalization provides researchers with valuable
directions for future exploration in neural operator research. This hierarchical structure offers a
framework to systematically address the challenges associated with generalizing neural operators to
new geometries and PDEs. By considering these three levels, researchers can focus on developing
techniques and methodologies that improve the adaptability, flexibility, and scalability of neural oper-
ators. Furthermore, current operator learning methods in the neural operator field are predominantly
driven by data and do not adequately consider the underlying PDE information. In our research, we
introduce domain decomposition into the neural operator domain to tackle the issue of geometric
generalization, incorporating traditional PDE approaches. This research direction presents significant
potential for further investigation.

Figure 10: Visualization of test dataset of Laplace2d-Dirichlet on domain A, B and C. The three
columns from left to right display the ground-truth solution, absolute error from SNI and GNOT
direct inference.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 11: Visualization of test dataset of Laplace2d-Mixed on domain A, B and C. The three
columns from left to right display the ground-truth solution, absolute error from SNI and GNOT
direct inference.

Figure 12: Visualization of test dataset of Darcy2d on domain A, B and C. The three columns from
left to right display the ground-truth solution, absolute error from SNI and GNOT direct inference.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 13: Visualization of test dataset of NonlinearPoisson2d on domain A, B and C. The three
columns from left to right display the ground-truth solution, absolute error from SNI and GNOT
direct inference.

Figure 14: Visualization of error distribution together with decomposed domain for Laplace2d-
Dirichlet on domain B.

27

	Introduction
	Problem Formulation and Preliminaries
	Problem formulation
	Domain decomposition methods

	Operator Learning with Domain Decomposition
	Training Data Generation
	Local Operator Learning
	Schwarz Neural Inference
	Theoretical Results

	Experiments
	Experimental Setup
	Main Results and Analysis
	Ablation Experiments

	Related Work
	Conclusion and Future Works
	Background on Domain Decomposition
	Revisit on Operator Learning
	Proof of Theorem 1
	Time-Dependent Problems.
	Symmetries of PDEs
	Time Complexity
	Empirical Time Complexity
	Acceleration through Better Initialization

	Discussions
	Experiments
	Datasets
	Evaluation Protocol and Hyperparameters.
	Visualization of Basic Shapes and Domain Decomposition.
	Other Supplementary Results.

	Broader Impacts

